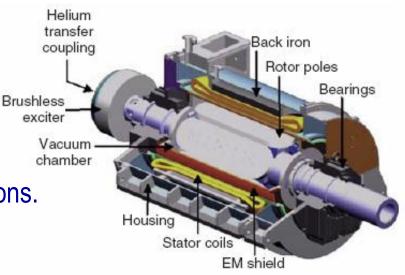
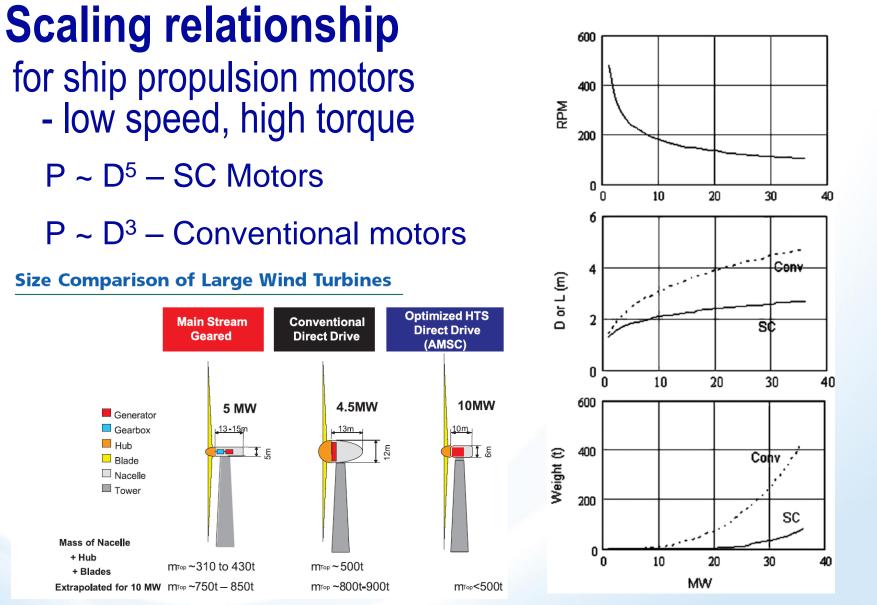
Superconducting Rotating Machines Qiang Li Head of Advanced Energy Materials Group

a passion for discovery

NIST/DOE Workshop on Enabling Technologies for Next Generation Electric Machines. NIST/Gaithersburg, September. 8 2015


Topology and advantages of SC Machines

- High magnetic field in the air gap (1.5 2 Tesla) and no iron core in SC rotor
 - Low synchronous reactance,
 - \succ Robust during the transient faults.
 - Superior damping
 - Improved reactive power (VAR) for both over- and underexcited operating conditions.
 - Compact and lighter


Brookhaven Science Associates

- Virtually no harmonics in the terminal voltage.
- Potentially longer rotor life due to the elimination of thermal load cycling for field winding current changes.
- Higher efficiency, even under partial load conditions, with potential for significant operating cost savings.
- Structure-related vibrations and noise are lower than conventional machines

Kalsi, et al Proc. of IEEE 2004

NIST/DOE Workshop on Enabling Technologies for Next Generation Electric Machines. NIST/Gaithersburg, September. 8 2015/Li-BNL

Kalsi, et al Proc. of IEEE 2004

NATIONAL LABOR

Brookhaven Science Associates

NIST/DOE Workshop on Enabling Technologies for Next Generation Electric Machines. NIST/Gaithersburg, September. 8 2015/Li-BNL

LTS SC Machines

<u>Mid 1960s</u>

- Multifilamentary NbTi
- Development of nuclear power

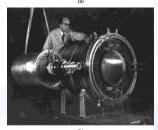
LTS SC machine R&D (1970s-1990s)

Westinghouse

- o 5MV utility generator
- 5/10-MVA SC generator for the US Air Force

GE built 20 MV generators

- o Two-pole 60 Hz
- Four-pole high frequency


Kalsi, et al Proc. of IEEE 2004

Brookhaven Science Associates

NIST/DOE Workshop on Enabling Technologies for Next Generation Electric Machines. NIST/Gaithersburg, September. 3 2015/Li-BNL

Super GM (Japan)-built generator—70-MW


two-pole 60-Hz machine. Three SC rotors tested in a common stator. (12 years project started in 1988)

Siemens/KWU SC Rotor model ready for cooldown

Alstom prototype rotor - a 1200-MW

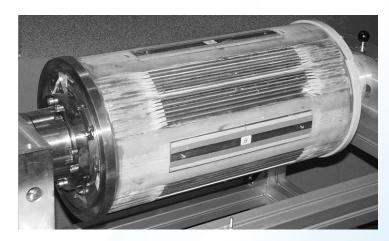
LTS SC Machines

- Difficulty of transporting liquid helium to the rotor with inlet and outlet temperatures within a band of 4–6K.
- Small thermal margin of LTS windings, which were prone to quench with slightest local rise in temperature.
- Reliability concerns relating to liquid helium refrigerators.

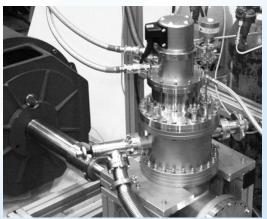
HTS SC Machines

- Only ambient-temperature helium is transferred to the rotor
- Cryocooler cold heads are located on the rotor for cooling the HTS windings.
- Windings operating at 30–40K have large thermal margin.
- Cryostat (thermal barrier on the rotor) design is much simpler
- Available off-the-shelf cryocoolers are reliable and mean time between failure (MTBF) is estimated to be >9 years.

Brookhaven Science Associates


NIST/DOE Workshop on Enabling Technologies for Next Generation Electric Machines. NIST/Gaithersburg, September. 8 2015/Li-BNL

HTS SC Machines


Neon-operated commercial GM crycooler (thermosiphon) in the foreground of a Bi-HTS race-track coil for a 400 kW synchronous motor (in blue) (Siemens).

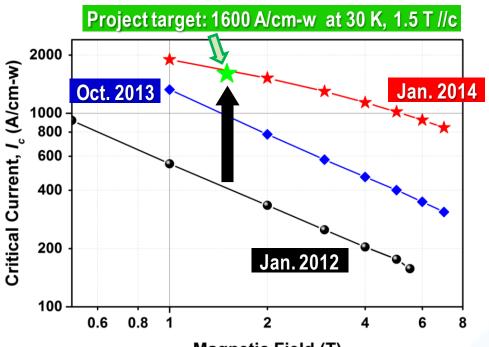
Brookhaven Science Associates

Completed cold mass of rotor (SC coils and filler pieces) on pole former before bandaging and application of superinsulation.

Closed-cycle rotor cooling system, GM cryocooler inserted from top, motor shaft on the left.

HTS Wire Development

- 1) SuperPower-Inc., Schenectady, NY 2G (ReBCO) coated conductor
- 2) AMSC, Devens, MA 2G (ReBCO) coated conductor
- SuNAM, Korea 2G (ReBCO) coated conductor
- 4) Sumitomo Electric Industries (SEI), Japan 1G (DI-BSCCO-2223) wire
- 5) Hypertech Research, Columbus, OH MgB₂ wire.


Table 5.6.2 Summary of HTS wire characteristic data in 2013.

Operating Temperature

Super power	AMSC	SuNAM	DI-BSCCO	MgB ₂	ReBCO
ReBCO 480	ReBCO 500	ReBCO 390	BSCCO-2223	MgB ₂ 2000	30–35K
77 12.2	77 12.3	77 12.2	77 4.6	20 1	DI-BSCCO
0.1 0.045 550	0.32 0.1 150 (RT)	0.20 0.09 700	_	1	30K
0.45 11		0.4 30	0.2 70	_	MgB ₂
11	100	30	70	-	20 K
	ReBCO 480 77 12.2 0.1 0.045 550 0.45 11	ReBCO ReBCO 480 500 77 77 12.2 12.3 0.1 0.32 0.045 0.1 550 150 (RT) 0.45 - 11 100	ReBCO ReBCO ReBCO 480 500 390 77 77 77 12.2 12.3 12.2 0.1 0.32 0.20 0.045 0.1 0.09 550 150 (RT) 700 0.45 - 0.4 11 100 30	ReBCO ReBCO ReBCO BSCCO-2223 480 500 390 200 77 77 77 77 12.2 12.3 12.2 4.6 0.1 0.32 0.20 0.26 0.045 0.1 0.09 - 550 150 (RT) 700 130 0.45 - 0.4 0.2 11 100 30 70	ReBCO ReBCO ReBCO BSCCO-2223 MgB2 480 500 390 200 2000 77 77 77 77 20 12.2 12.3 12.2 4.6 1 0.1 0.32 0.20 0.26 1 0.045 0.1 0.09 - - 550 150 (RT) 700 130 - 0.45 - 0.4 0.2 - 11 100 30 70 -

"Applied Superconductivity", ed. Paul Seidel, 2015

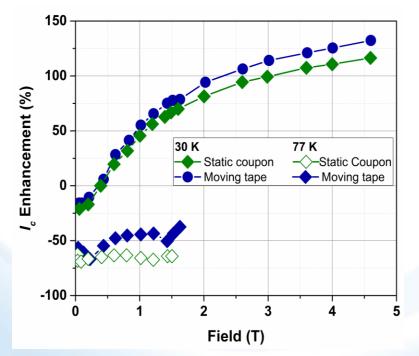
Superconducting Wires for Direct-Drive Wind GeneratorsQiang Li (PI) - Brookhaven National Lab

Magnetic Field (T)

BNL scientist Qiang Li discusses next-generation superconducting wires with US Energy Secretary Ernest Moniz at February 2014 ARPA-E Energy Innovation Summit

Superconducting Direct Drive Wind Generator (10MW+)

ARPA-E REACT Project kick-off in Jan. 2012



Brookhaven Science Associates

http://www.bnl.gov/newsroom/news.php?a=24697

Superconducting Wires for Direct-Drive Wind GeneratorsQiang Li (PI) - Brookhaven National Lab

At <u>Brookhaven National Laboratory</u>, we demonstrated a **roll-to-roll irradiation process**¹ on an AMSC's production length 2G wire (46 mm wide and over 80 meters long) that resulted in doubling the critical current in the 4 – 50 K operating regime targeted for rotating machine applications and high field magnet applications.² The roll-to-roll irradiation was carried out with ion energies readily accessible with commercial electrostatic generators.

 I_c enhancement at 30 and 77K (relative to an unirradiated control sample) of a stationary short sample and a moving tape after irradiation with 18 MeV Au to a dose of $6x10^{11}$ Au/cm²

References

- 1. Patent pending (BNL/AMSC)
- 2. To be presented at EUCAS 2015

HTS 2G wire price (current \$150-250/KA-m)

Total cost of a 12 MW SCSG (Future price of HTS wire; 50 \$/kA-m) Material Cost Parts Cost 20.5 \$/kg Stator coil 985 k\$ Copper Stainless steel 1.5 \$/kg Stator body 206 k\$ Silicon steel plate 4.1 \$/kg Vacuum vessel 18 k\$ 5 \$/m (100 A @ 77 K) Rotor body 16 k\$ HTS wire HTS wire 1,873 k\$ Active parts Weight Material Structure 306 k\$ Stator coil 48 ton Copper 50 ton Silicon steel plate Stator body Stator coil Vacuum vessel 12 ton Stainless steel 9% Rotor body 11 ton Stainless steel Stator body Total length of HTS wire 29% Vacuum 375 km HTS wire vessel Rotor body Total cost of the 12 MW SCSG 55% =3,403,709 \$, ~4M\$ HTS wire ~15% of total system price Structure Ref. Design of direct-driven permanent-magnet generator for wind turbines, Anders Grauers Ref. SuperPower (4mm HTS wire)

Minwon Park, CCA2014 Jeju 1st to 3rd Dec.

Challenges for HTS motors

Applications

o slow speed (<20 r/min)</p>

wind generators, ship propulsion motors

o (100–250 r/min),

Industrial motors, generators

- (1200–3600 r/min) synchronous condensers, high-speed generators
- (15000-r/min) direct coupling to gas turbines.

- Rotor winding and cooling
 (3D winding, pancake coils?)
 (MgB₂ wire is better)
- Coolant transfer to rotor (solved)
- Stator winding consideration
- User acceptance
- o HTS wire cost, in field performance

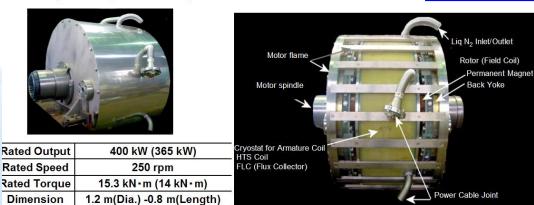
Superconducting Motors

Q. Li – Brookhaven National Lab ARPA-E Advanced Motor Drive Commercialization, March 15, 2012, Orland, FL

Superconducting Motor for Ship propulsion

HTS motor : Small & Light, Cooled by liquid Nitrogen, High efficiency, Low CO₂ Emission

World's Largest L Nitrogen cooled HTS Motor with High Torque Density: $1.8{\times}10^4~\text{Nm/m}^3$


SEL

HTS Electric Vehicle

To validate the potentials and challenges of DI-BSCCO, the Electric vehicles droved by HTS Motor were developed. < Verified performance >

1. Max Speed85 km/h2. Max Torque120 Nm3. Max Power31 kW

Figures and Photos - Courtesy of Dr. K. Sato, Sumitomo Electric Industries, Japan,

Ingenious Dynamics