Single Phase Example

Ferrite Phase from SRM2686a Nitric acid/methanol extraction

We will be using only a subset of the features provided by Profex/BGMN to run a basic refinement for quantitative analysis; we leave it to you to explore the more advanced refinement features after you have had some experience.

Introduction to the Rietveld Method, R.A. Young

- Provides background on the method, its historical development and subsequent application to laboratory X-ray diffraction
- Refining parameters in models for the structure, specimen and instrument effects on the diffraction pattern
- Least-squares refinements are carried out until the best fit is obtained between the entire observed powder diffraction pattern and calculated pattern based upon simultaneously refined models for crystal structures and instrument effects
- Potential systematic errors in include preferred orientation, background, anisotropic peak broadening, profile shapes, absorption, specimen displacement, specimen transparency, extinction, 2-theta-Zero error, graininess, beam instability

Profex and BGMN*

BGMN Author: Dr. Joerg Bergmann http://www.bgmn.de

Profex Author: Nicola Dobelin

<u>http://profex.doebelin.org</u>

output: /Applications/Profex-BGMN/BGMNwin/output verzerr: /Applications/Profex-BGMN/BGMNwin/verzerr gertest: /Applications/Profex-BGMN/BGMNwin/gertest

GPL Open Source, Windows, OS X, Linux; front end for BGMN and for Fullprof 2k Fundamental Parameters, adaptable to different instruments, multi-platform, robust

Profex

Creates a control (input) file

Copies structure models to working folder

Copies the instrument configuration files

(they allow calculation of the instrument contribution to the diffraction peak shapes based upon the X-ray optics) Allows editing of the working versions of the structure files and saves changes/refined values

Döbelin, N., Kleeberg, R., "Profex: a graphical user interface for the Rietveld refinement program *BGMN*", Journal of Applied Crystallography 48 (2015), 1573-1580. DOI: doi:10.1107/S1600576715014685

Profex/BGMN

In place of actual powder reference specimens for calibration, crystal structure models allow calculation of phase diffraction patterns. These models include space group, lattice parameters, atomic positions, atomic site occupancies, atomic vibrational parameters.

The code fits a multivariable model of structure, peak profile, background to the observed data

Initialize Profex

Profex

Version 3.9.1

(c) 2003-2016 by Nicola Doebelin

Profex/BGMN Instrument Configuration

- % BGMN Device Configuration File for Bruker D8
- % -----
- % Created by Nicola Doebelin, RMS Foundation,
- % Switzerland
- % November 12, 2012
- % Device Configuration:
- % Detector: LynxEye
- % Radiation: CuKa, Ni-filtered
- % Soller Slits: 2.5 degrees
- % Divergence Slit: fixed, 0.6 mm
- % Anti-Scatter Slit: fixed, 6.76 mm
- % -Goniometer Radius: 217.5 mm

We will use File=D8_6div_4SS.geq or D8-06mm.geq, modifications of the D8 file provided.

Device functions are available for a wide variety of instruments and configurations, though some may require editing and re-saving. Different configurations will require a new device file!

Profex Configuration

- References model structures from the Cement_Structures Folder

Control file (.SAV)

- A copy of the structure is stored in the same folder as the data

Profex Configuration

.LST file: Refinement Summary

Profex Structure Files (.str)

Provided with the installation but may also be transcribed from databases

PHASE=Ferrite // Formula=Ca2_Fe_Al2_O5 // SpacegroupNo=46 Setting=2 HermannMauguin=lbm2 Lattice=Orthorhombic // PARAM=A=0.5557_0.551^0.563 PARAM=B=1.4543_1.43^1.465 PARAM=C=0.53616_0.533^0.542 // RP=4 k1=0 k2=0 PARAM=B1=0_0^0.01 GEWICHT=SPHAR0 // GOAL=GrainSize(1,1,1) // GOAL=GrainSize(1,1,1) // GOAL=GrainSize(1,1,1) // E=CA+2 Wyckoff=c x=0.02730000 y=0.10870000 z=0.49200000 TDS=0.00971169 E=FE+3(0.6400) Wyckoff=a x=0.00000000 y=0.00000000 z=0.00000000 TDS=0.00971169 E=AL+3(0.8300) Wyckoff=b x=0.92830000 y=0.25000000 z=0.95330000 TDS=0.00971169 E=O-2 Wyckoff=c x=0.06800000 y=0.14390000 z=0.24910000 TDS=0.00971169 E=O-2 Wyckoff=b x=0.86070000 y=0.25000000 z=0.02460000 TDS=0.00971169 E=O-2 Wyckoff=b x=0.86070000 y=0.25000000 z=0.00000000 TDS=0.00971169 E=AL+3(0.3600) Wyckoff=a x=0.00000000 y=0.00000000 z=0.00000000 TDS=0.00971169 E=AL+3(0.1700) Wyckoff=b x=0.92830000 y=0.25000000 z=0.95330000 TDS=0.00971169

GEWICHT (mass) = S* (Z*M*V)

E = CA+2(1) Wyckoff=c x=0.0273 y=0.1087 z=0.4920 TDS=0.00971169 Element Occupancy Wyckoff Position Fractional Coordinates Thermal Displacement Parameter

Profex Structure Files (.str)

Provided with the installation but may also be transcribed from databases

PHASE=Ferrite // Formula=Ca2_Fe_Al2_O5 // SpacegroupNo=46 Setting=2 HermannMauguin=lbm2 Lattice=Orthorhombic // PARAM=A=0.5557_0.551^0.563 PARAM=B=1.4543_1.43^1.465 PARAM=C=0.53616_0.533^0.542 // RP=4 k1=0 k2=0 PARAM=B1=0_0^0.01 GEWICHT=SPHAR0 // GOAL=GrainSize(1,1,1) // GOAL=GrainSize(1,1,1) // GOAL:Ferrite=GEWICHT*ifthenelse(ifdef(d),exp(my*d*3/4),1) // E=CA+2 Wyckoff=c x=0.02730000 y=0.10870000 z=0.49200000 TDS=0.00971169 E=FE+3(0.6400) Wyckoff=a x=0.00000000 y=0.00000000 z=0.00000000 TDS=0.00971169 E=AL+3(0.8300) Wyckoff=b x=0.92830000 y=0.25000000 z=0.95330000 TDS=0.00971169 E=O-2 Wyckoff=c x=0.06800000 y=0.14390000 z=0.24910000 TDS=0.00971169 E=O-2 Wyckoff=b x=0.86070000 y=0.25000000 z=0.02460000 TDS=0.00971169 E=O-2 Wyckoff=b x=0.86070000 y=0.25000000 z=0.00000000 TDS=0.00971169 E=AL+3(0.3600) Wyckoff=a x=0.00000000 y=0.00000000 z=0.00000000 TDS=0.00971169 E=AL+3(0.3600) Wyckoff=b x=0.92830000 y=0.25000000 z=0.00000000 TDS=0.00971169 E=AL+3(0.3600) Wyckoff=b x=0.92830000 y=0.25000000 z=0.00000000 TDS=0.00971169 E=AL+3(0.3600) Wyckoff=b x=0.92830000 y=0.25000000 z=0.00000000 TDS=0.00971169 E=AL+3(0.1700) Wyckoff=b x=0.92830000 y=0.25000000 z=0.95330000 TDS=0.00971169

Fixed Parameter	Refined Parameter	Refined Parameter With Limits
A=0.5557	PARAM=A=0.5557	PARAM=A=0.5557_0.551^0.563
Name Value	Refine Name Value	Refine Name Value Lower Upper

B1: peak broadening from crystallite size (diffracting domains)

GEWICHT = Scale, Weight

Microabsorption correction, (ifthenelse(ifdef(d),exp(my*d*3/4),1), is not being used

Sources of Crystal Structure Data

.CIF File: Ferrite

	data_cli				
American Mineralogist Crystal Structure Database	_audit_creation_date	'Monday, August 13,	2007 2:46 PM'		
	_audit_creation_method	'MDI-jPOWD'			
http://rruff.geo.arizona.edu/AIVIS/amcsd.php	_chemical_name_common				
	Brownmillerite				
	_chemical_formula_sum	'Ca2Al0.72Fe1.2805'			
Mincryst	_publ_section_references				
http://databaso.iom.ac.ru/mincryst/	A.A.Colville & S.Geller, Crysta	al structures of Ca2FeJ	1.43A10.5705 and		
http://uatabase.iem.ac.ru/mincryst/	Calfel.28Al0./205 , Acta Cryst.	B28, 3196, 1972			
		Outh sub sub is			
Crustelle graphy Open Database		Urthornombic Thm2			
Crystallography Open Database		46			
http://www.crystallography.net/cod/	_symmetry_int_labres_number	40			
	cell length a	5.583			
	cell length b	14.58			
Cements Crystal Structure Database	cell length c	5.374			
	cell angle alpha	90			
http://www.nist.gov/el/building_materials/	cell angle beta	90			
inorganic/gsas1 cfm	cell angle gamma	90			
	_cell_volume	437.444			
	_cell_formula_units_Z	4			
Commercial:					
	loop				
	atom site type symbol				
https://icdd.com	_atom_site_label				
	_atom_site_fract_x				
	_atom_site_fract_y				
ICSD	_atom_site_fract_z				
https://icsd.fiz_karlsruhe.de/	_atom_site_occupancy				
	_atom_site_thermal_displac	ce_type			
	_atom_site_U_iso_or_equiv	7 1 - 1 1			
	atom_site_symmetry_multip	plicity	Tico O	01000	0
	Ea Ea(1) = 0.27 = 0.1084		$U_{1SO} U_{2}$	01230	8
		0.0 0.13	7 Uiso 0	01230	4
	AI AI(2) 0.9291 0.25	0.952 0.55		01230	4
	Fe Fe(2) 0.9291 0.25	0.952 0.45	5 Uiso 0.	01230	4
	0 0(1) 0.2525 0.9859	0.2503 1.0	Uiso 0.0	1230	8
	0 0(2) 0.0683 0.1429	0.0256 1.0	Uiso 0.0	1230	8
	0 0(3) 0.8653 0.25	0.6133 1.0	Uiso 0.0	1230	4

American Mineralogist Crystal Structure Database

- Download .CIF file
- Import into Profex *

*Use Vesta to view structure and get the Wyckoff positions

http://rruff.geo.arizona.edu/AMS/amcsd.php

http://jp-minerals.org/vesta/en/

Profex->File->Import Structure File

- Point toward selected .CIF file
- At the same time, open that CIF file using VESTA
 - necessary to get the Wyckoff position notation 🙂
- Add PHASE name: PHASE=Ferrite // 🙁
- Add phase name to GOAL: GOAL:Ferrite=GEWICHT ... 😑
- Add atom charge (CA+2, AL+3, FE+3, O-2) 😐
- Save to Structures Folder; include extension .str

Profex

Import CIF Example

Load Data File: File->Insert Scan

Corundum-Silicon File Added

Structure Files

I 🔘 🧶	Prefer	ences	
General			
Text Editors	BGMN Configuration		
▼ Graphs			
Fonts	BGMN Executable	Applications/Profex-BGMN/BGMNwin/bgmn	
Scan Styles	Domit Exceduable	//ppilottono/ forox beam/beam/twin/bginn	
▼ BGMN	MakeGEQ Executable	/Applications/Profex-BGMN/BGMNwin/makegeg	
Structure File Handling			
Limits	Geomet Executable	/Applications/Profex-BGMN/BGMNwin/geomet	
Summary Tables			
Fullprof.2k	Output Executable	/Applications/Profex-BGMN/BGMNwin/output	
Reference Structures			
Chemical Composition	Verzerr Executable	/Applications/Profex-BGMN/BGMNwin/verzerr	
Text Blocks			
	Gertest Executable	/Applications/Resfer PO100/2010101/general	I
	Structure Files Directories	/Applications/Profex-BGMN/BGMN-Templates/CementStructures	+
		/Applications/Profex-BGMN/BGMN-Templates/FlyAsh	
		Applications/Profex-BGMN/BGMN-Templates/InternalStandards	
		/Applications/Profex-BGMN/BGMN-Templates/Structures	
	Device Files Directory	Applications/Profex-BGMN/BGMN-Templates/Devices	
	Presets Directory	/Applications/Profex-BGMN/BGMN-Templates/Presets	
	_		
	Convert raw scans to X	Y format	
	🗹 Manage phase quantific	ation GOALs	
	Spectral line cursor sho	ws all wavelengths from BGMN *.lam file	

Profex->Preferences

- Paths to structure files
- Will list according to list order
- CementStructures
- FlyAsh
- InternalStandards
- Structures
- Once added, select Display to see the copied data, make changes if desired

		Specify Ir	nstrument Fil
		AGu / HEIHOVE FILASES	
enerate de	efault control file for instrument confi	ouration	D8-06mm.geq
	Add	d Phases e RemovePhases	
ile Name		Phase	Comment
/Applic	ations/Profex-BGMN/BGMN-Te		1
	Alite_Mono_DeLaTorre.str	Alite	
	Alite_Triclinic_Belov.str	C3S_trkl_Belov	I
	Alite-Mono_M1.str	AliteM1	
	Alite-Mono_Mumme.str	Hatrurite	
	Alite-Mono_Nishi.str	Alite	
	Alite-Triclinic_P1.str	Alite	
	Aluminate_Ort_Nishi.str	C3AOrt	
	Aluminate-Cub-Jeffrey.str	C3ACub	
	Aluminate-Ort-Takeuchi.str	C3AOrt	
	Anhydrite_Soluble.str	Anhydrite	
	Anhydrite.str	Anhydrite	
	Anhydritesoluble.str	AnhydriteS	
	Aphthitalite.str	Aphthitalite	
	Arcanite-McGinnity.str	Arcanite	
	Bassanite_/SRH.str	Bassanite/SRHSchmidt	Bozou 0 5 H2O
	Bassanite_Bezou_p5H2O.Str	Bassanite	Bezou 0.3 HzO
	Bassanite_Dezou.str	Bassanito	
	Bassanite-Abril 1 str	Bassanite	Abril
	Bassanite-Ballirano str	Bassanite	Ballirano
	Bassanite-Bezou p6H2O.str	Bassanite	Bezou 0.6 H2O
	Bassanite-Bezou SH1 Neutron	Bassanite	Bezou SH1 Neutron
	Bassanite-Bezou_SH1_XRD.str	Bassanite	Bezou, SH1 XRD
	Bassanite-Bezou_SH2_Neutron	Bassanite	Bezou, SH2 Neutron
	Bassanite-Bezou_SH2_XRD.str	Bassanite	Bezou SH2 XRD
	Bassanite-Bushuev.str	Bassanite	Bushuev setting may be incorr
	Bassanite-Schmidt_75RH.str	Bassanite	Schmidt 75 RH
	Bassanite-Schmidt.str	Bassanite	Schmidt
	Belite_Alpha.str	C2SAlpha	Mumme
	Belite_Beta_Jost.str	Belite	
	Belite_Beta_Mumme.str	Belite	Mumme
	Belite_Beta.str	Belite	
	Belite_Gamma.str	C2SGamma	Mumme

Overwrite existing files

Expand/Collapse

Cancel

Overwrite files in working folder

Profex: .raw, .sav, .str display

	Run, Abort Refinement	
© profex File Edit View F	Project Run Results Instrument Window Help	100% ☞ Mon 8:29 PM 및 :=
🔛 🕒 🤔 🔝	🔒 🔏 📄 🧉 🔮 🌍 🊡 📥 🌪 🎞 🕟 🕑 💿 💽 🔍 «Reference Structures» 🛛 🗧 🗴	С ни
O Plot Options	Corundum-Silicon_01.raw Corundum-Silicon_01.sav Corundum_1.str Si.str	Convergence Progress
Scan Scaling Vertical Offi	PHASE=Corundum // Lewis Schwarzenbach Flack Reference=amcsd_0009325 // Formula=Al_2.03 // SpacegroupNo=167 Setting=1 HermannMauguin=R-32/c Lattice=Trigonal UniqueAxis=c // PARAM=A=0.476020_0.471260^0.0480780 PARAM=C=1.299330_1.286337^1.312323 // RP=4 k1=0 k2=0 PARAM=B1=0_0^0.01 GEWICHT=SPHAR0 // COAL:Corundum=GEWICHT*ifthenelse(ifdef(d),exp(my*d*3/4),1) // COAL:Corundum=GEWICHT*ifthenelse(ifdef(d),exp(my*d*3/4),1) // COAL:Corundum=0.00000000 y=0.00000000 z=0.35216000 TDS=0.00224588 E=O Wyckoff=e x=0.30624000 y=0.00000000 z=0.25000000 TDS=0.00273278 Volus could docido to rofino or five coloctod porceptor	90 Rwp Rexp 90 Rexp 75
	Tunically we will refine lattice parameters	60
	 (B1), scale (Gewicht), specimen displacement (EPS1). Background is automatically refined 	45 -
	 Parameters like thermal (TDS) and site occupancy are best left fixed 	30
	 Preferred orientation is refined judiciously and it is always best to obtain data with minimal preferred orientation. 	15
Projects Plot Options	A good rule is less is better – do no harm!	0 Iterations
S 💿 Global Paran	neters and GOALs Refinement Protocol	Chemistry
	Cuantity Goal Total	
Global Parameters and GO	ALS Local Parameters Wavelength: 1,5406 Å Apple: 0,000° intensity: 0,000 etc. d.Spaging: 0,000	Å
	Wavelength, 1.0400 A Angle, 0.000 intensity, 0.000 cts 0-3pacing, 0.000	

Initialize Profex, Insert Scan

🗯 profex File Edit	View Project Run Results	Instrument Window He	lp			495	9 (ا) 🗟 🖇 🕙 🕘	8% 🗩 Sat 8:28 PM 🔍 \Xi
000				Profex - 3.9.1				
i 🔛 🕒 🤔		🧟 🧐 🌍 🖉	💧 📥 🊖 🖳 💽					
S 💿 Plot Option		lagor	t Cranh File					Convergence Progress
		ITISE	t Graph File					
		86_HNO	B_Example	Q Search	_			
	Favorites	Name	Date Modified	Size Kin	d			
o	All My Files	Unk_25.jpg	May 9, 2016, 11:12 AM	102 KB JPE	EG image			
u	Applications	Unk_25.txt	May 9, 2016, 11:12 AM	342 bytes tex	iasoimage			
	Desktop							
	Downloads							
	Documents							
	😭 stutz							
	Devices							
	P645975							
	Macintosh HD							
	Remote Disc							
	STORE N GO							
	Media							
	Dentos							
		Bruker RAW sc	an (*.raw *.RAW) ᅌ					
	New Folder			Cancel	Open			
Projects Plot Optio	ns							
00	Global Parameters and GOALs	8 0		Refinement Prot	pcol		00	Chemistry
Global Paramete	ars and GOALS Local Parameter	re						
Ciobar Paramete				Wavelength: 1,540	6 Å Angle: 0.000°	Intensity: 0.000 cts	d-Spacing: 0.000	Å

Initialize Profex, Insert Scan

Phase d&I Search for Phase Identification

Add Phase

Display Structure

Initiate refinement

🗯 profex File Edit View Pro	pject Run Results Instrument	Window Help				5 🗑 🕙 🖇 🛜 🕬	93% 🔳	Sat 8:47 PM				
			Rofex -	3.9.1								
🔛 🔛 🤔 🔛 🖟 🔚 🔏 🗂 🏈 🍣 🍙 🐁 🚖 🏫 🎞 💽 🕑 💿 💿 🔜 🔍 <reference structures=""> 🔹 🗴 0.000000 🗯 🕨</reference>												
Plot Options			⊗ Unk_25.rat ⊗ Unl	k_25.sav* 🛛 😣 Ferrite.str			80	Convergence Progress				
Scan Scaling Vertical Offs	$\begin{array}{l} PHASE=Ferrite \ // \\ Formula=Ca2 \ Fe \ Al2_OS \ // \\ Formula=Ca2 \ Fe \ Al2_OS \ // \\ SpacegroupNo=46 \ Setting=2 \ Herma \\ PARAM=A=0.5557_{0.551 \wedge 0.563 \ PA \\ PA \ Al=0 \ kl=0 \ Al2OS \ // \\ GOAL=GrainSize(1,1) \ // \\ GOAL:Ferrite=GEWICHT*iftnenelse(if \\ E=CA+2 \ Wyckoff=c \ x=0.02730000 \\ E=FE+3(0.6400) \ Wyckoff=a \ x=0.0000 \ yr \\ E=O-2 \ Wyckoff=c \ x=0.25230000 \ yr \\ E=O-2 \ Wyckoff=c \ x=0.06800000 \ yr \\ E=O-2 \ Wyckoff=c \ x=0.0680000 \ \mathsf{yr \\ Wyckoff=c \ x=0.0000 \ \mathsf{yr \\ Wyckoff=c \ x=0.000 \ \mathsf{yr \\ Wyckoff=c \ x=0.0000 \ \mathsf{yr \\ Wyckoff=c \ x=0.0000 \ \mathsf{yr \\ Wyckoff=c \ x=0.0000 \ \mathsf{yr \\ yr \ \mathsf{yr$	nnMauguin=Ibm2 Lattice= AM=B=1.4543_1.43^1.46 .01 GEWICHT=SPHAR0 // def(d).exp(my*d*3/4),1) // r=0.10870000 z=0.492000 00000 y=0.25000000 z=1 0.98610000 z=0.2246001 0.14390000 z=0.6193001 000000 y=0.00000000 z=1 330000 y=0.25000000 z=1	Orthorhombic // 5 PARAM=C=0.53616_0.53 0000 TDS=0.00971169 0.00000000 TDS=0.009711 00 TDS=0.00971169 10 TDS=0.00971169 10 TDS=0.00971169 10 0000000 TDS=0.009711 0.95330000 TDS=0.009711	3^0.542 // 69 69 69			90	Rwp Rexp Rexp * 1.5				
	For the most par	t, refined para	meters are pre	e-set and indic	ated by PARAM		60 -					
	Some parameter	s are automati	ic: Background	, Scale (gewicl	ht)							
	Other parameter	s					45					
	Lattice paramete	rs a, b, and c					45 -					
BGMN Recommendatio	_{ns} B1 (Lorentzian lir Goals: Computed	ne shape relate I values, crysta	ed to crystallite allite size, adjus	e size broaden stments to sca	ing) Ile		30 -					
SPARn	Preferred orienta	tion: SPHARn.	where n=0 (no	one), 2, 4, 6 <i>ld</i>	leally set to 0!							
2 triclinic, monoclinic		,			,							
4 orthorhombic.	Generally you will r	ot need to initia	te or deselect ar	ny refined paran	neters aside from pref	erred						
hexagonal.	orientation, and on	lv if warranted b	ov peak intensity	mismatch and p	otential for orientatio	on based upon	15 -					
tetragonal	crystal habit or clea	, vage properties	– alite, perhaps	ferrite and belit	e and, for cements, ar	ny of the	-					
6 cubic	calcium sulfates an	d calcite					-					
Projects Plot Options							0	Iterations				
S 🗇 Global Param	eters and GOALs	80		Refinement Protocol		80	Chemist	ry				
Global Parameters and GO	Local Parameters	Atom position not refined pa occupancy m based upon e	ns (x,y,z) and vib artly because th ight be refined, arlier refinemer	prational (therm e data range is but the initial v nts, providing ty	nal) factors (TDS) are too limited. Site alues for ferrite are ypical industrial value	Quantity Goal Total						

Wavelength: 1.5406 Å

Angle: 0.000°

0.000 cts

Intensity:

d-Spacing: 0.000 Å

Line 0, Column 0

Examine Results: Plot, Parameters, LST

Search for Missing Phase

Ferrite and Periclase Refinement

Preferred Orientation

Since ferrite can exhibit a tabular habit it is possible it could be oriented, skewing the representative orientation ideal and so, the relative peak intensities. Change the zero to 2 and later 4 if necessary after the variable SPHAR and repeat the refinement to see if it improves. Profex runs the refinement and introduces the orientation correction at the last stages, but only if the phase fraction is above a minimum to make it practical.

Check Parameters

$\Theta \Theta \Theta$													Profex -	3.9.1									
	8	🗜 뎵 📙		1 🖻 🍠 🎙	è 🌒	S	. 4 €			•			< <referen< p=""></referen<>	ce Structures>	;	÷ 🗙 🖂	000100	► ► ►					
80	Plot	t Options								8 L	Jnk_25.dia	🛛 Unk_	25.sav 🛛 🛞 U	nk_25.lst 🛛 😣 I	Ferrite.str	Ø Periclase.str]					80	Convergence Progress
Scan Scan I observed I calculated I difference	Scaling 1.00 1.00 1.00	Vertical Offset 0.00 0.00 -1749.42	Horizo 0.000 0.000 0.000	Rietveld refinement BGMN version 4.2.2 Start: Tue Jul 19 09: 24 iteration steps	to file(s) U 2, 4026 m 09:23 201	Ink_25.xy easured p .6; End: T	ooints, 80 pea ue Jul 19 09:	aks, 46 para 09:25 2016	meters													4.4	
Background Ferrite MgO	1.00 1.00 1.00	0.00 0.00 0.00	0.000 0.000 0.000	Rp=2.93% Rpb=22. Durbin-Watson d=0 1-rho=2.04%	.25% R=4.	.73% Rwp	o= 3.78 % Rex	p= 2.05 %															Rexp * 1.5
				Ferrite/sum=0.9090 MgO/sum=0.0910+ EPS2=-0.000100+-	0+-0.0019 0.0019 0.000015)																4	
				Local parameters an SpacegroupNo=46 HermannMauguin=1	ld GOALs fi	or phase	Ferrite																
				XrayDensity=3.667 Rphase=5.65% UNIT=NM A=0.553276+-0.00	00031																	3.6	
				B=1.457555+-0.00 C=0.533351+-0.00 B1=0.009941+-0.0 GrainSize(1,1,1)=42 GEWICHT=SPHAR4, I Atomic positions for	0088 00032 00087 1.69+-0.37 MeanValue r phase Fer	7 e(GEWICH rrite	T)=0.312406	5														3.2	
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37 0.4920 00 0.0000 00 0.9533 51 0.2491 59 0.0246 00 0.6193 00 0.0000 00 0.9533	E=(CA E=(FE- E=(AL E=(O- E=(O- E=(O- E=(AL E=(FE-	+2(1.0000)) +3(0.6400)) +3(0.8300)) 2(1.0000)) 2(1.0000)) 2(1.0000)) +3(0.3600)) +3(0.1700))															2.8	
				Local parameters an SpacegroupNo=225 HermannMauguin=F XrayDensity=3.580 Rphase=2.60%	id GOALs fo F4/m-32/r	or phase	MgO	**															
				UNIT=NM A=0.421317+-0.00 B1=0.00358+-0.00 GrainSize(1,1,1)=11 GEWICHT=SPHAR4, I Atomic positions for	00015 013 .8.6+-4.2 MeanValue r phase Mg	e(GEWICH	T)=0.031289	92														2.4	
				4 0.5000 0.500	0.5000	E=(MC E=(O-	2(1.0000))															2	21 Iterations
80		Global Parameters ar	nd GOALs	J	80						Local Pa	rameters					80				Chemistry		
/Users/stutz/Doc	uments/	/ID_Exercise/U25	/Unk_2	5.lst	/Users/st	tutz/Docu	uments/ID_E	ercise/U25/	Unk_25.lst									Quantity Goal	MgO wt-%	Al2O3 wt-%	CaO wt-%	Fe2O3 wt-%	
Parameter / Ge	al Valu	ue ESD			Phase	A Resp	ESD(A)	B	ESD(B)	С	ESD(C)	ALPHA	ESD(ALPHA)	BETA ESD(BET	A) GAMMA	ESD(GAMMA)	Ferrite	Ferrite/su	0.00	23.22	42.93	24.75	-
Ferrite/sum	0.90	0.0019			Ferrite	0.55327	6 0.000031	1.457555	0.000088	0.533351	0.000032	2					MgO	MgO/sum	9.10	0.00	0.00	0.00	
MaQuan	0.00	0.0010															Total		9.10	23.22	42.93	24.75	

0.091 0.0019

MgO/sum

MgO 0.421317 0.000015

Look for additional phases

7.267 15.93 gypsum (160) 3.08 29.375 M1 C3S (50) 2.746 140011 C3S (60) 2.236 B225 (80) 2.238 Add 15 C225 (80) 5.97 14.627 Mathematics (51) 3.04 2.84.45 m r0.35 (60) 2.714 3.238 B225 (80) 2.238 4.04.45 group must (51) 5.953 14.669 Hreinic C33 (12) 3.025 2.804 m r0.35 (60) 2.408 3.3244 CDA4 (100) 2.208 4.04.84 group must (51) 5.927 14.055 melocitics (51 (2) 3.025 2.604 mone C38 (75) 2.608 3.3.244 CDA4 (100) 2.208 4.0.843 Group (24) 5.927 14.055 mone C38 (75) 2.608 3.3.247 CDA4 (100) 2.208 4.0.843 Group (24) 4.0.843 Group (24) 4.0.84 Micros (24) CA4 4.0.84 Micros (24) CA4 4.0.84 Micros (24) CA4 1.0.84 Micros (24) Micros (24) Micros (24) Micros (24) Micros (24) Micro	d-Spacing	Two-Theta	Phase	d-Spacing	Two-Theta	Phase	d-Spacing	Two-Theta	Phase	d-Spacing	Two-Theta	Phase
7.240 12.200 CAAF (45) 3.036 29.400 mon C36 (40) 2.717 32.208 BC258 (01) 2.230 40.455 of C28 (01) 5.607 14.827 trednic C35 (15) 3.086 2.084 im C35 (00) 2.210 40.855 colored by trednic C35 (12) 3.082 2.844 im C35 (07) 2.468 3.376 CCAA (10) 2.205 40.893 construction of the colored by trednic C35 (12) 3.011 2.864 3.356 0.2084 (10) 2.205 40.893 construction of the colored by trednic C36 (12) 2.014 41.080 mont C36 (12) 3.002 2.778 marante (07) 2.668 3.356 0.971 2.205 40.893 construction of the colored by trednic C36 (10) 2.664 3.356 0.971 2.189 41.080 Hangeheile (17) 4.062 Hangeheile (17) 2.669 3.368 Hanardtis (20) 2.618 41.084 Hangeheile (17) 4.022 Hangeheile (17) 2.618 41.228 11.08 Hangeheile (17) 2.618 3.422 Hangeheile (17) 2.648 3.377 CA	7.627	11.593	gypsum (100)	3.038	29.375	M1 C3S (50)	2.736	32.704	triclinic C3S (60)	2.268	39.709	bassanite (10)
Sepr 14.759 bessanite (60) 3.034 29.44 17.44 32.976 CAAe (65) 2.220 40.805 ad228 (40) 5.807 14.627 inclinic CS8 (12) 3.024 20.644 inclinic CS8 (60) 2.714 32.976 cbssanite (10) 2.205 40.813 antroperative (20) 5.837 14.865 inclinic CS8 (12) 3.024 2.714 32.976 cbssanite (10) 2.205 40.818 antroperative (20) 5.837 14.856 inclinic CS8 (12) 3.000 2.786 ascanite (7) 2.680 33.407 cCAF (63) 2.195 41.088 inapbenite (37) 5.107 17.35 C.3A0 (10) 3.000 2.786 ascanite (7) 2.680 33.407 cCAF (63) 2.195 41.088 inapbenite (37) 2.481 41.328 memorizs (10) 2.611 41.384 memorizs (10) 2.612 34.331 bencurs 41.334 memorizs (10) 2.612 34.339 MCAF (61) 2.117 41.433 inapbenit (3) 2.614 41.344<	7.249	12.200	C4AF (45)	3.036	29.400	calcite (100)	2.717	32.939	βC2S (30)	2.230	40.415	α'C2S (30)
5570 14.827 incluic CS (12) 3.034 22.415 m CSS (60) 2.714 33.226 ac.254 (100) 2.256 40.858 m CSS (12) 3.042 ac.258 (100) 2.692 ac.257 (100) 2.692 40.858 m CSS (12) 3.042 ac.258 (100) 2.692 ac.257 (100) 2.692 40.858 ac.257 (100) 2.692 40.858 ac.257 (100) 2.692 3.040 9.257 (100) 2.692 2.684 3.3369 gp common (100) 2.692 2.684 3.3369 gp common (100) 2.693 3.407 GC CSS (10) 2.698 3.008 dm CSS (12) 2.198 4.108 Hangehonia (12) 4.417 4.626 apthibula 2.598 3.004 m CSS (12) 2.618 3.4237 Incluic CSS (10) 2.198 4.138 m CSS (12) 2.618 3.4237 Incluic CSS (10) 2.199 4.1433 m CSS (12) 2.618 3.4237 Incluic CSS (10) 2.191 4.1433 m CSS (12) 2.618 3.4247 1.1011 CSS (10) 2.1191 4.1433	5.997	14.759	bassanite (80)	3.036	29.395	mono C3S (40)	2.714	32.976	C3Ao (65)	2.220	40.605	αC2S (40)
5585 14.869 triclinic C3S (12) 3.225 29.944 triclinic C3S (7) 2.746 33.026 ac228 (100) 2.200 4.8.86 anthrifte (2) 5.877 14.855 triclinic C3S (12) 3.012 2.9.944 mcc.35 (7) 2.648 33.174 C3.Ac (100) 2.203 4.0.83 mcc.100 2.0.83 4.0.83 mcc.100 2.0.83 4.0.83 mcc.100 2.0.83 4.0.83 4.0.83 Mcc.100 2.0.84 4.0.83	5.970	14.827	triclinic C3S (12)	3.034	29.415	m1 C3S (50)	2.714	32.976	bassanite (10)	2.218	40.643	gypsum (15)
5.527 14.935 triclinic C33 (12) 3.022 29.544 mone C35 (75) 2.682 33.176 CXAc (100) 2.205 40.803 cC3Aa (20) 5.207 14.935 mone C35 (72) 3.011 2.646 yc23 (10) 2.302 40.803 cC3Aa (10) 5.417 15.778 yc23 (10) 3.002 2.978 bassanite (10) 2.643 33.867 CMC(10) 2.203 40.803 cC3Aa (10) 4.640 19.033 henaratite (71) 2.974 30.024 triclinic C38 (12) 2.614 33.875 thenardite (52) 2.119 41.306 M1C35 (40) 4.440 11.2 2.623 30.024 mone C38 (12) 2.614 33.875 thenardite (53) 2.014 41.304 M1C35 (40) 4.424 2.0661 langebinite (51) 2.063 34.321 thenardite (53) 2.217 41.403 thi C38 (0) 2.118 41.403 thi C38 (0) 2.118 41.403 thi C38 (1) 41.603 thi C38 (1) 41.603 thi C38 (1) t	5.953	14.869	triclinic C3S (12)	3.025	29.504	triclinic C3S (65)	2.710	33.026	αC2S (100)	2.209	40.816	anhydrite (20)
5.527 14.335 monc, C35 (12) 3.11 29.845 yC25 (8) 2.684 33.284 CXAc (100) 2.205 40.803 arcanhe (7) 5.101 17.350 C3Ac (10) 3.002 22.786 harcanhe (7) 2.804 33.347 C/252 (73) 2.106 41.008 Impobility 4.101 3.1002 22.776 harcanhe (7) 2.804 33.467 C/252 (73) 2.106 41.008 Impobility 4.101 110 C/252 (70) 2.297 30.044 MC C38 (20) 2.614 33.427 CAAF (100) 2.104 41.304 MI C38 (20) 4.233 20.651 V/C25 (4) 2.268 30.064 MC C38 (2) 2.616 34.331 Inticinic C38 (0) 2.110 41.363 mc C38 (0) 4.233 20.669 Inticinic C38 (20) 2.416 34.331 MI C38 (20) 2.170 41.403 MI C38 (20) 2.171 41.403 MI C38 (20) 2.171 41.403 MI C38 (20) 2.171 41.403 MI C38 (20) 2.172<	5.927	14.935	triclinic C3S (12)	3.025	29.504	mono C3S (75)	2.698	33.178	C3Ac (100)	2.205	40.893	C3Ao (20)
5.510 15.784 VC2S (19) 3.002 25.756 bassanite (80) 2.684 33.356 gypsum (65) 2.203 40.932 CCAAc (10) 4.117 16.262 aphthalialis (10) 2.385 2.376 bassanite (25) 2.673 33.497 CCAAC (26) 2.196 41.098 bindinic (25) 2.297 33.497 CCAAc (10) 2.191 41.394 mono C38 (25) 4.284 20.777 syssum (16) 2.266 30.430 Hicking (26) 2.414 34.330 Bic (23) 41.403 thiclinic C38 (29) 2.417 41.403 thiclinic C38 (29) 2.400 34.330 Bic (23) 41.403 thiclinic C38 (29) 2.417 41.403 thiclinic C38 (29) 2.407 34.330 Bic (23) 41.403 thiclinic C38 (10) 2.118 41.703 Mi C38 (0) 4.772 41.403 thiclinic C38 (29) 2.403 34.427 thiclinic C38 (21) 2.117 <td< td=""><td>5.927</td><td>14.935</td><td>mono. C3S (12)</td><td>3.011</td><td>29.645</td><td>YC2S (80)</td><td>2.692</td><td>33.254</td><td>C3Ao (100)</td><td>2.205</td><td>40.893</td><td>arcanite (14)</td></td<>	5.927	14.935	mono. C3S (12)	3.011	29.645	YC2S (80)	2.692	33.254	C3Ao (100)	2.205	40.893	arcanite (14)
5.107 17.350 CSAc (10) 3.000 22.75 arcanite (7) 2.680 33.407 cl C28 (7) 2.198 41.068 lenghenine (C38 (7) 4.681 16.026 aphthialis (10) 2.994 30.022 triclinic C38 (18) 2.673 33.497 thecardite (C3) 2.198 41.008 triclinic C38 (17) 4.630 16.028 thenardite (71) 2.994 30.024 triclinic C38 (18) 2.673 33.497 thecardite (C3) 2.181 41.208 tp C28 (42) 2.181 41.208 tp C28 (42) 2.181 41.303 tp C28 (42) 2.181 41.303 tp C28 (42) 2.177 41.403 triclinic C33 (17) 4.232 20.269 G3.64 (6) 2.901 30.175 triclinic C38 (28) 2.610 3.3.4125 mono C38 (100) 2.183 44.103 triclinic C38 (17) 4.232 2.024 appeninke (16) 2.020 30.78 aphthiatite (16) 2.610 3.4.25 mono C38 (100) 2.164 41.704 Mic C38 (17) 4.108 11.97	5.610	15.784	γC2S (19)	3.002	29.736	bassanite (80)	2.684	33.356	gypsum (35)	2.203	40.932	C3Ac (10)
417 16.026 aphthialie (10) 2.995 22.909 triclinic C38 (25) 2.673 33.497 C-4AF (35) 2.195 41.008 triclinic C38 (25) 4 640 19.112 ci C28 (01) 2.974 30.042 triclinic C38 (16) 2.844 33.875 CHAF (100) 2.184 41.308 Mt C38 (20) 4 230 2.966 mappenine (03) 2.968 30.044 mon C38 (22) 2.616 34.232 triclinic C38 (17) 2.184 41.308 Mt C38 (20) 4 235 2.0699 mappenine (03) 2.985 30.117 mon C38 (22) 2.607 34.371 Mt C38 (00) 2.179 41.403 Mt C38 (01) 4 175 2.1262 1.900 3.428 Mt C38 (00) 2.171 41.603 Mt C38 (01) 4 175 2.1264 arcanite (28) 2.804 30.872 vC28 (25) 2.503 34.604 arcanite (13) 2.164 41.704 mco C38 (22) 4 175 2.1264 arcanite (13) 2.176 34.604 arcanite (13) 2.164 41.704 mco C38 (22) 2.457 34.604 arcanite (16)	5.107	17.350	C3Ao (10)	3.000	29.756	arcanite (77)	2.680	33.407	α´C2S (75)	2.196	41.068	langbeinite (12)
4650 10.033 thenardite (71) 2.77 30.043 Mt C3S (60) 2.647 33.836 thenardite (62) 2.189 41.206 BC2S (51) 4.460 10.112 cr2S (30) 2.972 30.043 Mt C3S (60) 2.644 33.836 thenardite (62) 2.181 41.304 Mt C3S (60) 4.284 20.777 grygam (100) 2.668 30.044 Mt C3S (60) 2.418 41.304 mono C3S (60) 4.252 20.867 Mangbeinte (23) 2.648 30.044 Mt C3S (60) 2.410 41.304 mono C3S (60) 4.252 20.264 Mangbeinte (23) 2.646 30.787 proximation (10) 2.440 mono C3S (10) 2.161 41.630 Mt C3S (10) 4.175 21.264 arcanite (23) 2.846 30.690 arcanite (35) 2.576 34.694 yC28 (25) 2.163 41.704 Mt C3S (10) 4.165 21.760 aphthialite (7) 2.486 30.690 arcanite (35) 2.543 35.664 yC28 (25) 2.163 41.724 Mt C3S (10) 4.1704 Mt C35 10.776 </td <td>4.917</td> <td>18.026</td> <td>aphthitalite (10)</td> <td>2.985</td> <td>29.909</td> <td>triclinic C3S (25)</td> <td>2.673</td> <td>33.497</td> <td>C4AF (35)</td> <td>2.195</td> <td>41.088</td> <td>triclinic C3S (75)</td>	4.917	18.026	aphthitalite (10)	2.985	29.909	triclinic C3S (25)	2.673	33.497	C4AF (35)	2.195	41.088	triclinic C3S (75)
44.60 19.112 a C2S (30) 2.972 30.043 M1 C3S (20) 2.644 33.875 CC4AF (100) 2.164 41.364 M1 C3S (40) 4.264 20.571 gypsum (100) 2.668 30.064 M1 C3S (20) 2.618 34.303 trielinic C3S (80) 2.161 41.364 mono C3S (22) 4.253 20.869 langbeninte (3) 2.641 30.678 mono C3S (22) 2.610 34.371 M1 C3S (80) 2.171 41.403 M1 ClaS (40) 4.222 2.024 langbeninte (10) 2.843 30.672 arracica (22) 2.805 34.594 M1 C3S (80) 2.171 41.403 M1 ClaS (40) 4.122 1.244 langbeninte (10) 2.848 30.672 arracica (23) 2.576 34.584 mono C3S (11) 1.663 M1 C3S (40) 2.464 41.704 M1 C3S (40) 4.154 21.254 arranite (23) 2.676 34.584 mono C3S (12) 2.644 41.704 mono C3S (15) 1.724 mono C3S (15) 1.724 mono C3S (15) 1.724 mono C3S (15) 1.776 C3Ac (12) 2.456 1.736 <td>4.659</td> <td>19.033</td> <td>thenardite (71)</td> <td>2.974</td> <td>30.022</td> <td>triclinic C3S (18)</td> <td>2.647</td> <td>33.836</td> <td>thenardite (52)</td> <td>2.189</td> <td>41.206</td> <td>βC2S (51)</td>	4.659	19.033	thenardite (71)	2.974	30.022	triclinic C3S (18)	2.647	33.836	thenardite (52)	2.189	41.206	βC2S (51)
4.316 2.0.561 \v225 (45) 2.988 30.084 mono C33 (12) 2.818 34.222 trichinic C38 (60) 2.181 41.384 mono C33 (2) 4.253 2.0.866 langbeinic (30) 2.985 30.084 M1 C38 (20) 2.810 34.330 BC28 (42) 2.179 41.403 trichinic C38 (7) 4.223 2.0.895 CAA (6) 2.985 30.078 aphthilate (7) 2.813 34.398 M1 C38 (7) 2.177 41.403 trichinic C38 (7) 4.222 21.034 langbeinite (23) 2.860 30.398 min C38 (60) 2.171 41.533 thinc C38 (10) 4.175 21.264 lancente (28) 2.860 30.672 2.663 34.664 vC28 (14) 2.166 41.654 thinc C38 (10) 4.176 21.264 lancente (23) 2.866 30.670 arcante (23) 2.866 arcante (23) 2.466 trichinic C38 (10) 2.866 41.724 trichinic C38 (10) 2.866 trichinic C38 (10) 2.661 41.744 MIC03 (10) 30.02 2.878 34.644 vC28 (20) 2.464 34.644 4	4.640	19.112	a'C2S (30)	2.972	30.043	M1 C3S (20)	2.644	33.875	C4AF (100)	2.184	41.304	M1 C3S (40)
4.24 20.717 gypsum (100) 2.968 30.064 M1 (33 (20) 2.612 34.303 triclinic C3S (60) 2.160 41.383 c C2S (30) 4.253 20.969 G3Ac (6) 2.961 30.157 mone C3S (25) 2.607 34.371 M1 C3S (70) 2.179 41.403 M1 C3S (80) 2.171 41.663 M1 C3S (80) 4.222 20.124 iangbeinte (16) 2.992 30.778 arcanite (16) 2.603 34.425 mone C3S (10) 2.168 41.803 M1 C3S (70) 4.175 2.124 arcanite (20) 2.880 31.827 arcanite (16) 2.168 44.603 M1 C3S (10) 4.176 crace (31) 2.880 31.828 arcanite (16) 2.164 44.704 mone C3S (15) 3.000 22.783 orC28 (20) 2.877 31.137 gypsum (45) 2.498 35.968 arcanite (15) 2.164 44.704 mone C3S (15) 3.052 2.2850 yc28 (20) 2.873 31.377 orC28 (20) 2.484	4.316	20.561	yC2S (45)	2.968	30.084	mono C3S (12)	2.618	34.222	triclinic C3S (60)	2.181	41.364	mono C3S (60)
4.253 20.869 Iangbeinter (30) 2.265 30.15 triclinic C38 (0) 2.610 34.330 PC22 (42) 2.179 41.403 triclinic C38 (0) 4.222 21.024 Iangbeinter (25) 2.440 30.378 apthinitaitie (75) 2.605 34.388 M1 C33 (80) 2.171 41.603 M1 C3S (10) 4.178 21.492 Iangbeinter (16) 2.002 30.785 arcanite (13) 2.763 34.784 cmanto (13) 2.164 41.603 M1 C3S (10) 4.178 21.464 arcanite (21) 2.888 30.960 arcanite (13) 2.164 36.804 wc225 (22) 163 41.774 triclinic C3S (11) 4.091 21.707 C3Ac (12) 2.871 31.19 gppaum (45) 2.484 35.906 arcanite (13) 2.164 41.744 triclinic C3S (11) 4.092 2.179 wc28 (20) 2.877 31.19 gppaum (45) 2.484 35.906 arcanite (15) 2.162 41.74 triclinic C3S (12) 4.092 wc28 (20) 2.873 31.481 anythticlinic (28) 2.485 35.906 arc	4.284	20.717	gypsum (100)	2.968	30.084	M1 C3S (20)	2.612	34.303	triclinic C3S (90)	2.180	41.383	α'C2S (30)
4.225 20.959 C3Ac (6) 2.961 30.177 mono C35 (25) 2.407 34.371 M1 C35 (70) 2.179 41.403 M1 C3S (40) 4.122 21.024 langbeintie (16) 2.902 30.785 arcanite (10) 2.603 34.425 mono C3S (10) 2.166 41.603 M1 C3S (40) 4.175 21.264 arcanite (21) 2.886 30.960 arcanite (31) 2.576 34.798 CAAF(17) 2.164 41.704 moc C3S (15) 4.091 21.706 aphthialite (30) 2.806 arcanite (31) 2.416 35.684 arcanite (31) 2.144 41.704 moc C3S (15) 4.099 21.770 C3Ac (12) 2.877 31.157 gpc23 (21) 2.449 35.966 arcatte (15) 2.146 41.724 triclinic C3S (11) 3.000 2.783 acc25 (20) 2.877 31.147 gpc23 (21) 2.448 35.966 arcatte (15) 2.146 4angbeinte (23) 3.860 2.3260 c162 (50) 2.313 31.497 </td <td>4.253</td> <td>20.869</td> <td>langbeinite (30)</td> <td>2.965</td> <td>30.115</td> <td>triclinic C3S (20)</td> <td>2.610</td> <td>34.330</td> <td>βC2S (42)</td> <td>2.179</td> <td>41.403</td> <td>triclinic C3S (17)</td>	4.253	20.869	langbeinite (30)	2.965	30.115	triclinic C3S (20)	2.610	34.330	βC2S (42)	2.179	41.403	triclinic C3S (17)
4.222 21.024 langbeinte (25) 2.940 30.378 aphthitalite (75) 2.605 34.399 M1 C3S (80) 2.17 41.663 thrclinic C3S (11) 4.175 21.264 arcante (28) 2.896 30.672 v/C2S (25) 2.590 34.604 v/C2S (14) 2.166 41.603 MT C3S (10) 4.168 21.706 aphthitalite (30) 2.860 31.026 langbeinte (18) 2.517 35.640 arcante (13) 2.164 41.704 mono C3S (15) 4.079 22.783 aC2S (20) 2.870 31.115 gypsum (45) 2.499 35.966 arcante (15) 2.162 41.724 thrClinic C3S (11) 3.806 22.861 triclinic C3S (10) 2.850 31.381 anhydrite (2) 2.443 35.806 gypsum (11) 2.109 42.844 langbeinite (16) 3.885 23.052 calcite (16) 2.843 31.440 calcite (10) 2.445 35.526 triclinic C3S (12) 2.084 43.297 earcante (13) 2.07 gaptriate (16) 3.381 andydrite (2) 2.453 35.626 triclinic C3S (12) 2.0	4.235	20.959	C3Ac (6)	2.961	30.157	mono C3S (25)	2.607	34.371	M1 C3S (70)	2.179	41.403	M1 C3S (40)
4.188 21.197 iangbeinite (16) 2.902 30.785 arcanite (100) 2.603 34.425 mono C38 (100) 2.169 41.603 MT C38 (10) 4.175 221.264 arcanite (23) 2.866 30.960 arcanite (13) 2.576 34.789 C4AF(17) 2.164 41.704 BCC2S (13) 4.091 21.706 aphthilalite (30) 2.860 31.026 iangbeinite (16) 2.517 35.640 arcanite (13) 2.164 41.724 triclinic C3S (11) 3.000 22.783 aCS2 (20) 2.877 31.137 or C2S (20) 2.478 35.966 arcanite (15) 2.162 41.744 thrC3S (10) 3.086 22.866 triclinic C3S (10) 2.863 31.440 caclife (2) 2.468 36.526 aphthilalite (10) 2.448 36.861 pcC2S (12) 2.003 43.167 caclef (15) 3.149 parcanite (20) 2.445 36.526 aphthilalite (10) 2.448 36.861 pcC2S (12) 2.065 43.927 arcanite (21) 3.149 parcanite (25) 2.172 2.065 43.927 arcanite (10) 2.448	4.222	21.024	langbeinite (25)	2.940	30.378	aphthitalite (75)	2.605	34.398	M1 C3S (80)	2.171	41.563	triclinic C3S (11)
4.175 2.1.264 arcanite (28) 2.894 30.872 vC28 (25) 2.590 34.604 vC28 (14) 2.166 41.663 M1C38 (10) 4.091 21.706 aphthialite (30) 2.880 31.026 Iangbeinte (18) 2.576 34.708 cCAAF(17) 2.164 41.704 41.704 MCC3S (15) 4.099 21.779 vC28 (20) 2.876 31.707 GC28 (21) 2.514 35.864 vC28 (25) 2.163 41.724 41.744 MIC3S (10) 3.800 22.783 occ28 (20) 2.870 31.137 of C28 (20) 2.494 35.966 acalote (15) 2.163 42.276 bassanite (20) 3.885 23.052 colaite (17) 2.484 31.490 acalote (15) 2.104 43.181 acalote (15) 3.817 23.285 vC28 (50) 2.813 31.784 bassanite (100 2.448 36.662 aphthialite (10) 2.084 43.329 acalote (15) 3.879 23.397 gypsum (17) 2.810 31.8	4.188	21.197	langbeinite (16)	2.902	30.785	arcanite (100)	2.603	34.425	mono C3S (100)	2.169	41.603	M1 C3S (10)
4.168 21.362 arcanite (23) 2.866 30.960 arcanite (15) 2.577 34.798 CCAF(7) 2.164 41.704 pC228 (23) 4.079 21.706 pohhialite (03) 2.866 31.070 pC228 (21) 2.517 35.640 arcanite (15) 2.163 41.724 tricinic 338 (11) 3.090 22.783 or C28 (20) 2.870 31.137 or C228 (30) 2.464 35.966 carcanite (15) 2.162 41.744 MC338 (10) 3.866 22.866 ricinic C33 (17) 2.463 31.440 calcite (2) 2.468 36.526 calcite (15) 2.105 42.334 processor(16) 3.838 3.386 23.956 henardite (7) 2.833 31.447 aphthialite (10) 2.448 36.526 aphthialite (10) 2.094 43.188 langbeninte (25) 3.810 23.286 or C28 (50) 2.813 31.744 bC28 (22) 2.465 36.522 aphthialite (10) 2.08 43.382 appsint (15) 3.810 23.286 or C28 (50) 2.813 31.744 bC28 (22) 2.448 36.526 <	4.175	21.264	arcanite (28)	2.894	30.872	YC2S (25)	2.590	34.604	γC2S (14)	2.166	41.663	M1 C3S (10)
4.019 21.770 aphthialle (30) 2.880 31.026 langbeinite (18) 2.514 35.660 arcanie (13) 2.164 41.704 mono C3S (15) 4.059 21.879 v C2S (20) 2.872 31.115 gypsum (45) 2.499 35.906 arcanie (15) 2.163 41.724 tMici C3S (11) 3.806 22.783 oC2S (20) 2.870 31.131 anhydrite (28) 2.495 35.906 arcanie (15) 2.163 42.272 bit Mici C3S (11) 2.109 42.844 Hangbeinite (16) 3.855 2.456 36.526 reinlinic C3S (11) 2.004 43.157 calcite (15) 3.817 22.285 v/C2S (50) 2.813 31.784 bassanite (100) 2.448 36.526 reinlinic C3S (11) 2.004 43.183 langbeinite (20) 3.817 23.282 ar C2S (30) 2.813 31.784 bassanite (100) 2.448 36.566 reinlinic C3S (10) 2.043 43.183 langbeinite (20) anhydrite (20)	4.158	21.352	arcanite (23)	2.886	30.960	arcanite (53)	2.576	34.798	C4AF(17)	2.164	41.704	βC2S (13)
4.079 21.70 C2Ac (12) 2.876 31.070 βC2S (21) 2.514 35.664 γC2S (25) 2.163 41.724 triclinic C3S (1) 3.900 22.783 cC2S (20) 2.870 31.137 c°C2S (30) 2.495 35.968 calcite (15) 2.162 41.724 M1 C3S (10) 3.866 22.866 triclinic C3S (10) 2.803 31.440 calcite (2) 2.495 35.968 calcite (15) 2.105 42.841 langbeinte (20) 3.838 23.156 thenardite (17) 2.38 31.440 calcite (10) 2.445 36.526 triclinic C3S (12) 2.008 43.167 calcite (15) 3.810 23.326 vC2S (50) 2.813 31.784 basanite (100) 2.446 36.672 vC2S (17) 2.008 43.297 arcante (25) 3.774 23.377 gypsum (17) 2.813 31.784 basanite (10) 2.442 36.774 aphthitalite (16) 2.062 43.428 arcante (25) 2.073 43.628 gypsum (25) 3.764 23.617 yc2S (11) 2.786 32.077 triclinic	4.091	21.706	aphthitalite (30)	2.880	31.026	langbeinite (18)	2.517	35.640	arcanite (13)	2.164	41.704	mono C3S (15)
4.059 21.879 y C2S (20) 2.872 31.115 gypsum (3) 2.499 35.906 arcanite (15) 2.162 41.744 M1 C3S (20) 3.806 22.866 triclinic C3S (10) 2.850 31.361 anhydrite (2) 2.448 35.966 calcite (15) 2.136 42.276 bassante (20) 3.855 23.052 calcite (9) 2.843 31.440 calcite (2) 2.448 36.526 aphthitalite (10) 2.093 43.157 calcite (15) 3.817 23.285 yC2S (50) 2.813 31.784 bassanie (10) 2.448 36.800 BC2S (12) 2.008 43.297 acranite (25) 3.764 23.817 yC2S (10) 2.813 31.784 bassanie (10) 2.449 36.800 BC2S (12) 2.008 43.297 acranite (25) 3.764 23.817 yC2S (11) 2.790 32.057 BC2S (97) 2.440 36.962 gprecisae (10) 2.062 43.287 acranite (25) 2.073 43.287 acranite (25) 2.073 43.287 acranite (25) 2.073 43.282 gypsum (15) 3.364<	4.079	21.770	C3Ac (12)	2.876	31.070	βC2S (21)	2.514	35.684	γC2S (25)	2.163	41.724	triclinic C3S (11)
3.900 22.783 αC2S (20) 2.870 31.137 α'C2S (30) 2.495 35.968 calcite (15) 2.136 42.276 bassanite (20) 3.886 22.866 triclinic C3S (12) 2.105 42.930 periclasite (16) 3.885 23.052 calcite (17) 2.838 31.407 aphthitalite (10) 2.445 36.526 triclinic C3S (12) 2.105 42.930 periclasite (10) 3.817 23.285 vC2S (509) 2.813 31.784 bassanite (10) 2.448 36.672 VC2S (17) 2.093 43.188 langbeinite (20) 3.810 23.328 a'C2S (30) 2.813 31.784 bassanite (10) 2.442 36.774 aphthitalite (16) 2.048 43.297 arcanite (25) 3.764 23.817 yypeur(17) 2.101 31.819 ac228 (80) 2.442 37.086 arcanite (25) 2.073 33.626 gypsum (11) 2.082 33.826 gypsum (15) 3.362 gypsum (15) 3.365 2.377 arcanite (16) 2.443 37.946 βC2S (13) 2.051 44.118 C4AF(35) 3.652 <td>4.059</td> <td>21.879</td> <td>γ C2S (20)</td> <td>2.872</td> <td>31.115</td> <td>gypsum (45)</td> <td>2.499</td> <td>35.906</td> <td>arcanite (15)</td> <td>2.162</td> <td>41.744</td> <td>M1 C3S (10)</td>	4.059	21.879	γ C2S (20)	2.872	31.115	gypsum (45)	2.499	35.906	arcanite (15)	2.162	41.744	M1 C3S (10)
3.866 22.866 triclinic CSS (10) 2.863 31.861 enalotic (2) 2.484 35.980 gypsum (11) 2.109 42.844 indicite (2) 3.855 23.052 calcite (3) 2.843 31.440 calcite (2) 2.458 36.526 triclinic CSS (12) 2.064 43.157 calcite (15) 3.810 23.232 a C2S (30) 2.813 31.784 β2CS (22) 2.455 36.572 yC2S (17) 2.093 43.188 langbeinite (16) 3.810 23.328 a C2S (30) 2.813 31.784 β2CS (22) 2.454 36.680 βC2S (17) 2.093 43.362 gypsum (12) 2.084 43.262 gypsum (12) 2.084 33.812 gypsum (12) 2.073 43.626 gypsum (12)<	3.900	22.783	αC2S (20)	2.870	31.137	a'C2S (30)	2.495	35.968	calcite (15)	2.136	42.276	bassanite (20)
3.855 23.052 calcite (9) 2.843 31.440 calcite (2) 2.458 36.526 triclinic C3S (12) 2.105 42.930 periclass (10) 3.817 23.285 yC2S (509) 2.813 31.784 β62S(22) 2.455 36.526 aphthitalite (10) 2.093 43.188 langbeinite (20) 3.810 23.328 o'C2S (30) 2.813 31.784 bassanite (10) 2.448 36.680 βC2S (12) 2.088 43.262 grachite (20) 3.799 23.397 gypsum (17) 2.810 31.819 aC2S (80) 2.442 36.774 aphthitalite (16) 2.062 43.428 arcanite (25) 3.73 43.362 gypsum (12) 3.744 23.745 arcanite (16) 2.788 32.077 gypsum (10) 2.406 37.360 free lime (10) 2.051 44.114 C4AF(35) 3.653 24.346 CAF (16) 2.784 32.124 CAAF (25) 2.702 37.605 free lime (10) 2.06 44.692 gbC25 (15) 2.00 44.692 gbC25 (15) 3.466 acaranite (17) 2.264 <td>3.886</td> <td>22.866</td> <td>triclinic C3S (10)</td> <td>2.850</td> <td>31.361</td> <td>anhydrite (29)</td> <td>2.494</td> <td>35.980</td> <td>gypsum (11)</td> <td>2.109</td> <td>42.844</td> <td>langbeinite (18)</td>	3.886	22.866	triclinic C3S (10)	2.850	31.361	anhydrite (29)	2.494	35.980	gypsum (11)	2.109	42.844	langbeinite (18)
3.838 23.166 thenardite (17) 2.838 31.479 aphthitalite (10) 2.456 36.526 aphthitalite (10) 2.094 43.157 calcelet (12) 3.810 23.328 a°C2S (30) 2.813 31.784 bassanite (100) 2.448 36.6572 vC2S (12) 2.088 43.297 arcanite (25) 3.799 23.397 gypsum (17) 2.810 31.819 aC2S (80) 2.442 36.774 aphthitalite (16) 2.065 43.362 gypsum (25) 3.744 23.617 YC2S (19) 2.790 32.053 βC2S (80) 2.442 36.692 perclase (10) 2.062 43.262 gypsum (25) 3.744 23.745 arcanite (18) 2.788 32.077 riticlinic (25) 2.073 43.626 gypsum (15) 3.667 24.231 aphthitalite (20) 2.788 32.077 gypsum (16) 2.409 37.286 fbc2S (18) 2.041 43.462 aphthitalite (10) 2.784 32.124 CAAF (25) 2.012 44.346 aphthitalite (14) 3.462 gC2S (15) 3.376 2.266 basanite (13) 2.046 </td <td>3.855</td> <td>23.052</td> <td>calcite (9)</td> <td>2.843</td> <td>31.440</td> <td>calcite (2)</td> <td>2.458</td> <td>36.526</td> <td>triclinic C3S (12)</td> <td>2.105</td> <td>42.930</td> <td>periclase (100)</td>	3.855	23.052	calcite (9)	2.843	31.440	calcite (2)	2.458	36.526	triclinic C3S (12)	2.105	42.930	periclase (100)
3.817 23.285 yC2S (50) 2.813 31.784 BC2S (22) 2.455 36.752 yC2S (17) 2.093 43.188 Iangbeninte (20) 3.810 23.329 grCS2 (30) 2.813 31.784 bassanite (10) 2.448 36.680 BC2S (12) 2.088 43.297 arcanite (25) 3.764 23.617 yC2S (19) 2.700 32.003 BC2S (97) 2.430 35.662 periclase (10) 2.082 43.428 arcanite (25) 3.764 23.745 arcanite (18) 2.770 32.077 gypsum (10) 2.409 37.296 BC2S (13) 2.051 44.141 C4AF(35) 3.653 24.346 brAft (60) 2.784 32.124 C4AF (25) 2.402 37.406 BC2S (18) 2.041 44.346 aphthialite (14) 3.468 25.666 bassanite (40) 2.784 32.124 therardite (10) 2.385 37.865 arcanite (13) 2.036 44.614 langbenite (14) 3.462 25.711 langbenite (12) 2.776 32.220 free lime (36) 2.360 38.455 triclinic C3S (15)<	3.838	23.156	thenardite (17)	2.838	31.497	aphthitalite (100)	2.458	36.526	aphthitalite (10)	2.094	43.157	calcite (15)
3.810 23.328 σ [*] C22 (30) 2.813 31.784 basanite (100) 2.448 36.680 ğC22 (12) 2.088 43.297 arcantie (25) 3.794 23.617 yC2S (119) 2.790 32.053 βC2S (97) 2.440 36.744 aphthitalite (16) 2.082 43.428 arcanite (25) 3.744 23.745 arcanite (18) 2.788 32.077 triclic C2S (100) 2.422 37.088 arcanite (25) 2.073 43.626 gypsum (15) 3.670 24.231 aphthitalitic (20) 2.786 32.011 langbenite (45) 2.405 37.360 free lime (100) 2.050 44.141 BC2S (14) 3.468 25.666 bassanite (40) 2.784 32.124 CAAF (25) 2.402 37.406 βC2S (16) 2.036 44.461 langbenite (14) 3.462 25.611 langbenite (50) 2.374 37.866 arcanite (17) 2.026 44.462 aphthitalite (45) 3.474 46.252 (15) 3.474 44.692 βC2S (15) 3.476 3.436 2.220 free lime (36) 2.360 38.100 arcasite (3.817	23.285	YC2S (509)	2.813	31.784	βC2S (22)	2.455	36.572	yC2S (17)	2.093	43.188	langbeinite (20)
3.799 23.397 gypsum (17) 2.810 31.819 aC22 (80) 2.442 36.774 aphthitalife (16) 2.085 43.362 gypsum (25) 3.744 23.617 yC2S (11) 2.788 32.077 triclinic C3S (100) 2.420 36.962 periclase (10) 2.082 43.428 arcanite (25) 3.744 23.745 arcanite (18) 2.788 32.077 triclinic C3S (100) 2.422 37.098 arcanite (12) 2.073 43.826 gypsum (15) 3.653 24.346 CAAF (16) 2.788 32.077 triclinic C3S (10) 2.402 37.096 βC2S (13) 2.051 44.118 C4AF (25) 3.468 25.666 bassanite (40) 2.784 32.124 C4AF (25) 2.402 37.406 arcanite (13) 2.036 44.461 langbeinite (14) 3.462 25.711 langbeinite (12) 2.782 32.14 βC2S (100) 2.337 37.686 arcanite (13) 2.024 44.733 yC2S (15) 3.342 26.002 <t< td=""><td>3.810</td><td>23.328</td><td>α´C2S (30)</td><td>2.813</td><td>31.784</td><td>bassanite (100)</td><td>2.448</td><td>36.680</td><td>βC2S (12)</td><td>2.088</td><td>43.297</td><td>arcanite (25)</td></t<>	3.810	23.328	α´C2S (30)	2.813	31.784	bassanite (100)	2.448	36.680	βC2S (12)	2.088	43.297	arcanite (25)
3.764 23.617 γC2S (119) 2.790 32.053 βC2S (97) 2.430 36.962 periclase (10) 2.082 43.428 arcanite (25) 3.744 23.745 arcanite (18) 2.788 32.077 triclinic C3S (100) 2.422 37.088 arcanite (25) 2.073 43.626 gypsum (15) 3.670 24.231 aphthitalite (20) 2.788 32.077 gypsum (10) 2.409 37.286 fbC2S (13) 2.051 44.141 βC4AF(25) 3.463 25.666 bassanite (40) 2.784 32.124 C4AF (25) 2.405 37.865 arcanite (13) 2.036 44.461 langbeinite (14) 3.462 25.666 bassanite (40) 2.784 32.124 thenardite (100) 2.374 37.866 arcanite (17) 2.026 44.892 βC2S (15) 3.424 26.002 C3Ao (11) 2.776 32.231 M1 C3S (100) 2.339 38.455 triclinic C3S (15) 2.020 44.892 gC2S (13) 3.379 26.354 γC2S (25) 2.775 32.231 M1 C3S (10) 2.329 38.627 th	3.799	23.397	gypsum (17)	2.810	31.819	αC2S (80)	2.442	36.774	aphthitalite (16)	2.085	43.362	gypsum (25)
3.744 23.745 arcanite (18) 2.788 32.077 triclinic C3S (100) 2.422 37.088 arcanite (25) 2.073 43.626 gypsum (16) 3.670 24.231 aphthtalite (20) 2.788 32.071 gypsum (10) 2.409 37.296 βC2S (13) 2.015 44.111 βC2S (14) 3.461 24.346 CAAF (16) 2.786 32.101 langbeinite (55) 2.405 37.606 free lime (100) 2.050 44.141 βC2S (14) 3.462 25.666 bassanite (40) 2.784 32.124 CAAF (16) 2.385 37.685 arcanite (13) 2.036 44.661 langbeinite (14) 3.462 25.711 langbeinite (12) 2.786 32.148 βC2S (10) 2.374 37.866 arcanite (17) 2.026 44.682 βC2S (15) 3.444 26.002 C3Ao (11) 2.776 32.220 free lime (36) 2.380 38.610 arC2S (30) 2.024 44.832 φC2S (30) 3.370 26.426 a'C2S (30) 2.775 32.231 langbeinite (36) 2.329 38.627 thenar	3.764	23.617	γC2S (119)	2.790	32.053	βC2S (97)	2.430	36.962	periclase (10)	2.082	43.428	arcanite (25)
3.67024.231aphthitalite (20)2.78832.077gypsum (10)2.40937.296βC2S (13)2.05144.118CCAF(35)3.65324.346C4AF (16)2.78632.101langbeinite (45)2.40537.360free lime (100)2.05044.141βC2S (14)3.49725.450anhydrite (100)2.78432.124CAAF (25)2.40237.408βC2S (18)2.04144.346aphthitalite (45)3.46825.666bassanite (40)2.78432.124thenardite (100)2.38537.865arcanite (13)2.03644.461langbeinite (14)3.46225.711langbeinite (12)2.78232.148βC2S (10)2.37437.866arcanite (17)2.02644.692βC2S (15)3.42426.002C3Ao (11)2.77632.220free lime (36)2.38038.100arc2S (30)2.02044.832arC2S (30)3.37926.354yC2S (25)2.77532.231langbeinite (50)2.32938.627triclinic C3S (15)2.00144.855βC2S (15)3.37026.426a'C2S (30)2.77632.237triclinic C3S (65)2.32938.627thenardite (25)2.01744.902langbeinite (20)3.31326.898langbeinite (80)2.75032.533langbeinite (35)2.32938.627thenardite (25)2.01744.902langbeinite (14)3.2012.725032.633langbeinite (45)2.32838.644anhydrite (14)<	3.744	23.745	arcanite (18)	2.788	32.077	triclinic C3S (100)	2.422	37.088	arcanite (25)	2.073	43.626	gypsum (15)
3.65324.346C4AF [16]2.78632.101langbeinite (45)2.40537.360free lime (100)2.05044.141βC2S (14)3.49725.450anhydrite (100)2.78432.124C4AF (25)2.40237.408βC2S (18)2.04144.346aphtitalite (45)3.46825.666bassanite (40)2.78432.124thenardite (100)2.37437.866arcanite (17)2.02644.692βC2S (15)3.42426.002C3Ao (11)2.77632.220free lime (36)2.38038.100a'C2S (30)2.02444.738γC2S (30)3.38526.307arcanite (13)2.77532.231M1 C3S (100)2.32938.627triclinic C3S (20)2.01944.855βC2S (15)3.37026.426a'C2S (30)2.77332.235mono C3S (85)2.32938.627thenardite (25)2.01744.902langbeinite (14)3.27127.241langbeinite (80)2.75432.484triclinic C3S (65)2.32838.644anhydrite (20)1.99445.449triclinic C3S (10)3.28327.309langbeinite (80)2.76732.533langbeinite (45)2.31538.870mono C3S (25)1.99445.449triclinic C3S (10)3.26227.637langbeinite (16)2.74732.569mono C3S (45)2.31938.800M1 C3S (20)1.99445.449triclinic C3S (10)3.2757.503langbeinite (16)2.74732.569mono C3S (45)	3.670	24.231	aphthitalite (20)	2.788	32.077	gypsum (10)	2.409	37.296	βC2S (13)	2.051	44.118	C4AF(35)
3.49725.450anhydrite (100)2.78432.124C4AF (25)2.40237.408βC2S (18)2.04144.346aphthitalite (45)3.46825.666bassanite (40)2.78432.124thenardite (100)2.38537.685arcanite (13)2.03644.461langbeinite (14)3.46225.711langbeinite (12)2.78232.148βC2S (100)2.37437.866arcanite (13)2.02644.692βC2S (15)3.42426.002C3Ao (11)2.77632.20free lime (36)2.36038.100a'C2S (30)2.02444.738\varphi C2S (13)3.38526.307arcanite (13)2.77532.231M1 C3S (100)2.33938.455triclinic C3S (15)2.02044.832a'C2S (30)3.37926.354\varphi C2S (25)2.77532.231M1 C3S (100)2.32938.627triclinic C3S (10)2.01744.902 <le>langbeinite (20)3.31326.889langbeinite (95)2.76732.327triclinic C3S (65)2.32838.644anhydrite (20)1.9445.449triclinic C3S (10)3.26527.637langbeinite (80)2.75032.533langbeinite (45)2.32338.725M1 C3S (10)1.98445.764\varphi C2S (20)3.18028.036thenardite (52)2.74732.569mono C3S (45)2.31938.800M1 C3S (10)1.98145.764\varphi C2S (20)3.18028.036thenardite (18)2.74532.599<td< td=""><td>3.653</td><td>24.346</td><td>C4AF (16)</td><td>2.786</td><td>32.101</td><td>langbeinite (45)</td><td>2.405</td><td>37.360</td><td>free lime (100)</td><td>2.050</td><td>44.141</td><td>βC2S (14)</td></td<></le>	3.653	24.346	C4AF (16)	2.786	32.101	langbeinite (45)	2.405	37.360	free lime (100)	2.050	44.141	βC2S (14)
3.468 25.666 bassanite (40) 2.784 32.124 thenardite (100) 2.385 37.865 arcanite (13) 2.036 44.461 langbeinite (14) 3.462 25.711 langbeinite (12) 2.782 32.148 βC2S (100) 2.374 37.866 arcanite (17) 2.026 44.692 βC2S (15) 3.424 26.002 C3Ao (11) 2.775 32.220 free lime (36) 2.306 38.100 a'C2S (30) 2.024 44.738 vC2S (13) 3.385 26.307 arcanite (13) 2.775 32.231 Iangbeinite (50) 2.329 38.627 triclinic C3S (15) 2.020 44.855 βC2S (15) 3.370 26.454 vC2S (25) 2.775 32.237 triclinic C3S (70) 2.329 38.627 thenardite (25) 2.017 44.855 βC2S (15) 3.371 27.64 angbeinite (60) 2.754 32.244 triclinic C3S (70) 2.329 38.627 thenardite (20) 1.994 45.449 triclinic C3S (10) 3.263 27.6	3.497	25.450	anhydrite (100)	2.784	32.124	C4AF (25)	2.402	37.408	βC2S (18)	2.041	44.346	aphthitalite (45)
3.46225.711langbeinite (12)2.78232.148βC2S (100)2.37437.866arcanite (17)2.02644.692βC2S (15)3.42426.002C3Ao (11)2.77632.20free lime (36)2.36038.100a'C2S (30)2.02444.738γC2S (13)3.38526.307arcanite (13)2.77532.231M1 C3S (100)2.33938.455triclinic C3S (15)2.02044.832a'C2S (30)3.37926.354γC2S (25)2.77532.231langbeinite (50)2.32938.627triclinic C3S (15)2.01944.855βC2S (15)3.37026.426a'C2S (30)2.77332.255mono C3S (85)2.32938.627thenardite (25)2.01744.902langbeinite (20)3.31326.889langbeinite (80)2.75032.331vC2S (70)2.32238.644anhydrite (201.99445.494triclinic C3S (10)3.26327.309langbeinite (80)2.75032.533vC2S (70)2.32238.627aphthiatilite (14)2.00945.091langbeinite (14)3.25427.837langbeinite (80)2.75032.533vC2S (70)2.32238.627thenardite (20)1.99445.494thiclinic C3S (10)3.25527.837langbeinite (80)2.75032.533langbeinite (45)2.32338.725M1 C3S (10)1.98145.764βC2S (20)3.16028.036thenardite (52)2.74732.669M1 C3S (40)2.315	3.468	25.666	bassanite (40)	2.784	32.124	thenardite (100)	2.385	37.685	arcanite (13)	2.036	44.461	langbeinite (14)
3.42426.002C 3Ao (11)2.77632.220free lime (36)2.36038.100a C2S (30)2.02444.738γC2S (13)3.38526.307arcanite (13)2.77532.231M1 C3S (100)2.33938.455triclinic C3S (15)2.02044.832a C2S (30)3.37926.354γC2S (25)2.77332.255mono C3S (85)2.32938.627triclinic C3S (12)2.01744.892langbeinite (20)3.31326.889langbeinite (95)2.76732.327triclinic C3S (70)2.32938.627aphthitalite (14)2.00945.091langbeinite (20)3.26327.309langbeinite (80)2.75432.484triclinic C3S (65)2.32838.644anhydrite (201.99445.449triclinic C3S (10)3.22527.637langbeinite (100)2.75032.533yC2S (70)2.32238.725M1 C3S (10)1.98145.764βC2S (20)3.18028.036thenardite (52)2.74732.569mono C3S (45)2.31538.870M1 C3S (20)1.93745.960mono C3S (10)3.15328.281langbeinite (18)2.74732.569M1 C3S (40)2.31538.870triclinic C3S (25)1.94046.788ac2s (60)3.11428.643langbeinite (18)2.74732.569M1 C3S (60)2.28539.408calcite (20)1.93346.968M1 C3S (10)3.07728.995thenardite (55)2.74332.618M1 C3S (60)<	3.462	25.711	langbeinite (12)	2.782	32.148	βC2S (100)	2.374	37.866	arcanite (17)	2.026	44.692	βC2S (15)
3.38526.307arcanite (13)2.77532.231M1 C3S (100)2.33938.455triclinic C3S (15)2.02044.832a'C2S (30)3.37926.354γC2S (25)2.77532.231langbeinite (50)2.32938.627triclinic C3S (15)2.01944.855βC2S (15)3.37026.426a'C2S (30)2.77332.255mono C3S (85)2.32938.627thenardite (25)2.01944.855βC2S (15)3.31326.889langbeinite (95)2.76732.237triclinic C3S (70)2.32938.627aphthitalite (14)2.00945.091langbeinite (20)3.26327.309langbeinite (80)2.75432.484triclinic C3S (65)2.32838.644anhydrite (201.99445.449triclinic C3S (10)3.26327.309langbeinite (80)2.75032.533langbeinite (45)2.32338.725M1 C3S (10)1.98145.740M1 C3S (10)3.21527.637langbeinite (100)2.75032.533langbeinite (45)2.32338.725M1 C3S (10)1.98145.960mono C3S (20)3.18028.036thenardite (52)2.74732.669M1 C3S (40)2.31538.870triclinic C3S (25)1.94046.788ac2s (60)3.11428.643langbeinite (18)2.74532.593βC2S (83)2.31538.870mono C3S (20)1.93346.865M1 C3S (10)3.07728.995thenardite (55)2.74332.618M	3.424	26.002	C3Ao (11)	2.776	32.220	free lime (36)	2.360	38.100	a'C2S (30)	2.024	44.738	YC2S (13)
3.37926.354yC2S (25)2.77532.231langbeinite (50)2.32938.627triclinic C3S (20)2.01944.855βC2S (15)3.37026.426a 'C2S (30)2.77332.255mono C3S (85)2.32938.627thenardite (25)2.01744.902langbeinite (20)3.31326.889langbeinite (95)2.76432.245mono C3S (85)2.32938.627aphthitalite (12)2.01744.902langbeinite (20)3.27127.241langbeinite (80)2.75432.484triclinic C3S (65)2.32838.644anhydrite (201.99445.449triclinic C3S (10)3.26327.309langbeinite (80)2.75032.533langbeinite (45)2.32338.725M1 C3S (10)1.98145.764βC2S (20)3.18028.036thenardite (52)2.74732.569mono C3S (45)2.31938.800M1 C3S (20)1.97345.960mono C3S (45)3.15328.281langbeinite (18)2.74732.569M1 C3S (40)2.31538.870triclinic C3S (20)1.93746.865M1 C3S (10)3.11428.643langbeinite (18)2.74732.618M1 C3S (60)2.28539.408calcite (20)1.93346.968M1 C3S (10)3.06529.118gypsum (75)2.74332.618M1 C3S (60)2.28639.491fciclinic C3S (11)1.93047.045mono C3S (30)3.04529.306bassanite (10)2.73732.691mo	3.385	26.307	arcanite (13)	2.775	32.231	M1 C3S (100)	2.339	38.455	triclinic C3S (15)	2.020	44.832	a'C2S (30)
3.37026.426α'C2S (30)2.77332.255mono C3S (85)2.32938.627thenardite (25)2.01744.902langbeinite (20)3.31326.889langbeinite (95)2.76732.327triclinic C3S (70)2.32938.627aphthitalite (14)2.00945.091langbeinite (14)3.27127.241langbeinite (80)2.75432.484triclinic C3S (65)2.32838.644anhydrite (20)1.99445.449triclinic C3S (10)3.26327.309langbeinite (80)2.75032.533vC2S (70)2.32538.696vC2S (10)1.98445.740M1 C3S (10)3.22527.637langbeinite (100)2.75032.533langbeinite (45)2.32338.725M1 C3S (10)1.98145.764βC2S (22)3.18028.036thenardite (52)2.74732.669mono C3S (45)2.31938.800M1 C3S (20)1.97345.960mono C3S (10)3.15328.281langbeinite (18)2.74732.569M1 C3S (40)2.31538.870triclinic C3S (20)1.93746.865M1 C3S (10)3.07728.995thenardite (55)2.74332.618M1 C3S (60)2.28539.408calcite (20)1.93346.968M1 C3S (10)3.06529.111gypsum (75)2.74332.618langbeinite (45)2.28039.491βC2S (22)1.93047.045α'C2S (31)3.05629.198triclinic C3S (60)2.74032.655a'C2S (3.379	26.354	YC2S (25)	2.775	32.231	langbeinite (50)	2.329	38.627	triclinic C3S (20)	2.019	44.855	βC2S (15)
3.313 26.899 langbeinite (95) 2.767 32.327 triclinic C3S (70) 2.329 38.627 aphthitalite (14) 2.009 45.091 langbeinite (14) 3.271 27.241 langbeinite (80) 2.754 32.484 triclinic C3S (65) 2.328 38.644 anhydrite (20 1.994 45.449 triclinic C3S (10) 3.263 27.309 langbeinite (80) 2.750 32.533 γ C2S (70) 2.325 38.696 γ C2S (10) 1.984 45.740 M1 C3S (10) 3.263 27.637 langbeinite (100) 2.750 32.533 langbeinite (45) 2.323 38.725 M1 C3S (10) 1.981 45.764 β C2S (23) 3.180 28.036 thenardite (52) 2.747 32.569 mono C3S (45) 2.319 38.800 M1 C3S (20) 1.973 45.960 mono C3S (10) 3.153 28.281 langbeinite (18) 2.747 32.569 M1 C3S (40) 2.315 38.870 triclinic C3S (20) 1.937 46.865 M1 C3S (10) 3.114 28.643 langbeinite (18) 2.743 32.618 M1 C3S (60)	3.370	26.426	α´C2S (30)	2.773	32.255	mono C3S (85)	2.329	38.627	thenardite (25)	2.017	44.902	langbeinite (20)
3.27127.241langbeinite (80)2.75432.484triclinic C3S (65)2.32838.644anhydrite (201.99445.449triclinic C3S (10)3.26327.309langbeinite (80)2.75032.533yC2S (70)2.32538.696yC2S (10)1.98245.740M1 C3S (10)3.22527.637langbeinite (100)2.75032.533langbeinite (45)2.32338.725M1 C3S (10)1.98145.764βC2S (20)3.18028.036thenardite (52)2.74732.569mono C3S (45)2.31938.800M1 C3S (20)1.94446.788mono C3S (40)3.15328.281langbeinite (18)2.74732.569mono C3S (45)2.31538.870triclinic C3S (25)1.94046.788ac2s (60)3.11428.643langbeinite (18)2.74532.593βC2S (83)2.31538.870mono C3S (20)1.93746.865M1 C3S (10)3.07728.995thenardite (55)2.74332.618M1 C3S (60)2.28539.408calcite (20)1.93346.968M1 C3S (10)3.05629.198triclinic C3S (60)2.74032.655a'C2S (100)2.28039.491βclcs (21)1.93047.045mono C3S (31)3.04529.306bassanite (10)2.73732.691mono C3S (75)2.27039.672a'C2S (10)1.92847.097C4AF(35)	3.313	26.889	langbeinite (95)	2.767	32.327	triclinic C3S (70)	2.329	38.627	aphthitalite (14)	2.009	45.091	langbeinite (14)
3.26327.309langbeinite (80)2.75032.533yC2S (70)2.32538.696yC2S (10)1.98245.740M1 C3S (10)3.22527.637langbeinite (100)2.75032.533langbeinite (45)2.32338.725M1 C3S (10)1.98145.764βC2S (20)3.18028.036thenardite (52)2.74732.569mono C3S (45)2.31938.800M1 C3S (20)1.97345.960mono C3S (80)3.15328.281langbeinite (18)2.74732.569M1 C3S (40)2.31538.870triclinic C3S (25)1.94046.788αc2s (60)3.11428.643langbeinite (18)2.74532.593βC2S (83)2.31538.870mono C3S (20)1.93746.865M1 C3S (10)3.07728.995thenardite (55)2.74332.618M1 C3S (60)2.28539.408calcite (20)1.93346.968M1 C3S (10)3.06529.198triclinic C3S (60)2.74032.655a'C2S (100)2.28039.491βClcs (21)1.93047.045mono C3S (31)3.04529.306bassanite (10)2.73732.691mono C3S (75)2.27039.672a'C2S (10)1.92847.097C4AF(35)	3.271	27.241	langbeinite (80)	2.754	32.484	triclinic C3S (65)	2.328	38.644	anhydrite (20	1.994	45.449	triclinic C3S (10)
3.225 27.637 langbeinite (100) 2.750 32.533 langbeinite (45) 2.323 38.725 M1 C3S (10) 1.981 45.764 βC2S (20) 3.180 28.036 thenardite (52) 2.747 32.569 mono C3S (45) 2.319 38.800 M1 C3S (20) 1.973 45.960 mono C3S (10) 3.153 28.281 langbeinite (18) 2.747 32.569 M1 C3S (40) 2.315 38.870 triclinic C3S (25) 1.940 46.788 αc2s (60) 3.114 28.643 langbeinite (18) 2.743 32.618 M1 C3S (60) 2.285 39.408 calcite (20) 1.933 46.9668 M1 C3S (10) 3.065 29.111 gypsum (75) 2.740 32.655 α'C2S (100) 2.280 39.491 βC2S (22) 1.930 47.045 α'C2S (30) 3.056 29.198 triclinic C3S (60) 2.740 32.655 α'C2S (100) 2.280 39.491 triclinic C3S (11) 1.930 47.045 mono C3S (13) 3.056 29.198 triclinic C3S (60) 2.740 32.655 α'C2S (100) 2.280 39.49	3.263	27.309	langbeinite (80)	2.750	32.533	γC2S (70)	2.325	38.696	yC2S (10)	1.982	45.740	M1 C3S (10)
3.180 28.036 thenardite (52) 2.747 32.569 mono C3S (45) 2.319 38.800 M1 C3S (20) 1.973 45.960 mono C3S (10) 3.153 28.281 langbeinite (18) 2.747 32.569 M1 C3S (40) 2.315 38.870 triclinic C3S (25) 1.940 46.788 αc2s (60) 3.114 28.643 langbeinite (18) 2.745 32.593 βC2S (83) 2.315 38.870 mono C3S (20) 1.937 46.865 M1 C3S (10) 3.077 28.995 thenardite (55) 2.743 32.618 M1 C3S (60) 2.285 39.408 calita (20) 1.933 46.968 M1 C3S (10) 3.065 29.111 gypsum (75) 2.743 32.618 langbeinite (45) 2.280 39.491 βC2S (22) 1.930 47.045 α'C2S (30) 3.056 29.198 triclinic C3S (60) 2.740 32.655 a'C2S (100) 2.280 39.491 triclinic C3S (11) 1.930 47.045 mono C3S (13) 3.045 29.306 bassanite (10) 2.737 32.691 mono C3S (75) 2.270 39.672 <td>3.225</td> <td>27.637</td> <td>langbeinite (100)</td> <td>2.750</td> <td>32.533</td> <td>langbeinite (45)</td> <td>2.323</td> <td>38.725</td> <td>M1 C3S (10)</td> <td>1.981</td> <td>45.764</td> <td>βC2S (20)</td>	3.225	27.637	langbeinite (100)	2.750	32.533	langbeinite (45)	2.323	38.725	M1 C3S (10)	1.981	45.764	βC2S (20)
3.153 28.281 langbeinite (18) 2.747 32.569 M1 C3S (40) 2.315 38.870 triclinic C3S (25) 1.940 46.788 αc2s (60) 3.114 28.643 langbeinite (18) 2.745 32.593 βC2S (83) 2.315 38.870 mono C3S (20) 1.937 46.865 M1 C3S (10) 3.077 28.995 thenardite (55) 2.743 32.618 M1 C3S (60) 2.285 39.408 calcite (20) 1.933 46.968 M1 C3S (10) 3.065 29.111 gypsum (75) 2.743 32.618 langbeinite (45) 2.280 39.491 βC2S (22) 1.930 47.045 αC2S (30) 3.056 29.198 triclinic C3S (60) 2.740 32.655 α'C2S (100) 2.280 39.491 triclinic C3S (11) 1.930 47.045 mono C3S (13) 3.045 2.9.306 bassanite (10) 2.737 32.691 mono C3S (75) 2.270 39.672 α'C2S (10) 1.928 47.097 C4AF(35)	3.180	28.036	thenardite (52)	2.747	32.569	mono C3S (45)	2.319	38.800	M1 C3S (20)	1.973	45.960	mono C3S (10)
3.114 28.643 langbeinite (18) 2.745 32.593 βC2S (83) 2.315 38.870 mono C3S (20) 1.937 46.865 M1 C3S (10) 3.077 28.995 thenardite (55) 2.743 32.618 M1 C3S (60) 2.285 39.408 calcite (20) 1.937 46.865 M1 C3S (10) 3.065 29.111 gypsum (75) 2.743 32.618 langbeinite (45) 2.280 39.491 βC2S (22) 1.930 47.045 αC2S (30) 3.056 29.198 triclinic C3S (60) 2.740 32.655 a'C2S (100) 2.280 39.491 triclinic C3S (11) 1.930 47.045 mono C3S (33) 3.045 29.306 bassanite (10) 2.737 32.691 mono C3S (75) 2.270 39.672 a'C2S (10) 1.928 47.097 C4AF(35)	3.153	28.281	langbeinite (18)	2.747	32.569	M1 C3S (40)	2.315	38.870	triclinic C3S (25)	1.940	46.788	ac2s (60)
3.077 28.995 thenardite (55) 2.743 32.618 M1 C3S (60) 2.285 39.408 calcite (20) 1.933 46.968 M1 C3S (10) 3.065 29.111 gypsum (75) 2.743 32.618 langbeinite (45) 2.280 39.491 βC2S (22) 1.930 47.045 α 'C2S (30) 3.056 29.198 triclinic C3S (60) 2.740 32.655 α 'C2S (100) 2.280 39.491 triclinic C3S (11) 1.930 47.045 mono C3S (13) 3.045 29.306 bassanite (10) 2.737 32.691 mono C3S (75) 2.270 39.672 α 'C2S (10) 1.928 47.097 C4AF(35)	3.114	28.643	langbeinite (18)	2.745	32.593	βC2S (83)	2.315	38.870	mono C3S (20)	1.937	46.865	M1 C3S (10)
3.065 29.111 gypsum (75) 2.743 32.618 langbeinite (45) 2.280 39.491 βC2S (22) 1.930 47.045 α 'C2S (30) 3.056 29.198 triclinic C3S (60) 2.740 32.655 α 'C2S (100) 2.280 39.491 triclinic C3S (11) 1.930 47.045 mono C3S (13) 3.045 29.306 bassanite (10) 2.737 32.691 mono C3S (75) 2.270 39.672 α 'C2S (10) 1.928 47.097 C4AF(35)	3.077	28.995	thenardite (55)	2.743	32.618	M1 C3S (60)	2.285	39.408	calcite (20)	1.933	46.968	M1 C3S (10)
3.056 29.198 triclinic C3S (60) 2.740 32.655 α C2S (100) 2.280 39.491 triclinic C3S (11) 1.930 47.045 mono C3S (13) 3.045 29.306 bassanite (10) 2.737 32.691 mono C3S (75) 2.270 39.672 α C2S (10) 1.928 47.097 C4AF(35)	3.065	29.111	gypsum (75)	2.743	32.618	langbeinite (45)	2.280	39.491	βC2S (22)	1.930	47.045	a'C2S (30)
3.045 29.306 bassanite (10) 2.737 32.691 mono C3S (75) 2.270 39.672 α C2S (10) 1.928 47.097 C4AF(35)	3.056	29.198	triclinic C3S (60)	2.740	32.655	α'C2S (100)	2.280	39.491	triclinic C3S (11)	1.930	47.045	mono C3S (13)
	3.045	29.306	bassanite (10)	2.737	32.691	mono C3S (75)	2.270	39.672	a'C2S (10)	1.928	47.097	C4AF(35)