Dynamic Load-Balancing for Data-Parallel MPI

Programs

William George
National Institute of Standards and Technology

Abstract—This paper describes the load-balancing support
available in DParLib, a library of MPI-based routines that
support the data-parallel style of programming in MPI. The
basic structure of DParLib is described with a focus on the
parts of the library needed to support the distribution and
re-distribution of arrays.

Keywords— MPI, data-parallel, load balancing, library

I. INTRODUCTION

HIS paper describes the load-balancing support avail-

able in DParLib, a library of MPI-based routines that
support the data-parallel style of programming in MPL.
Load-balancing in this paper refers to the effort to keep all
processors equally busy doing productive work.

The problem of distributing the computational load
among the processors of a parallel machine has been with
us as long as distributed computing itself. The problem
has been studied both in its general sense and in relation
to specific algorithms [1] [2] [3] [4] [5] [6] [7]- This paper is
less about the specific algorithms used to compute the load
balance than it is about the supporting software. Many of
the decisions about load balancing are left to the individ-
ual application, such as how often to balance and how to
determine the optimal redistribution of data and obtain
a balanced load. Given the library support for the gen-
eral redistribution of arrays, as well as some other routines
designed to support the computation of a load balancing
measure, the majority of the work has been done toward
providing each application with dynamic load balancing ca-
pability. Application writers can focus on tuning their load
balancing algorithm, be it simple or complex, for their par-
ticular situation.

The parallel programs we are interested in are those pro-
grams that fit into the data-parallel programming model.
For our purposes, we define a data-parallel program as one
in which the majority of the computation takes place on
large arrays of data which can be conveniently distributed
among the available processors. Ideally, the computations
performed on each element of the array can be accom-
plished in parallel with the computations on all of the other
elements, although this is not strictly necessary.

Load balancing a data-parallel program consists mainly
of ensuring that the arrays are distributed among the pro-
cessors such that each processor has an equal computa-
tional load. This does not mean that each processor has
the same number of computations to perform, but that
each processor can complete its computations in the same

The author may be contacted at NIST, 100 Bureau Drive Stop 8951,
Gaithersburg MD 20899-8951. E-mail: william.george@nist.gov

amount of time as the other processors. As a simple ex-
ample, if a program is running on two processors, with the
main data array distributed between them, and one proces-
sors is twice as fast as the other at performing each array
element update, then the fast processor should get twice
as many elements as the slower processor. In this way, the
overall computation will complete in the shortest amount
of time. If the correct distribution cannot be precomputed,
or if the correct distribution changes as the program pro-
gresses, then the array must be redistributed periodically
to avoid suffering from a large load imbalance.

The redistribution of arrays requires knowledge of the
current distribution, the desired distribution, and the ex-
act size and shape of the array to be redistributed. This
information, along with many routines for creating, delet-
ing, and manipulating distributed arrays, can be managed
by DParLib.

This paper is structured as follows. Section I describes
the basics of array distribution in DParLib. Section II de-
scribes the specific routines used to support data redistri-
bution. Section III outlines the structure of a program
that uses the data redistribution support in DParLib. Sec-
tion IV gives some initial results from an actual application
which uses this technique for load-balancing. Finally, Sec-
tion V gives some conclusions on this effort and describes
the future direction of development for DParLib.

II. DATA-PARALLEL SUPPORT
A. Distribution of Arrays

DParLib supports the distribution of arrays in the two
most common schemes, block and block-cyclic, as well as
general-block, a DParLib specific distribution scheme de-
signed to support load balancing. Programs that use the
load balancing routines in DParLib must have at least one
axis that is distributed in the general-block scheme.

The library supports these distributions in that, given
the extent of the array axis to be distributed, and the num-
ber of nodes to distribute the axis between, the library can
supply to the user the size of the axis on each of the nodes
as well as the global indices owned by each node. The
padding of an array axis that cannot be distributed evenly
is handled by the library so the user does not need to artifi-
cially pad arrays to even sizes. Additionally, array shifting,
array reduction, elemental operations, stencil computation,
and other data-parallel operations are supported on arrays
with these distributions. In general, for each array which
the user will use with any of the DParLib routines, the user
describes the size and shape of the array to be distributed,

identifies how each axis is to be distributed (local or not dis-
tributed, block distribution, block-cyclic, or general-block
distribution), and the library computes the size and shape
of each subarray, that is, the part of the array that exists
on each node. Each array axis is distributed independently
so that any number of axes may be local, or distributed
as block-cyclic, block, or general-block. From the descrip-
tion of the array distribution given to DParLib, an array
descriptor is produced by the library to be used (passed
as an argument) whenever you need information about the
distribution of this array or an operation supported by the
library needs to be performed. The library can also allocate
and free these arrays if needed.

An example of a call to generate an array descriptor for
an array of floats of size 200 x 100 looks like this:

extent [0] = 200; extent[1] = 100;

dist.dist_type[0] = DP_general_block_dist;

dist.dist_type[1] = DP_block_dist;

A = dp_make_array_desc(comm, MPI_FLOAT, 2,
extents, false, dist);

axis=0;

dp_compute_general_block_dist_x(A, axis, bsizes)

dp_init_general_dist(A, axis, bsizes);

where comm is an MPI communicator with a Cartesian
topology (which in this case it must have 2 axes), extent
gives the size of the array axes, dist is a DParLib defined
structure used to describe the distribution of each of the
array axes, and false (a DParLib defined boolean value)
indicates that the subarrays are to be stored in row-major
order (true would mean column-major). The number of
processors each axis is distribute over is determined by the
MPI communicator passed to dp_make_array desc(). The
returned value, A, is the array descriptor. The last two lines
are needed to set the initial distribution block sizes for axis
0. The dp_compute_general block dist_x() routine sim-
ply returns in the integer vector bsizes a set of block sizes
that will distribute the array as evenly as possible. The
call to dp_init_general dist() then adjusts the array de-
scriptor A to include this required information. This must
be done for each array axis that uses the general-block dis-
tribution. Other routines are planned that will perform an
initial load balance based on the speeds of the processors
or on some other appropriate criteria.

A separate DParLib call can be used to allocate the sub-
arrays, or the program can obtain them in any way suitable.
This array is shown in Fig. 1 distributed over a 5 x 4 mesh
of processors. The block sizes along axis 0 are shown as b,
since these can vary, although the sum of the b, must, in
this example, be 200.

As mentioned previously, the general-block distribution
scheme was added to DParLib specifically to support load
balancing. Unlike the standard block distribution in which
a single block size is used on all nodes (except for the block
in the last node in the case of an array extent that does not
divide evenly into the block size), the general-block distri-
bution allows each node to have a different block size. Ini-

100

A
4

by

b

[y

12| | 13 14| | 15|]bs

16 17 18 19 | Tb4

25

}
}
wo| [] [] [0] [ma]f
}
}

2 2 T

Fig. 1. A 100 x 200 array distributed over a 5 x 4 mesh of processors.
Each box is one processor, labeled with its MPI rank. The rows of
the array are distributed in the general-block distribution scheme
and the columns are distributed in the block distribution scheme.
The subarrays are of size 25 X b, where the sum of the b, must
equal 200.

tially this distribution was used to allocate and distribute
arrays based on a performance rating for each of the avail-
able nodes. When a program started, a short timing test
was run to determine the relative compute speeds of the
nodes using a sample computation from the application.
With this information, the faster nodes were assigned larger
blocks than the slower nodes. This was a static, one-time,
computation completed at the start of the program only,
before the arrays were distributed. We have since expanded
this support by allowing for the redistribution of arrays.

III. IMPLEMENTATION
A. Measuring Load Balance

Periodically, the state of the application must be deter-
mined with respect to the load balance. I will refer to
this measurement, along with any required array redistri-
bution, as a load balancing phase of the application. A
load-balancing phase is necessarily a collective operation
and therefore all nodes will be synchronized. It is expected
that load balancing will be performed periodically at some
point in the main iteration loop of the program, with all
nodes executing the same number of iterations between
load balancing phases.

The source of a load imbalance can be either internal,
that is, directly a result of the algorithm used in the appli-
cation, or external. External causes can include a varying
system load, network load, memory available, or the raw
processing speed of each node. This suggests two different
methods for computing the current load imbalance during
any load balancing phase.

The first method assumes that the cause of any load

imbalance is due entirely to the algorithm. If this is the
case, then the amount of the load imbalance should be di-
rectly computable from the parameters of the current run.
For example, assume an application works on a one dimen-
sional array and that it is known that the algorithm starts
perfectly load balanced and slowly, and linearly, becomes
imbalanced with the majority of the computations taking
place at the ends of the array. This knowledge could be
used to compute, based on an iteration count, or some other
measure of algorithm progress, the current load imbalance.
The time to update each element could be expressed as a
function of its index and the load on each node would be
the sum of this function over all of the elements it owns.
A perfectly balanced system would result in an equal sum
on each node.

The second method does not rely on any knowledge of
the cause of the load imbalance, although any such knowl-
edge can be factored in to the computation. In this method,
the application is instrumented to gather timing data. As-
suming the application is structured with a main loop in
which the there is computation phases and communication
phases, the timings should indicate the amount of time
spent on each node for the computations and the amount
of time spent for communications. If the processors are
force to be synchronized at some point, then timing this
synchronization could indicate the level of load imbalance.
Processors that have blocked for long periods of time on
the synchronization points may have too little computa-
tion assigned to them Similarly, comparing total computa-
tion times between nodes can indicate the state of the load
balance.

This second method has the advantage that it can ac-
commodate load imbalances regardless of the cause. Any
load imbalance due to a combination of changing system
load, differing processor speeds, algorithm effects, or any
other reason will be detected and taken into account.

In general, the results of this measurement of load bal-
ance must be some type of performance rating, S,,, for each
distribution block size, b,,, that must be computed. For the
array shown in Fig. 1, there are 5 block sizes to compute,
one for each of the 5 rows of the processor mesh. The
next section describes a simple algorithm for computing
new distribution block sizes based on these ratings.

How these performance ratings, S,, are computed is
strictly up to the application, although there are DParLib
routines that can assist in this computation. In particu-
lar, one performance rating we have used is a simple time
per subarray slice, Tss, where a subarray slice is a (D — 1)-
dimensional section of the D-dimensional subarray. Refer-
ring again to the array in Fig. 1, if processor mesh row n
has a distribution block size of b,, then each node in that
row will have b, of these subarray slices. This measure-
ment, T, is the compute time (no communication time or
synchronization time is included) used during one iteration
of the main loop divided by the node’s current distribution
block size. For the example in Fig. 1, each subarray slice
would be a 1-dimensional array of length 25. Nodes 0-3
would each have by slices, nodes 4-7 would have b; slices,

and so on. Because each processor row contains 4 nodes,
S, is computed as the average of the Tys values for the
processors in that row. Ultimately, all nodes must have
the complete set of 5 performance ratings, Sy through Sy,
so that they can all independently compute the new set of
block sizes. A single DParLib routine is used to compute
the complete set of S, s and broadcast them to all of the
nodes. All that is needed is the local T, for each node.
The call for this example is:

dp_average_by_slice (A, Tss, 0, Sn);

where A is the array descriptor, Tss is the local time per
slice (Tss), O is the array axis that is to be used for load
balancing, and Sn is the result, a vector of average Ts’s.

It is these types of global operations that make paral-
lel programming difficult, error prone, and time consuming
and are perfect for encapsulation in a general purpose li-
brary such as DParLib.

B. Computing a New Distribution

If you know that the source of the load imbalance is
strictly a function of the algorithm, then computing the
best redistribution can also be based strictly on the algo-
rithm.

Otherwise, choosing the best redistribution may not be
simple. There are several obvious possibilities to consider.
1. Assume the balance now is stable and correct the distri-
bution to obtain a perfect balance based on the latest S,
values.

2. Assume the balance is moving in one direction and es-
timate the best average distribution to use from now until
the next rebalancing phase.

3. Assume the balance may vary wildly and quickly, due,
for example, to external system loads, and only adjust the
balance in small increments based on a trend rather than
on the actual current measurement alone.

In each case, the algorithm may also impose a restric-
tion on the size of the subarrays. In particular, I expect
that some algorithms require a minimum block size of 1
or 2 for each node. A more robust algorithm may handle
block sizes of 0 enabling the complete exclusion of a node
should it become too slow. After we gain more experience
with actual applications, we may implement one or more
of these rules in DParLib routines rather that requiring the
application developer to implement them. A reasonable
interface to such a routine is not yet obvious.

After a new distribution has been computed, by what-
ever means, the choice must be made whether to redis-
tribute or not. If the new distribution is nearly identical
to the current distribution, it may not be worth the cost
of redistributing. This decision must be made based on
the system in use since redistribution costs will vary. Af-
ter some experience with this library, we may be able to
determine some general guidelines that can be applied au-
tomatically.

C. Frequency of Measuring

Once you have determined how to measure the level of
load imbalance, the question remains as to how often this

measurement should be taken. Practically, once per it-
eration of the main loop of the update algorithm would
be the upper limit. However, this could be too costly for
some algorithms. How often to rebalance can depend on
the number of iterations needed to complete the algorithm,
the time required per iteration, the expected source of the
load imbalances, and the expected behavior of the algo-
rithm with respect to load balancing.

The application described in section IV uses a measure of
execution time to set the interval between load balancing
phases. For example, the code can be set to check the
load balance approximately once an hour. Rather than
using a test against a raw timer to trigger a load balancing
phase, the program estimates the number of iterations of
the main loop that can be completed in the allotted time
based on the timings used in the previous load balancing
phase. Using an iteration count is preferred over a raw time
since each node’s timings will vary slightly and so using a
local timer will not be sufficient to guarantee that all nodes
will start a load balancing phase on the same iteration of
the main loop. Using a raw time therefore requires the
broadcasting of a single time value to all nodes on each
iteration. This would ensure each node makes the same
decision to load-balance or not. Using an iteration count
avoids this constant broadcasting.

D. An Ezxample Redistribution Scheme

The question now is, how to compute the new block sizes
given the set of performance ratings (S,). For simplicity,
assume the array we are using is distributed along a single
axis. In this case, we have a 1-dimensional processor mesh.
This means that each S, is associated with a single node.
In general, if node 7 has a performance rating of S;, and
node j has a rating of S;, and S; < S; then node j is slower
than node i and so should be assigned less data than node
i if they are to finish their work for each iteration at the
same time. The slowest node will have a rating of S,,4z-

The goal is to compute the new block sizes such
that the product of the performance rating (in sec-
onds/slice/iteration) and the block size (which is the num-
ber of slices the node will be assigned) is the same for all
nodes, or as close as possible to the same.

A relative performance rating can be computed by first
determining Sy,,., the largest S,, which will be will be the
performance rating for the slowest node. Then all of the
performance ratings are divided into Sp.. to obtain the
relative performance rating S, = Sp4e/Sn- This assigns a
relative rating of 1 to the slowest node, and a rating greater
than or equal to 1 for all the rest of the nodes. The block
size to assign to the slowest node can be computed as:

NumSlices
P—1 o
Zn:O Sk
where NumSlices is the total number of array slices to be
distributed (that is, the array extent along the axis that

is being redistributed), and P is the number of nodes the
array axis is being distributed across. For the remaining

bmin =

nodes, the block size for node 7 is computed as b; = byin X
ST.

Note that we are computing these new block sizes using
the first assumption listed in section ITI-B, that is, we are
adjusting the block sizes to obtain a perfect load balance
assuming the current performance ratings are stable and
will not change.

With the new set of block sizes just computed, the b;s,
we can call a DParLib routine which will generate a new
array descriptor and another to generate a communica-
tions schedule for this redistribution. The communications
schedule describes all of the communications and other
data movement needed to complete the redistribuion of any
array that is in the original distribution. Typically more
than one array will need to be redistributed so this commu-
nications schedule can be reused as needed. The DParLib
routine which performs the redistribution accepts two array
descriptors and the communications schedule so this can be
called with each of the arrays to be redistributed. Once all
of the arrays have been moved to their new distribution,
the communications schedule should be freed.

Assuming that the newly computed block sizes are in the
integer vector bsizes, the current array is A, and we are
redistributing along axis 0, the following code will redis-
tribute A:

axis=0;
A_new = dp_dup_array_desc(A, MPI_FLOAT, false);
dp_init_general dist(A_new, axis, bsizes);
redist_sched =

dp_compute_redist_comm(A, A_new, axis)
dp_redist (A, A_new, redist_sched, axis)
dp_free_array(A); /* no longer needed */
A=A_new;
dp_free_redist_comm(&redist_sched);

IV. INITIAL RESULTS

We have used this load balancing support from DParLib
to improve the performance of a large simulation which we
typically run on our IBM SP2.

This is a simulation which models the casting of a bi-
metal alloy in three dimensions. There are 2 main data
arrays, one containing the percent concentration of each
metal at each point in the volume (CON), and the other
containing the current phase of the alloy (solid/liquid) at
each point in the volume (PHI). Details of this algorithm
for a 2-dimensional simulation can be found in the papers
by Warren and Boettinger [8] [9]. In addition to these two
main data arrays, there are 3 other support arrays of the
same size and shape and 2 more that hold the contents of
the CON and PHI from the previous iteration of the update
algorithm. This simulation uses a typical finite difference
algorithm to update the grid points in the CON and PHI
on each iteration using only values from the adjacent grid
points.

We have run this simulation on our SP2 on computa-
tional grids of sizes up to 4003 using up to 32 processing
nodes and requiring up to 72 hours of execution time for

the largest simulation. Many of these runs have been in-
strumented to identify performance bottlenecks for possible
tuning. The performance data we have collected show that
there existed a chronic load imbalance on most runs. There
are two main causes for the load imbalance we observed,
one algorithmic and the other processor performance.

The algorithmic aspect of the load imbalance is related
to the progression of the solidification of the alloy. The
volume initially is a super-cooled liquid with a small seed
of solid placed in one corner of the volume. The process of
solidification results in the volume changing from mostly
liquid to all solid with a complicated leading surface of
freezing liquid (like water freezing into a snowflake). The
load imbalance is due to the different computational load
required to update a point in the volume depending on
whether it is currently in the solid phase, liquid phase, or is
transitioning from liquid to solid. Points that are currently
solid require slightly more computations.

The arrays are distributed along one of the axes only
with each node assigned an equal number of volume points.
Initially, assuming that the seed is small, only one node
contains a part of the volume that is solid. All other factors
being equal, the first node should then be assigned slightly
fewer volume points than the rest of the nodes. As the
volume begins to freeze (solidify), the load balance can be
recomputed based on the relative number of solid and liquid
points each node currently contains.

The second and potentially more dramatic cause for the
load imbalances we observed was due to the varying com-
putational power of the nodes that comprise our SP2. Up-
dates to the machine and the addition of new compute
nodes periodically has resulted in a collection of heteroge-
neous compute nodes. Without enforcing the assignment
of nodes to each run of the simulation (through the batch
queuing system), the program must adapt to the collection
of nodes it has been assigned each time it is executed.

A third cause for the load imbalances appears when the
program is run on one or more of the SP2 nodes that also
allow interactive users. Only on these nodes is there ever
more than one user program running. This is an unpre-
dictable source for of load imbalance since users normally
run short tests on these nodes before submitting them as
long running production jobs. If one or more of these nodes
are used in the simulation, their performance can degrade
quickly at any time and for an unpredictable amount of
time.

Dealing with a collection of heterogeneous nodes is not
a problem unique to the SP2. We also have collections of
PCs and workstations that can be used to run simulations
such as this one. Maintaining a reasonable load balance
when running on these clusters will also be simplified by
using this technique. In general, any parallel machine that
can be expanded will eventually have a collection of nodes
of varying speed.

Because of the unpredictable nature of the source of pos-
sible load-imbalances in this simulation, we have used the
second method for measuring the level of load imbalance
as described in section ITII-A. We have instrumented the

application to obtain a measure of the per-iteration time
spent performing the update of the CON and PHI arrays.

Two separate performance results will be given. The
first is the overall performance improvement that this load
balancing achieved on two test runs of the alloy solidifica-
tion simulation. These results are highly specific to this
application, our approach to the frequency and method for
computing distribution block sizes, and to the particular
machine we used. Therefore only very general conclusions
can be drawn from this data. The second performance re-
sult relates to the actual cost of each load balancing phase,
which consists mostly of computing the new block sizes.
This is also highly dependent on the specific application
and machine used but is discussed separately since this de-
termines the frequency at which load balancing phases can
occur without significantly increasing the total execution
time. The cost for redistributing the arrays at any load
balancing phase is determined mostly by the number and
size of the arrays that must be redistributed and the com-
munications speed of the machine. This can be used to
determine a threshold, or minimum block size change, that
must be meet before a redistribution is actually performed.
These parameters must all be considered when adding this
type of load balancing to an application.

To demonstrate the range of possible results, two test
cases are presented. The first case uses a computational
grid of size 100® and 4 processing nodes. The results for
this case are shown in Fig. 2. The second case uses a com-
putational grid of size 200 and 8 processing nodes. These
results are shown in Fig. 3. In each of these figures, the it-
eration number at which a load balancing phase occured is
indicated as well as whether the arrays were redistributed
as a result of that load balancing phase.

The dramatic performance increase for the 4-node test
case was due to 1 of 4 nodes being heavily loaded at the
time of the tests. For the initial distribution, each node had
subarrays of size (25 x 100 x 100). Focusing only on the
distributed axis, the 4 block sizes were (25,25,25,25). At
the first load balancing phase (hard coded to occur at iter-
ation 5), the arrays were redistributed so that the heavily
loaded node had a block size of 4. The exact distribu-
tion obtained was (4,31,32,33). A second load balancing,
at iteration 20, changed this slightly to (3,32,32,33). The
bottom graph in Fig. 2 shows the execution time for each
iteration. The periodic glitches in this graph are due to the
periodic snapshots taken of the CON and PHI arrays which
required additional computation and some file I/O. This
test clearly shows the large effect that a single slow node
can have on the performance of this program.

Figure 3 shows the results of the 8node test. In this
test, 1 of the 8 nodes was significantly faster than the
other nodes. Specifically, the computation of the relative
performance ratings resulted in 7 nodes receiving a rating
of approximately 1.0 and the fast node receiving a rat-
ing of approximately 1.6. The initial array distribution
in this test assigned subarrays of size (25 x 200 x 200) to
each node. Focusing only on the distributed axis, the 8
nodes had block sizes of (25,25,25,25,25,25,25,25). At the

Total Accumulated Execution Time for a 100x100x100 grid

3500 : :
With Load Balancing —
Without Load Balancing - -
3000 r|gad Balancing Phases @
= Arrays Redistributed x
ko] 2500
c
o
(5]
:‘,,,i 2000
(O]
£ 1500
'_
1000
/,f’ P
500 e i et T e, o
I
0
0 10 20 30 40 50 60 70 80 90
Iteration Number
Execution Time per Iteration for a 100x100x100 grid
80 -
70 ¥ ¥ +
M ith Load Balancing
60 Without Load Balancing +
Load Balancing Phases ©
I Arrays Redistributed x
ko] 50
5 ot
8 . L P et e e
@ 40 T -
(O]
£ 30
'_
20
< ¢ o rs 4 o <o < <
10
o 0o R o ©00%00 00000 00000 Vbcsios 9 000000
0

0 10 20 30 40 50 60 70 80 90
Iteration Number

Fig. 2. The top plot shows the total accumulated execution time as
a function of the iteration number. The bottom plot shows the
time for each iteration. This test used 4 SP2 nodes and a grid of
size 100%. One of the 4 nodes was heavily loaded and therefore
much slower.

first load balancing phase (at iteration 5), the block size
for the fast node was increased to 40. The exact distribu-
tion after this load balancing was (22,23,23,23,23,23,23,40).
At iteration 191, a load balancing phase adjusted this to
(21,22,22,23,22,23,23 44). At iteration 783, this was again
adjusted to (18,20,21,22,23,24,24,48). Four other load bal-
ancing phases resulted in no change in the distribution. A
minimum threshold of a 10% change in any nodes block size
was required before a redistribution was allowed to occur.
The last two small adjustments in the data distribution
were probably due to the algorithmic causes discussed pre-
viously. The improvement in performance in this test was
noticable but not nearly as dramatic as the for the 4-node
test. A single fast node out of 8 nodes only changed the
block sizes on the slower nodes by a small amount so the
decrease in execution time was also small.

The other measurement of performance relates to the
cost of each load balancing phase. For the load-balanced
4-node test, the entire test run took 747 seconds, of which
the 2 load balancing phases took a total of 1.7 seconds, in-
cluding one redistribution of the arrays. Because the data

Total Accumulated Execution Time for a 200x200x200 grid

30000
25000 : :
With Load Balancing ——
Without Load Balancing -
—~ 20000 -Load Balancing Phases . x
3 Arrays Redistributed ©
g
(8]
:‘,,,i 15000
()
£
F 10000
5000
0
0 200 400 600 800 1000 1200 1400
Iteration Number
Execution Time per Iteration for a 200x200x200 grid
40
35 With Load Batancing s
Without Load Balancing +
30 Load Balancing Phases
. Arrays Redistributed o
8 25
c
§ y PR R R +++ ta +
8 20 e P M%@%‘;ﬁ&gﬁ AP, Gy T O«so&gw@ooz
()
£ 15
'_
10
5
0

0 10 20 30 40 50 60 70 80
Iteration Number

90 100

Fig. 3. The top plot shows the total accumulated execution time as
a function of the iteration number. The bottom plot shows the
time for each iteration from 0 to 100. This test used 8 SP2 nodes
and a grid of size 2002. One of the 8 nodes had a newer, and
faster, processor.

in 5 of the 7 arrays in this code are not reused from iter-
ation to iteration, for any redistribution these arrays were
simply deallocated and then recreated in the new distri-
bution. This is possible only because the load balancing
phase was placed at the end of the main iteration loop, af-
ter the data in these arrays is no longer needed. To make
sure no additional memory space was needed for the redis-
tribution of the remaining 2 arrays, the redistribution of
those arrays took place after deallocating the 5 temporary
arrays and before allocating the temporary arrays in the
new distribution.

The load-balanced 8-node test case took approximately 7
hours (25,000 seconds). The program was setup to perform
a load balancing phase once per hour. This resulted in 7
load balancing phases, of which 3 included a redistribution
of the arrays. All 7 load balancing phases, including the 3
redistributions, accounted for approximately 30 seconds of
this execution time.

The 4-node test run was short, relative to the 8-node
test case, because it was setup to terminate very early in

the simulation. Allowing that test case to run to comple-
tion would not have added any significant information to
this study. Another run of the 4-node test on 4 equal, and
unloaded nodes, resulted in no redistributions and a to-
tal execution time of about 425 seconds. In all tests, the
overhead cost of this load balancing was insignificant.

V. CONCLUSIONS

Our results have shown that the dynamic load balanc-
ing support in DParLib can improve performance in envi-
ronments that contain heterogeneous compute nodes. The
use of dynamic load balancing in a program requires some
method of measuring the current level of load imbalance.
This measurement can be either static, based directly on
the specific algorithm used in the program, or dynamic,
based on a run-time timing measurement. The DParLib
library supports either method, leaving the details of this
measurement up to the programmer.

What the DParLib offers to the scientific application pro-
grammer is a set of routines that can greatly simplify the
construction of a data-parallel program in MPI which can
maintain a reasonable load balance by redistributing arrays
as needed.

This is a recent addition to DParLib and additional sup-
port routines will likely be added as we gain more experi-
ence in designing load balancing schemes for applications.

The benefits of using the data-parallel programming
model have been studied for many years. Both languages,
such as HPF [10] and SISAL [11], and machines, such as the
Thinking Machines CM-2; CM-200, and CM-5, the MasPar
MPP, and more recently the Cray T3E, have been designed
specifically support this style of parallel programming. One
of the lessons learned over the years has been that although
this programming model is well suited to many scientific al-
gorithms, it is not so well suited for general purpose compu-
tations. The result has been that machines and languages
that support only the data-parallel style of programming
have not proliferated. We find that in order to use the data-
parallel model, we must instead rely on the capabilities of
the available, non-data-parallel, languages and machines.
We have found that C and Fortran supplemented with an
MPI library can support the data-parallel programming
style efficiently.

Our data-parallel support library for MPI has been de-
veloped to help us design and implement algorithms, as
well as port serial applications to parallel, without dupli-
cating all the bookkeeping routines needed to manage the
distribution of the arrays. We expand the library with ad-
ditional data-parallel operations when they have proven to
be generally useful.

The source to the library is available (contact the au-
thor) and has been written with the intent that it be easily
modified, tuned, and extended. Also, the use of this library
does not preclude the use of raw MPI routines in any way.
This allows for maximum flexibility in implementing par-
allel algorithms.

Many of the details of data distribution in a data-parallel
style MPI program can be transparently handled within a

general purpose library. Adopting the data-parallel pro-
gramming model, with distributed arrays as the main data
structure, allows for the construction of many general pur-
pose routines such as array shifting, array reduction, ele-
mental operations, and general array redistribution for dy-
namic load balancing.

DISCLAIMER

Certain commercial equipment and software may be
identified in order to adequately specify or describe the sub-
ject matter of this work. In no case does such identification
imply recommendation or endorsement by the National In-
stitute of Standards and Technology, nor does it imply that
the equipment or software is necessarily the best available
for the purpose.

REFERENCES

[1] Mounir Hamdi and Chi-Kin Lee, “Dynamic load balancing of
data parallel applications on a distributed network,” in Proceed-
ings of the 9th ACM International Conference on Supercomput-
ing, 1995, pp. 170-179.

[2] Bhaskar Ghosh and S. Muthukrishnan, “Dynamic load balancing
in parallel and distributed networks by random matchings,” in
SPAA ’94. Proceedings of the 6th annual ACM symposium on
Parallel algorithms and architectures, 1994, pp. 226-235.

[3] K. D. Devine and J. E. Flaherty, “Dynamic load balancing
for parallel finite element methods with adaptive h- and p-
refinement,” in Proceedings 7th SIAM Conference on Paral-
lel Processing for Scientific Computing, Philadelphia, 1995, pp.
593-598, STAM.

[4] B. Hendrickson and R. Leland, “The chaco user’s guide: Version
2.0,” Technical Report SAND94-2692, Sandia National Labora-
tory, 1994.

[5] Peter Christen, “A parallel iterative linear system solver with
dynamic load balancing,” in Conference proceedings of the 1998
International Conference on Supercomputing, 1998, pp. 7-12.

[6] Petra Berenbrink, Tom Friedetzky, and Ernst W. Mayr, “Paral-
lel continuous randomized load balancing,” in SPAA ’98. Pro-
ceedings of the tenth annual ACM symposium on Parallel algo-
rithms and architectures, 1998, pp. 192-201.

[7] Azzedine Boukerche and Sajal K.Das, “Parallel continuous ran-
domized load balancing,” in Proceedings of the 1997 workshop
on Parallel and distributed simulation, 1997, pp. 20-28.

[8] James A. Warren and William J. Boettinger, “Prediction of
dendritic growth and microsegregation patterns in a binary alloy
using the phase-field method,” Acta Metall. Mater, vol. 43, no.
2, pp. 689-703, 1995.

[9] James A. Warren, “How does a metal freeze?,” Computational
Science € Engineering, vol. 2, no. 2, pp. 38—49, 1995.

[10] D. B. Loveman, “High performance fortran,” IEEE Parallel and
Distributed Technology, February 1993.
[11] J. T.Feo, D.C. Cann, and R. R. Oldehoeft, “A report on the sisal

language project,” Journal of Parallel and Distributed Comput-
ing, December 1990.

