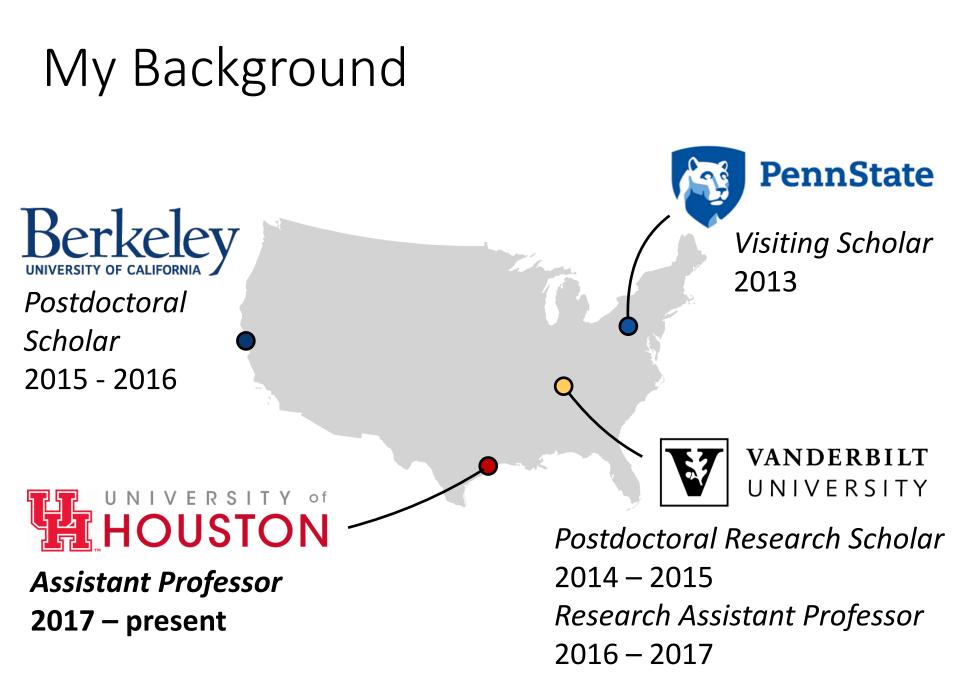
Designing Resilient Cyber-Physical Systems

Aron Laszka University of Houston

joint work with Waseem Abbas¹, Yevgeniy Vorobeychik², and Xenofon Koutsoukos²

¹Information Technology University, Lahore, Pakistan ²Vanderbilt University



My Collaborators

Waseem Abbas Yevgeniy Vorobeychik Xenofon Koutsoukos Information Technology Vanderbilt University University Nashville, TN Lahore, Pakistan Distributed cyber-physical systems, such as smart critical infrastructure, are becoming crucial to everyday life

Cyber-Risks

- Cyber-physical systems are threatened by malicious cyberattacks, which may have significant physical impact
 - e.g., 2015 and 2016 attacks against Ukrainian power grid
- Defending complex and large-scale CPS, such as smart critical infrastructure, is particularly challenging
 - may contain a number of undiscovered software vulnerabilities due to their sizable codebases
 - large attack surfaces
 - variety of threats
- Example: "Dragonfly 2.0" campaign
 - active since 2015
 - targeting energy sector in Europe and North America

Structural Robustness

• Perfect security is virtually impossible in practice

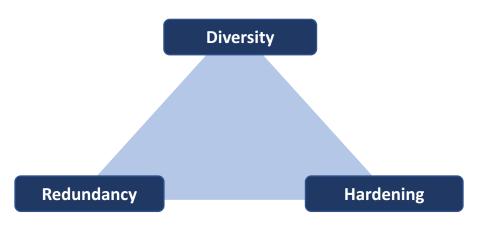
Cyber-risks need to be addressed by designing cyberphysical systems to be robust

 Robustness, resilience, survivability, ...: ability of a system to retain its functionality (to some extent) in case of successful cyber-attack

How to improve structural robustness?

Outline

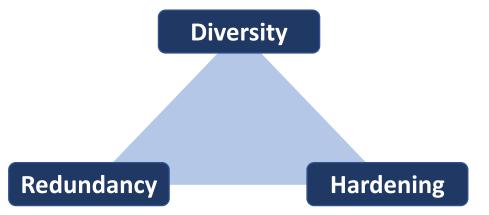
- Structural robustness for distributed CPS
 - redundancy, diversity, and hardening in graphs



- General model and framework for CPS
 - case studies: cyber-physical attacks against smart waterdistribution and cyber-attacks against transportation
- Conclusion and future work

Improving Structural Robustness

• Canonical approaches:

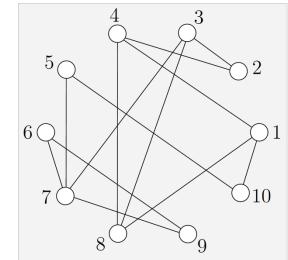


- <u>Redundancy</u>: deploying additional, redundant components in a system, so even if some components are compromised or impaired, the system may retain correct functionality
- <u>Diversity</u>: implementing the components of a system using a diverse set of component types, so that vulnerabilities that are present in only a single type have limited impact
- <u>Hardening</u>: reinforcing individual components or component types (e.g., tamper-resistant hardware and firewalls)

How to combine redundancy, diversity, and hardening?

Example: Improving Network Availability

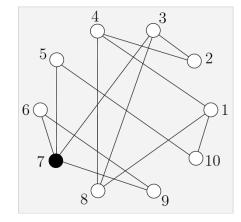
- **Pairwise connectivity**: fraction of node pairs that are connected with each other through a path
 - we use it to measure network availability
- **Simple attack model**: adversary removes N nodes to minimize the pairwise connectivity of the residual network
- Example:



- worst-case N = 2 attack removes nodes {1, 7}
- pairwise connectivity after attack = 0.286

Hardening and Diversity

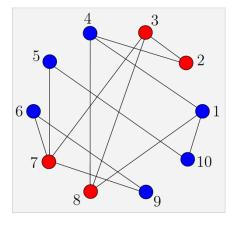
• Hardening: protect a subset of nodes from attacks



- worst-case N = 2 attack removes nodes {3, 10}
- pairwise connectivity after attack = 0.429 (> 0.286)
- **Diversity**: each node has a type, and the adversary can attack nodes of only one type

two types, red and blue

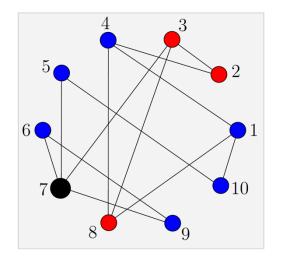
node 7 is hardened



- worst-case N = 2 attack removes nodes {2, 7}
- pairwise connectivity after attack = 0.571 (> 0.286)

Combining Hardening and Diversity

- two types,
 red and blue
- node 7 is hardened

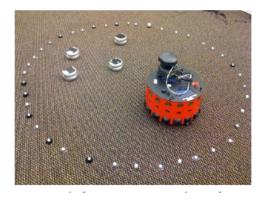


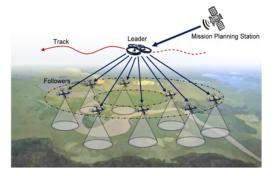
- worst-case N = 2 attack
 removes nodes {1, 5}
- pairwise connectivity after attack = 0.75 (> 0.571)

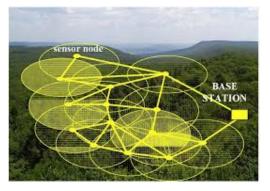
What about integrity?

Networked Systems

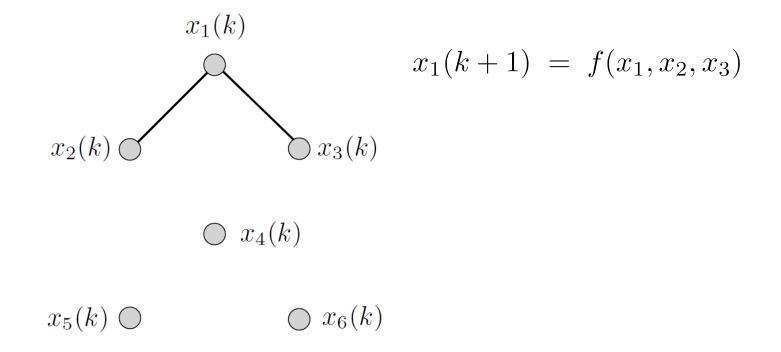
- In many networked control systems, a **global objective** needs to be achieved through **local interactions**
- The individual components have **limited sensing**, **computational**, and **communication capabilities**





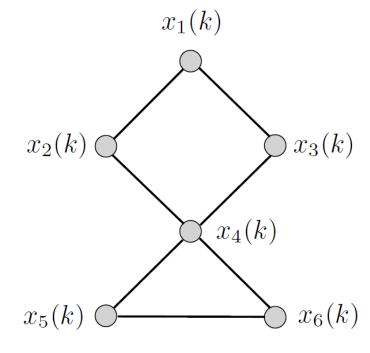


Global Objective through Local Interactions



 $x_i(k)$: state of node *i* at time step *k*

Global Objective through Local Interactions



$$x_{1}(k+1) = f(x_{1}, x_{2}, x_{3})$$

$$x_{2}(k+1) = f(x_{1}, x_{2}, x_{4})$$

$$x_{3}(k+1) = f(x_{1}, x_{3}, x_{4})$$

$$\vdots$$
Global objective is a function of

$$\mathbf{X} = (x_1, x_1, \cdots, x_7)$$

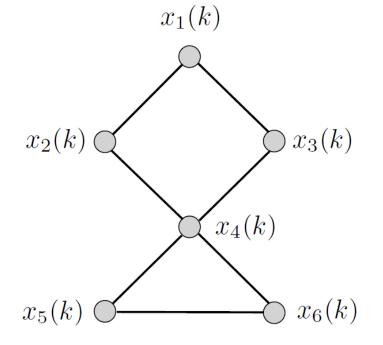
 $x_i(k)$: state of node *i* at time step *k*

Consensus Problem

• Canonical problem formulation: Consensus Problem

All nodes need to eventually converge to a common state:

$$\lim_{k \to \infty} x_i(k) = x, \forall i$$



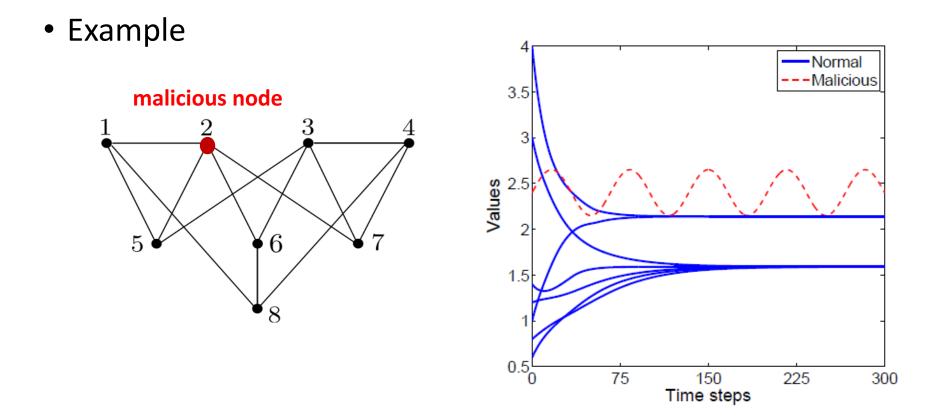
$$x_i(k+1) = \sum_{j \in N_i(k)} w_{ij}(k) x_j(k)$$

Linear Consensus Protocol (LCP)

 consensus is achieved if all nodes implement LCP, and the underlying graph is connected

Resilient Consensus Problem

• Malicious nodes: their goal is to prevent the network from reaching consensus (e.g., compromised by an adversary)



Resilient Consensus Problem (contd.)

- Models
 - F-total malicious model:
 - if $S \subseteq V$ is the set of malicious nodes, then $|S| \leq F$
 - F-local malicious model:

if $S \subseteq V$ is the set of malicious nodes, then $|N(i) \cap S| \leq F$, for every $i \in V \setminus S$

Goal:

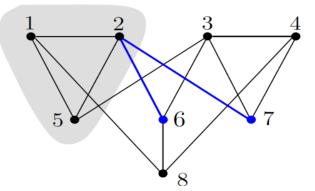
characterize networks in which nodes can reach consensus under the F-total or F-local malicious models

• Previous work: r-robustness and (r,s)-robustness

r-Robustness

r-reachable subset:

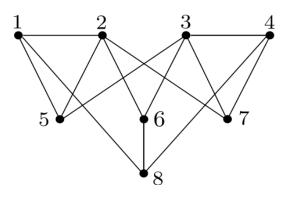
a subset of nodes S is r-reachable if there exists at least one node in S that has at least r neighbors outside of S



subset S = {1, 2, 5} is 2-reachable

• r-robust graph:

a graph is r-robust if for any pair of non-empty and disjoint subsets of nodes, at least one of them is r-reachable

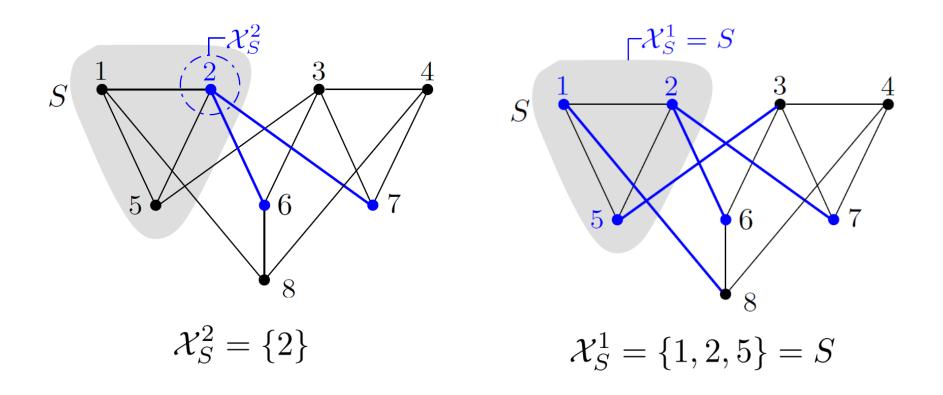


2-robust graph

(r,s)-Robustness

• Let S be a set of nodes, then \mathcal{X}_S^r is the subset of nodes in S that each have at least r neighbors outside of S

 $\mathcal{X}_S^r = \{ v \in S : |N(v) \cap (V \setminus S)| \ge r \}$

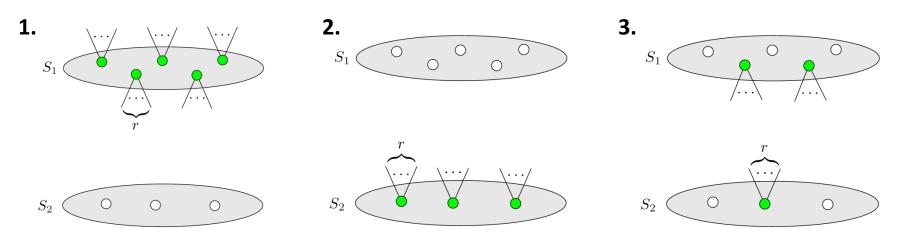


(r,s)-Robustness (contd.)

• (r,s)-robust graph:

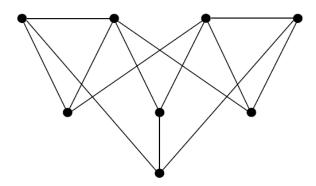
A graph is (r,s)-robust if for every pair of non-empty, disjoint subsets S_1 and S_2 of V, at least one of the following holds:

- 1. $|\mathcal{X}_{S_1}^r| = |S_1|$ 2. $|\mathcal{X}_{S_2}^r| = |S_2|$ 3. $|\mathcal{X}_{S_1}^r| + |\mathcal{X}_{S_2}^r| \ge s$
- r-robust = (r, 1)-robust



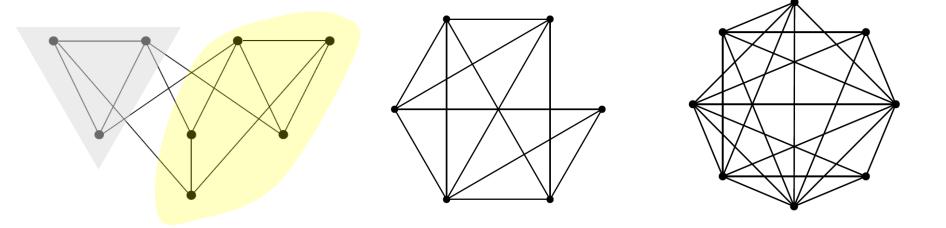
number of green nodes \geq s

Examples of (r,s)-Robust Graphs



(2,1)-robust (hence, 2-robust)

Examples of (r,s)-Robust Graphs



Not (2,2)-robust

(2,2)-robust

(3,3)-robust

(r,s)-Robustness and Resilient Consensus

Theorem (LeBlanc et al. 2013):

Let G(V, E) be a time-invariant network in which each normal node implements the Weighted-Mean- Subsequence-Reduced (WMSR) algorithm. Then,

- 1. under the *F-total malicious model*, consensus is achieved asymptotically if and only if G is (F + 1, F + 1)-robust
- 2. under the *F-local malicious model*, to achieve asymptotic consensus, it is necessary that G is (F + 1)-robust, and is sufficient that G is (2F + 1)-robust.

 WMSR idea: omit F lowest and F highest values from state update

Hardening: Trusted Nodes

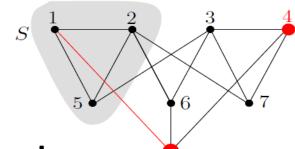
- Unfortunately, r-robustness is a very strong property
 - some graphs have very large connectivity but low robustness
- In practice, increasing connectivity through deploying a large number of new nodes and links may be impossible or prohibitively expensive
- Hardening: instead of increasing connectivity, we make a small set of nodes trusted
 - trusted nodes are protected from adversaries
 - for example, tamper-resistant hardware, complex firewalls, physical protection

Goal:

characterize networks in which nodes can reach consensus with the help of trusted nodes

r-Robustness with Trusted Nodes

r-reachable subset with trusted nodes T: a subset of nodes S is r-reachable with trusted nodes T if there exists at least one node in S that has at least r neighbors outside of S or one trusted neighbor outside of S

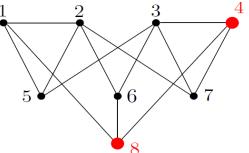


subset S = {1, 2, 5} is not 3reachable, but it is 3reachable with trusted nodes

• r-robust graph:

 $T = \{4, 8\}$

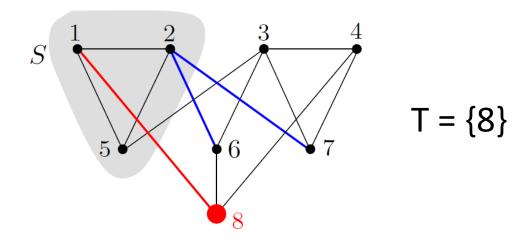
graph is r-robust with trusted nodes if for any two nonempty and disjoint subsets of nodes, at least one of them is r-reachable with trusted nodes



3-robust graph with trusted nodes

(r,s)-Robustness with Trusted Nodes

• Let S be a subset of nodes, then Z_S^r is a subset of S such that each node in Z_S^r has at least r neighbors outside of S or one trusted neighbor outside of S



• for S = {1, 2, 5}, we have Z_S^2 = {1, 2} since node 2 has two neighbors outside of S, and node 1 has a trusted neighbor outside of S

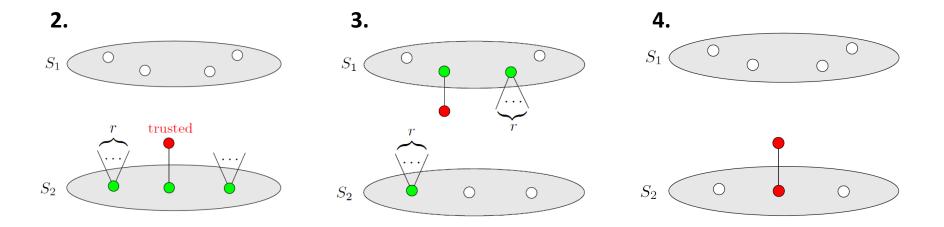
(r,s)-Robustness with Trusted Nodes (contd.)

• (r,s)-robust graph with trusted nodes:

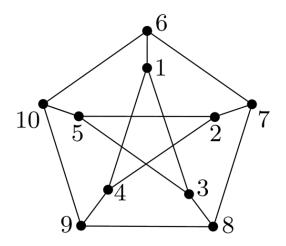
A graph is (r,s)-robust with trusted nodes T if for every pair of non-empty, disjoint subsets S_1 and S_2 of V, at least one of the following holds:

1.
$$|\mathcal{Z}_{S_1}^r| = |S_1|$$

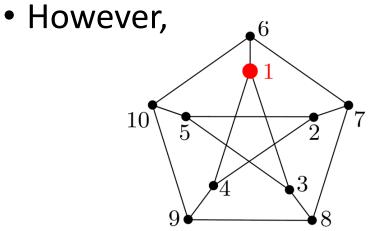
2. $|\mathcal{Z}_{S_2}^r| = |S_2|$
3. $|\mathcal{Z}_{S_1}^r| + |\mathcal{Z}_{S_2}^r| \ge s$
4. $(\mathcal{Z}_{S_1}^r \cup \mathcal{Z}_{S_2}^r) \cap T \neq \emptyset$



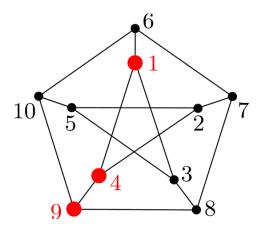
Example (r,s)-Robust Graphs with Trusted Nodes



- Peterson graph is not 2-robust
- For instance, consider
 - $S_1 = \{1, 2, 3, 4, 5\}; S_2 = \{6, 7, 8, 9, 10\}$
- Neither of these subsets contains a node that has two neighbors outside of the subset

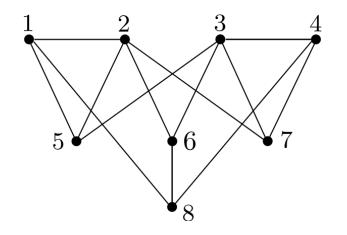


graph is **2-robust** with any single node as trusted node



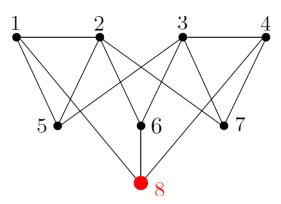
graph is **3-robust** with trusted nodes {1, 4, 9}

Example (r,s)-Robust Graphs with Trusted Nodes

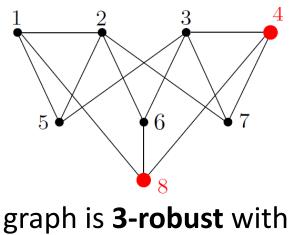


- Graph is 2-robust, but not (2,2)-robust
- For instance, consider
 S₁ = {1, 2, 3, 5};
 S₂ = {3, 4, 6, 7, 8}

• However,



graph is (2,2)-robust with a
single trusted node T = {8}



trusted nodes T = {4, 8}

Robustness with Trusted Nodes and Resilient Consensus

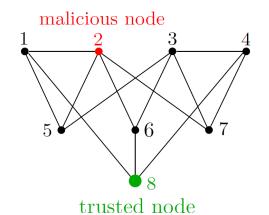
 Results that relate (r,s)-robustness to the resilience of consensus can be generalized using the notion of (r,s)robustness with trusted nodes

Theorem:

Let G(V, E) be a time-invariant network with trusted nodes T in which each normal node implements the RCA-T algorithm. Then,

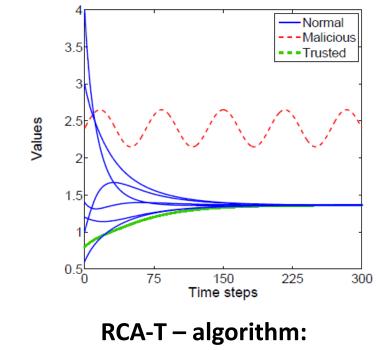
- 1. under the *F*-total malicious model, consensus is achieved asymptotically if and only if G is (F + 1, F + 1)-robust with T.
- under the *F-local malicious model*, to achieve asymptotic consensus, it is necessary that G is (F + 1)-robust with T, and is sufficient that G is (2F + 1)-robust with T.
- Resilient Consensus Algorithm with Trusted nodes (RCA-T): always accept values for state update from trusted nodes

Illustration for F-Total Model



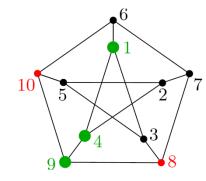
- G is (2,2)-robust with T = {8}
- There is one malicious node.

Normal Malicious 3.5 3 2.5 **Values** 2 1.5 0.5^L 75 150 225 300 Time steps WMSR – algorithm: consensus cannot be achieved

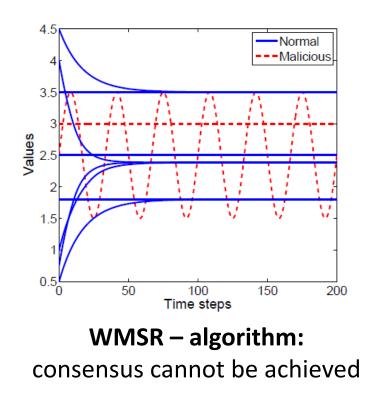


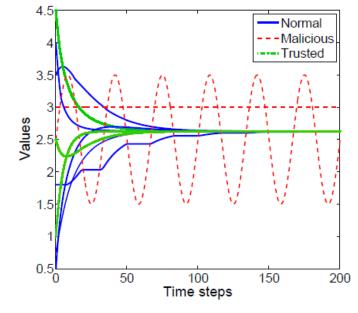
consensus is achieved with trusted node

Illustration for F-Local Model



- G is 3-robust with T = {1, 4, 9}
- There are two malicious nodes which are {8, 10}





RCA-T – algorithm: consensus is achieved with trusted nodes

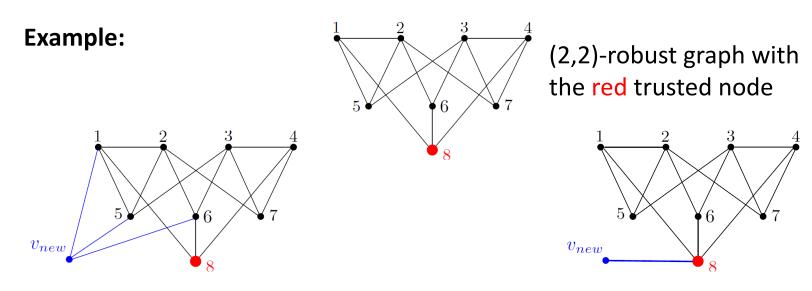
Building Robust Graphs

Adding Nodes to Robust Graphs

Theorem:

Let G be (r,s)-robust with trusted nodes, then adding a new node v_{new} to G preserves the robustness property of the graph if

- 1. v_{new} is adjacent to at least (r+s-1) non-trusted nodes, or
- 2. v_{new} is adjacent to at least one trusted node.



- v_{new} is connected to 3 nontrusted nodes
- New graph is still (2,2)-robust

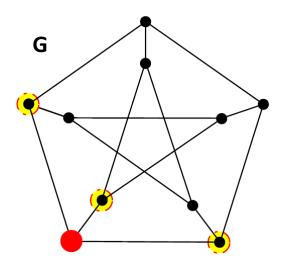
- v_{new} is connected to a single trusted node
- New graph is still (2,2)-robust

Replacing Trusted Node with Clique

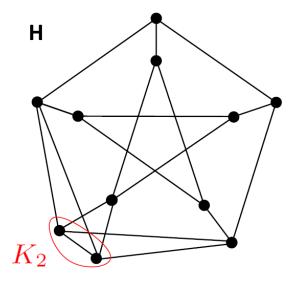
Theorem:

Let G be an r-robust graph with trusted nodes T. Let $t \in T$, and H be a graph obtained by replacing t with a clique of size r, denoted by K_r , such that each neighbor of t in G is adjacent to each node in K_r , then H is also r-robust.

Example:



- A **2-robust** graph with a red trusted node
- Neighbors of trusted node are highlighted



- A trusted node is replaced by K₂
- H is still 2-robust

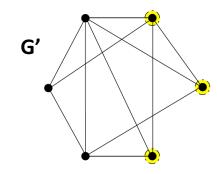
Replacing Trusted Node with Robust Graph

Theorem:

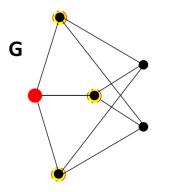
Let G be an r-robust graph with trusted nodes T, G' be another r-robust graph, and η be a non-reachable subset of nodes in G'.

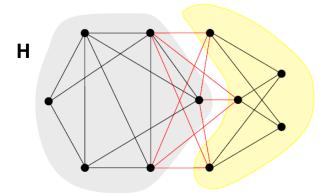
Let $t \in T$, and H be a graph obtained from G by replacing t with G' such that each neighbor of t in G is adjacent to each node in the subset η of G', then H is also r-robust.

Example:



- G' is **3-robust**
- Nodes in subset η are highlighted

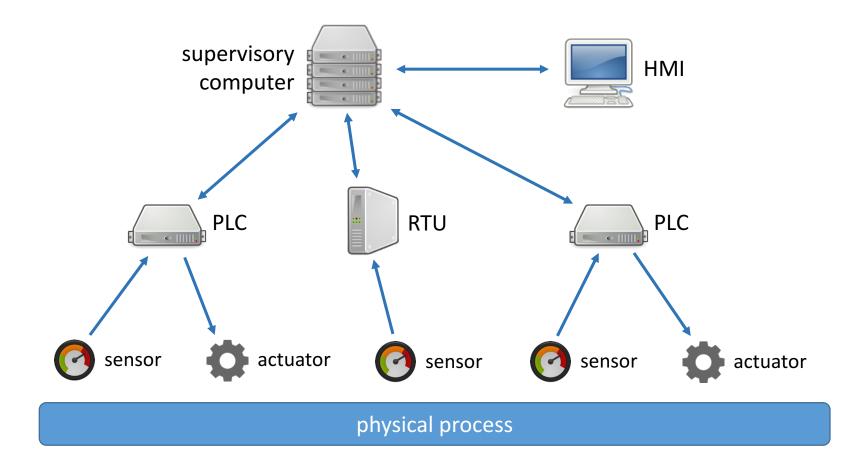




- G is **3-robust** with red trusted node
- Neighbors of trusted node are highlighted
- H is also is 3-robust
- New edges added are shown in red

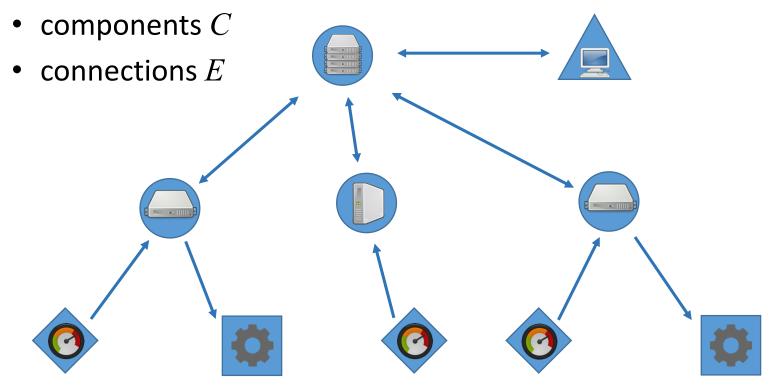
General Framework for Cyber-Physical Systems

Example Cyber-Physical System



Graph-Theoretic Model

• Graph G = (C, E)



physical process

Components

- Properties of a component $c\in C$
 - type *t_c*
 - computational
 - sensor

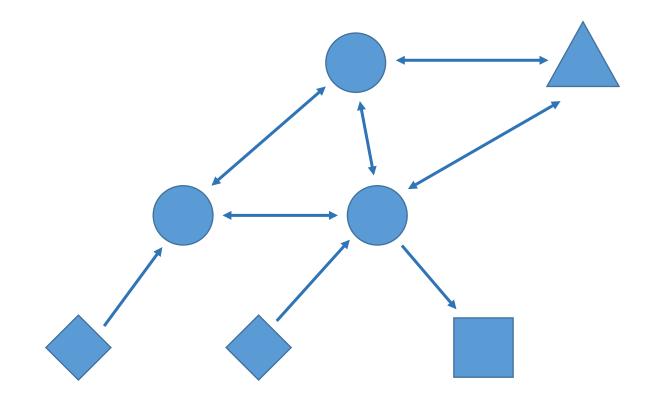
actuator

🔺 interface

- set of input connections E_c
 - example:

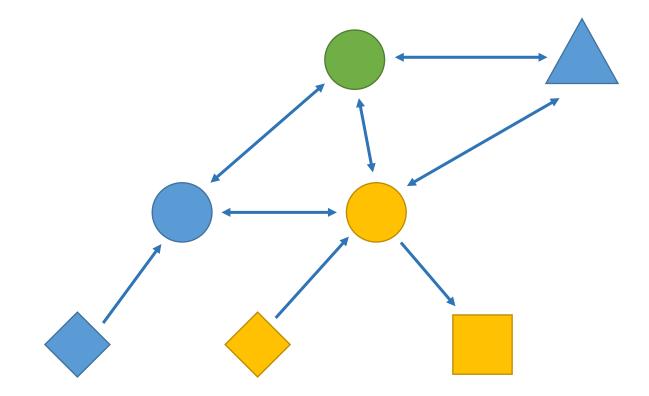
- deployed implementation r_c
 - chosen from a set of available implementations I
 - example set:

How to improve the resilience of a CPS?



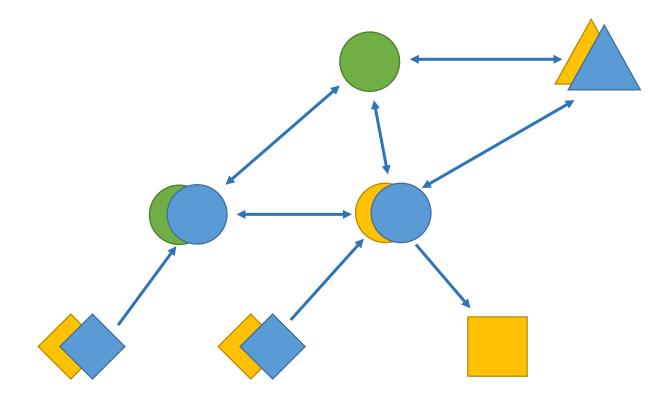
Diversity

- use a variety of implementations
- each implementation $i \in I$ has a usage cost D_i



Redundancy

- deploy additional instances of some components (based on different implementations)
- each implementation $i \in I$ has a deployment cost R_i



Hardening

- Harden some implementations (e.g., source code reviews, firewalls, penetration testing)
- Each implementation has a set of available hardening levels L_i
 - each level $l \in L_i$ has a cost H_l and an estimate of being secure S_l
 - example levels:

{ (DEFAULT:	\$100 <i>000,</i>	0.9),
(SECURE:	\$500 <i>000,</i>	0.95),
(VERY SECURE:	\$1000000,	0.99) }

• Example selection:



 \rightarrow VERY SECURE

Resilience Maximization Problem

• Given redundancy, diversity, and hardening expenditures *R*, *D*, *H*, the optimal deployment is

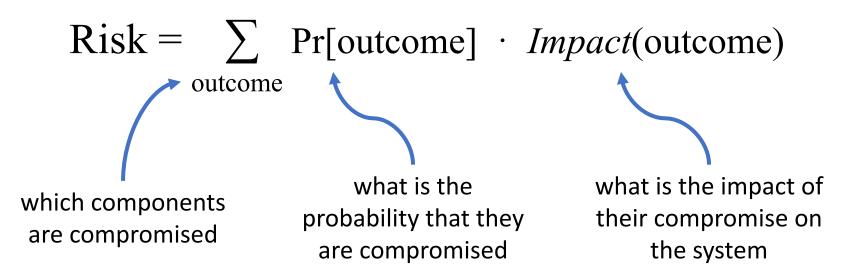
 $\min_{\mathbf{r},\mathbf{l}} \operatorname{Risk}(\mathbf{r},\mathbf{l})$ subject to $\sum_{c \in C} \sum_{i \in r_c} R_i \leq \mathbf{R}, \ \sum_{i \in \bigcup_c r_c} D_i \leq \mathbf{D}, \ \sum_{i \in I} H_{l_i} \leq \mathbf{H}$

- Computationally challenging (NP-hard), but we have efficient heuristics that work well in practice
- General problem: given budget **B**, the optimal deployment is

$$\min_{\mathbf{r}, \mathbf{l}} \operatorname{Risk}(\mathbf{r}, \mathbf{l})$$

subject to $\sum_{c \in C} \sum_{i \in r_c} R_i + \sum_{i \in U_c} D_i + \sum_{i \in I} H_{l_i} \leq \mathbf{B}$

How to quantify security risks?



Probability of Compromise

- Each implementation i is vulnerable with probability $1 S_{l_i}$ (independently of other implementations)
- Instances of vulnerable implementations are compromised
- A component is compromised if

	Component Type				
	sensor	computational	actuator	interface	
stealthy attack	all instances are compromised	all instances are compromised or all input components are compromised			
non-stealthy attack	majority of instances are compromised	either majority of instances are compromised or majority of input components are compromised			

Impact of Compromise

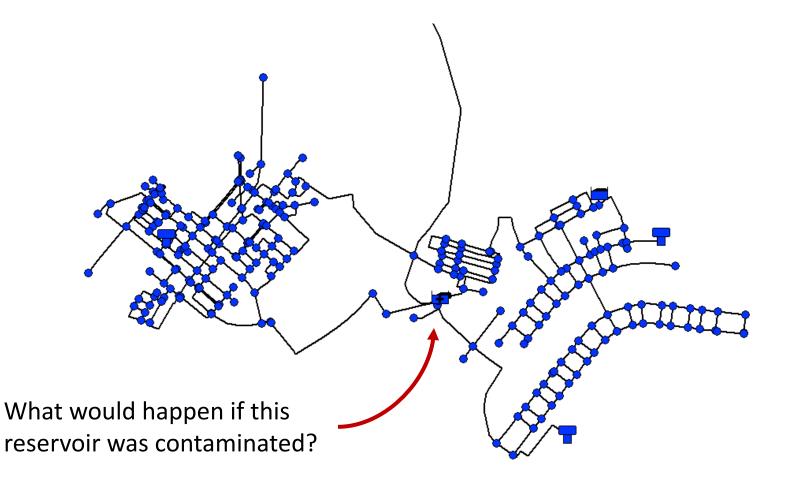
• Impact depends on the set of compromised components

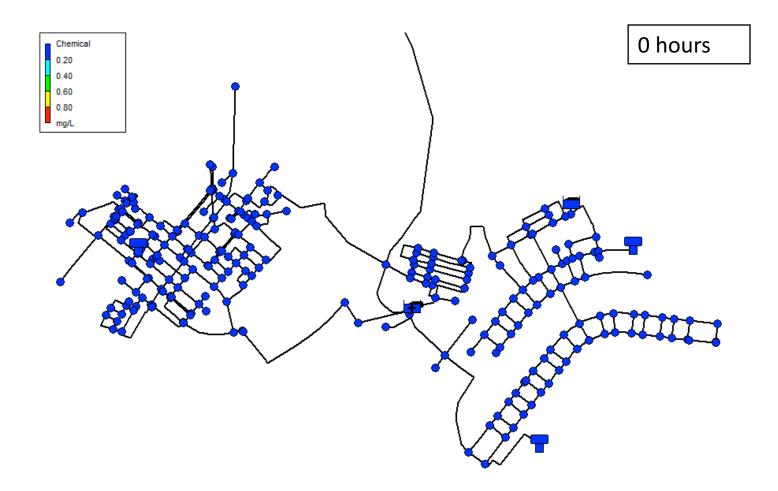
Impact = MaximumDamage(compromised components)

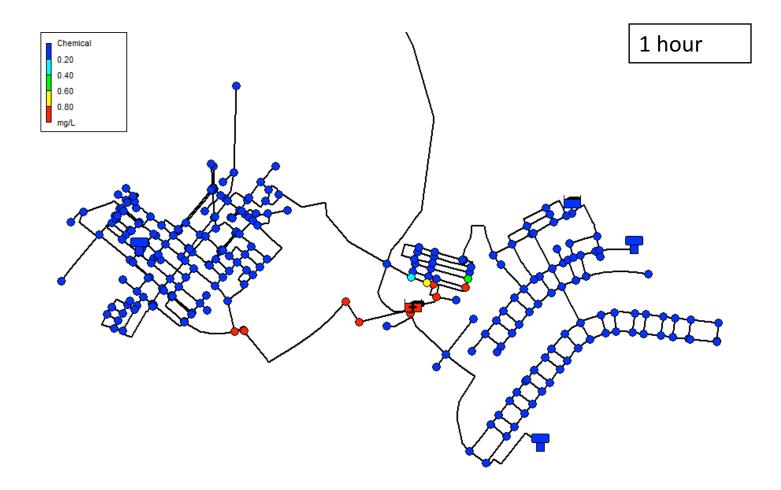
- exact formulation depends on the system
- We present two example systems
 - 1. smart water-distribution monitoring for contaminants
 - 2. transportation networks

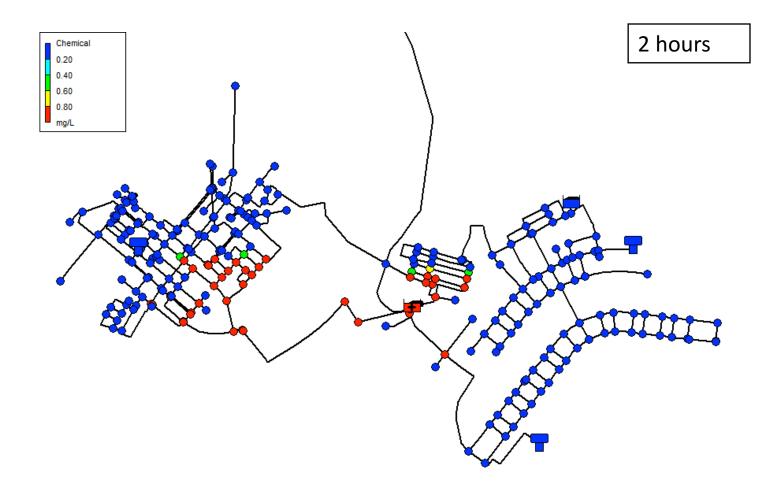
Water-Distribution Networks

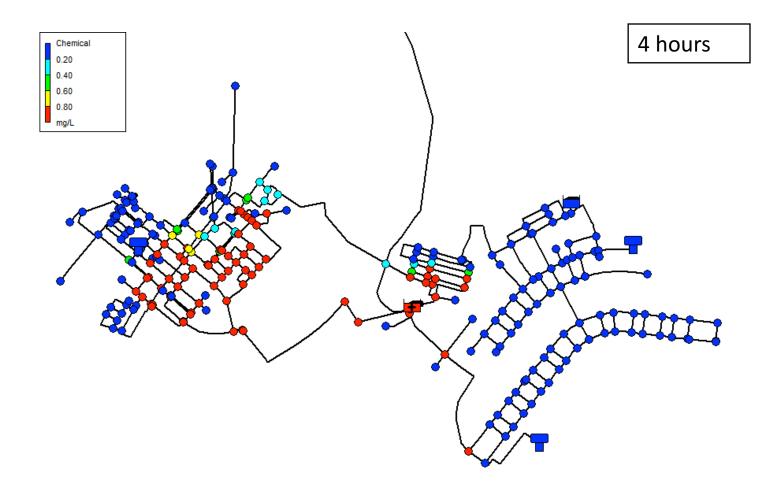
• Example topology (real residential network from Kentucky)

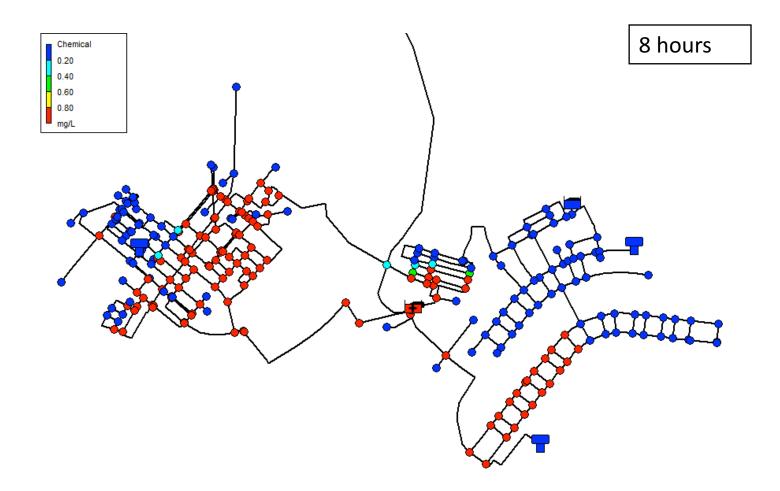


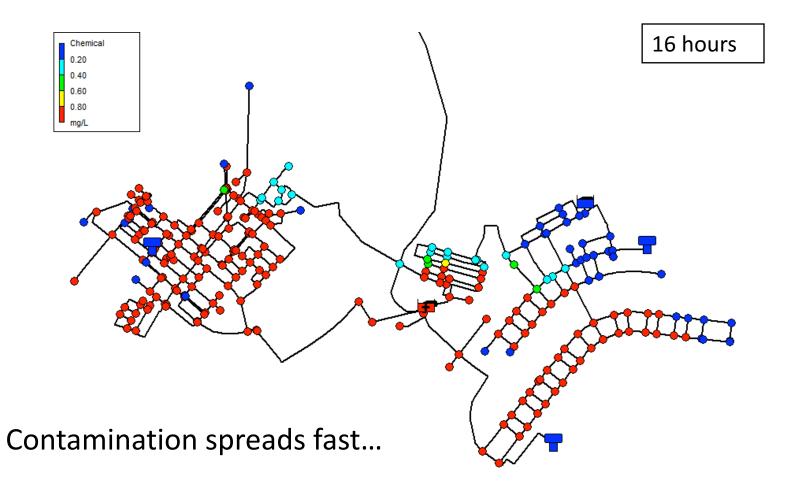








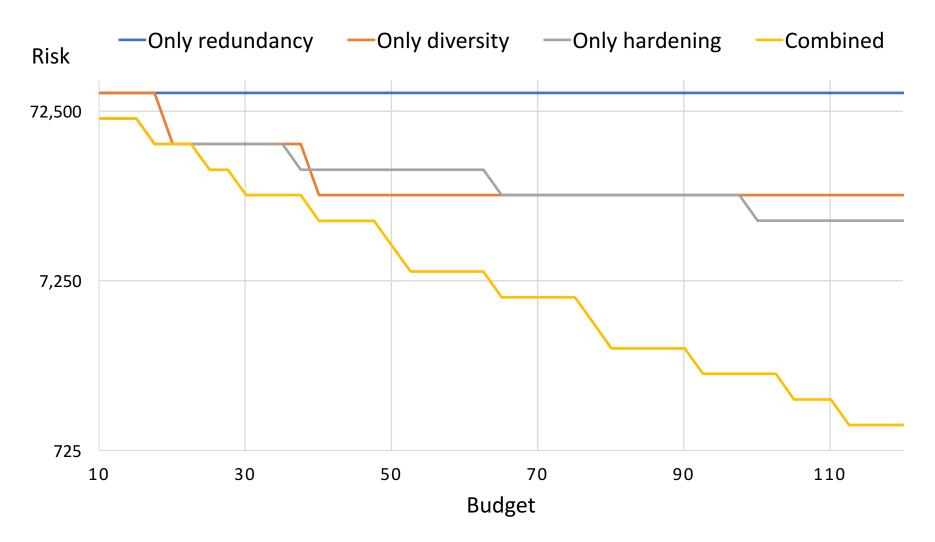




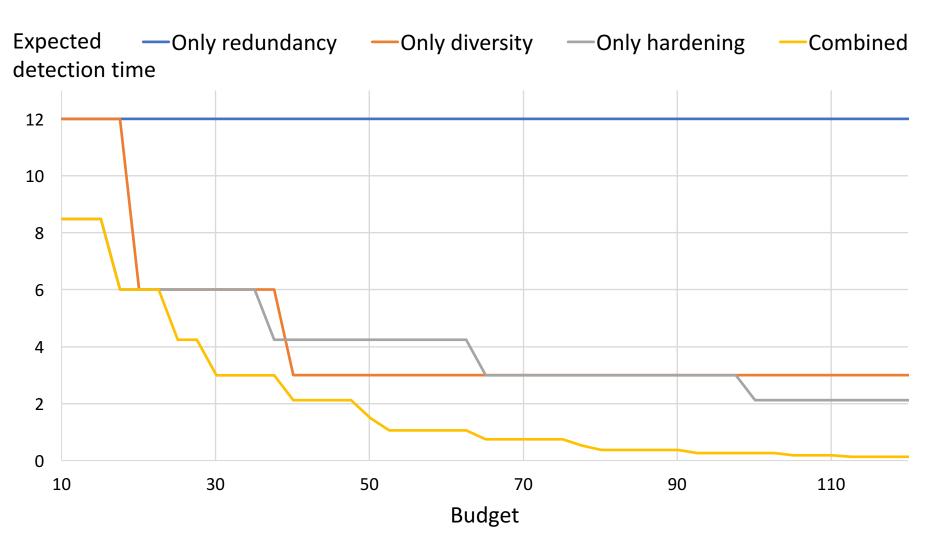
Monitoring Water Quality

- We can deploy sensors that continuously monitor water quality
 - when contaminant concentration reaches a threshold, operators are alerted
- Impact: amount of contaminants consumed by the residents before detection
- Cyber-physical attack
 - compromises and disables vulnerable sensors
 - contaminates the reservoir that maximizes impact
- Defender invests into redundancy, diversity, and hardening for sensors

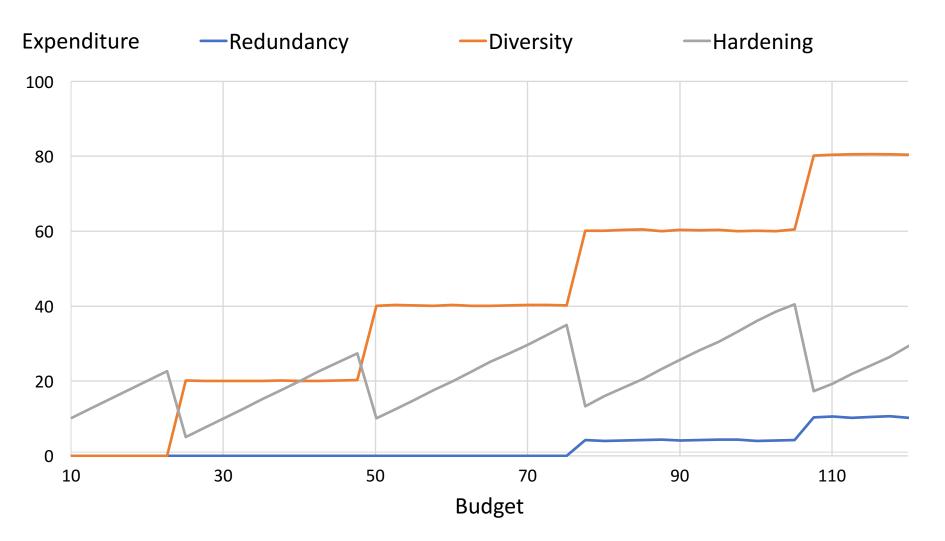
Security Risks



Expected Detection Time



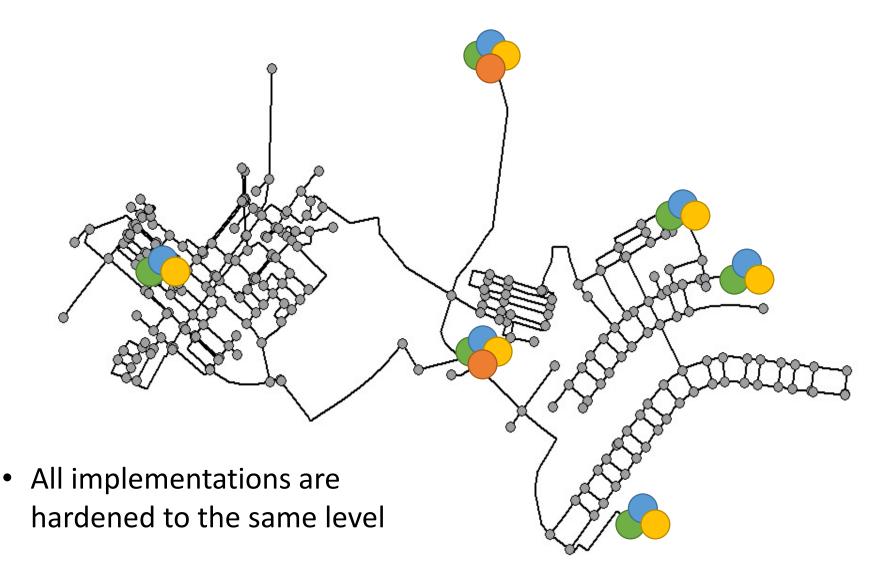
Optimal Allocation of Investments



Optimal Allocation of Investments

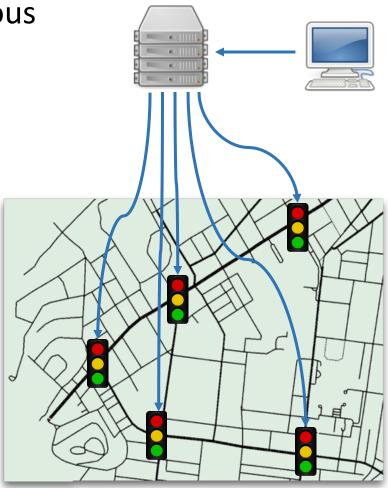
Budget	Redundancy	Diversity	Hardening
10	0	0	10
20	0	0	20
30	0	20	10
40	0	20	20
50	0	40	10
60	0	40.2	19.8
70	0	40.2	29.8
80	4	60	16
90	4	60.3	25.7
100	4	60	36
110	10.4	90.4	19.2
120	10.2	80.4	29.4

Optimal Deployment (B = 90)



Transportation Network

- Attacker may tamper with traffic control systems in order to cause disastrous traffic congestions
 - example:
 2006 incident in Los Angeles
- Component
 - embedded computer deployed at an intersection
 - controls the traffic lights
 - compromised components may be used by an attacker to disrupt traffic going through the intersection

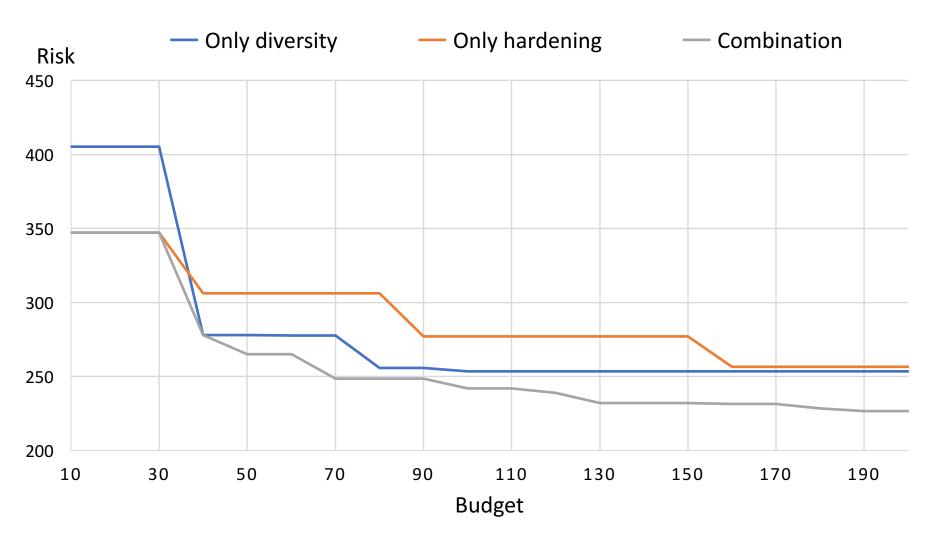


Transportation Network Risk Model

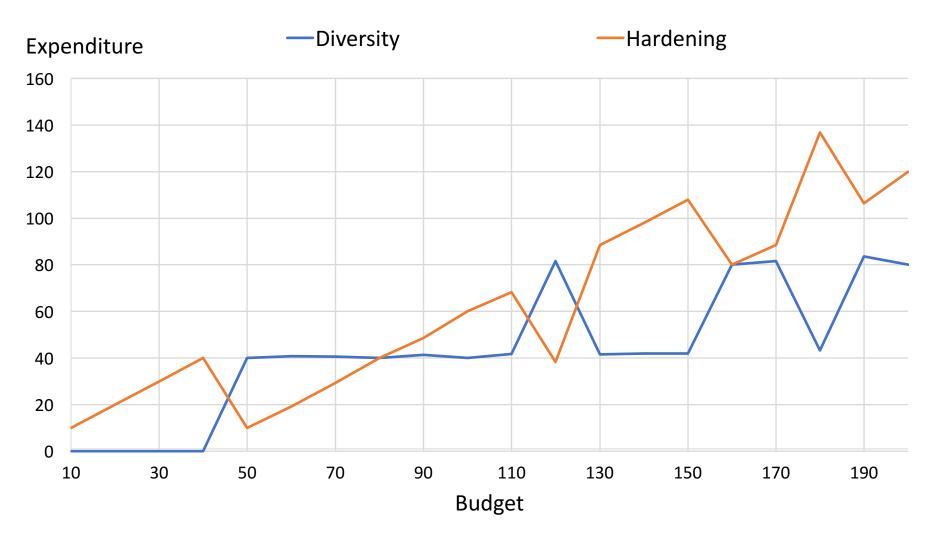
- We do not consider redundancy in this case since deploying redundant traffic light controllers requires additional assumptions
- Impact: increase in travel time due to adversarial tampering with traffic control
- Quantifying impact: traffic model

- we use a well-known model, Daganzo's cell transmission model
- compromised intersections are "blocked" (no through traffic)
- travel time computed efficiently by solving the traffic model using a linear program

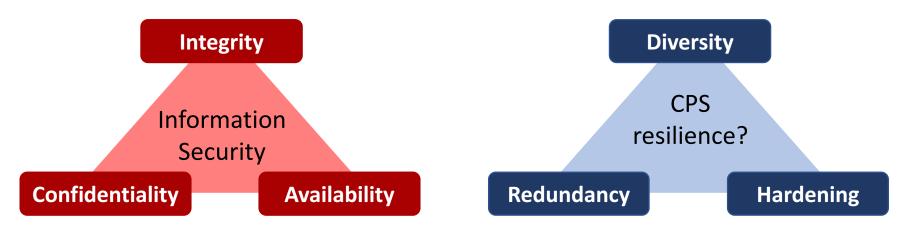
Security Risks



Optimal Allocation of Investment



Conclusion and Future Work



- There is no "silver bullet" approach for improving the robustness of cyber-physical systems
- The basic components of information security are confidentiality, integrity, and availability
- What are the basic components of CPS resilience?
- How do we organize, analyze, integrate, and evaluate the broad range of techniques that are available?

Thank you for your attention!

Aron Laszka (alaszka@uh.edu)

Waseem Abbas (w.abbas@itu.edu.pk)

Yevgeniy Vorobeychik (yevgeniy.vorobeychik@vanderbilt.edu) Xenofon Koutsoukos (xenofon.koutsoukos@vanderbilt.edu)