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● Basic concept: A phenomenological mass (or thermal) diffusion 

problem is mapped onto a very fine-grained lattice which is then 

explored by random walking mass or energy ‘packets’. Multiple 

occupancy of sites by packets is required.  

 

Individual mass and thermal diffusivities in the problem are very 

easily described by using the uncorrelated random walk expression:   

                                          D → Γ s2 / 6 

● The site to site distance s in this lattice can be rescaled to any real 

distance ranging from nano scales to micro or even macro-scales.  

 

● The method is called the ‘Lattice Monte Carlo’ method to 

distinguish it from the atomistic ‘Kinetic Monte Carlo’ method.  

The Lattice Monte Carlo (LMC) method  



       

                                   

 

Question:  

A composite has a spherical dispersed phase that has a different 

diffusivity from the matrix.  What is the effective diffusivity of the 

composite? 

 

Dispersed phase 

How to calculate an effective diffusivity. 

Periodic Boundary 

Periodic Boundary 

Periodic Boundary 

Periodic Boundary 

Matrix phase 

D1 

D2 



Solution:  
 

Map the problem onto a very fine grained lattice which is 

then explored by a large number, say 105, mass packets all 

taking random walks. The ‘jump rate’ of the packets is 

made proportional to the diffusivities D1 and D2  in each 

phase.  

 

 

The effective diffusivity of the composite is obtained in the 

long-time limit with the Einstein Equation:  

 

 D= <R2>/6t 

<R2> is the mean square displacement of the mass packets in time t 



Typical Gaussian concentration profiles 

for tracer diffusion from an 

‘instantaneous’ or thin-film source’ at x=0   

Points: LMC,  

Lines: exact solution. 
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How to calculate a concentration profile  

Concentration profiles can be easily assembled by counting  

the number of mass packets that have reached a given location  

after starting from a source, or sources, after some time t. 



Recent applications of the LMC method for 

addressing phenomenological diffusion problems. 

 Effective thermal conductivities and diffusivities in cellular metals 

using computer tomography scans of real materials mapped onto 

the LMC lattice. Phase-change materials. 

 Concentration profiles and effective mass and thermal  diffusivities 

in model composites. 

 Coupled mass and thermal diffusion (Soret effect) temperature and 

concentration profiles. 

 Concentration profiles for models of diffusion with reaction. 

 Concentration profiles and effective diffusivities for grain boundary 

and interphase boundary diffusion models. 

 Interdiffusion concentration profiles in binary alloys. 

 Ionic conductivity in composite electrolytes. 

Review articles: I V Belova, G E Murch, T Fiedler, A Öchsner, Diffusion Fundamentals,  

4, pp15.1 - 15.23 (2007), on-line and  Prog. Chemical Eng, Studium Press, 2010.  



Some examples of applications of the LMC method  

to mass diffusion 



The diffusion coefficient is a function of position 

Example of diffusion in grains and grain boundaries 



        

● Short-circuit diffusion via grain boundaries is traditionally 

described by parallel grain boundary ‘slabs’ arranged 

normal to the surface. 

● Three basic kinetics regimes were recognized by Harrison: 
  

   Type-A, B and C kinetics regimes.  
   (Additional transirain boundary tion regimes AB and BC have also been  

    identified since.)   

Tracer Concentration Depth Profiles in the Presence of 

Grain Boundaries: 



The Harrison Type - A, B and C kinetics regimes for tracer diffusion 

from a thin-film source at the surface into a medium containing grain 

boundaries: 

Type-A Type-B 

Type-C 

L (Defft)
1/2

 

 

(Dlt)
1/2

 

(Dbt)1/2
 

(Dt)1/2
 

(Dlt)
1/2 >> L 

100 <(Dlt)
1/2  

20(Dlt)
1/2 <  

(Dlt)
1/2 ≈ 0 

Get Deff 

δDb  
(from tail region) 

Get Db 

Get Dl  
(from first region) 

and 



Surface 

Grain boundary diffusion in the parallel slabs model 

y 

x 

Ds 

Dℓ 

Db 

In
fin

ity
 c

o
n
d
itio

n
s
 

Periodic boundary conditions 

Actual mesh size used in LMC is very much finer than that shown.  
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A-B regime, close to the end of A (=1)

Typical LMC (log) concentration profile for the Type-A kinetics regime  

Black solid line with triangles – total concentration 

Red line with squares – lattice or bulk (grains) contribution 

Blue line with circles – grain boundary contribution 
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B-regime,  = 20

Typical LMC (log) concentration profile for the Type-B kinetics regime  

(Λ = 20) 

-Black solid line – total concentration 

-Red line with squares – lattice or bulk (grains) contribution 

-Blue line with circles – grain boundary contribution 



This transition was originally estimated by Harrison to 

occur for spherical grains at:   

         = L/(Dl t )
1/2 = 0.0033.  

 

This estimate was later refined to  = 0.1 (Gupta et al. 1978). 

That analysis was later found to contain mathematical 

inconsistencies (Kaur et al. 1995)). 

 

The transition from Harrison Type-A kinetics to Type-B kinetics (end 

of Type-A kinetics): Parallel slabs model 

  



The essence of the LMC calculation is to analyze the 

concentration profiles themselves in order to determine 

Deff.  

 

This Deff is then compared with the Deff given by the 

Hart Equation (which is exact for parallel grain 

boundary slabs) in the Type-A regime: 

 

                 DHart
eff = g Db + (1-g) Dl 

LMC determination of the transition from Harrison Type-A kinetics to 

Type-B kinetics (end of Type-A kinetics): Parallel slabs model 



Deff/Deff
Hart as a function of  ( = L/(Dl t )

1/2 for various values of β  

(slow surface diffusion model). Solid lines correspond to the Harrison  

Type-B kinetics condition (Deff = D).  

Type-A regime Type-B regime 
▼ 

The transition from Type-A occurs at   ≈ 0.4 and 

depends slightly on the β or ‘Le Claire’ parameter =  

Db/2Dl√Dlt.  

Parallel slabs model 



 LMC was later used to study the the Type-A, intermediate Type-AB and 

Type-B kinetics regimes  (Divinski et al., Zeit. Metallk.) P (=δ Db) was used to 

delineate the Type-B kinetics regime.  

 was changed by manipulating the grain size.  = Db /D = 105;  = 500 

Conclusions: 

Type-A:      0.4 

Type-AB: 0.4    3.0 

Type-B:    3.0   

Parallel slabs model 

Type-B Type-A 
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Type-B to Type-C kinetics 

α=/2(Dlt)
1/2 

Parallel slabs model 

P=δ Db 

Type-B Type-C 



The overall best-fit exponent to the profile simply changes ‘fairly 

smoothly’ from 1.2 to 2.0 when   increases from 0.1 to 5.0.  
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Refinements to the limits of the Harrison Type - A,B and 

 C kinetics regimes, parallel slabs model, self-diffusion: 

Type-A Type-B 

Type-C 

L (Defft)
1/2

 

 

(Dlt)
1/2

 

(Dbt)1/2
 

(Dlt)
1/2

 

Refined to: 

(Dlt)
1/2  2.5L 

100 <(Dlt)
1/2  

20(Dlt)
1/2 <  

(Dlt)
1/2 ≈ 0 

(Dlt)
1/2 >> L 

Refined to: 

5  (Dlt)
1/2  0.33L 

Refined to: 10(Dlt)
1/2   



 Harrison Type-A kinetics regime.  
 

Thus, it is clear that √(Dlt) , needs to be only greater than  

two and half times the spacing between the  (parallel) 

grain boundary slabs for the concentration profile to be 

in the Harrison Type-A kinetics regime and for the 

effective diffusivity to be described by the Hart Equation. 

 

Harrison Type-B kinetics regime.  

 

It is also clear that to be sure the diffusion experiment is 

in the Type-B kinetics regime, √(Dlt) needs to be less than 

one third of the spacing between the grain boundary 

slabs.  

 

 

Parallel slabs model 



  

 But there is a conceptual  problem with the parallel grain  

 boundary slabs model: 

 

 In the Harrison Type-A kinetics region in the diffusion  

 anneal time a typical tracer atom can be expected to  

 encounter a number of grain boundaries normal to the  

 diffusion direction.  

 

 According, LMC investigations have been extended to 

 closed  grain models. 



                                 

Diffusion direction y 

- GB surfaces 

 

(a) 

                        

                         

 

(b) 

   

Grain models: 

 a) diffusion is in the y direction, 

     (the source plane is at y = 0). 

 

 b) diffusion is in the x direction  

     (the source plane is at x = 0).  

Diffusion direction x 

- GB surfaces 

Instantaneous 

source plane  

positions 

Closed (Cubic) Grain model    



First of all, what is the effective diffusivity for a  

closed grain model?  



In general, LMC testing on various closed grain models 

has shown that the Hart Equation (1951) is actually a 

pretty poor approximation for Deff.  

 

 

Fortunately,  extensive LMC testing showed that the 

Maxwell-Garnett Equation (1895)  describes Deff very well: 
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Closed (Cubic) Grain model    



Db /Dl = 103.  

Hart Maxwell-Garnett 

Volume fraction  g  of grain boundaries 
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             Maxwell-Garnett Equation:  

Deff/D1 

LMC (Points) 

LMC calculation of the effective diffusivity in the presence of  

closed cubic grains. 



The Harrison Type - A,B and C kinetics regimes,  

Cubic grains model, self-diffusion: 

Type A Type B 

Type C 

L (Defft)
1/2

 

 

(Dlt)
1/2

 

(Dbt)1/2
 

(Dlt)
1/2

 

Refined to: 

(Dlt)
1/2  0.3L 

100 <(Dlt)
1/2  

             

20(Dlt)
1/2 <     

(Dlt)
1/2 ≈ 0 

(Dlt)
1/2 >> L 

         
Refined to: 

  (Dlt)
1/2  0.16L 

Refined to: 10(Dlt)
1/2   

The diffusion 

 length  

(Dlt)
1/2  

needs to be  

less than 

 0.16 times 

 the grain size 

 to be sure of 

being in 

Regime B.   
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Limits of the Harrison kinetics regimes: Self-diffusion 



 Harrison Type-A kinetics regime.  

√(Dlt) , needs to be only greater than one third the 

spacing between the  grains for the concentration profile 

to be in the Harrison Type-A kinetics regime. 

 

Harrison Type-B kinetics regime.  

To be certain that the diffusion experiment is actually in 

the Type-B kinetics regime, √(Dlt) needs to be less than 

one sixth of the spacing between the grains.  

This finding is disturbing because it means that many 

experiments on polycrystalline material may possibly 

have not been performed in the Type-B regime and 

therefore have a significant grain boundary contribution 

to the measured diffusivity.  

 

Cubic grains model 



Diffusion coefficient depends on concentration 

(non-linear diffusion). 



Incorporating a concentration dependence of the  

various diffusivities into LMC                    

In a great many diffusion problems, the diffusivities are 

functions of concentration.  

This is very easily incorporated into LMC by relating the 

local jump rate Γi (and therefore the local Di) at a site i to 

the actual local concentration at site i (i.e. the total 

number of mass packets presently at that site relative to 

the number at some reference, e.g. the source).                    



Concentration profiles for 

diffusion of a diffusant from a 

constant source when D=D(C): 

a) linear;  

b) and c) quadratic 

concentration dependence. 
(b) 
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LMC calculation of some concentration profiles:    D=D(C) 



After 

interdiffusion 

JB 

JV 

JA 

Initially 

A B 

DA > DB 

A B 

Interdiffusion concentration profiles in a binary diffusion  

couple from the interdiffusion coefficient.  

A Kirkendall shift occurs because of the inequality of the atomic fluxes. 



LMC laboratory frame calculation that gives a Kirkendall shift 

of the interdiffusion concentration profile: 

 In this reference frame, we have two types of species (A and B).  

Mass packets of A and B are moved independently but in such a way 

that the total composition (cA + cB) is always kept constant at a site.   

 

 The concentration dependence of the interdiffusion coefficient 

is manipulated by proxy by changing the jump rate of each species 

packet  independently: 

 

This method automatically gives the correct Kirkendall shift  

when DA ≠ DB. 
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In some completely miscible alloys, an anomalous sharpening  

(apparent ‘uphill diffusion’) of an initially diffuse interface has  

been observed in e.g.  

 

  ● The Cu-Ni system (growth of Ni on Cu) (Erdelyi et al. Surf. Sci. (2002),  

 

  ● The Mo-V system (Erdelyi et al. Science, 2004).   

 

Interface sharpening 

Atomistic Kinetic Monte Carlo simulations suggested 

that interface sharpening is caused by a very strong 

exponential dependence of the interdiffusivity and that it 

is a special ‘nano’ effect. Erdelyi et al. Surf. Sci. (2002).   



LMC illustration of the interface sharpening effect.  

The initial interface is diffuse (assumed first to be linear) 

and  D(C)= D(0) exp(-8C) Belova et al. DDF 2010.  
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This is not really uphill diffusion (even though it looks a little like it! ) 

The linear profile at t=0 is highly inconsistent with this particular D(C) 

and the profile is then ‘repaired’ during the diffusion anneal.  



The phenomenon of interface sharpening is, in 

principle, a perfectly general diffusion 

phenomenon.   

 

It need not be confined to the nano-scale though 

there may be morphological reasons why it may 

not occur at higher scales.   



Numerical analysis of an experimental concentration profile  

to obtain D(C), Belova and Murch, 2011 to be publ. 
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2. Proposed alternative analysis: 

J.S. Kirkaldy: Mat. Sci. Eng A, 222, 104 (2006): 
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We can test these two analyses to obtain D(C) 

side-by-side in the following way:  

 
● Put D(C) into a LMC calculation.  

 

● Generate the concentration profile. 

 

● Process the generated profile with both analyses to test 

the recovery of the original D(C). 
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Result: The Boltzmann-Matano analysis is superior 

and robust.  



Mass diffusion with chemical 
reaction 



Different types of chemical reaction 

● Instantaneous reaction: 

–Constant ratio R of reactants and products 

  

  

● Irreversible reaction: 

–Reaction rate k1 

  

● Reversible reaction: 

–Reaction rate k1, reverse reaction rate k2 

  

A + B→C 

A fraction of mobile A reacts 

instantly with immobile B to form 

immobile C. 

A → C  

A reacts 

irreversibly with B 

to form C with rate 

k1. 

A ↔ C  

A reacts reversibly with B  

to form C.  



Instantaneous reaction 

• Corrected diffusivity 

 
Constant species ratio R updated at each 

time step. 



Irreversible reaction 

• Diffusion into a semi-infinite medium with 

a constant surface concentration 

• Exact solution: 



Irreversible reaction 



Reversible reaction 

• Infinite sheet of known thickness 

suspended between two layers of solute 

that contain the reactants. 

• Analytical solution 



Reversible reaction 



Some applications of the LMC method  

to thermal diffusion. 



       Thermal diffusion, like mass diffusion, is a random process that 

can be represented by random walks. In the case of thermal diffusion, 

the packets are now virtual thermal energy packets.  

 

       The Einstein Equation also describes the thermal diffusivity Κ in d 

dimensions (d = 1,2,3):                                     

dt

R

2

2 


       

LMC Calculations of the Effective Thermal Diffusivity/Conductivity  

     Note: in a thermal diffusion context, the Einstein Equation has no 

physical meaning.  

     It purely provides a useful means for calculating the effective 

thermal diffusivity (conductivity) from random walks of virtual 

thermal energy packets.  



It should be noted that:  
 

     The thermal conductivity λi in a phase i is directly related to 

the thermal diffusivity Ki in that phase by: 

 

                      Ki = λi / ρi Cp,i  

 

     where ρi is the density of phase i and Cp,i is its specific heat.  

 

     In a model composite, by simply requiring that the 

densities and the specific heats take values equal to unity 

everywhere in the calculation, the effective thermal 

conductivity λeff then simply trivially equals the effective 

thermal diffusivity Keff. 



The LMC Method for Determining Temperature Profiles  

n

p

3

cp

1
CE

N
sT  

where s is the distance between two neighbouring lattice sites and Np is 

 the number of virtual  thermal packets in the source plane. 

The amount of thermal energy Ep corresponding to a virtual thermal 

energy packet is given by: 

Random walks are directed by two parameters:  
1. The jump probability pj (scaled thermal conductivity) must be scaled with 

respect to the highest thermal conductivity: 
 

maxj, /iip 

                

2. the selection probability ps (scaled inverse product ρi ∙Cp,i).  

 
      The selection probability is treated as an ‘amount of inertia’ assigned to a virtual 

thermal packet in a particular phase: i.e. the higher the specific heat in the phase the 

slower the virtual thermal energy packet.  



Temperature profile in a layered two-

phase aluminium – paraffin composite 

(constant surface temperature). 

Temperature profile in a layered two-

phase paraffin - aluminium composite 

(constant surface temperature). 

Comparison of LMC and FEA determinations of temperature profiles 

in layered aluminium / paraffin composites. 



  

LMC two-dimensional temperature maps (constant temperature source at the 

surface):  

a) pure paraffin, 

b) copper-paraffin composite. 



Thermal diffusion in cellular metals 



LMC determination of the effective thermal 

conductivity of a cellular metal. 

M-pore Alporas 



Gray-levels CT scan Binary image Filtered binary image 

Processing of a Computer Tomography scan  

of a cellular metal 

The filtered binary image is then mapped one-to-one  

onto the LMC lattice. 

//dis426-svr01/z/Thomas/LMC_DSL2008.ppt


LMC determination of the effective thermal 

diffusivity / conductivity of a cellular metal. 

Virtual energy packet  

(Xs,Ys) 

y  

x 

Distance R 

Time t 

Thermal diffusivity K 

in the long-time limit: 

t

R
K
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Expt. CT scans and 

Lattice Monte 

Carlo 

6.8 ± 0.5 

W/(m.K) 

 6.5 

W/(m.K) 

Determination of the thermal conductivity of two CT-scanned cellular  

metals compared with experimental measurements 

 on the same material, Fiedler, Belova, Murch, Oechsner, AEM, 2008. 

Expt. CT scans and 

Lattice Monte 

Carlo 

3.5 ± 0.3 

W/(m.K) 

3.2  

W/(m.K) 

M-pore 

Alporas 



Fluid velocity profile: Hagen-Poiseuille equation 

Coupled heat conduction and laminar flow 



LMC generated temperature field 



Concluding remarks 



Advantages: 

● Very straightforward to program (codes are usually no     

more than 120 lines in C++ or FORTRAN). 

● Extremely robust, can readily address non-linear diffusion  

   problems. 

● Because it is a quasi simulation, one quickly obtains a 

   ‘physical feel’ for the problem. 

● Very memory efficient. 

● Avoids the meshing problems in FEA.  
 

Disadvantages: 

●  Computationally quite intensive, several hours per run   

(e.g. to get a profile) are required on a high-end PC. 

●  No commercial LMC software available yet.  

   MATLAB is unsuitable for LMC because of the very slow 

generation of random numbers. 

The LMC method for addressing phenomenological diffusion problems 



● Address moving boundary problems in mass diffusion by  

   way of a moving reference frame. Work in progress: (uses a  

   combination of ‘lattice’ volume elements and continuous  

   random walks of mass packets.  

  

● Address mathematically related phenomena such as  

   the effective magnetic permeability, dielectric and elastic 

   properties etc of composites etc.  
 

● Using 3D X-ray Diffraction (3DXRD), it will soon be possible  

   to routinely get 3D grain boundary maps of some metals. 

   Assuming the same grain boundary diffusivity for all grain 

   boundaries the application of the same LMC procedures for  

   describing thermal transport in cellular metals would give a  

   prediction of effective diffusivities and grain boundary  

   diffusion penetration into real polycrystalline metals .  

    
 
 

Likely extensions and new applications of the LMC method 



Thank you for your attention!  




