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Diblock Copolymers for Advanced 
Patterning

 Pitch and LER limit circuit density and 
device uniformity

 Diblock copolymers might help
 Significant optimization needed
 How do we measure their behavior?



Diblock Copolymers

From “Block Copolymers - Designer Soft Materials”, F.S. Bates 
and G.H. Frederickson, Physics Today, Feb. 32 (1999)
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Diblock Epitaxy

Graft PS brushApply e-beam resistPattern e-beam resistO2 plasma treat brushRemove resistSpin-cast diblockAnneal diblock
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Variations in duty cycle, 
coverage and line-edge 
roughness

200 nm

Diblock Epitaxy
AFM SEM

No variation in duty 
cycle, coverage and 
line-edge roughness
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Sub-Lithographic Patterns
Dense Self-Assembly on Sparse 
Chemical Patterns: Rectifying and 
Multiplying Lithographic Patterns 
Using Block Copolymers, Joy Y. 
Cheng, Charles T. Rettner, Daniel 
P. Sanders, Ho-Cheol Kim, and 
William D. Hinsberg, Advanced 
Materials, (2008) - IBM

Lithographic Pattern Diblock

Lithographic Pattern Diblock

P = 57.5 nm P = 28.8 nm

6



LER from SEM
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Resonant X-ray Scattering
Are interfaces sharp, 
chemically diffuse or rough?

X-ray scattering can measure interfacial width
or roughness to sub-0.5 nm accuracy.

Different chemistries have distinct resonances

Resonant scattering enhances contrast from 
different chemical domains

C=C π* 285 eV, C=O π* 288 eV, C-O σ* 293 eV
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Virgili et al. Macromolecules (2007)



Random Diblock Diffraction
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Epitaxial Diblock Diffraction
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200 nm
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Interface Width from XRD
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200 nm

Summary
 X-ray diffraction samples large areas
 Resonant scattering provides chemical 

contrast – diblocks, latent images, etc.
 Patterned nanostructure arrays yield 

lots of information
 Analysis relies on model
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Solar Cells for Large-area 
Electronics

 Most work on material development, or 
device efficiency by trial and error

 Correlation of film morphology and charge 
transport not known

 Novel combined electrical and optical 
techniques needed



Organic PV Cell
 Donor and acceptor 

separate charge 
carriers

 Efficiency low in 
layered systems 
because of short 
exciton diffusion length

 Nanostructured blends 
reduce required length

D A



Blended Organic Solar Cells

Bulk heterojunction

1:1 blend of Poly(3-
hexylthiophene) (P3HT) to 
[6,6]-phenyl-C61-butyric acid 
methyl ester (PCBM).

SMUCathode

Anode

Glass substrate

Blended donor-acceptor molecules



SPM Photocurrent Measurements

Glass substrate
Anode (TCO)

PV layer (~200 nm)

~
acdc

532 nm laser focused into 
fiber optic cable

C-AFM tip

mirror

Photoresponse current measured with a conductive tip in 
contact mode while simultaneously mapping the  surface 
topography. 

Signal at each pixel can be used to 
construct a 2D conductance map of 
the surface.

Meas. unit



C-AFM Measurement

 Most of these lack detailed quantitative analysis and a broad 
understanding. However, they have opened the door for a plethora 
of new problems to investigate!

Coffey et. al. (NanoLett 2007) – 1st

photoconductive AFM of nanoscale
morphology vs locally detected 
photocurrent.

A. Liscio et. al, (JACS 2008) -
Correlation of surface 
potential with film 
morphology:  Scanning Probe 
Force microscope.

O. Douheret et. al. ( Prog. 
Photovolt 2007) - C-AFM of 
blended OPV materials:  
morphology vs charge transport .



Macroscopic Measurements
 Absorption and spectral response measure 

optical/electro-optical quality of PV films/devices.  
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UV-Vis for solution-processed P3HT:PCBM 
spun cast on glass. 500 nm: p-type polymer 
absorption (electron donor) 325 nm: n-type 
PCBM molecules.

Responsivity and (EQE) of OPV device 
with Al top contacts. EQEs of >50% in 
device absorption range comparable to 
the best reported to date.



Photocurrent vs Morphology
 3-D topography overlaid with 

local short-circuit 
photocurrent measurements 
of blended P3HT:PCBM film

 Film prepared on top of TCO 
electrode modified by 
PEDOT:PSS. 

 Darker regions correspond to 
substantial photocurrent 
collection.



Photocurrent vs Bias Voltage

short circuit condition (V = 0 V)

forward bias(V = +0.3 V)

reversed bias(V = -0.3 V)

forward bias(V = +0.6 V)

reversed bias(V = -1 V)

forward bias(V = +1.5 V)



Summary

 Photoconductive SPM is an important tool to 
study and characterize photovoltaic response of 
at the nm scale. 

 Demonstrated measurements with new results 
on a well-studied material system

 Continue to add new imaging modalities



Graphene for Post-CMOS 
Electronics

 CMOS approaching scaling limits
 Graphene more amenable to large-area 

integration than CNTs
 Measurements of basic materials and 

device properties needed



Graphene Production Methods

 Mechanical exfoliation –
scotch tape method K.S. 
Novoselov Proc. Natl. Acad. 
(2005)
 Single device process

 Epitaxial graphene on SiC 
C. Berger et al. J. Phys. 
Chem. (2004); Science 
(2006)
 Wafer scalable process

Courtesy of Suyoung Jung, NIST

Courtesy of Walt de Heer, GT



C-Face termination

Si-Face termination

SiC SiC

4 - 100 ML 

1 - 5 ML

(0001)

(0001)

Graphene layers

n~1012/cm2

n~1010/cm2

E

E

SiC

Induction Furnace Method

 Multilayers on C-face are electronically decoupled
Epitaxial Graphene on C-face SiC

J. Hass et al., PRL 100, 1255504 (2008)
Berger et al., J. Phys. Chem B 108, 19912 (2004)
Berger et al., Science 312, 1191 (2006)
de Heer et al., Sol. St. Commun., 143, 92 (2007)



STM Measurement of Quantization
 Direct measurement of density of states with 

scanning tunneling spectroscopy

 Spatial LDOS mapping 
 Probe the dI/dV(B,E) plane

Tip DOS Sample DOS

empty states

filled states
kBT

Topographic mode Spectroscopic mode T=4 K

/  LDOSdI dV ∝



Graphene Magnetic Quantization
 Hallmark of Graphene is the new Landau level 

quantization and ½ integer QHE – LLs have 
unequal spacing, special n=0 level 

“Standard” Landau level spacingGraphene Landau level spacing

 

∆Ε ≈10 K@10 T

 

∆Ε ≈1000 K@10 T

Relativistic:

2sgn( ) 2nE n e c n B= 

Standard Model:

* ( 1/ 2)n
eE E B n

m±= ± +




Graphene Landau Quantization
 Direct measurement of graphene quantization
 Fixing B, sweeping E
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 Quantization obeys 
graphene scaling

 Full quantization of DOS 
into Landau levels

 Very sharp LLs

 High mobility

~ 0.4 psτ
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Tunneling Magneto-Conductance 
Oscillations (TMCO)

 High resolution E-K dispersion from TMCO

VB=-100 mV

VB=150 mV

EF

ED

6 1(1.070 0.006) x 10  msc −= ±



Origin of Electronic Decoupling

 STM Moiré patterns on c-face epitaxial 
graphene

20 nm 3.8 nm 47 nm



Landau Level Mapping

 Small potential variations in epitaxial graphene

0 50 100 150 200 250 300 350 400
50

55

60

65

 Distance (nm)

LL
n=

0 (
m

eV
)

n=0

n=-1
n=-2
n=-3

STM

-100

-50

0

50

En
er

gy
 (m

eV
)

Potential ~7 meV
~0.5 meV



Summary
 Epitaxial graphene on C-face SiC is a good candidate for 

carbon based electronics

 TMCO is a new STM measurement for high resolution 
low energy band structure

 Direct measurement of the new graphene quantization 
with tunneling spectroscopy

 Spatial mapping of LL offers great future potential to 
understand graphene physics

 See Miller, Kubista, Rutter et al. Science (in press) and 
www.cnst.nist.gov
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Patterned Media for Hard Disks
Patterned media require:
Feature size < 20 nm
Size control < 2 nm , 3σ
Short-range placement < 2 nm, 3σ
Areas > 10 cm2

Beyond the limits of top-down nanopatterning

Graphoepitaxy of Self-assembled Block Copolymers on Two Dimensional Periodic Patterned Templates, Ion 
Bita, Joel K.W. Yang, Yeon Sik Jung, Caroline A. Ross, Edwin L. Thomas, Karl K. Berggren, Science (2008)
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Pattern Noise
EM noise

Barcode reader

Diffraction picks up subtle 
variations across large areas
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Resist Profiles
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NEXAFS Data
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Sidewall Angle
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Graphene Production Methods

 Mechanical exfoliation –
scotch tape method K.S. 
Novoselov Proc. Natl. Acad. 
(2005)

 Epitaxial graphene on SiC 
C. Berger et al. J. Phys. 
Chem. (2004); Science 
(2006)



Epitaxial Graphene on SiC

C-Face termination

Si-Face termination

SiC SiC

4 - 100 ML 

1 - 5 ML

(0001)

(0001)

Graphene layers

n~1012/cm2

n~1010/cm2

E

E

SiC



Epitaxial Graphene on Si-face SiC
C-Face termination

Si-Face termination

SiC SiC

4 - 100 ML 

1 - 5 ML

(0001)

(0001)

Graphene layers

n~1012/cm2

n~1010/cm2

E

E

SiC

•Our previous work on UHV grown Si-face material
•AB Bernal stacked epitaxial graphene
•Intravalley and intervalley scattering; G. Rutter et 
al. Science (2007); JVST (2008) 10 nm



Previous STS Measurements on 
Graphite Surfaces

T. Matsui et al. PRL (2005) G. Li and E. Andrei 
Nature Phys. (2007)

 Complex spectra
 Mixture of peaks 

of linear and non-
linear in B



Graphene Landau Quantization
 Multilayer epitaxial graphene on SiC is 

“graphene”! 
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Origin of Electronic Decoupling

 Layer stacking

R30

R31.5
R-3.6

R7
R31.5C

R30C

Alternating between:
NEAR 30˚ & NEAR 0˚

Joanna Hass et al. PRL 100, 125504 (2008) 



Origin of Electronic Decoupling

 Rotated layers – STM Moiré patterns



Rotational Domain Boundaries

 Atomically flat and continuous across boundary

400 nm

50 pm



Rotational Domain Boundaries

20 nm 8 nm



Graphene Landau Quantization
 Complete field scaling of graphene quantization
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Magnetic Quantization

 Cyclotron motion in a magnetic field
 Quantized orbits and energy levels

 Magneto-oscillations
 De Haas-van Alphen and Shubnikov-de Hass effects; 

oscillations in physical properties due to quantization 
of density of states

 Tunneling magneto-conductance oscillations

B
* ( 1/ 2)  0n

eBE n n
m

= + ≥


2sgn( ) 2  n=0, 1...nE n e c n B= ±

Standard 2DEG

Graphene



Tunneling Magneto-Conductance 
Oscillations (TMCO)

 Fixing E and sweeping B
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F F( / 2 )B e Aπ=  F EA A→

 Analogous to Shubnikov-de 
Haas oscillations but with one 
big difference

 Allows low energy band 
structure to be measured with 
high energy and momentum 
resolution



Origin of Electronic Decoupling
 Rotated layers with Preferred Domains- LEED

C-Face
RF furnace grown

72.2eV

Si-Face
UHV grown

69.1eV

SiC bulk

Graphene

Graphene
R30

Graphene
R±2.2

Joanna Hass et al. PRL 100, 125504 (2008) 

Surface X-ray Diffraction



Origin of Electronic Decoupling

 Rotated bilayer maintains linear dispersion

R30/R2 fault pair

Graphene bilayer 
Isolated graphene sheet

F. Varchon and L. Magaud, CNRS 



Tunneling Magneto-Conductance 
Oscillations (TMCO)

 Fan plot; Landau index n vs. 1/B

VB=-100 mV

VB=150 mV
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Circular energy 
contours at E=VB
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