NIST Workshop on Cement Materials Characterization, Oct. 30 – Nov. 1, 2018

X-Ray Powder Diffraction and Rietveld Analysis with Applications to Cementitious Materials – I

Steve Feldman

Standards and Technology U.S. Department of Commerce Materials and Structural Systems Division Inorganic Materials Group National Institute of Standards and Technology Gaithersburg, MD steven.feldman@nist.gov

Scope

- 1. Background and scope of modern powder diffraction (XRPD)
 - ✓ What are we measuring and how do we interpret the data?
 - \checkmark Types of applications with examples
- 2. XRD instrumentation
- 3. XRD theory and introduction to crystallography
- 4. Qualitative analysis: phase identification
- 5. Optimizing data collection and mitigating potential sources of error
- 6. Quantitative phase analysis
 - Traditional XRD methods
 - ✓ Special challenges with cement materials
 - Introduction to the 'Rietveld' method
- 7. Additional examples and refinement strategies

1. Background and Scope of Modern Powder Diffraction

What does it tell us? Applications and examples

Types of powder *x-ray diffraction* applications:

- Phase identification *
- Quantitative analysis *
- Size/strain (line profile) analysis
- Crystallographic analysis
 - Lattice parameters, site occupancy, etc.
- Percent crystallinity
- ✓ Non-ambient (*in situ*) analysis
- Residual stress
- Texture
- ✓ Reflectivity
- ✓ Microdiffraction (~1-50µ spot size)

Information content of a powder XRD scan

XRD patterns are unique 'fingerprints' of the crystal structure of materials that can be used to determine *phase composition* of mixtures.

Typically there are many peaks, even for a single phase!

Information content of a powder XRD scan

XRD patterns are unique 'fingerprints' of the crystal structure of materials that can be used to determine *phase composition* of mixtures.

Different minerals/materials have unique peak positions ('fingerprints') and peak shapes as influenced by the crystal structure and crystallite size or degree of order-disorder.

Information content of a powder XRD scan

Silica 'polymorphs': All 4 chemically identical forms of SiO_2 with different x-tal structures (*e.g.*, order-disorder) giving rise to different diffraction patterns.

Si tetrahedron

Point-shared dimer

The Si and O atoms in amorphous glass does not have long-range atomic order and therefore produce only broad scattering features (no peaks).

engineering aboratory

Information content of a powder XRD scan

XRD patterns are unique 'fingerprints' of the crystal structure of materials that can be used to determine *phase composition* of mixtures.

- The cubic phases of CaTiO₃ and SrTiO₃ have identical crystal structures, with the A cation replaced by Ca or Sr respectively
- Differences in electron density scatter X-rays proportionally to Z therefore giving differences in peak intensity.

XRD can discern between isostructural compounds as well as between polymorphs

Information content of a powder XRD scan

Complex polycrystalline mineral mixture with complex, overlapping peaks

Information content of a powder XRD scan

Diffraction patterns of the major clinker phases

...Clinker/cement phases can be very complicated!!

Information content of a powder XRD scan

Severe peak overlap among the major clinker phases

Information content of a powder XRD scan

Phase composition and Rietveld Refinement of a Type II cement

Complex mineralogy and peak overlap

Phase composition and Rietveld refinement of a 'Roman Cement'

Low temperature 'clinkering': α '-C2S and carbonated silicates w/ no C3S

Phase composition and Rietveld refinement of a 'Roman Cement'

Low temperature 'clinkering': α '-C2S and carbonated silicates w/ no C3S

Phase composition and Rietveld refinement of a hydrating cement

Paste Hydration Products: 'Type II' OPC

Noncrystalline analysis: Pozzolanic material

With known amount of an internal (corundum) standard

Non-Ambient / In Situ Analysis

High temperature or humidity control in air or purge gases

Non-Ambient / In Situ Analysis

High temperature or humidity control in air or purge gases

207 Cement

- Humidity chamber (reflection)
- Rietveld refinement (100 scans in 24 hours)

Non-Ambient / In Situ Analysis

High temperature or humidity control in air or purge gases

Change in ettringite *a* and *c* lattice parameters during early cement paste hydration

Ettringite $Ca_6Al_2(SO_4)_3(OH)_{12} \cdot 26H_2O$

Non-Ambient / In Situ Analysis

Calculation of unit cell (lattice) parameters by empirical measurement of d-spacings, e.g.,

High temperature or humidity control in air or purge gases

symmetry, high-conductivity phases

Effect of site occupancy on unit cell 'a'

engineering

National Institute of Standards and Technology U.S. Department of Commerce

Generation of x-rays

Signal emitted from tube

Generation of x-rays

Continuous radiation: Caused by deceleration of electrons emitted from the filament when passing the positively-charged nuclei in the anode, or when colliding with electrons of the anode atoms.

Generation of x-rays

Characteristic radiation:

1) incident electrons have sufficient energy to eject electrons out of the inner shell of the target (anode) metal, and then...

Generation of x-rays

Characteristic radiation:

 electrons from a higher energy shells drop down to fill the vacancy, emitting x-ray photons with precise energies that are 'characteristic' of the electron energy levels of the target metal atoms AND the specific orbital shell energy.

K α 1, K α 2, and K β are the primary wavelengths of interest

- Characteristic radiation is only emitted above certain threshold energy levels
- Kα radiation comprises two wavelengths: Kα₁ and Kα₂. The wavelengths correspond to the transitions from the L-shell to the K-shell.

K α 1, K α 2, and K β are the primary wavelengths of interest

Two peaks for each crystalline reflection!!!

K α 1, K α 2, and K β are the primary wavelengths of interest

Ka1 and Ka2 peaks are acceptable: K β is not

Conventional 'reflection' geometry and focusing optics

Conventional 'reflection' geometry and focusing optics

Conventional 'reflection' geometry and focusing optics

- Sample surface bisects incident and scattered beams
- Scattered beams focus at the same distance as the tube focus in receiving slit

 $\lambda = 2 d \sin(\theta)$

3) X-Ray Diffraction Theory and Introduction to Crystallography

XRD Theory and Basic Crystallography

Crystalline materials: orderly, periodic array of atoms, each describing an identical environment

that defines a crystal. lattice crystal structure + basis = . • unit cell lattice basis \rightarrow unit cell parameters \rightarrow unit cell contents (unit cell size & shape) (atom types & positions) \rightarrow relative peak intensities \rightarrow peak positions

The *unit cell* is the basic repeating unit

The unit cell describes at least one repeating unit that can be used to construct the structure.

XRD Theory and Basic Crystallography

Crystalline materials: orderly, periodic array of atoms, each describing an identical environment

The 7 Types of Unit Cells:

The 7 Crystal Systems:

Ę
e
uu
S
S
bu
asi
ĕ
20
-
↓

Triclinic	a≠ b≠ c	$\alpha \neq \beta \neq \gamma$
Monoclinic	a≠ b≠ c	$\alpha = \gamma \neq \beta$
Orthorhombic	a≠ b≠ c	$\alpha = \beta = \gamma = 90^{\circ}$
Tetragonal	a=b≠c	$\alpha = \beta = \gamma = 90^{\circ}$
Trigonal	a = b = c	$\alpha = \beta = \gamma < 120^{\circ}, \neq 90^{\circ}$
Hexagonal	a=b≠ c	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$

XRD Theory and Basic Crystallography

Crystalline materials: orderly, periodic array of atoms, each describing an identical environment

Miller Indices

(a,0,0)

To find the Miller Indices:

- Find intercepts on a, b, c axes (e.g., 1/3, 1/2, 1)
- Take reciprocals (3 2 1)

All lattice planes can be indexed in the same way

The (321) plane is shown with intercepts at a/3, b/2, c e.g., 1/3, 1/2, 1

Crystalline materials: orderly, periodic array of atoms, each describing an identical environment

Interaction of x-rays with *different planes* of atoms produce a unique diffraction pattern, which contains information about the atomic arrangement within the crystal.

The unit cell parameters determine i) the peak **positions** and ii) the peak **intensity** results from the effect of atom type (electron density).

Crystalline materials: orderly, periodic array of atoms, each describing an identical environment

Crystalline materials: orderly, periodic array of atoms, each describing an identical environment

The position of a diffraction peak in 'degrees 2θ ' is a product of the crystal lattice interplanar spacing, or *d*-spacing, which can be calculated using the scan angle and x-ray wavelength through the Bragg equation:

Interaction of x-rays with crystalline material: Scattering

Atoms scatter X-rays and acts as a point source....

... or when arranged in a regular array.

X-rays interact with a crystal and are scattered in different distinct directions as governed by the periodic arrangement of atoms in the structure.

Interaction of x-rays with crystalline material: Diffraction

An array of atoms with incident x-rays of fixed wavelength and their interaction.

Constructive

Destructive

In phase (constructive)

Interaction of x-rays with crystalline material: Diffraction and the Bragg equation

The condition in which constructive interference occurs:

$n\lambda = 2d \sin \theta$ Bragg Equation

- 1) Incident wave fronts OA and O'C are <u>in</u> <u>phase</u>
- 2) Scattered waves AP and CP' will be in phase *only* if the extra distance traveled by the longer wave (*i.e.*, BC + CD) equals a <u>whole number of wavelengths</u>.

3) Thus:

BC + CD = $n\lambda$, where n=1,2,3...

or, substituting: $2BC = n\lambda$,

4) From trigonometry:

 $\sin \theta = BC/d$, or $BC = d \sin \theta$.

Multiply both sides by 2:

 $2BC = 2d \sin \theta$, or

 $n\lambda = 2d \sin \theta$

Interaction of x-rays with crystalline material: Diffraction and the Bragg equation

In plain English, diffraction occurs when the extra distance the 2nd beam travels is one whole number of wavelengths longer than the first.

4) Qualitative Analysis: Phase Identification

Overview of phase identification

'Search-match' using 'd-I pairs' from reference databases – e.g., ICDD PDF database

Polycrystalline mixture, showing only the mullite phase with 'stick overlays'

Overview of phase identification

'Search-match' using 'd-I pairs' from reference databases – e.g., ICDD PDF database

Polycrystalline mixture, showing only the mullite phase with 'stick overlays'

Phase Identification: Online Examples...

~5-Minute Break