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Distributed	cyber-physical	systems,	
such	as	smart	critical	infrastructure,	
are	becoming	crucial	to	everyday	life



Cyber-Risks
• Cyber-physical	systems	are	threatened	by	malicious	cyber-
attacks,	which	may	have	significant	physical	impact
• e.g.,	2015	and	2016	attacks	against	Ukrainian	power	grid

• Defending	complex	and	large-scale	CPS,	such	as	smart	
critical	infrastructure,	is	particularly	challenging
• may	contain	a	number	of	undiscovered	software	
vulnerabilities	due	to	their	sizable	codebases
• large	attack	surfaces
• variety	of	threats

• Example:
“Dragonfly	2.0”	campaign
• active	since	2015
• targeting	energy	sector	in
Europe	and	North	America



Structural	Robustness
• Perfect	security	is	virtually	impossible	in	practice	

Øcyber-risks	need	to	be	addressed	by	designing	cyber-
physical	systems	to	be	robust

• Robustness,	resilience,	survivability,	…:
ability	of	a	system	to	retain	its	functionality	(to	some	extent)	
in	case	of	successful	cyber-attack

How	to	improve	structural	robustness?



Outline
• Structural	robustness	for	distributed	CPS

• redundancy,	diversity,	and	hardening	in	graphs

• General	model	and	framework	for	CPS
• case	studies:	cyber-physical	attacks	against	smart	water-
distribution	and	cyber-attacks	against	transportation

• Conclusion	and	future	work

Diversity

Redundancy Hardening



Improving	Structural	Robustness
• Canonical	approaches:

Diversity

Redundancy Hardening

• Redundancy:	deploying	additional,	redundant	components	in	
a	system,	so	even	if	some	components	are	compromised	or	
impaired,	the	system	may	retain	correct	functionality
• Diversity:	implementing	the	components	of	a	system	using	a	
diverse	set	of	component	types,	so	that	vulnerabilities	that	
are	present	in	only	a	single	type	have	limited	impact
• Hardening:	reinforcing	individual	components	or	component	
types	(e.g.,	tamper-resistant	hardware	and	firewalls)



How	to	combine	redundancy,	
diversity,	and	hardening?



Example:	Improving	Network	Availability
• Pairwise	connectivity:	fraction	of	node	pairs	that	are	
connected	with	each	other	through	a	path
• we	use	it	to	measure	network	availability	

• Simple	attack	model:	adversary	removes	N	nodes	to	
minimize	the	pairwise	connectivity	of	the	residual	network

• Example:

pairwise	
connectivity	=	1

• worst-case	N	=	2	attack	
removes	nodes	{1,	7}

• pairwise	connectivity	
after	attack	=	0.286



Hardening	and	Diversity
• Hardening:	protect	a	subset	of	nodes	from	attacks

node	7	is	hardened

• worst-case	N	=	2	attack	
removes	nodes	{3,	10}

• pairwise	connectivity	
after	attack	=	0.429
(>	0.286)

• Diversity:	each	node	has	a	type,	and	the	adversary	can	
attack	nodes	of	only	one	type

two	types,	
red	and	blue

• worst-case	N	=	2	attack	
removes	nodes	{2,	7}

• pairwise	connectivity	
after	attack	=	0.571
(>	0.286)



Combining	Hardening	and	Diversity

What	about	integrity?

• two	types,
red	and	blue

• node	7	is	hardened

• worst-case	N		=	2	attack	
removes	nodes	{1,	5}

• pairwise	connectivity	
after	attack	=	0.75
(>	0.571)



Networked	Systems
• In	many	networked	control	systems,	a	global	objective
needs	to	be	achieved	through	local	interactions
• The	individual	components	have	limited	sensing,	
computational,	and	communication	capabilities



Global	Objective	through	Local	Interactions

xi(k):	state	of	node	i at	time	step	k



Global	Objective	through	Local	Interactions

xi(k):	state	of	node	i at	time	step	k

Local
interactions

Global	objective	is	a	function	of



Consensus	Problem
• Canonical	problem	formulation:	Consensus	Problem

All	nodes	need	to	eventually	converge	to	a	common	state:

Linear	Consensus	Protocol	(LCP)

• consensus	is	achieved	if	all	nodes	
implement	LCP,	and	the	
underlying	graph	is	connected



Resilient	Consensus	Problem
• Malicious	nodes:	their	goal	is	to	prevent	the	network	from	
reaching	consensus	(e.g.,	compromised	by	an	adversary)

• Example

malicious	node



Resilient	Consensus	Problem	(contd.)
• Models

• F-total	malicious	model:
if	S⊆ V	is	the	set	of	malicious	nodes,	then	|S|≤	F
• F-local	malicious	model:
if	S	⊆ V	is	the	set	of	malicious	nodes,	then	|N(i)	∩	S|	≤	F,	
for	every	i∈ V	\ S

Goal:	
characterize	networks	in	which	nodes	can	reach	consensus	
under	the	F-total	or	F-local	malicious	models

• Previous	work:	r-robustness	and	(r,s)-robustness



r-Robustness
• r-reachable	subset:	
a	subset	of	nodes	S	is	r-reachable	if	there	exists	at	least	one	
node	in	S	that	has	at	least	r	neighbors	outside	of	S

• r-robust	graph:	
a	graph	is	r-robust	if	for	any	pair	of	non-empty	and	disjoint	
subsets	of	nodes,	at	least	one	of	them	is	r-reachable

subset	S	=	{1,	2,	5}	
is	2-reachable

2-robust	graph



(r,s)-Robustness	
• Let	S	be	a	set	of	nodes,	then									is	the	subset	of	nodes	in	S	
that	each	have	at	least	r	neighbors	outside	of	S



(r,s)-Robustness	(contd.)
• (r,s)-robust	graph:
A	graph	is	(r,s)-robust	if	for	every	pair	of	non-empty,	disjoint	
subsets	S1 and	S2 of		V,	at	least	one	of	the	following	holds:
1. =	|S1|	
2. =	|S2|	
3.

• r-robust	=	(r,	1)-robust

1. 2. 3.

number	of	green	nodes	≥	s



Examples	of	(r,s)-Robust	Graphs

(2,1)-robust
(hence,	2-robust)



Examples	of	(r,s)-Robust	Graphs

Not	(2,2)-robust (2,2)-robust (3,3)-robust



(r,s)-Robustness	and	Resilient	Consensus

Theorem	(LeBlanc	et	al.	2013):
Let	G(V,	E)	be	a	time-invariant	network	in	which	each	normal	node	
implements	the	Weighted-Mean- Subsequence-Reduced	(WMSR)	
algorithm.	Then,	
1. under	the	F-total	malicious	model,	consensus	is	achieved	

asymptotically	if	and	only	if	G	is	(F	+	1,	F	+	1)-robust
2. under	the	F-local	malicious	model,	to	achieve	asymptotic	

consensus,	it	is	necessary	that	G	is	(F	+	1)-robust,	and	is	
sufficient	that	G	is	(2F	+	1)-robust.

• WMSR	idea:	
omit	F	lowest	and	F	highest	values	from	state	update



Hardening:	Trusted	Nodes
• Unfortunately,	r-robustness	is	a	very	strong	property

• some	graphs	have	very	large	connectivity	but	low	robustness
• In	practice,	increasing	connectivity	through	deploying	a	
large	number	of	new	nodes	and	links	may	be	impossible or	
prohibitively	expensive
• Hardening:	instead	of	increasing	connectivity,	we	make	a	
small	set	of	nodes	trusted
• trusted	nodes	are	protected	from	adversaries
• for	example,	tamper-resistant	hardware,	complex	firewalls,	
physical	protection

Goal:	
characterize	networks	in	which	nodes	can	reach	consensus	
with	the	help	of	trusted	nodes



r-Robustness	with	Trusted	Nodes
• r-reachable	subset	with	trusted	nodes	T:	
a	subset	of	nodes	S	is	r-reachable	with	trusted	nodes	T	if	
there	exists	at	least	one	node	in	S	that	has	at	least	r	
neighbors	outside	of	S	or	one	trusted	neighbor	outside	of	S

subset	S	=	{1,	2,	5}	is	not	3-
reachable,	but	it	is	3-
reachable	with	trusted	nodes

3-robust	graph	with	
trusted	nodes

T	=	{4,	8}

• r-robust	graph:	
graph	is	r-robust	with	trusted	nodes	if	for	any	two	non-
empty	and	disjoint	subsets	of	nodes,	at	least	one	of	them	is	
r-reachable	with	trusted	nodes



(r,s)-Robustness	with	Trusted	Nodes
• Let	S	be	a	subset	of	nodes,	then									is	a	subset	of	S	such	
that	each	node	in								has	at	least	r	neighbors	outside	of	S	or	
one	trusted	neighbor	outside	of	S

T	=	{8}

• for	S	=	{1,	2,	5},	we	have	 =	{1,	2}
since	node	2	has	two	neighbors	outside	of	S,	and	node	1	has	
a	trusted	neighbor	outside	of	S



(r,s)-Robustness	with	Trusted	Nodes	(contd.)
• (r,s)-robust	graph	with	trusted	nodes:
A	graph	is	(r,s)-robust	with	trusted	nodes	T	if	for	every	pair	
of	non-empty,	disjoint	subsets	S1 and	S2 of		V,	at	least	one	of	
the	following	holds:
1. =	|S1|	
2. =	|S2|	
3.
4.

2. 3. 4.



Example	(r,s)-Robust	Graphs	with	Trusted	Nodes

• Peterson	graph	is	not	2-robust
• For	instance,	consider
S1 =	{1,	2,	3,	4,	5};	S2 =	{6,	7,	8,	9,	10}
• Neither	of	these	subsets	contains	a	
node	that	has	two	neighbors	outside	
of	the	subset

graph	is	2-robust with	any	
single	node	as	trusted	node

• However,

graph	is	3-robust with	
trusted	nodes	{1,	4,	9}



Example	(r,s)-Robust	Graphs	with	Trusted	Nodes

• Graph	is	2-robust,	
but	not	(2,2)-robust
• For	instance,	consider
S1 =	{1,	2,	3,	5};	
S2 =	{3,	4,	6,	7,	8}

graph	is	(2,2)-robust	with	a	
single	trusted	node	T	=	{8}

• However,

graph	is	3-robust with	
trusted	nodes	T	=	{4,	8}



Robustness	with	Trusted	Nodes	and	
Resilient	Consensus
• Results	that	relate	(r,s)-robustness	to	the	resilience	of	

consensus	can	be	generalized	using	the	notion	of	(r,s)-
robustness with	trusted	nodes

Theorem:
Let	G(V,	E)	be	a	time-invariant	network	with	trusted	nodes	T	in	
which	each	normal	node	implements	the	RCA-T	algorithm.	Then,

1. under	the	F-total	malicious	model,	consensus	is	achieved	
asymptotically	if	and	only	if	G	is	(F	+	1,	F	+	1)-robust	with	T.

2. under	the	F-local	malicious	model,	to	achieve	asymptotic	
consensus,	it	is	necessary	that	G	is (F	+	1)-robust	with	T,	and	
is	sufficient	that	G	is	(2F	+	1)-robust	with	T.

• Resilient	Consensus	Algorithm	with	Trusted	nodes	(RCA-T):
always	accept	values	for	state	update	from	trusted	nodes



Illustration	for	F-Total	Model

• G	is	(2,2)-robust	with	T	=	{8}

• There	is	one	malicious	node.

WMSR	– algorithm:
consensus	cannot	be	achieved

RCA-T	– algorithm:
consensus	is	achieved	with	trusted	node



Illustration	for	F-Local	Model

• G	is	3-robust	with	T	=	{1,	4,	9}

• There	are	two	malicious	nodes	which	are	{8,	10}

WMSR	– algorithm:
consensus	cannot	be	achieved

RCA-T	– algorithm:
consensus	is	achieved	with	trusted	nodes



Building	Robust	Graphs



Adding	Nodes	to	Robust	Graphs
Theorem:
Let	G	be	(r,s)-robust	with	trusted	nodes,	then	adding	a	new	node	vnew to	G	
preserves	the	robustness	property	of	the	graph	if	

1. vnew is	adjacent	to	at	least	(r+s-1)	non-trusted	nodes,	or
2. vnew is	adjacent	to	at	least	one	trusted	node.

(2,2)-robust	graph	with	
the	red trusted	node

• vnew is	connected	to	3	non-
trusted	nodes

• New	graph	is	still	(2,2)-robust

• vnew is	connected	to	a	single	
trusted	node

• New	graph	is	still	(2,2)-robust

Example:



Replacing	Trusted	Node	with	Clique
Theorem:
Let	G	be	an	r-robust		graph	with	trusted	nodes	T.	Let	t	! T,	and	H	be	a	graph	
obtained	by	replacing	t	with	a	clique	of	size	r,	denoted	by	Kr	,	such	that	each	
neighbor	of	t	in	G	is	adjacent	to	each	node	in	Kr	,	then	H	is	also	r-robust.

• A	2-robust graph	with	a	red	trusted	node
• Neighbors	of	trusted	node	are	highlighted

• A	trusted	node	is	replaced	by	K2
• H is	still	2-robust

G H

Example:



Replacing	Trusted	Node	with	Robust	Graph
Theorem:
Let	G	be	an	r-robust		graph	with	trusted	nodes	T,	G’	be	another	r-robust	
graph,	and	h be	a	non-reachable	subset	of	nodes	in	G’.
Let	t	! T,	and	H	be	a	graph	obtained	from	G	by	replacing	t	with	G’	such	that	
each	neighbor	of	t	in	G	is	adjacent	to	each	node	in	the	subset	h of	G’,	then	H	
is	also	r-robust.

Example:

G’ G H

• G’	is	3-robust
• Nodes	in	subset	h

are	highlighted

• G	is	3-robust with	red	
trusted	node

• Neighbors	of	trusted	
node	are	highlighted

• H	is	also	is	3-robust
• New	edges	added	are	

shown	in	red



General	Framework	for	
Cyber-Physical	Systems



Example	Cyber-Physical	System

physical	process

sensor actuator sensor actuator

RTU PLC

supervisory	
computer

sensor

PLC

HMI



Graph-Theoretic	Model

physical	process

• Graph	G = (C, E)
• components	C
• connections	E



• Properties	of	a	component	c ∈C
• type	tc

• computational
• sensor
• actuator
• interface

• set	of	input	connections	Ec
• example:

• deployed	implementation	rc
• chosen	from	a	set	of	available	implementations	I
• example	set:

I ={

Components

…

, , , }



How	to	improve	the	resilience	of	a	CPS?



• use	a	variety	of	implementations
• each	implementation	i ∈ I has	a	usage	cost	Di

Diversity

10/26/17



• deploy	additional	instances	of	some	components	(based	on	
different	implementations)
• each	implementation	i ∈I has	a	deployment	cost	Ri

Redundancy

10/26/17



• Harden	some	implementations	(e.g.,	source	code	reviews,	
firewalls,	penetration	testing)
• Each	implementation	has	a	set	of	available	hardening	levels Li 

• each	level	l∈ Li has	a	cost	Hl and	an	estimate	of	being	
secure	Sl
• example	levels:
{	(DEFAULT:											 $100000,					0.9),													
(SECURE:												 $500000,			0.95),
(VERY	SECURE:	 $1000000,	 0.99)	}

• Example	selection:
• →	SECURE
• →	DEFAULT
• →	VERY	SECURE

Hardening

10/26/17



• Given	redundancy,	diversity,	and	hardening	expenditures	R,	D,	
H,	the	optimal	deployment	is

Resilience	Maximization	Problem

10/26/17

min r, l Risk(r, l)
subject	to	∑c∈C ∑i∈rc

Ri ≤ R,  ∑i∈Uc rc
Di ≤ D,  ∑i∈I Hli

≤ H

• Computationally	challenging	(NP-hard),	but	we	have	efficient	
heuristics	that	work	well	in	practice

• General	problem:	given	budget	B,	the	optimal	deployment	is

min r, l Risk(r, l)
subject	to	∑c∈C ∑i∈rc

Ri + ∑i∈Uc rc
Di + ∑i∈I Hli

≤ B



How	to	quantify	security	risks?

Risk = ∑ Pr[outcome] ·  Impact(outcome)
outcome

which	components	
are	compromised

what	is	the	
probability	that	they	
are	compromised

what	is	the	impact	of	
their	compromise	on	

the	system



• Each	implementation	i is	vulnerable	with	probability	1 – Sli
(independently	of	other	implementations)
• Instances	of	vulnerable	implementations	are	compromised
• A	component	is	compromised	if

Probability	of	Compromise

10/26/17

Component	Type

sensor computational actuator interface

stealthy	attack all instances		are	
compromised

all instances	are	compromised	or	
all input	components	are	compromised

non-stealthy	
attack

majority of	instances	
are	compromised

either	majority of	instances	are	compromised or	
majority of	input	components	are	compromised



• Impact	depends	on	the	set	of	compromised	components

Impact = MaximumDamage(compromised components)

• exact	formulation	depends	on	the	system	

• We	present	two	example	systems
1. smart	water-distribution	monitoring	for	contaminants
2. transportation	networks

Impact	of	Compromise

10/26/17



• Example	topology	(real	residential	network	from	Kentucky)

Water-Distribution	Networks

10/26/17

What	would	happen	if	this	
reservoir	was	contaminated?



• Simulation	using	EPANET

Contamination	in	Water-Distribution	Networks

10/26/17

0	hours



• Simulation	using	EPANET

Contamination	in	Water-Distribution	Networks

10/26/17

1	hour



• Simulation	using	EPANET

Contamination	in	Water-Distribution	Networks

10/26/17

2	hours



• Simulation	using	EPANET

Contamination	in	Water-Distribution	Networks

10/26/17

4 hours



• Simulation	using	EPANET

Contamination	in	Water-Distribution	Networks

10/26/17

8	hours



• Simulation	using	EPANET

Contamination	in	Water-Distribution	Networks

10/26/17

16	hours

Contamination	spreads	fast…



• We	can	deploy	sensors	that	
continuously	monitor	water	quality	
• when	contaminant	concentration
reaches	a	threshold,	operators	
are	alerted

• Impact:	amount	of	contaminants
consumed	by	the	residents
before	detection
• Cyber-physical	attack

• compromises	and	disables	
vulnerable	sensors

• contaminates	the	reservoir	
that	maximizes	impact

• Defender	invests	into	redundancy,	diversity,	and	
hardening	for	sensors

Monitoring	Water	Quality

10/26/17
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Expected
detection	time
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Expenditure



Budget Redundancy Diversity Hardening
10 0 0 10
20 0 0 20
30 0 20 10
40 0 20 20
50 0 40 10
60 0 40.2 19.8
70 0 40.2 29.8
80 4 60 16
90 4 60.3 25.7
100 4 60 36
110 10.4 90.4 19.2
120 10.2 80.4 29.4

Optimal	Allocation	of	Investments

10/26/17



Optimal	Deployment	(B = 90)

10/26/17

• All	implementations	are	
hardened	to	the	same	level



• Attacker	may	tamper	with	traffic	control
systems	in	order	to	cause	disastrous
traffic	congestions
• example:	
2006	incident	in	Los	Angeles

• Component
• embedded	computer
deployed	at	an	intersection
• controls	the	traffic	lights
• compromised	components	
may be	used	by	an	attacker	
to	disrupt	traffic	going	
through	the	intersection

Transportation	Network

10/26/17



• We	do	not	consider	redundancy
in	this	case	since	deploying	
redundant	traffic	light	
controllers	requires	
additional	assumptions
• Impact:	
increase	in	travel	time
due	to	adversarial	tampering	
with	traffic	control
• Quantifying	impact:	
traffic	model
• we	use	a	well-known	model,	
Daganzo’s cell	transmission	model

• compromised	intersections	are	“blocked”	(no	through	traffic)
• travel	time	computed	efficiently	by	solving	the	traffic	model	using	a	
linear	program

Transportation	Network	Risk	Model

10/26/17
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Conclusion	and	Future	Work

• There	is	no	“silver	bullet”	approach	for	improving	the	
robustness	of	cyber-physical	systems
• The	basic	components	of	information	security	are	
confidentiality,	integrity,	and	availability
• What	are	the	basic	components	of	CPS	resilience?
• How	do	we	organize,	analyze,	integrate,	and	evaluate	the	
broad	range	of	techniques	that	are	available?

CPS	
resilience?

Diversity

Redundancy Hardening

Information	
Security

Integrity

Confidentiality Availability
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Questions?

Aron	Laszka	(alaszka@uh.edu)
Waseem	Abbas	(w.abbas@itu.edu.pk)
Yevgeniy	Vorobeychik (yevgeniy.vorobeychik@vanderbilt.edu)
Xenofon	Koutsoukos	(xenofon.koutsoukos@vanderbilt.edu)


