An Industry Perspective on Cybersecurity

Steven B. Lipner
Senior Director of Security Engineering Strategy
Trustworthy Computing
Microsoft Corporation
Redmond, WA
slipner@microsoft.com

Historical Perspective on Cybersecurity

- We'll build a system, prove it's secure and we'll be done...
 (1975)
- We'll have the government evaluate our products (1985)
- We'll build a secure firewall, run antivirus, lock down our systems, and our systems will be protected (1993)
- We'll issue patches and protect our users (1999)
- We'll integrate security into our development process (2002)
- We'll integrate security into our development process, issue patches, build a secure firewall, run antivirus, lock down our systems, have the government evaluate our products, and devise new tools and techniques (2009)...

...and we'll never be "finished"

Today's Landscape

- (Many) vendors put significant effort into building products that can resist attack
- In the Internet environment there is a significant amount of well-engineered malicious software
- The underlying problem is that software is not perfect
 - and the attacker must search for a vulnerability while the defender must find every vulnerability
- Vulnerability refers to design and coding errors
 - Buffer overruns in C/C++ programs
 - SQL injection errors in web applications
 - And many others

SQL Injection

Subject: I swear, i'm giving our kids normal names...

Today's XKCD (http://xkcd.com/327/)

OH, DEAR - DID HE BREAK SOMETHING? IN A WAY-

Realities of Cybersecurity

- Security, unlike other aspects of science and engineering, is about attack and defense (or attackers and defenders)
 - We identify specific problems (vulnerabilities) and (try to) remove them
 - Attacker's job is to identify and exploit a new vulnerability that we didn't think of – or didn't remove
- Security is "in the weeds"
 - Principles and models can help
 - If the details aren't correct, the defender loses
- Invention of new classes of attack is fairly common

Approaches to Building More Secure Systems

- Secure by design enumerate the points where someone might attack and ensure that there are countermeasures
 - Exposed network communication -> encrypted protocols
 - Software that takes external input -> robust input validation, use of code analysis and testing tools
- Secure by default
 - Least privilege run components so the effects of failures are isolated or bounded
 - Frustrate attacks non-executable memory, address space randomization
- Secure in deployment
 - Ship systems in "locked down" configurations

NIST and Cybersecurity

- NIST efforts in cybersecurity date to at least 1972
- NIST focus on security for unclassified/civil government always collaborative with industry
 - DES
 - Risk Management guidance
- Computer Security Act formalized NIST role and fragmented the government's approach to cybersecurity
- Sometimes contentious relationship with national security/classified world
- Always valued by vendors and private sector
- Frequent owner of tasks from OMB and Congress

The Security Research Community

- Players on the cybersecurity "research" stage
 - Academics and theoreticians
 - Developers of secure products, security products, tools
 - End user organizations (government and commercial)
 - Vulnerability finders
- NIST widely respected by the community
 - Theoretical research programs
 - Security development processes, concepts, metrics
 - Guidance programs
 - National Vulnerability Database

NIST Contributions

- Too numerous to list...
- Unclassified/commercial encryption standards
 - From DES to FIPS-140 to AES to SHA-3
- Security management guidance
 - FISMA standards and guidelines (but see below)
- National Vulnerability Database
- Identity standards for strong user identification and authentication (PIV card/FIPS-201)
- Configuration standards (FDCC)

Perspectives on NIST and Cybersecurity

- Computer security efforts at NIST are healthiest in my experience (1972-2009)
 - Best management
 - No longer (badly) underfunded
 - Collaborating across government
 - Bringing real-world perspective to problems
 - Integrating outside expertise
- Cybersecurity extends across IT Lab
 - Secure networking
 - Secure development
- Still more to do important to maintain focus and resourcing

Recommendations

- Integrate attacker perspective
 - Initial FISMA guidance lost sight of this principle
 - Updated version better
- Tackle important hard problems
 - Measuring security
 - Project is under way –may be impossible, but worth trying
 - Cloud security
 - Electronic medical records
 - Smart grid
 - Operational security management build on success of FDCC
 - Trusted User Experience
 - Building a more authenticated/accountable Internet

Recommendations

- Maintain robust links to the security community
 - Recognize diversity of stakeholders
 - Seek inputs on plans, programs, products
- Seek real-world perspective and balance
 - Supply chain security
 - Security assurance case
- Speak up where your voice is needed
 - Common Criteria for security evaluation needs active NIST participation