Cements Materials Characterization Workshop

Specimen Preparation for X-Ray Powder Diffraction

Phase Identification for Cementitious Materials

ASTM C1365

No detailed procedure, providing flexibility

•Qualification approach based upon each user's analysis of SRM clinkers

•Precision and accuracy criteria based upon an inter-laboratory study

•Four cements compounded using SRM clinkers and lab-prepared calcium sulfates

•Rietveld and traditional methods are acceptable

•Some guidance provided for phase identification and analytical procedures

Standard Test Method for Determination of the Proportion of Phases in Portland Cement and Portland-Cement Clinker Using X-Ray Powder Diffraction Analysis¹

This standard is issued under the fixed designation C 1365; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 This test method covers direct determination of the proportion by mass of individual phases in portland cement or portland-cement clinker using quantitative X-ray (QXRD) analysis. The following phases are covered by this standard: alite (tricalcium silicate), belite (dicalcium silicate), aluminate (tricalcium aluminate), ferrite (tetracalcium aluminoferrite), periclase (magnesium oxide), gypsum (calcium sulfate dihydrate), bassanite (calcium sulfate hemihydrate), andydrate), and calcite (calcium carbonate).

1.2 This test method specifies certain general aspects of the analytical procedure, but does not specify detailed aspects. Recommended procedures are described, but not specified. Regardless of the procedure selected, the user shall demonstrate by analysis of certified reference materials (CRM's) that the particular analytical procedure selected for this purpose qualifies (that is, provides acceptable precision and bias) (see Note 1). The recommended procedures are ones used in the round-robin analyses to determine the precision levels of this test method.

NOTE 1—A similar approach was used in the performance requirements for alternative methods for chemical analysis in Test Methods C 114.

1.3 The values stated in SI units shall be regarded as the standard.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazards, see Section 9.

2. Referenced Documents

2.1 ASTM Standards: 2

C 114 Test Methods for Chemical Analysis of Hydraulic Cement

- C 150 Specification for Portland Cement
- C 183 Practice for Sampling and the Amount of Testing of Hydraulic Cement
- C 219 Terminology Relating to Hydraulic Cement
- C 670 Practice for Preparing Precision and Bias Statements for Test Methods for Construction Materials
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E 691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method

3. Terminology

3.1 Definitions are in accordance with Terminology C 219.
3.2 Phases (1):³

3.2.1 alite, n—tricalcium silicate $(C_3S)^4$ modified in composition and crystal structure by incorporation of foreign ions; occurs typically between 30 to 70 % (by mass) of the portlandcement clinker; and is normally either the M_1 or M_3 crystal polymorph, each of which is monoclinic.

3.2.2 alkali sulfates, n—arcanite (K₂SO₄) may accommodate Na⁺, Ca2⁺, and CO₃ in solid solution, aphthitalite (K₄, x,Na₄)SO₄ with x usually 1 but up to 3), calcium langbeinite (K₂Ca₂[SO₄]₃) may occur in clinkers high in K₂O, and thenardite (Na₂SO₄) in clinkers with high Na/K ratios (1).

3.2.3 aluminate, n—tricalcium aluminate (C₃A) modified in composition and sometimes in crystal structure by incorporation of a substantial proportion of foreign ions; occurs as 2 to 15 % (by mass) of the portland-cement clinker; is normally cubic when relatively pure and orthorhombic or monoclinic when in solid solution with significant amounts of sodium (2).

3.2.4 anhydrite, n-calcium sulfate (CS) and is orthorhombic (see Note 2).

Note 2—Calcium sulfate is added to the clinker during grinding to control setting time, strength development, and volume stability. Several phases may form as a result of dehydration of gypsum. The first 1.5

¹ This test method is under the jurisdiction of ASTM Committee C01 on Cement and is the direct responsibility of Subcommittee C01.23 on Compositional Analysis. Current edition approved Dec. 15, 2006. Published January 2007. Originally approved in 1998. Last previous edition approved in 2004 as C 1365 - 98 (2004).

²¹ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

³ The boldface numbers in parentheses refer to the list of references at the end of this standard.

⁴ When expressing chemical formulae, C = CaO, S = SiO₂, A = Al₂O₃, F = Fe₂O₃, M = MgO, \overline{S} = SO₃, and H = H₂O.

Errors in Powder Diffraction

Relative In	nportance of Errors			Reproduced from:
scale 10	d- Measurement Errors Displacement	I – Instrument Errors	Type S	W.N. Schreiner, C. Surdukowski, R. Jenkins and C. Villamizar, "Systematic and Random Powder Diffractometer Errors Relevant to Phase Identification", Norelco Reporter Vol. 29, No. 1, April 1982
9				 Specimen displacement has little effect on
8				intensities
		Preferred Orientation	R	 Preferred orientation continues to present problems, particularly with the top-loaded specimens commonly used today,
6	d-spacing		R	, , ,,
	d-reporting	Stress/Strain	R R	 After displacement, round off error in d-spacing reporting is most significant
5	Axial Divergence Zero Angle		S S	 Alignment errors may be identified and
4	Flat Specimen Transparency	і – керотіпд	R S S	corrected via external standards (zero error, 2:1)
3	2:1 SpecRec Slit Distance Broad Lines	2:1	S S S	 Zero error and specimen displacement are highly correlated over short 2-theta distance
2	Counting Statistics Beam Uniformity alpha-2 influence cocked slits	Counting Statistics	R R	 Displacement and orientation errors will affect phase identifications
	mechanical			Incorrect phase identification introduces bias
1				
0	Temperature Variations wavelength CuK _{alpha}			These focus on data collection, analysis is another aspect of the test procedure
S = System	natic Error R = Randor	n Error		Careful phase identification and refinement procedure improves the possibility of a success

Preferred Orientation: Alite

Coarse-ground samples, like cement from the finish mill, can be susceptible to preferred orientation.

Phases that exhibit strong cleavage like alite, calcite, gypsum are prone to orientation, particularly with toploaded specimens.

For alite this is most apparent with the diffraction peak occurring at 32.1 degrees.

Fine-grinding, careful specimen loading and pressing minimize these tendencies, though for some phases with strong cleavage we rarely eliminate orientation

Orientation corrections are possible but seem to work best in quantitative analysis when orientation is not too severe.

Specimen Preparation

Modern instruments today obtain results in a fraction of the time required in 1930 but are still subject to sample preparation and mounting artifacts that may affect the analysis,

Grinding reduces particle size, improves representative sampling and particle statistics, reduces preferred orientation tendencies, and improves packing characteristics,

The packed powder mount ideal characteristics present a representative sampling of bulk material, a homogeneous volume, and smooth surface.

- Cement phase solid interaction volume is roughly 15 µm at 40 degrees 2-theta
- Sampling is improved by specimen rotation, bringing more particles into the beam footprint
- Many particles are multiphase with individual crystals smaller than the particle

Cement Powder Specimens 2 mm field width

Cement: hand-ground, mortar and pestle

Preparing Powders

Jaw Crusher – down to mm-sized fragments

Mortar and Pestle – to -50 um

Splitter for subsampling

<u>to -10</u> um

Preparing Specimen Mounts

A wide range of specimen mounts are available for normal and specialized applications

Preparing Powder Mounts

• Spatula

- Microscope slide
- Cavity holder
- Weighing paper

Determine the approximate amount to make a compact specimen mount. For these holders, about 1.2 g is sufficient.

Level the surface by cutting with the spatula and gently tapping the mount, press it flush using the weighing paper and glass slide.

Pour approximate volume, level

Gently press with slide and paper

Examine surface for smoothness and uniformity

Powder on the holder surface will result in height displacement!

Clinker Phases

Clinker is comprised of a three-dimensional framework of alite and belite crystals and a matrix of aluminate and ferrite, crystallized from a molten liquid, periclase dispersed throughout as equant to dendritic crystals, alkali sulfates, which are typically located along fractures and pore walls. Finally, porosity may also be considered a component of the microstructure.

The phase texture, size and distribution reflect the history of the raw materials preparation, firing (clinkering), and cooling.

HFW Taylor, <u>Cement Chemistry</u> DH Campbell, <u>Microscopical Examination and Interpretation of Portland Cement and Clinker</u>

Silicate Phases

Alite (Ca₃SiO₅): comprises 40 % to 70 % of a clinker, has triclinic, and monoclinic forms; impurities of up to about 4% stabilizes the monoclinic form; magnesium and aluminum may substitute for silicon and other substitutions include iron and sodium; distinct (idiomorphic) crystals exhibiting six-sides; density may range from 3.13 g/cm³ to 3.22 g/cm³

Belite (Ca₂SiO₄): comprises 10 % to 30 % of a clinker as a series of orthorhombic and monoclinic solid solution phases; impurities of up to 6 % as Mg, K, Na, Al, Mn, P, Fe and S may stabilize the polymorphs such as the beta form (most common), alpha, alphaprime, gamma; as idiomorphous, rounded grains often exhibiting a lameller texture due to twinning; density (beta form) is 3.28 g/cm³

Interstitial Phases

Aluminate (Ca₃Al₂O₆): comprises up to 18 % of a clinker as xenomorphic or anhedral (no distinct form) crystals intermixed with the ferrite phase has cubic, orthorhombic, and monoclinic forms; impurities of up to about 10 % include Mg, Si, K, and Na; alkali aluminate is typically orthorhombic and monoclinic, may exhibit a lath-like texture; density around 3.064 g/cm³ for the cubic form and 3.052 g/cm³ for orthorhombic

Ferrite (Ca₄Fe₄O₁₀ to Ca₄FeAl₃O₁₀): is an orthorhombic solid solution comprises about 14 % of a clinker; impurities of up to 13 % as Mg, K, Na, Al, Mn, and Ti; exhibiting a lath-like (slow cooling) to dendritic (rapid cooling) texture; density is 3.77 g/cm³

HV WD 10.0 kV 12.13 mm

Dispersed Phases

Free Lime (CaO): Cubic, rounded, idiomorphous grains, sometimes agglomerated and retaining the shape of the parent limestone fragment; density of 3.32 g/cm³

Periclase (MgO): Cubic, euhedral (equiaxed), rounded to dendritic grains free within the clinker and as inclusions in the silicates and interstitial phases, comprising up to 7 % of a clinker; density of 3.58 g/cm³

Na and K sulfates may only comprise up to a few percent of the clinker but can affect early hydration as they typically form along pore and fracture surfaces and have a high solubility.

Arcanite (K_2SO_4) ; orthorhombic; density of 2.67 g/cm³ Aphthitalite $((K_2Na)_2SO_4)$; trigonal; density of 2.66 to 2.71 g/cm³ Ca Langbeinite $(K_2SO_4 \ 2CaSO_4)$; cubic; density of 2.87 g/cm³ Thenardite (Na_2SO_4) ; orthorhombic; density of 2.67 g/cm³

Syngenite $(K_2Ca(SO_4)_2 H_2O;$ monoclinic, secondary product in cements density of 2.6 g/cm³

	Na ₂ O	MgO	Al ₂ O3	SiO2	$P_{2}O_{5}$	SO3	K_2O	<u>CaO</u>	TiO_2	Mn_2O_3	Fe_2O_3
alite	0.1	1.1	1.0	25.2	0.1	0.1	0.1	71.6	0.0	0.0	0.7
belite	0.1	0.5	2.1	31.5	0.1	0.2	0.9	63.5	0.2	0.0	0.9
aluminate (cubic.)	1.0	1.4	31.3	3.7	0.0	0.0	0.7	56.6	0.2	0.0	5.1
ferrite	0.1	3.0	21.9	3.6	0.0	0.0	0.2	47.5	1.6	0.7	21.4
aluminate	0.6	1.2	28.9	4.3	0.0	0.0	4.0	53.9	0.5	0.0	6.6
(orthorhombic)											
aluminate (low Fe)	0.4	1.0	33.8	4.6	0.0	0.0	0.5	58.1	0.6	0.0	1.0
ferrite (low Al)	0.4	3.7	16.2	5.0	0.0	0.3	0.2	47.8	0.6	1.0	25.4

Typical chemical compositions for the primary phases in cement clinkers. Taylor, 1997

Clinker and Cement Phase Identification Cheat Sheet Alite (Ca,SiO,): M1, M3

Clinker	Belite (Ca ₂ SiO ₄): β , α , α' , γ Aluminate (Ca ₃ Al ₂ O ₆): cubic, orthorhombic Ferrite (Ca ₄ Fe ₄ O ₁₀ to Ca ₄ FeAl ₃ O ₁₀) Free Lime (CaO) Periclase (MgO) Arcanite (K ₂ SO ₄) Aphthitalite ((K ₂ Na) ₂ SO ₄) Ca Langbeinite (K ₂ SO ₄ 2CaSO ₄) Thenardite (Na ₂ SO ₄)
Cement	Anhydrite (CaSO ₄) Bassanite (CaSO ₄ o.5 (H2O)) Gypsum (CaSO ₄ 2(H2O)) Calcite (CaCO ₃) Quartz (SiO ₂)
Hydration Products	Syngenite (K ₂ Ca(SO ₄) ₂ H2O Portlandite (Ca(OH ₂)) Ettringite (Ca ₆ Al ₂ (SO ₄) ₃ (OH) ₁₂ 26H2O)

Phase Identification: 1

Degrees 2-Theta

Phase Identification: 1

Traditional methods - manual search-match using the Hanawalt method.

- List peak d&I in order of relative intensity
- Search on strongest peak followed by second and third strongest.
- Each entry is listed three times to account for relative intensity error

Any guesses?

							2.15	- 2.09	(±.01)
1	2.08 ₂ 2.14 ₅ 2.14 ₈ 2.13x 2.16 ₆	1.62 ₂ 1.61 ₃ 1.61 ₃ 1.61 ₉ 1.60 ₆	3.09x 6.45x 2.33x 2.61, 2.08x	2.001 2.374 0.833 3.196 1.376	2.441 3.052 0.823 2.866 1.246	4.871 1.832 2.793 1.076 1.166	1.441 2.001 1.513 1.654 2.384	2.31 1.78 1.27 1.15 0.00	Fe ₃ PO ₇ (CuYbSe ₂)16T (CrNbN)12T (TiS)4H (Fe ₃ C)H
i i	2.14 2.13 2.09x 2.10 ₇ 2.15x	1.60 ₈ 1.60 ₇ 1.59 ₇ 1.58x 1.57 ₃	6.34x 6.38x 2.45x 2.52 ₇ 2.25 ₄	1.18 ₈ 1.72 ₆ 0.84 ₉ 1.65 ₇ 2.18 ₂	1.34 ₃ 2.57 ₃ 1.33 ₇ 1.70 ₆ 1.28 ₂	0.85 ₅ 2.31 ₅ 1.55 ₆ 1.99 ₅ 1.26 ₂	1.73 ₂ 2.90 ₄ 1.17 ₅ 1.94 ₅ 2.00 ₁	1.67 ₂ 2.44 ₃ 1.41 ₅ 1.89 ₅ 0.00 ₁	(TaSe ₁₋₄₂)6H (TaSe ₂)12H BaCd ₂ Cl ₀ .5H ₂ O Pb ₂ SO ₇ (FeTiH)9T
i i	2.14 ₅ 2.10 ₇ 2.12x 2.10 ₅ 2.09x	1.57, 1.56, 1.55, 1.55, 1.55,	2.83x 2.84x 1.25s 2.60x 2.947	1.89 ₃ 1.97 ₅ 1.51 ₇ 2.35 ₃ 1.31x	1.633 1.263 2.506 1.362 1.209	1.14 ₂ 1.11 ₅ 2.25 ₅ 1.21 ₂ 1.69 ₇	1.21 1.05 3.99 1.02 2 0.00	2.291 1.164 2.843 2.711 0.001	(AgFeTe ₂)12H (NiTe)4H Li ₂ ZrO ₃ (MnSn ₂)12U (Fe ₃ Sb ₂)H
1	2.15x 2.16x 2.16s 2.15; 2.10x	1.54, 1.53, 1.53x 1.53, 1.53,	2.66 ₂ 3.05 ₆ 2.65 ₈ 2.49x 4.33 ₃	1.25 ₂ 1.25 ₉ 1.00x 1.30 ₂ 3.81 ₅	0.97 ₂ 0.96 ₉ 1.87 ₈ 1.24 ₁ 3.08 ₄	1.82, 1.08, 1.67, 0.00, 1.41,	1.50, 1.02, 1.32, 0.00, 2.83,	1.17 1.76 1.24 0.00 1 2.67	PV_C (AIPd)2C (AINd)2C (U_Si)F BaBeF4
i 0 * * i	2.16x 2.15x 2.12, 2.09, 2.08x	1.52x 1.52, 1.52, 1.52, 1.52, 1.52,	3.19x 1.25, 2.61x 2.58x 3.75x	2.76 1.09 2.08 2.65 3.28	2.44, 0.98, 2.31, 2.30, 1.65,	2.037 0.905 1.551 2.072 1.445	1.147 3.564 2.651 1.532 1.902	3.67 ₆ 0.83 ₄ 1.42 ₁ 1.34 ₁ 1.41 ₂	Ba ₈ Be ₃ (PO ₄) ₄ OF ₄ .nH ₂ O (Mn ₀₊₉ P1 ₁₋₀ ,Sn ₁₋₀₀)12F (GaHf ₂)12U (Zr ₂ Sj)12U RbBr ₆
* * • •	2.14x 2.14, 2.14, 2.13x 2.13x	1.51, 1.51, 1.51, 1.51, 1.51,	3.49, 2.58x 2.47x 3.65, 1.24,	1.23 4.95 1.29 1.24 1.08	1.06 ₆ 1.65 ₄ 3.02 ₁ 1.12 ₉ 0.97 ₃	1.024 2.473 1.231 1.866 3.524	1.83 ₃ 4.34 ₁ 0.98 ₁ 1.31 ₅ 0.89 ₄	1.393 1.961 0.961 2.354 0.824	(MnNi3Sn)15.2F LiCoSbO4 (Cu3O)6C Ph3Zn21 (Mn0:4P1:01Sb1:00)12F
** 0	2.09 ₃ 2.08x 2.13x 2.13x 2.13x	1.51, 1.51, 1.50, 1.50, 1.50,	2.58x 2.42x 5.12, 3.47, 5.71x	2.30 ₂ 1.43 ₈ 4.78 ₇ 1.23x 2.73 ₈	2.65 ₂ 1.55 ₈ 1.66 ₇ 1.06 ₈ 2.98 ₇	2.07 ₂ 2.86 ₆ 3.30 ₆ 1.02 ₄ 1.83 ₇	1.34 ₂ 2.52 ₆ 2.97 ₆ 1.81 ₁ 3.08 ₅	1.19 ₂ 1.45 ₆ 1.79 ₆ 1.00 ₁ 2.88 ₄	(GeHf ₂)12U Co ₆ As ₂ O ₁₁ Li ₂ ZrO ₃ (Ni ₅ MnSb)16F K ₂ ZrO ₃
: * : 0	2.12x 2.12, 2.12x 2.12x 2.12x 2.11x	1.504 1.508 1.507 1.50x 1.50x	3.463 3.00x 2.656 2.459 2.444	1.22 1.73, 2.71, 0.98x 1.28x	1.06 ₆ 2.45 ₅ 10.6 ₄ 1.28 ₅ 1.22x	1.01 ₄ 4.90 ₃ 2.08 ₄ 1.23 ₄ 1.06x	1.81 ₃ 1.63 ₂ 2.48 ₃ 1.06 ₂ 0.00 ₁	1.38 ₃ 4.25 ₁ 1.54 ₃ 0.00 ₁ 0.00 ₁	(Co ₂ MnSn)16F K ₂ NoScF ₆ Fe ₇ SiO ₁₀ (Co-As)C CoNiO ₂
	2.11a 2.09x 2.12a 2.11x 2.11x	1.50 _a 1.50x 1.49 ₇ 1.49 _a 1.49 ₅	2.22x 4.70x 2.44x 3.41 ₆ 2.98 ₃	1.24 ₈ 2.88 ₈ 1.28 ₇ 1.22x 4.22 ₂	1.65 ₆ 2.15 ₈ 0.82 ₃ 1.10x 1.72 ₁	1.30 ₆ 4.44 ₆ 0.95 ₄ 1.05x 1.89 ₁	2.16 ₂ 3.88 ₆ 0.87 ₄ 1.32 ₈ 1.41 ₁	1.94 ₂ 3.76 ₆ 1.22 ₃ 1.29 ₈ 1.33 ₁	V ₁₆ O ₃ Li ₆ Mg ₅ Sb ₅ O ₁₃ Wg(C,O)F (Ni ₅ Zr ₂₁)528 Mg ₉ F ₃ N
•	2.11 ₆ 2.11x 2.11s 2.11s 2.11x 2.11x	1.49 ₅ 1.49x 1.49 ₈ 1.49x 1.49x	2.54x 2.44x 2.43x 1.27x 1.221	4.88 ₃ 1.27x 0.82x 1.22x 0.94 ₂	1.62 ₃ 0.81x 1.27 ₈ 0.94x 0.86 ₂	2.99 ₂ 1.22 ₇ 0.95 ₇ 0.97 ₈ 2.43 ₁	1.10, 0.97, 0.86, 2.44, 1.05,	1.721 0.947 0.976 1.057 1.271	Mg ₂ TiO ₄ (Cd ₂ Nb)4C (Pd ₃ La)4C ((Co,Mg)O) (MgO)8F
i	2.10x 2.10s 2.10x 2.10s 2.10s	1.49 ₅ 1.49 ₈ 1.49 ₇ 1.49 ₈ 1.49 ₅	2.971 2.75x 2.54x 2.42x 1.34s	1.721 2.996 4.866 1.278 0.99x	0.001 1.736 1.624 0.818 0.95x	0.001 6.883 2.972 0.977 0.90x	0.001 3.363 2.432 0.947 2.123	0.001 2.033 1.401 0.867 1.485	(NiTi)2C KMgN Mg1.3VO4 (Nb55i)4C (CeFe3)6H
	2.14, 2.10x 2.10x 2.09x 2.09x	1.48, 1.48, 1.48, 1.48, 1.48,	2.04x 2.42 ₅ 1.27x 4.85x 2.95x	0.91x 1.21 ₂ 1.05x 1.93 ₅ 2.41 ₅	1.204 0.942 0.94x 2.534 1.703	2.39 ₃ 1.26 ₁ 0.86x 2.42 ₄ 1.12 ₄	1.44 ₃ 0.86 ₁ 0.81x 1.61 ₄ 4.84 ₄	1.02 ₃ 1.05 ₁ 4.16 ₅ 1.41 ₁ 0.94 ₄	LiFeO ₂ MgNiO ₂ (NbO)6C Mg ₄ MnO ₈ K ₃ NaTiF ₈
•	2.094 2.09x 2.09y 2.09x 2.09x 2.08x	1.48 ₂ 1.48x 1.48 ₄ 1.48 ₅ 1.48x	2.95x 2.53x 2.51x 2.41, 1.22x	1.32 ₂ 4.85 ₇ 2.62 ₄ 1.26 ₁ 1.17x	1.12 ₂ 1.61 ₆ 1.61 ₄ 0.93 ₁ 1.16x	0.981 2.954 2.552 0.851 3.623	0.93, 1.414 1.812 1.21, 3.335	0.891 2.422 1.642 1.041 2.913	Ba₂TmReO₄ Mg₂MnO₄ Mg₂FN (TiO)8F BaMo₂Oγ
1	2.08 ₆ 2.08 ₅ 2.08x 2.08x 2.08x	1.47 ₆ 1.47 ₃ 1.47 ₄ 1.47 ₆ 1.47 ₅	2.40x 2.40x 1.77 ₃ 1.46 ₆ 1.20 ₅	0.80x 0.937 1.692 1.486 1.043	1.26 ₆ 1.26 ₄ 1.20 ₂ 1.40 ₆ 0.93 ₃	0.85 1.20 1.35 -1.60 0.79	2.96 ₃ 1.04 ₁ 2.95 ₁ 2.49 ₄ 0.85 ₂	0.96 ₃ 0.96 ₁ 1.04 ₁ 1.91 ₃ 0.00 ₁	(Ti ₂₋₂ Hg ₀₋₈ N)C (Mo ₂ N)ôF (Ni ₅ Sb ₂)T Li ₈ RuO ₃ (AlBeCu)C
:	2.15, 2.10, 2.10, 2.16, 2.16, 2.15,	1.46, 1.46, 1.45, 1.44, 1.44,	2.36x 2.07x 2.40x 2.25x 2.25x	1.15 3.31 2.02 0.97 1.32	1.12 ₈ 2.41 ₈ 1.26 ₂ 0.78 ₇ 0.97 ₆	2.63 ₃ 2.39 ₈ 1.48 ₁ 1.32 ₆ 0.86 ₆	1.52 ₃ 1.47 ₈ 1.20 ₁ 0.86 ₆ 0.78 ₆	1.32 ₅ 3.75 ₆ 1.22 ₁ 1.13 ₅ 0.86 ₃	(Ta3Sb)8C TiO (Mn3N3)T (Ir3Tm)24F (Ir2Er)24F
* i o i	2.15, 2.12x 2.11, 2.15, 2.16x	1.44, 1.44, 1.44, 1.43, 1.42x	2.24x 1.39, 2.33x 2.24x 2.65x	0.79, 1.88, 4.03, 0.78, 1.88,	1.327 0.814 2.028 1.313 1.676	0.97, 2.55, 2.38, 0.97, 2.38,	0.86 ₄ 2.36 ₃ 4.15 ₃ 0.86 ₃ 1.25 ₃	0.86 ₆ 1.64 ₃ 2.47 ₃ 2.62 ₂ 1.18 ₅	(Holr ₂)24F (AI ₂ O ₂)26.7H Pb-O-CI (Rh ₂ Y)24F Rb ₂ Cd((Ni,Cd)(NO ₂) ₆)

897

14- 147 24- 384 25- 240 12- 534 6- 670 18-1308 21-1200 4- 771 2-1376 26- 806 18-1182 17- 502 20- 647 25- 552 4- 834 21- 615 6- 626 23-1462 10- 68 18- 157 23-1241 25- 347 25- 757 24- 926 6- 652 25- 477 5- 667 12- 612 23-1240 25- 356 10- 323 16- 837 6- 651 18-1046 6- 655 25- 678 22-1118 15- 786 10- 188 27-1338 14- 91 22- 959 6- 653 25- 517 25-1157 19- 188 17- 67 2-1201 4- 829 19- 850 21- 660 15- 630 7- 142 17- 936 24- 712 15- 535 19- 766 11- 226 23- 834 19- 773 25- 516 8- 117 24- 109 23-1252 25-1366 23- 363 17- 377 23-1078 1-1158 19- 601 17- 24 17- 2 26- 31 25-1396 12- 331 2- 957

I/Ic

3.90

2.10

2.10

3.60

File No.

Check against the ICDD Database Card Files using either the D & I values or a graphical representation as a stick figure against the diffraction pattern.

Recall that the specimen displacement error is the greatest so expect some peak shifting.

For clinker phases, chemical substitution will also affect the peak positions.

The high degree of pattern overlap and the number of phases also complicates identification. Therefore, an alternative is to look for the key resolvable peaks and then check the cards.

Peaks not assigned to a phase may be from some new phase

Larnite, sy Ca2 Si O4	'n								<colorles< th=""></colorles<>
Radiation: Calibratior Ref: Natl. B	: CuKa1 n: Interna Bur. Stan	l(Si) d. (U.S.) Mono	Lan d-C ogr. 2	nbda atoff 5, 19	a= 1. f= 3 29	540598 (1982)	Filter= I/Ic(RIR)=	
Monoclinic Cell= 9.310 Dx= 3.313 Ref: Ibid.	c (?), P21 0x6.7565) Dm= 3	/n(14) ⊲5.5059 .280 N	<94.46 //wt=11	> 72.24		Vol	Pears = 345.29	Z= 4 m on: mP28 (1 F(30)=51.6	p= ?) (.0135,43)
Strong Line: 2.78/X 2.79/X 2.75/8 2.19/5 2.61/4 2.72/3 1.98/2 2.81/2 2.28/2 2.88/2 The sample was prepared by heating Ca C O3 and Si O2 with 0.5% B2 O3 at 900 C for 20 minutes, raised to 1450 C over 45 minutes, heated for 20 minutes and air quenched. Pattern taken at 25 C. Chemical analysis (wt.%): Si O2 34.56, CaO 64.24, minor Al2 O3, Fe2 O3, S O3, Na2 O, K2 O, Ti O2, B2 O3. Optical data on specimen from Larne, Ireland, UK. To replace 9-351 and 24-37 and validated by calculated pattern 29-371.									
# c	d(A)	I(f)	I(v)	h	k	1	2-Theta	Theta	1/(2d)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 8920 . 6410 . 8240 . 7860 . 3780 . 2410 . 1760 . 0490 . 8770 . 8140 . 7900 . 7830 . 7450 . 7450 . 7450 . 7450 . 4480 . 4480 . 4480 . 4480 . 4480 . 3230 . 3010 . 3230 . 1890 . 1650 . 1290 . 1030 . 0910 . 0830 . 0500	$3 \\ 9 \\ 5 \\ 7 \\ 6 \\ 5 \\ 9 \\ 22 \\ 97 \\ 100 \\ 830 \\ 42 \\ 97 \\ 13 \\ 18 \\ 24 \\ 22 \\ 13 \\ 18 \\ 24 \\ 22 \\ 13 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14$	2 4 4 6 5 4 20 22 97 100 81 10 15 21 27 65 17 9 1 8 8 19	$\begin{array}{c} -1 \\ 2 \\ 1 \\ 0 \\ -2 \\ 1 \\ 2 \\ 0 \\ 3 \\ -3 \\ -1 \\ 0 \\ 1 \\ 2 \\ 4 \\ -2 \\ 3 \\ 1 \\ 2 \\ 0 \\ -1 \\ -4 \\ 0 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2$	$\begin{array}{c}1\\0\\0\\1\\0\\1\\1\\2\\1\\1\\2\\1\\2\\1\\0\\2\\0\\0\\2\\2\\1\\1\\2\\1\\2$	$\begin{array}{c} 18.119\\ 19.108\\ 23.242\\ 23.478\\ 26.362\\ 27.498\\ 28.072\\ 29.267\\ 31.059\\ 31.773\\ 32.054\\ 32.136\\ 32.594\\ 32.926\\ 34.330\\ 35.235\\ 36.680\\ 35.235\\ 36.680\\ 36.915\\ 37.280\\ 37.392\\ 38.730\\ 39.116\\ 39.473\\ 41.206\\ 41.683\\ 42.422\\ 42.972\\ 43.231\\ 43.406\\ 44.141\\ \end{array}$	9.059 9.554 11.621 11.739 13.181 13.749 14.036 14.633 15.530 15.886 16.027 16.068 16.297 16.463 17.165 17.618 18.340 18.457 18.640 18.696 19.365 19.365 19.736 20.842 21.211 21.486 21.616 21.703 22.070	0.1022 0.1077 0.1308 0.1321 0.1480 0.1543 0.1574 0.1640 0.1778 0.1777 0.1792 0.1797 0.1797 0.1821 0.1916 0.2042 0.2042 0.2055 0.2042 0.2055 0.2042 0.2052 0.2052 0.2052 0.2052 0.2052 0.2052 0.2052 0.2052 0.2052 0.2052 0.2052 0.2052 0.2052 0.2052 0.2052 0.2052 0.2052 0.2052 0.2052 0.2075 0.2075 0.2152 0.2172 0.2192 0.22349 0.2378 0.2378 0.2378 0.2378 0.2391 0.2400 0.2439

Key Lines for Cement Phase Identification using XRD

d-Spacing	Two-Theta	Phase	d-Spacing	Two-Theta	Phase		d-Spacing	Two-Theta	Phase	d-Spacing	Two-Theta	Phase
7.627	11.593	gypsum (100)	3.038	29.375	M1 C3S (50)		2.736	32.704	triclinic C3S (60)	2.268	39.709	bassanite (10)
7.249	12.200	C4AF (45)	3.036	29.400	calcite (100)	 	2.717	32.939	βC2S (30)	2.230	40.415	a'C2S (30)
5.997	14.759	bassanite (80)	3.036	29.395	mono C3S (40)		2.714	32.976	C3Ao (65)	2.220	40.605	αC2S (40)
5.970	14.827	triclinic C3S (12)	3.034	29.415	m1 C3S (50)		2.714	32.976	bassanite (10)	2.218	40.643	gypsum (15)
5.953	14.869	triclinic C3S (12)	3.025	29.504	triclinic C3S (65)		2.710	33.026	αC2S (100)	2.209	40.816	anhydrite (20)
5.927	14.935	triclinic C3S (12)	3.025	29.504	mono C3S (75)		2.698	33.178	C3Ac (100)	2.205	40.893	C3Ao (20)
5.927	14.935	mono. C3S (12)	3.011	29.645	γC2S (80)		2.692	33.254	C3Ao (100)	2.205	40.893	arcanite (14)
5.610	15.784	γC2S (19)	3.002	29.736	bassanite (80)		2.684	33.356	gypsum (35)	2.203	40.932	C3Ac (10)
5.107	17.350	C3Ao (10)	3.000	29.756	arcanite (77)		2.680	33.407	α'C2S (75)	2.196	41.068	langbeinite (12)
4.917	18.026	aphthitalite (10)	2.985	29.909	triclinic C3S (25)		2.673	33.497	C4AF (35)	2.195	41.088	triclinic C3S (75)
4.659	19.033	thenardite (71)	2.974	30.022	triclinic C3S (18)		2.647	33.836	thenardite (52)	2.189	41.206	βC2S (51)
4.640	19.112	α´C2S (30)	2.972	30.043	M1 C3S (20)		2.644	33.875	C4AF (100)	2.184	41.304	M1 C3S (40)
4.316	20.561	γC2S (45)	2.968	30.084	mono C3S (12)		2.618	34.222	triclinic C3S (60)	2.181	41.364	mono C3S (60)
4.284	20.717	gypsum (100)	2.968	30.084	M1 C3S (20)		2.612	34.303	triclinic C3S (90)	2.180	41.383	a'C2S (30)
4.253	20.869	langbeinite (30)	2.965	30.115	triclinic C3S (20)		2.610	34.330	βC2S (42)	2.179	41.403	triclinic C3S (17)
4.235	20.959	C3Ac (6)	2.961	30.157	mono C3S (25)		2.607	34.371	M1 C3S (70)	2.179	41.403	M1 C3S (40)
4.222	21.024	langbeinite (25)	2.940	30.378	aphthitalite (75)		2.605	34.398	M1 C3S (80)	2.171	41.563	triclinic C3S (11)
4.188	21.197	langbeinite (16)	2.902	30.785	arcanite (100)		2.603	34.425	mono C3S (100)	2.169	41.603	M1 C3S (10)
4.175	21.264	arcanite (28)	2.894	30.872	yC2S (25)		2.590	34.604	yC2S (14)	2.166	41.663	M1 C3S (10)
4.158	21.352	arcanite (23)	2.886	30.960	arcanite (53)		2.576	34.798	C4AF(17)	2.164	41.704	βC2S (13)
4.091	21.706	aphthitalite (30)	2.880	31.026	langbeinite (18)		2.517	35.640	arcanite (13)	2.164	41.704	mono C3S (15)
4.079	21.770	C3Ac (12)	2.876	31.070	βC2S (21)		2.514	35.684	yC2S (25)	2.163	41.724	triclinic C3S (11)
4.059	21.879	y C2S (20)	2.872	31.115	gypsum (45)		2.499	35.906	arcanite (15)	2.162	41.744	M1 C3S (10)
3.900	22.783	αC2S (20)	2.870	31.137	a'C2S (30)		2.495	35.968	calcite (15)	2.136	42.276	bassanite (20)
3.886	22.866	triclinic C3S (10)	2.850	31.361	anhydrite (29)		2.494	35.980	gypsum (11)	2.109	42.844	langbeinite (18)
3.855	23.052	calcite (9)	2.843	31.440	calcite (2)		2.458	36.526	triclinic C3S (12)	2.105	42.930	periclase (100)
3.838	23.156	thenardite (17)	2.838	31.497	aphthitalite (100)		2.458	36.526	aphthitalite (10)	2.094	43.157	calcite (15)
3.817	23.285	yC2S (509)	2.813	31.784	βC2S (22)		2.455	36.572	yC2S (17)	2.093	43.188	langbeinite (20)
3.810	23.328	a'C2S (30)	2.813	31.784	bassanite (100)		2.448	36.680	βC2S (12)	2.088	43.297	arcanite (25)
3.799	23.397	gypsum (17)	2.810	31.819	αC2S (80)		2.442	36.774	aphthitalite (16)	2.085	43.362	gypsum (25)
3.764	23.617	yC2S (119)	2.790	32.053	βC2S (97)		2.430	36.962	periclase (10)	2.082	43.428	arcanite (25)
3.744	23.745	arcanite (18)	2.788	32.077	triclinic C3S (100)		2.422	37.088	arcanite (25)	2.073	43.626	gypsum (15)
3.670	24.231	aphthitalite (20)	2.788	32.077	gypsum (10)		2.409	37.296	βC2S (13)	2.051	44.118	C4AF(35)
3.653	24.346	C4AF (16)	2.786	32.101	langbeinite (45)		2.405	37.360	free lime (100)	2.050	44.141	βC2S (14)
3.497	25.450	anhydrite (100)	2.784	32.124	C4AF (25)		2.402	37.408	βC2S (18)	2.041	44.346	aphthitalite (45)
3.468	25.666	bassanite (40)	2.784	32.124	thenardite (100)		2.385	37.685	arcanite (13)	2.036	44.461	langbeinite (14)
3.462	25.711	langbeinite (12)	2.782	32.148	βC2S (100)		2.374	37.866	arcanite (17)	2.026	44.692	βC2S (15)
3.424	26.002	C3Ao (11)	2.776	32.220	free lime (36)		2.360	38.100	a'C2S (30)	2.024	44.738	γC2S (13)
3.385	26.307	arcanite (13)	2.775	32.231	M1 C3S (100)		2.339	38.455	triclinic C3S (15)	2.020	44.832	α'C2S (30)
3.379	26.354	YC2S (25)	2.775	32.231	langbeinite (50)		2.329	38.627	triclinic C3S (20)	2.019	44.855	βC2S (15)
3.370	26.426	α´C2S (30)	2.773	32.255	mono C3S (85)		2.329	38.627	thenardite (25)	2.017	44.902	langbeinite (20)
3.313	26.889	langbeinite (95)	2.767	32.327	triclinic C3S (70)		2.329	38.627	aphthitalite (14)	2.009	45.091	langbeinite (14)
3.271	27.241	langbeinite (80)	2.754	32.484	triclinic C3S (65)		2.328	38.644	anhydrite (20	1.994	45.449	triclinic C3S (10)
3.263	27.309	langbeinite (80)	2.750	32.533	YC2S (70)		2.325	38.696	γC2S (10)	1.982	45.740	M1 C3S (10)
3.225	27.637	langbeinite (100)	2.750	32.533	langbeinite (45)		2.323	38.725	M1 C3S (10)	1.981	45.764	βC2S (20)
3.180	28.036	thenardite (52)	2.747	32.569	mono C3S (45)		2.319	38.800	M1 C3S (20)	1.973	45.960	mono C3S (10)
3.153	28.281	langbeinite (18)	2.747	32.569	M1 C3S (40)		2.315	38.870	triclinic C3S (25)	1.940	46.788	ac2s (60)
3.114	28.643	langbeinite (18)	2.745	32.593	βC2S (83)		2.315	38.870	mono C3S (20)	1.937	46.865	M1 C3S (10)
3.077	28.995	thenardite (55)	2.743	32.618	M1 C3S (60)		2.285	39.408	calcite (20)	1.933	46.968	M1 C3S (10)
3.065	29.111	gypsum (75)	2.743	32.618	langbeinite (45)		2.280	39.491	βC2S (22)	1.930	47.045	a'C2S (30)
3.056	29.198	triclinic C3S (60)	2.740	32.655	a'C2S (100)		2.280	39.491	triclinic C3S (11)	1.930	47.045	mono C3S (13)
3.045	29.306	bassanite (10)	2.737	32.691	mono C3S (75)		2.270	39.672	a'C2S (10)	1.928	47.097	C4AF(35)

Key Lines for Cement Phase Identification using XRD

d-Spacing	Two-Theta	Phase	d-Spacing	Two-Theta	Phase
2.736	32.704	triclinic C3S (60)	2.268	39.709	bassanite (10)
2.717	32.939	βC2S (30)	2.230	40.415	a'C2S (30)
2.714	32.976	C3Ao (65)	2.220	40.605	αC2S (40)
2.714	32.976	bassanite (10)	2.218	40.643	gypsum (15)
2.710	33.026	αC2S (100)	2.209	40.816	anhydrite (20)
2.698	33.178	C3Ac (100)	2.205	40.893	C3Ao (20)
2.692	33.254	C3Ao (100)	2.205	40.893	arcanite (14)
2.684	33.356	gypsum (35)	2.203	40.932	C3Ac (10)
2.680	33.407	a'C2S (75)	2.196	41.068	langbeinite (12)
2.673	33.497	C4AF (35)	2.195	41.088	triclinic C3S (75)
2.647	33.836	thenardite (52)	2.189	41.206	βC2S (51)
2.644	33.875	C4AF (100)	2.184	41.304	M1 C3S (40)
2.618	34.222	triclinic C3S (60)	2.181	41.364	mono C3S (60)
2.612	34.303	triclinic C3S (90)	2.180	41.383	a'C2S (30)
2.610	34.330	βC2S (42)	2.179	41.403	triclinic C3S (17)
2.607	34.371	M1 C3S (70)	2.179	41.403	M1 C3S (40)
2.605	34.398	M1 C3S (80)	2.171	41.563	triclinic C3S (11)
2.603	34.425	mono C3S (100)	2.169	41.603	M1 C3S (10)
2.590	34.604	yC2S (14)	2.166	41.663	M1 C3S (10)
2.576	34.798	C4AF(17)	2.164	41.704	βC2S (13)
2.517	35.640	arcanite (13)	2.164	41.704	mono C3S (15)
2.514	35.684	yC2S (25)	2.163	41.724	triclinic C3S (11)
2.499	35.906	arcanite (15)	2.162	41.744	M1 C3S (10)
2.495	35.968	calcite (15)	2.136	42.276	bassanite (20)
2.494	35.980	gypsum (11)	2.109	42.844	langbeinite (18)
2.458	36.526	triclinic C3S (12)	2.105	42.930	periclase (100)
2.458	36.526	aphthitalite (10)	2.094	43.157	calcite (15)
2.455	36.572	YC2S (17)	2.093	43.188	langbeinite (20)
2.448	36.680	βC2S (12)	2.088	43.297	arcanite (25)
2.442	36.774	aphthitalite (16)	2.085	43.362	gypsum (25)
2.430	36.962	periclase (10)	2.082	43.428	arcanite (25)
2.422	37.088	arcanite (25)	2.073	43.626	gypsum (15)
2.409	37.296	βC2S (13)	2.051	44.118	C4AF(35)
2.405	37.360	free lime (100)	2.050	44.141	βC2S (14)
2.402	37.408	βC2S (18)	2.041	44.346	aphthitalite (45)
2.385	37.685	arcanite (13)	2.036	44.461	langbeinite (14)
2.374	37.866	arcanite (17)	2.026	44.692	βC2S (15)
2.360	38.100	α´C2S (30)	2.024	44.738	γC2S (13)
2.339	38.455	triclinic C3S (15)	2.020	44.832	α´C2S (30)
2.329	38.627	triclinic C3S (20)	2.019	44.855	βC2S (15)
2.329	38.627	thenardite (25)	2.017	44.902	langbeinite (20)
2.329	38.627	aphthitalite (14)	2.009	45.091	langbeinite (14)
2.328	38.644	anhydrite (20	1.994	45.449	triclinic C3S (10)
2.325	38.696	γC2S (10)	1.982	45.740	M1 C3S (10)
2.323	38.725	M1 C3S (10)	1.981	45.764	βC2S (20)
2.319	38.800	M1 C3S (20)	1.973	45.960	mono C3S (10)
2.315	38.870	triclinic C3S (25)	1.940	46.788	ac2s (60)
2.315	38.870	mono C3S (20)	1.937	46.865	M1 C3S (10)
2.285	39.408	calcite (20)	1.933	46.968	M1 C3S (10)
2.280	39.491	βC2S (22)	1.930	47.045	α´C2S (30)
2.280	39.491	triclinic C3S (11)	1.930	47.045	mono C3S (13)
2.270	39.672	α'C2S (10)	1.928	47.097	C4AF(35)

2.4	132	36.93	9		
2.2	106	42.90	100		20210
1.4	189	62.29	44		l
1.2	270	74.66	5		
		10000	¥		
d-Spacing	Two-Theta	0 10 20	30 40	50	60 70
7.627	11.593	C44E (45)	Degrees	2-Theta	coloito (100)
5.997	14,759	bassanite (80)	3.036	29.400	mono C3S (40)
5.970	14 827	triclinic C3S (12)	3.034	29.415	m1 C3S (50)
5.953	14.869	triclinic C3S (12)	3.025	29.504	triclinic C3S (65)
5.927	14.935	triclinic C3S (12)	3.025	29.504	mono C3S (75)
5.927	14.935	mono. C3S (12)	3.011	29.645	YC2S (80)
5.610	15.784	YC2S (19)	3.002	29.736	bassanite (80)
5.107	17.350	C3Ao (10)	3.000	29.756	arcanite (77)
4.917	18.026	aphthitalite (10)	2.985	29.909	triclinic C3S (25)
4.659	19.033	thenardite (71)	2.974	30.022	triclinic C3S (18)
4.640	19.112	a´C2S (30)	2.972	30.043	M1 C3S (20)
4.316	20.561	γC2S (45)	2.968	30.084	mono C3S (12)
4.284	20.717	gypsum (100)	2.968	30.084	M1 C3S (20)
4.253	20.869	langbeinite (30)	2.965	30.115	triclinic C3S (20)
4.235	20.959	C3AC (6)	2.961	30.157	mono C3S (25)
4.222	21.024	langbeinite (25)	2.940	30.376	aprimante (75)
4 175	21.167	arcanite (28)	2.894	30.872	vC2S (25)
4.158	21.352	arcanite (23)	2.886	30.960	arcanite (53)
4.091	21,706	aphthitalite (30)	2.880	31.026	langbeinite (18)
4.079	21.770	C3Ac (12)	2.876	31.070	BC2S (21)
4.059	21.879	y C2S (20)	2.872	31.115	gypsum (45)
3.900	22.783	αC2S (20)	2.870	31.137	α'C2S (30)
3.886	22.866	triclinic C3S (10)	2.850	31.361	anhydrite (29)
3.855	23.052	calcite (9)	2.843	31.440	calcite (2)
3.838	23.156	thenardite (17)	2.838	31.497	aphthitalite (100)
3.817	23.285	γC2S (509)	2.813	31.784	βC2S (22)
3.810	23.328	α'C2S (30)	2.813	31.784	bassanite (100)
3.799	23.397	gypsum (17)	2.810	31.819	αC2S (80)
3.764	23.017	γC2S (119)	2.790	32.053	pC25 (97)
3.744	23.745	and	2.700	32.077	avpsum (10)
3.653	24.346	C4AF (16)	2,786	32 101	langbeinite (45)
3.497	25.450	anhydrite (100)	2.784	32.124	C4AF (25)
3.468	25.666	bassanite (40)	2.784	32.124	thenardite (100)
3.462	25.711	langbeinite (12)	2.782	32.148	BC2S (100)
3.424	26.002	C3Ao (11)	2.776	32.220	free lime (36)
3.385	26.307	arcanite (13)	2.775	32.231	M1 C3S (100)
3.379	26.354	YC2S (25)	2.775	32.231	langbeinite (50)
3.370	26.426	α´C2S (30)	2.773	32.255	mono C3S (85)
3.313	26.889	langbeinite (95)	2.767	32.327	triclinic C3S (70)
3.271	27.241	langbeinite (80)	2.754	32.484	triclinic C3S (65)
3.263	27.309	langbeinite (80)	2.750	32.533	YC2S (70)
3.225	27.637	langbeinite (100)	2.750	32.533	langbeinite (45)
3.180	28.036	thenardite (52)	2.747	32.569	mono C3S (45)
3.153	20.201	langbeinite (18)	2.141	32.509	NT C3S (40)
3.114	20.043	thenardite (10)	2.740	32,093	M1 C20 (83)
3.077	20.990	avneum (75)	2.743	32.010	langheinite (45)
3.056	29 198	triclinic C3S (60)	2.740	32,655	anguernite (45)
3.045	29.306	bassanite (10)	2,737	32,691	mono C3S (75)
0.040	20.000	bussuinte (10)	2.101	52.001	11010 000 (70)

I/I100

70000

d-Spacing

Two-Theta

Practicum 2

Using the file <u>Cement Key Lines.pdf</u>, identify the single phases and simple mixture phases found in the folder XRD Phase Identification

Each folder contains

- an image of the pattern (.JPG),
- a .RAW powder diffraction data file (.RAW) that may be read into Profex,
- and a text file providing peak d-spacings, two-theta positions, and relative intensities

Work on identifying the file using the key lines and knowledge that it diffraction pattern is from a phase that is related to portland cement

Work in pairs if you wish

While most examples are of a single phase, one or more may be a mixture

Analysis of Clinker and Cements Using Selective Extractions

Phase Identification

Cement phases are a challenge and can be difficult to identify using the traditional methods

Tentative identification is made using diagnostic peaks for each phase rather than the traditional methods (three major peaks); confirmation uses the ICDD powder diffraction database

Table X1.1 of ASTM C1365 lists peaks by descending d-spacing that have minimal interference. ICDD card numbers allow recalling the entire pattern.

TABLE X1.1 Diagnostic Peaks and ICDD Entry Number for Common Cement Phases (15)

d-spacing (nm) Two-Theta (CuKα) Phase (rel. I) ICDI No. 0.7627 11.593 gypsum (100) 33-31* 0.7249 12.200 ferrite (45) 30-22* 0.5997 14.759 bassanite (80) 41-22* 0.4284 20.717 gypsum (100) 38-14* 0.4175 21.264 arcanite (28) 5-613 0.4158 21.352 arcanite (23) 0.4079 0.4079 21.770 aluminate, cubic (12) 4000) 1 3 3 4 29 3 3 96 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 5 4 29 3 3 96 5
0.7627 11.593 gypsum (100) 33-31 0.7249 12.200 ferrite (45) 30-22 0.5997 14.759 bassanite (80) 41-22 0.4284 20.717 gypsum (100) 0 0.4235 20.959 aluminate, cubic (6) 38-14 0.4175 21.264 arcanite (28) 5-613 0.4158 21.352 arcanite (23) 0 0.4079 21.770 aluminate, cubic (12) 0	1 5 4 229 3 3 96 5
0.7249 12.200 ferrite (45) 30-22 0.5997 14.759 bassanite (80) 41-22 0.4284 20.717 gypsum (100) 0 0.4235 20.959 aluminate, cubic (6) 38-14 0.4175 21.264 arcanite (28) 5-613 0.4158 21.352 arcanite (23) 0 0.4079 21.770 aluminate, cubic (12) 10	5 4 29 3 96 5
0.1245 12.200 Ioline (45) 60.22 0.5997 14.759 bassanite (80) 41-22 0.4284 20.717 gypsum (100) 0 0.4235 20.959 aluminate, cubic (6) 38-14 0.4175 21.264 arcanite (28) 5-613 0.4158 21.352 arcanite (23) 0 0.4079 21.770 aluminate, cubic (12)	3 3 96 5
0.4284 20.717 gypsum (100) 47.22 0.4235 20.959 aluminate, cubic (6) 38-14 0.4175 21.264 arcanite (28) 5-613 0.4158 21.352 arcanite (23) 0.4079 21.770	29 3 96 5
0.4235 20.959 aluminate, cubic (6) 38-14. 0.4175 21.264 arcanite (28) 5-613 0.4158 21.352 arcanite (23) 0.4079 0.4079 21.770 aluminate, cubic (12)	29 3 96 5
0.4175 21.264 arcanite (28) 5-613 0.4158 21.352 arcanite (23) 5 0.4079 21.770 aluminate, cubic (12) 5	3 96
0.4175 21.204 alcaline (25) 5-015 0.4158 21.352 arcanite (23) 0.4079 21.770 aluminate, cubic (12)	3 96 5
0.4079 21.770 aluminate, cubic (12)	3 96 5
	3 96 5
(13799 23.397 avneum (17)	3 96 5
0.3670 24.231 anbthitalite (20) 20-92	96 5
0.3653 24.346 ferrite (16)	96 5
0.3497 25.450 anbydrite (100) 37-14	5
0.3468 25.666 bassanite (40)	5
0.3313 26.889 Jangbeinite (45) 19-97	,
0.3271 27.241 langbeinite (80)	
0.3263 27.300 langbeinite (80)	
0.3225 27.637 langbeinite (100)	
0.3065 29.111 avneum (75)	
0.3040 29.355 alite triclinic (55) 31-30	1
0.3036 29.395 alite monoclinic (40) 42-55	1
0.3025 29.504 alite triclinic (65)	
0.3025 29.504 alite monoclinic (75)	
0.3002 29.736 bassanite (80)	
0.3000 29.756 arcanite (77)	
0.2985 29.909 alite triclinic (25)	
0.2074 30.022 alite triclinic (18)	
0.2965 30.115 alite triclinic (20)	
0.2961 30.157 alite monoclinic (25)	
0.2940 30.378 anbthitalite (75)	
0.2902 30.785 arcanite (100)	
0.2880 30.960 arcanite (53)	
0.2886 31.026 Jangbeinite (18)	
0.2876 31.070 belite. β-form (21) 33-30	2
0 2838 31 497 anhthitalite (100)	
0 2784 32 124 ferrite (25)	
0.2714 32.976 aluminate orthorhombic (65)	
0.2710 33.026 belite α -form (100) 23-10	12
0.2698 33.178 aluminate. cubic (100)	
0.2692 33.254 aluminate, orthorhombic (100) 26-95	7
0.2644 33.875 ferrite (100)	
0.2610 34.330 belite. 8-form (42)	
0.2405 37.360 free lime (100) 37-14	97
0.2220 40.605 belite, α-form (40)	
0.2110 42.920 periclase (100) 4-829	
0.1940 46.788 belite. α-form (60)	
0.1764 51.783 alite. monoclinic (55)	
0.1757 52.004 alite, monoclinic (30)	

ASTM C1365: Standard Test Method for Determination of the Proportion of Phases in Portland Cement and Portland-Cement Clinker Using X-ray Powder Diffraction, *Annual Book of ASTM Standards*, ASTM Int., West Conshohocken, PA, 2013.

Selective Extractions

Provide a clearer picture of phase groups to facilitate identification, refinement of their characteristics (peak shape, lattice parameters), and an additional sample set for quantitative analysis.

1) KOH-Sucrose: 7.5 g KOH, 7.5 g sucrose, 75 ml water. Heat to 95 C, stir in 2 g ground cement for one minute. Vacuum filter, wash residue with 20 ml water followed by 50 ml of methanol

2) Salicylic Acid / Methanol: 20 g salicylic acid in 300 ml methanol. Stir 5 g ground cement in SAM solution for 2 h, vacuum filter, wash residue with methanol, dry below 60 C, weigh residue

3) Nitric Acid / Methanol: 10 g of ground clinker or cement in 500 ml of 7 % nitric acid in methanol for 30 minutes to produce residue of ferrite and periclase (if present).

Analytical Approach

• Bulk Analysis

- detection limits due to dilution by silicates make them difficult to identify but certain diagnostic peaks are evident even in low concentrations. An alternative is to perform a selective extraction to concentrate the intersitital phases, calcium sulfates, and alkali sulfates
- SAM extraction residue
 - quantitative extraction, QXRD and re-calculation of phases on a whole-cement basis
- KOSH Extraction Residue
 - can be a difficult extraction but will provide an improved pattern of the silicate phases and identification of belite and alite forms
 - Generally not quantitative but still useful

Common Sulfate Phases in Clinkers and Cements

Some sulfate is substituted in the silicates (below 1% for low-sulfate and 2% for high-sulfate clinkers. Some may also be found in the aluminates and ferrite.

SO3 to alkali ratio of up to 0.5 occurs as alkali sulfates. Higher SO3 levels, there is insufficient alkali dissolved to balance the sulfate and that sulfate may be present in other phases – calcium langbeinite, anhydrite, silicates

- arcanite (K₂SO₄) may accommodate Na+, Ca2+, and CO3 in solid solution
- aphthitolite (K₄-x, Nax)SO₄ with x usually 1 but up to 3)
- calcium langbeinite $(K_2Ca_2[SO_4]_3)$ may occur in clinkers high in K_2O and SO_3
- anhydrite (*rare*) (CaSO₄) in clinkers with high SO₃ (>2%)
- thenardite: (*rare*) (Na₂SO₄) in clinkers with high Na/K ratios

these phases are generally found along silicate crystal boundaries – though sometimes too as inclusions

Cement Sulfates

- gypsum: $CaSO_4 2[H_2O]$
- bassanite: (hemihydrate, plaster) $2CaSO_4 H_2O$, or γ -CaSO₄
- anhydrite: CaSO₄
- syngenite: $(K_2Ca_2SO_4 [H_2O])$ formed by reaction of gypsum and potassium sulfate reacts rapidly on mixing.

Calcium Sulfates

- Gypsum (CaSO4 2H2O) moderate solubility. Dehydrates around 100 C to bassanite (hemihydrate or plaster) CaSO4 ¹/₂ H2O and at higher temperatures to anhydrite (CaSO4). Both dehydration products exhibit different solubility than gypsum
- Bassanite hydration to gypsum during mixing may result in paste stiffening false set

The SAM extraction enhances detection limits by eliminating the dilution effect of the calcium silicates. Be careful however, to dry the residue at low enough temperature that dehydration does not alter the forms

Aluminate Forms: Cubic and Orthorhombic

M_C tblo Altmitate 8299 - File:c3actbb.RAW - Type:2Tt/Tt locked - Start:14951 * - Etd: 119975 * - Step:0.020 * - Step time: 4.s - Temp.: 25 *C (Room) - Time Started: 0s - 2-Tteta: 14.951 * - Tteta: 7.500 * Operations: Displacement0.094 | Displacement0.167 | Import

🚻 Or the niem bio C3A, CTL NC8A3 RR preparation - File :e3aert RAW - Type : 2Th/Thiocked - Start 15 Δ00 * - End: 120 Δ00 * - Step 1000 * - Step 1000 : 4. s - Temp .: 25 *C (Room) - Time Started: 0 s - 2-Theta: 15 Operations: Y Scale Mill 0.792 | Y Scale Mill 1.750 | import

W of Triblin C3S PCA 8414 - File: c3strib_Add_Scals.RAW - Type: 2T1/T1 boked - Start 18 000 *- End: 120 000 *- Step: 0.020 *- Step time: 4.s - Temp:: 25 *C (Room) - Time Started: 0 s - 2-Tieta: 18 00 Operations: Y Scale Mil 2:250 [Add Scals | Import

Calcite in Cement

The primary calcite peak (104) overlaps the alite peak at 29.3 degrees

Peak ratios in excess of 3 suggest an overlap from calcite

Confirm from SAM and KOHS extraction residue

Composite Pattern 2686a

Alite

/Users/stutz/Documents/Workshop_XRD/86a/86a_10_B_03.dia

Intensity [counts]

Belite

Aluminate: Cub., Ort.

Intensity [counts]

Ferrite

Periclase

Recalculation of Selective Extraction Data

- provides an extra estimate based upon a concentrated residue of the selective extraction

26

30

34

CCRL 142 Data Set

44

46

54

KOSH - 76.04% of cement, SAM - 23.96% of Cement

	BULK	KOSH	SAM	IR
C3S	54.5	48.9		
b-C2S	21.6	18.1		
a-C2S		0.9		
C4AF	10.1		10.3	(43)
C3Ac	5.0		4.2	(17.5)
Arc.	0.4		0.1	(0.4)
Lang.	1.3		1.3	(5.4)
Peric.	3.2	3.5	3.7	(15.4)
Anh.	0.4		1.2	(5.0)
Bass.	2.8		4.1	(17.1)
Gyp.	0.1		0.2	(0.8)
Qtz.	0.1	0.2	0.1	(0.4)
Dolo.	0.8		1.0	(4.2)

Practicum 3: SRM2686a

Start with phase identifications using the selective extraction patterns in the IMAGES folder Examine images SRM2686a_KOSH_d&I_1.png and SRM2686a_SAMd&I_1.png and their corresponding .txt files

With the knowledge that you are working with a portland cement clinker, look for key diffraction peaks for phases you might encounter in that material

Prepare a list of potential phases

Starting with the powder diffraction files found in the Bulk folder, read one of the KOSH or SAM patterns into profex, load the appropriate instrument file from the Device folder (D8_6Div_4SS.sav), load the appropriate phase files from the CementStructures folder and initiate the refinement. Transfer the results to the spreadsheet

Repeat for each of the two or three replicates for the SAM and KOSH

Proceed to the Bulk data files (86a_10_B_0*.raw) and repeat