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Abstract— Interoperable MPI (IMPI) is a protocol specification to allow
multiple MPI implementations to cooperate on a single MPI job. Unlike
portable MPI implementations, an IMPI-connected parallel job allows the
use of vendor-tuned message passing libraries on given target architectures,
thus potentially allowing higher levels of performance than previously pos-
sible. Additionally, the IMPI protocol uses a low number of connections,
which may be suitable for parallel computations across WAN distances.
The IMPI specification defines a low-level wireline protocol that MPI im-
plementations use to communicate with each other; each point-to-point and
collective function in MPI-1 automatically uses this low-level protocol when
communicating with remote a MPI implementation. When running IMPI
jobs, the only change visible to the user is the sequence of steps necessary
to run the job; any correct MPI program will run correctly under IMPI. In
this paper, we provide an overview of IMPI, describe its incorporation into
the LAM implementation MPI, and show an example of its use.

|. INTRODUCTION

Since the publication of the MPI-1 standard [1], a large num-
ber of high-quality MP1 implementations have been made avail-
able. The ease of obtaining an MPI implementation has led to
a new level of portability; parallel codes can now run on a va-
riety of different operating systems and architectures simply by
recompiling the same source code with a different implementa-
tion of MPI. Indeed, all parallel vendors now have their own im-
plementations of MPI that are optimized for their architectures.
There are also a number of freely available implementations of
MPI, notably LAM/MPI [2] from the University of Notre Dame,
and MPICH [3] from Argonne National Laboratory.

Since only the functionality of the MPI API is specified, each
implementation is unique in its underlying abstractions and as-
sumptions. Vendor implementations, for example, are tuned for
specific architectures to optimize performance. So in one sense,
one of the goals of the MPI standard has almost worked against
it — all current MPI implementations are unable to interoperate
with each other. It is not possible, for example, to run a sin-
gle parallel job in a that spans multiple machines (from different
vendors) and still use the respective vendors’ highly-tuned MPI
implementations. While the freely available implementations
support heterogeneous environments, message passing perfor-
mance suffers since the freely available implementations do not
provide vendor-quality architecture specific optimizations.

The Interoperable MPI (IMPI) Steering Committee was
formed to solve these kinds of issues. The committee consisted
of vendors who already have high performance MPI implemen-
tations, with the National Institute of Standards and Technology
(NIST) facilitating the meetings.
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The IMPI Steering Committee has published a proposed stan-
dard for interoperability between MPI implementations that will
address these issues [4]. The main idea of the proposed stan-
dard is to mandate a small set of protocols for starting a multi-
implementation MPI job, passing user messages between the
implementations, and shutting the job down. Note, however,
that the proposed IMPI standard does not mandate any behav-
ior within an MPI implementation — it only mandates behavior
between MPI implementations.

A. LAM/MPI’sRolein IMPI

The LAM/MPI team was asked to join the IMPI Steering
Committee as a non-voting member part way through the pro-
cess. This allowed an implementation of IMPI to become pub-
licly available both as a “proof of concept” work as well as a ver-
ification and validation mechanism for the proposed standard.

Implementing IMPI in LAM/MPI continues a long-standing
history of freely available implementations of MPI providing
not only the first implementation of MPI functionality, but also
providing both impetus and a code base for vendor MPI imple-
mentation efforts. In addition to incorporating IMPI extensions
into LAM/MPI, the LAM/MPI team wrote an implementation-
independent IMPI server [5] (described in Section 11-A).

B. Related Work

The PVMPI [6], [7] project from the University of Tennessee
was a first attempt to join multiple MPI implementations in a
single job. It utilized PVM as a communications bridge be-
tween incompatible MPI implementations. PVMPI used non-
MPI functions to join separately started MPI jobs and commu-
nicate between them. While this approach was successful in cre-
ating a larger MPI universe, it did not provide a seamless com-
munication realm, and forced users to understand both PVM and
MPI in order to write heterogenous programs.

The PVMPI project evolved into the MPI Connect effort [8].
While using many of the same ideas from PVMPI, MPI Con-
nect utilizes the profiling layer in MPI to intercept messages for
remote ranks and re-send them using PVM. While using many
fewer non-MPI functions than PVMPI, MPI Connect still relies
on PVM and some non-portable function calls. Additionally,
even with the mostly-native interface to MPI, only an intercom-
municator is provided between MPI implementations, such that
collective communications are not possible both with MPI-1 im-
plementations, and between different MP1-2 implementations.

LWhile it is usually possible to merge an intercommunicator into an intracom-
municator and use it to perform collective communications, it is unlikely that
MPI _| NTERCOVM.MERGE will work between multiple MP1 implementations.



Fig. 1. The MPI_.COMM_WORLD communicator is defined to include the
ranks from all MPI implementations.

Unify [9], a project from the Engineering Research Center at
the University of Mississippi, was designed as an upgrade tool
for PVM programmers to port their software to MPI. Unify con-
sisted of a subset of the MPI-1 API built on top of PVM. This
allowed users to mix PVM and MPI calls in the same program.
While this project did not allow a single job to span multiple
MPI implementations, it does show the use of multi-protocol
message passing, which is critical in IMPI (as well as other mes-
sage passing systems).

C. Paper Overview

Section Il gives an overview of the IMPI standard, and in-
troduces terminology used in this paper. Section Il presents
an overview of the internals of LAM/MPI. Section IV describes
how IMPI was implemented into LAM/MPI. Section V presents
some timing results using IMPI1 across a WAN. Finally, in Sec-
tion VI, we discuss our conclusions and list future work.

I1. IMPI OVERVIEW

One of the main goals of IMPI is to provide a program-
ming interface identical to MPI while utilizing multiple im-
plementations of MPI in a single parallel job. That is, pro-
vide implementation-spanning communicators that can be used
in the same way that MPI intracommunicators are used. Pro-
grams that run correctly with MPI1 should require no source code
changes to run correctly under IMPI. One major issue that pre-
vious efforts were not able to solve because they could not af-
fect the underlying MPI implementation is the completeness of
MPI_COMM_WORLD.

To make the programming model truly transparent, all
ranks (regardless of which MPI implementation they are in)
should share a common MPI_COMM_WORLD. Fig. 1 shows
the IMPI-defined MPI_COMM _WORLD for a typical multi-
implementation job. Each process receives a unique rank num-
ber (the order is strictly defined in the IMPI standard). All of the
MPI-1 functions may be used inside of MPI_COMM_WORLD;
there are no restrictions on the type of communication per-
formed between the multiple MPI implementations.

MPI-2 [10], [11] functions, however, are not presently sup-
ported in IMPI. More specifically, the behavior of MPI-2 func-
tions is not defined on communicators that contain ranks from
multiple MPI implementations.

The IMPI standard is divided into four parts: startup/shutdown
protocols, a data transfer protocol, collective algorithms, and a
centralized IMPI conformance testing methodology.
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Fig. 2. The IMPI server is a rendezvous point for the MPI implementations. In
this example, two clients are shown. The first has two hosts, one with four
procs, the other with two procs. The second client only has one host which
contains four procs. That this is a possible host decomposition for Fig. 1.

A. Terminology

This text (and the IMPI standard) commonly uses the term
“MPI implementations” to refer to the separate MPI universes
that are joined by IMPI into a single parallel job. This term is
not only used to distinguish between multiple implementations
of MPI, but also between multiple instances of the same imple-
mentation of MPI. For example, IMPI can join two LAM/MPI
instances that were started independently (perhaps because of
large network distance).

There are four types of IMPI entities: a server, clients, hosts,
and procs. They are described as follows (and shown in Fig. 2):

o The server is a rendezvous point for the MPI implementations
to meet upon startup.

o There is one client per MPI implementation; it acts as a rep-
resentative for that implementation at the server. There can be a
maximum of thirty-two clients in a single IMPI job.

« Each client must have one or more hosts.

« Each host must have one or more procs (processes). Although
the specific use of hosts is implementation dependent, their ab-
stract purpose is to group procs in a single MP1 implementation.
For example, hosts can be used to group procs physically located
on the same SMP.

The IMPI server is considered a separate part of the IMPI en-
vironment — it is not tied to any particular MPI implementation.
The University of Notre Dame has published an implementation
of the IMPI server that is publicly available for download.

B. Sartup/ Shutdown Protocols

A two-step process is needed to launch MPI-spanning parallel
jobs. A “server” process is first launched that will act as a ren-
dezvous point for each implementation; its purpose is to collect
and disseminate job-specific information. The server is specifi-
cally designed to be as “dumb” as possible — it only knows how
to connect and authenticate a client, then rebroadcast data to all
the clients (the content of which it does not understand).

After each of the clients is authenticated to the server, it sends
information about its local MPI job, such as how many hosts
it represents, how many procs each hosts has, etc. The server
collects messages from all the clients and broadcasts a collated
copy back to each client. In this way, each client learns informa-
tion about all the other clients and can independently construct
an identically ordered MPI_COMM_WORLD.



Fig. 3. Sample routing of a message from one proc to another.

Additionally, several variables are exchanged between clients
during startup. For example, the maximum message packet size
that is supported by each client is included in the collated data.
Each client compares its maximum size to the maximum size
supported by each other client, and chooses the smaller of the
two. This is referred to as “negotiation” between clients, even
though the decisions are performed in an independent and dis-
tributed fashion. Note that all negotiation is done on a client-
pairwise basis; the values decided upon for clients A and B may
be different than the values used between clients B and C'.

After startup, the hosts create a fully connected mesh of
TCP/IP sockets between themselves (this implies that the clients
disseminate the relevant collated information to their hosts).
TCP/IP was chosen as the interconnection network because it
is a least common denominator that can be assumed between
parallel resources. The TCP/IP mesh will be used to pass user
MPI messages between MPI implementations. Once this mesh
is created, the server and clients sit idle until the end of the job.

This startup protocol is likely to happen during an implemen-
tation’s MPI_INIT (but may occur sooner). Once MPI_INIT has
completed, MPI_COMM_WORLD can be used to communicate
with any rank in the job. Section 11-C describes the protocols
used to pass user MPI messages between procs.

In MPI_FINALIZE, each proc will send a message to its lo-
cal host indicating that it is shutting down. When the host re-
ceives the shutdown message from all of its procs, it transmits a
shutdown message to its client. Similarly, when the client gets
shutdown messages from all of its hosts, it transmits a shutdown
message to the server. Finally, the server shuts down when it
receives shutdown messages from all of its clients.

C. Data Transfer Protocol

Messages within a single MPI implementation can utilize
the vendor-tuned code for high bandwidth/low latency message
passing. But when a point-to-point message is sent to a rank in
another MPI implementation, it must be relayed through the lo-
cal host to the remote host. The remote host will then ensure that
the message is routed to the destination proc. Note that IMPI
only mandates the protocol between the hosts — no restrictions
are placed upon how messages are routed within the procs and
hosts in a single MPI implementation. This allows MPI imple-
mentations to use the most efficient methods of routing within
their local communication space. Fig. 3 shows a possible mes-
sage routing between two MPI implementations.

The IMPI Steering Committee decided on this design desspite
potentially creating a bandwidth bottleneck for two reasons:

1. Communications latency using IMPI protocols is likely to be
orders of magnitude greater than vendor-tuned latency, regard-
less of whether a direct connection is made between IMPI enti-
ties or when additional hops are used. Indeed, communications
between implementations currently must use TCP/IP, which is

likely to be much slower than an implementation’s native mes-
sage passing mechanism.

2. The increase in complexity and potential loss of efficiency in-
curred by forcing every rank to be concerned with not only mak-
ing communication progress within its own implementation but
also with non-local ranks using the IMPI protocols was judged
to be too great.

Loosely translated: communications using IMPI are expected
to be slow. Adding additional hops not only adds little little ad-
ditional overhead (since the TCP/IP communication will be slow
anyway), it greatly simplifies the implementation. This raises an
issue that, while affecting the design of this implementation, is
outside the scope of this paper: while correct MPI applications
can run without modification over IMPI, they should be modi-
fied to minimize communication between IMPI hosts.

C.1 Flow Control

Communication between hosts is packetized. A packet throt-
tling mechanism prevents resources from being consumed with-
out bound in hosts. Two values are negotiated at startup — ack-
mar k and hi wat er (where 1 < ackmark < hiwater).
These two numbers create a sliding window for acknowledge-
ments —a protocol ACK is required for every ackmar k packets
received, but a sender may send up to hi wat er packets before
waiting for the protocol ACK from the first ackmar k packets.

C.2 Data Protocols

There are two basic protocols for sending user MPI messages
between hosts. Both protocols include unique message 1D num-
bers to allow for matching of requests, acknowledgements, etc.

The “short” protocol is for non-synchronous mode messages
that are less than maxdat al en bytes (where maxdat al en is
negotiated during startup). Such messages are sent immediately,
and are only subject to the flow control mechanism. “Long”
messages are classified either as message that are longer than
maxdat al en bytes or require some kind of explicit synchro-
nization (such as synchronous mode messages).

Long messages are fragmented in to packets of size max-
dat al en bytes. The first packet is sent eagerly (just like a
short message), and is marked as the first of a long message.
The destination host will return an acknowledge when it has
allocated enough resources to receive the full message. Upon
receiving the acknowledgement, the sender will queue the re-
maining packets to be sent to the destination.

Synchronous message always use the long message protocol;
the acknowledgement packet from the destination host serves
as an indicator to the MPI implementation that the synchronous
mode send may complete.

C.3 Cancellation

IMPI also supports message cancellation. If no part of a mes-
sage has been sent to the destination host, cancellation is local.
If at least one packet has been sent, a cancel request must be sent
containing the message 1D to be canceled.

On the remote host, if the message has not been received by
the user program, it can be canceled. Either way, the host must
send back an ACK indicating whether or not the message was
successfully canceled.



C.4 Finalization

When a host will no longer require its IMPI channels for com-
munication (e.g., when all of its procs invoke MPI_FINALIZE),
it will send finalization packets to each of the other hosts. The
host may not close a socket until it receives a finalization ac-
knowledgement from the host on the other end of the socket.

This allows some flexibility to MPI implementations. For ex-
ample, if a proc tries to send a message to a proc on a host that
has shutdown, a high quality implementation will likely fail the
message immediately. However, the implementation is free to
send the message anyway using its normal queue mechanism,
where the message will eventually be dropped (potentially caus-
ing deadlock in the user’s application).

D. Collective Algorithms

For collectives involving multiple implementations to work,
the exact algorithm and communication pattern must be man-
dated so that each implementation knows its role in the overall
collective action. The proposed IMPI standard includes pseu-
docode algorithms for each of the MPI-1 collective routines.
Note that not only are the behaviors of collective functions
such as MPI_BARRIER, MPI_BCAST, and MPI_SCATTER
mandated, but communicator constructor and destructor func-
tions such as MPI_COMM_CREATE and MPI_COMM_FREE
must also be mandated to ensure that communicator contexts are
unique across all MPI implementations.

Since the TCP/IP communications between hosts is likely to
be slow compared to message passing between procs in a single
implementation, the IMPI-mandated collective algorithms at-
tempt to minimize communication across inter-implementation
channels. Most collectives have “local” phase (within a sin-
gle implementation) and “global” phase (coordination between
all implementation). The behavior of local phases is not man-
dated, allowing implementations to use optimized mechanisms
to achieve the mandated results. Actions during the global
phases are mandated with pseudocode in the IMPI standard.

For example, a barrier across multiple implementations uses
two local phases and a global phase. Each implementation has
a local master rank among the ranks performing the barrier.
The first phase has each rank synchronize with their local mas-
ter (i.e., within their respective implementations). The second
phase is a synchronization between the local masters. The final
phase is a second local synchronization. Fig. 4 shows a barrier
distributed between four MPI implementations.

E. NIST Conformance Tester

NIST has implemented an IMPI conformance testing tool.
A Java applet is available on the main IMPI web page
(http://inpi.nist.gov/I|MI/) that can provides ac-
cess to a back-end IMPI simulator. The simulator can emulate
an IMPI server and any number of IMPI hosts and procs.

C source code is also available on the web page that can be
compiled and linked against an IMPI implementation. It can
then be run in conjunction with the NIST Java applet to test the
local IMPI implementation against the NIST simulator. A num-
ber of test scripts (which are very similar to C MPI programs)
can be sent to the C program from the back-end simulator to be

Fig. 4. MPI_BARRIER across four MPI implementations, each with four local
ranks. Phase one is a local synchronization. Phase two is a global synchro-
nization between representative ranks of each implementation. Phrase three
is a final local synchronization.

executed. These scripts test various aspects of the local IMPI
implementation. Once an IMPI implementation passes the tests
with all of the NIST tests, it can theoretically interoperate with
any other IMPI implementation that passed the NIST tests.

1. LAM/MPI OVERVIEW

The Local Area Multicomputer (LAM) implementation of
MPI grew out of the Trollius project from the Ohio Supercom-
puter Center [12]. The Trollius project was originally targeted
at Transputers, but eventually grew in scope to include general
parallel computing. With a rich set of infrastructure and com-
munication tools, an MPI layer was added to the top level of the
Trollius software. Over time, the MPI software has become the
main use of LAM.

After the original LAM/MPI developers individually left the
OSC, LAM/MPI became an orphaned project. Through ties with
the original developers, the Laboratory for Scientific Comput-
ing at the Notre Dame agreed to become the owners of LAM.
The web site, mailing list, and source code repository moved to
nd. edu in early June, 1998.

The design of IMPI reflects, in part, its heritage in LAM/MPI.
Two of the original LAM/MPI developers — who were each rep-
resenting different vendors — were chapter authors on the IMPI
Steering Committee. As such, the overall design of IMPI is sim-
ilar to that of LAM itself.

A. Features

LAM/MPI is more than just a communication library for MPI
— it contains a rich set of features that are attractive to both de-
velopers and end users.
o A full implementation of the MPI-1.2 standard.?
« Implementation of much of the MPI-2 standard, including dy-
namic processes, one-sided communication, C++ bindings for
MPI-1 functions, and parallel 1/0.3

2With the exception of the ability to MPI_CANCEL sent messages. Canceling
sent messages in a parallel environment is an extremely difficult problem; since
very few LAM/MPI users have asked for this functionality, the LAM team has
decided not to implement this functionality.

3LAM includes the ROMIO package from Argonne National Labs [13], [14]
as the implementation of parallel 1/0.



Node n0 mpirun
meges
v Node nl
LAM ,1/”,, LAM
daemol
fork fork
User MPI |\ [\| [ User MPI
program | | [\ | program
AR
LAM LAM
daemo daemo
fork fork
User MPI User MPI
program program
Node n3 Node n2

Fig. 5. Example showing how npi r un works in the LAM/MPI environment.
npi r un sends execution messages to the local LAM daemon, who, in turn,
distributed them to the remote LAM daemons. Each daemon then starts up
the user MPI program.

« Support for two kinds of shared memory (on node) / TCP/IP
(off-node) multi-protocol message passing.

« Persistent MPI run-time environment that provides (among
other things) fast parallel job startup, robust process control, and
run-time monitoring of parallel jobs.

B. Run Time Environment

LAM/MPI provides a persistent run-time environment for
MPI programs. Users initially launch LAM daemons on each
machine that they wish to use in MPI with the | anboot com-
mand. The LAM daemons are mainly used for process con-
trol, an out-of-band communication channel for meta data, and
a monitoring/debugging tool for user programs. Once the LAM
daemons have been launched, MPI programs can be launched
across the resulting “parallel machine”. Fig. 5 shows an example
of how the LAM daemons are used to npi r un user programs.

LAM/MPI provides a convenient command, | ancl ean,
than can be used to kill all running user programs in a booted
LAM, and clean up any unreceived messages. | ancl ean is
frequently used to kill runaway or deadlocked processes, espe-
cially while developing and debugging user MPI applications.

When the user is finished with MPI, they can Kill any run-
ning programs and take down the run-time environment with
the wi pe command.

C. Code Structure

The communication library of LAM/MPI is divided into
three parts: the MPI layer, the request progression interface
(RPI) [15], and the Trollius core. The MPI layer is actually a
somewhat-thin layer on top of Trollius and RPI functionality. A
typical MPI function is fairly simplistic — it checks parameters,
performs some “bookkeeping” functionality, and uses the under-
lying RPI or Trollius for many of the more complex functions.
The RPI is discussed in Section I11-E. Finally, Trollius contains
many “kitchen sink” kinds of functions, and provides a back-
bone for most services in LAM (including the LAM daemons)
that is invoked throughout LAM. Fig. 6 shows a diagram of the

‘ User code ‘
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‘ Operating system ‘

Fig. 6. Main components of the LAM/MPI communication library.

LAM communication library.

D. MPI Layer

One of the main functions of the MPI layer is to create and
maintain communication queues. All send and receive commu-
nications within LAM/MPI are collectively known as requests.
Unifying all types of communication under a single nomencla-
ture allows the use of a uniform management system.

For example, MPI_SEND generates a request that contains
information such as the buffer, count, datatype, tag, destination
rank, and communicator of the message to be sent. If the queue
is empty, the request is passed directly to the RPI to be processed
immediately (this is known as the short-circuit optimization). If
the queue is not empty, the new request is marked as blocking
(described below), and placed on the queue. The RPI is then
invoked to progress the queue. Since the request was marked
as blocking, the RPI will not return until the message has been
fully sent.

E. Request Progression Interface

Requests are processed through LAM’s request progression
interface (RPI). The RPI is responsible for all aspects of com-
munication with other MPI ranks — it progresses the communi-
cation requests that were formed and queued in the MPI layer.
That is, the RPI is responsible for actually moving data from
one rank to another. Once the RPI finishes a request, it marks
the request as completed (the MPI layer will dequeue it).

The RPI was designed to be a separate layer; the API for
the RPI consists of ten primitives, and is documented in [15].
Maintaining a separation between abstract message passing and
device-specific drivers is not only good software engineering, it
also allows the addition of native support for new communica-
tion devices without changing any other parts of LAM/MPI.

There are two classifications of RPIs: daemon-based (lamd)
and client-to-client (c2c). The lamd RPI uses the LAM dae-
mons for all user communications. Fig. 7 shows the hops that
a message must travel from rank A to rank B using the lamd
RPI (note the similarity to the IMPI design shown in Fig. 3).
Although incurring extra hops, the lamd RPI allows for extra
monitoring and debugging capabilities. Additionally, the lamd
RPI allows for some degree of true asynchronous communica-
tion. Since the LAM daemon is running in a separate process,
it can make progress on message passing regardless of what the
user application is doing.

c2c RPIs do not use the LAM daemons for user communi-
cations. Instead, some other interconnection network is used,
which greatly decreases message latency. Note that while it is
assumed that clients will be directly connected to each other (in
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software) for speed, this does not need to be the case. A sample
c2c RPI connection scheme is shown in Fig. 8.
LAM/MPI currently includes three c2c RPI implementations:
1. tcp: The TCP RPI uses internet domain sockets between
ranks in MPI_COMM_WORLD. TCP is LAM’s default RPI.
2. uysv: The USYSV RPI is the same as the TCP RPI, except
that shared memory is used for communication between ranks
on the same node. Spin locks are used to lock the shared mem-
ory between ranks.
3. usysv: The SYSV RPI is the same as the USYSV RPI, except
that SYSV semaphores are used for locking the shared memory
between ranks. The blocking nature of semaphores can give
higher performance than USYSV on uniprocessor machines.
LAM/MPI currently does not allow more than one c2c RPI
to used simultaneously. As such, the specific c2¢c RPI must be
selected when LAM/MPI is configured. The choice of lamd vs.
c2c RPI can be made at run time with the npi r un command.

IV. IMPLEMENTATION OF IMPI IN LAM/MPI

Aside from some debugging and maintenance, implementing
IMPI was the first large-scale project in LAM/MPI that we at-
tempted. As such, the current package is actually a third gener-
ation implementation of the IMPI standard.* This implementa-
tion of IMPI was written in C++ in order to take advantage of
some basic object constructs as well as make use of the Standard
Template Library (STL) [16], [17].

The following overall design goals were specified by the
LAM team when implementing IMPI:

1. A separate daemon (the i npi d) will implement the role of
the IMPI client and host.

2. There will only be one i npi d per IMPI job; subsetting into
multiple hosts will not be supported.

3. Thei npi d must be transparent to the user; it will automat-
ically be started, die gracefully when the program finishes, and
be able to be aborted with the | ant| ean command.

4The first two implementations represented a steep learning curve about the
LAM/MPI infrastructure by the Notre Dame LAM team. These two implemen-
tations generally barely worked, and resulted in design changes for the next
generation.
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Fig. 9. Thei npi d acts as a separate process in the IMPI job. Each rank in the
local LAM opens a connection to the i npi d using the current RPI.

4. An IMPI job must be able to use any of the four RPIs.

A. Thei npi d

In order to achieve true asynchronous communication and to
maximize bandwidth, the IMPI host and client was implemented
as a separate daemon: the i rpi d. The i npi d acts as the IMPI
client during startup and shutdown, and as the IMPI host during
the rest of the job. After the startup, each local rank makes a
connection to the i npi d using the current RPI. This connection
will be used for communication with any rank that is not in the
local LAM. Fig. 9 shows how the i npi d fits into a LAM/MPI
user job.

A.1 Separate Daemon

Having the IMPI host in a separate process space — similar to
the rationale for using the main LAM daemon — allows for some
degree of communication progress independent of the user pro-
gram. That is, a separate thread of control can progress message
queues as well as provide buffering for local and remote mes-
sages. Inone sense, the i mpi d acts as a post office for messages
originating from local ranks that are destined for remote IMPI
hosts (and vice versa). Just as a snail mail letter reaches its desti-
nation after being dropped off at a post office without the sender
knowing or caring how it gets there, so too the i npi d takes
care of communication with remote IMPI hosts. In many cases,
for example, a user process can MPI_SEND a message and con-
tinue processing long before the message reaches its destination.
This can allow for true overlap of communication and computa-
tion — this is especially important since IMPI communication is
expected to be slow.

Additionally, since LAM/MPI provides a persistent run-time
environment for MPI programs, multiple IMPI jobs can be run-
ning in the same universe simultaneously. Having a separate
process for the i npi d (potentially on different nodes) not only
segregates communication from multiple IMPI jobs, it simpli-
fied the implementation since no additional logic was necessary
to determine which IMPI job a particular message belongs to.

A.2 Startup Procedure

To further reduce complexity and take advantage of the in-
frastructure already in LAM/MPI, the i npi d was implemented
as an “almost MPI” process. By using MPI for the majority of
message passing, the i npi d automatically uses underlying data
conversion, message fragmenting and flow control, the LAM
progress engine, etc.
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Fig. 10. The i nmpi d is split into two halves; one for receiving and processing
messages from local LAM/MPI ranks, the other for receiving and process-
ing messages from remote IMPI hosts. A message that is received on one
side is queued for transmission on the other side.

That is, the i npi d calls MPILINIT, uses different flavors of
MPI_SEND/MPI_RECV to communicate with local ranks, and
eventually calls MPI_FINALIZE. Indeed, the i npi d is initially
launched via MPI_COMM_SPAWN from within MPIL_INIT of
the user’s program. The i npi d is an “almost MPI” process,
however, because it was impossible to avoid circumventing
some of the normal MPI mechanisms in certain cases.

The user must specify two command line arguments on the
npi r un command line: the IP name or address of the IMPI
server and the rank number of this IMPI client. These arguments
are passed to the i npi d from rank 0 in MPI_COMM _WORLD.
The i npi d then connects to the IMPI server and performs the
startup negotiation sequence as described above. Once the nego-
tiation has completed, the i npi d creates a socket to each other
IMPI host, creating a fully-connected topology of hosts.

Since the i npi d was started via MPI_COMM_SPAWN, it
has an intercommunicator containing the local LAM ranks.
This intercommunicator is merged into an intracommunica-
tor so that the IMPI startup negotiation data can be broad-
cast to all ranks. When the ranks receive the negotiation data,
MPI_COMM_WORLD is formed, MPL_INIT returns, and the
MPI portion of the user program begins.

A.3 Design

The IMPI host in the i npi d is split in two halves. One side
communicates with the local LAM/MPI, the other communi-
cates with other IMPI hosts. When a message is received on one
side, the message buffer and destination information is trans-
ferred to the other side where it is queued up to be sent. Each
side of the i npi d follows a complex state machine to process
an incoming message; both sides can receive multiple types of
messages, each of which require different (but related) handling.
Fig. 10 shows the basic division in the i npi d.

Ideally, it would have been possible to assign multiple threads
to each side of the i npi d. For example, one thread could re-
ceive incoming messages while another could progress the out-
going queues. This design allows for a blocking event-driven
semantics; threads that are waiting for something to happen will
block until they are needed. Unfortunately, since the underlying
LAM infrastructure is not thread safe, implementing this design
was not possible. Instead, both sides of the i npi d must be
polled for activity. A side effect of only having one thread of
control is that the i npi d must never block; only non-blocking
communications can be used, except in situations where it is

Loca impid Remote impid
T T
Source LAM 1 IMPI IMPI | LAM Destination
side ' side side ' side

Fig. 11. Path of a short message from one IMPI proc to another. 1) The message
is sent from the source proc to the i npi d. It immediately crosses from the
LAM side to the IMPI side, where 2) it eventually gets sent to the remote
i mpi d. The message immediately crosses to the LAM side, where 3) it
gets sent to the destination local LAM rank.

known that a blocking communication will complete immedi-
ately.
Since the i npi d is likely to be running on the same node as
a user process, it is vital that the i npi d take as few CPU cycles
as possible. Although unfortunately locked into a polling model,
the i mpi d reduces its overall activity by using the pol | ( 2)
system call with a non-zero timeout. That is, the i nmpi d allows
itself to be blocked, thereby guaranteeing CPU cycles for the
user program. Pseudocode for the main i npi d polling loop is
shown below:
while (job_is_running) {
/| Check for activity on | MPl side
whi | e(pol | (hosts, nhosts, tinmeout) > 0)
cl eanup_fini shed_sends();
/] Check for activity on LAM side
do {

MPI _Test any(npendi ng, requests,

& ndex, &flag, MPlI_STATUS_ | GNORE);
if (flag)
cl eanup_fi ni shed_request (i ndex);
} while(flag);

}

Notice that there is no “sending” code evident in the above
pseudocode. A convenient side effect of having the event-driven
model is that sends are always triggered by receives. For exam-
ple, when a short non-synchronous message is received from the
LAM side, it is immediately placed in the outgoing host queue.®
Placing a message in the queue triggers an attempt to progress
the queue according to current flow control values (see Sec. I1-
C.1). The queue will be progressed as much as possible, after
which the polling loop will continue.

As another example, it is possible that the queue will not have
drained before flow control values indicate that sending must
stop. Eventually, the remote host will send an acknowledgment
indicating “ok to send more packets”. When this acknowledge-
ment is received, it will trigger an attempt to progress the send
queue again.

A.4 General Operation

Fig. 11 shows the process for sending and receiving a short
message between two instances of LAM/MPI. Two instances of
LAM are shown both for simplicity; the diagram for connecting
LAM/MPI to another IMPI implementation is similar.

Long and synchronous messages use a similar, but more com-
plicated, protocol. Fig. 12 shows the process for sending and re-
ceiving a long message. Except for the addition of the ACK sent

5Unless the queue is empty and flow control values indicate that it is per-
missible to send, in which case it is sent immediately. This is similar to the
short-circuit optimization that is used in the MPI layer.
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Fig. 12. Path of a long message from one IMPI proc to another. 1) The message
is sent from the source proc to the i npi d, and is queued on the IMPI side.
2) The first packet is sent to the remote i npi d, where it is buffered on the
LAM side. 3) A “ping” message is sent to the destination rank. 4) When
the ping is acknowledged, 5) an ACK is send from the remote i npi d to the
local i npi d who 6) sends a “ping” back to the sender (for synchronous
mode sends only), and 7) sends the remaining packets of the message to the
remote i npi d. 8) The remote i npi d then sends the entire message to the
waiting destination.

back to the source (step 6), the process for a long synchronous
message is the same. The process for a short synchronous mes-
sage is slightly different; the message is sent to the local LAM
rank in step 3 (instead of just a ping), and steps 7 and 8 are not
necessary.

A.5 Local LAM Side

On the local LAM side of the i npi d, MPI is used to com-
municate with the local LAM/MPI ranks. The i npi d posts
persistent receives for the following kinds of messages:

o “Lamgiappe” headers: Lamgiappe headers are described
more in Sec. I\VV-B. This is step 1 in Figs. 11 and 12.

« Synchronization ACK: A LAM rank will send a synchro-
nization ACK back to the i npi d after it receives a “ping” mes-
sage from the i npi d indicating that a long or synchronous
mode message is being received. This is step 4 in Fig. 12.

o Abort: If a local LAM rank invokes MPI_ABORT, the
i mpi d will exit immediately. The other ranks in the local LAM
will be killed by their respective LAM daemons.

o Finalization: This message is sent to the i mpi d when a
LAM rank invokes MPI_FINALIZE.

The array of requests given to MPI_TESTANY in the main
polling loop not only contains the requests for the persistent
receives listed above, it also includes requests from any pend-
ing sends to local LAM ranks. Hence, in addition to mak-
ing progress on incoming messages, the MPI_TESTANY also
makes progress on outgoing messages.

A.6 IMPI Side

The IMPI side of the i mpi d can receive the following kinds
of packets from other IMPI hosts:
« Sync data: This packet type is used to send the first packet of
long and synchronous mode messages (step 2 in Fig. 12). For
short messages, the message is immediately sent to the local
LAM rank, and a placeholder is inserted into the “waiting for

ACK? list on the LAM side. When the ACK is received from the
local LAM (step 4 in Fig. 12), an ACK is returned to the remote
IMPI host (step 5 in Fig. 12). Similarly, for long messages, a
ping is sent to the local LAM rank, and an entry is inserted in
the “waiting for ACK” list. When the ACK is received, an ACK
is sent to the remote IMPI host. The remaining packets are sent
using the Data packet type (step 7 in Fig. 12).

« Data: This packet type is used to send short messages as well
as the remaining packets of a long message (step 2 in Fig. 11
and step 7 in Fig. 12).

o Sync ACK: These ACKs (step 5 in Fig. 12) trigger sending
the remaining packets of a long message, and the sending of an
ACK back to the local LAM rank for synchronous messages.

« Flow control: Flow control packets decrease the “unacknowl-
edged” packet count by ackmar k.

« Cancellation: Acknowledgements of cancel requests will be
sent from remote IMPI hosts. However, the i npi d will cur-
rently not receive such ACKSs, because LAM does not support
the cancellation of sent messages. Hence, LAM will never re-
quest a remote IMPI host to cancel a message.

» Finalization: When a remote IMPI host closes down, it must
send a notice to each other IMPI host. This prevents hosts from
interpreting the close of the connecting socket as an error.

B. MPI Layer Hooks

In order to enable IMPI to use any of the existing RPIs, it
was decided to implement IMPI hooks in the MPI layer. Most
of the hooks deal with the manipulation shadow requests. A
shadow request is supplementary, system-generated request that
is linked to a user-generated request.

For example, when sending a message to the i npi d, it is
necessary to first tell the i npi d information about the message
that will be sent, such as the message size, datatype, destination
rank, etc. This meta information is packaged in a “lamgiappe”
header and sent to the i npi d. The real message is sent im-
mediately following the lamgiappe. Each of these two sends
generates a request; they are both marked as “mandatory” and
linked together so that the overall MPI_SEND will not complete
until both requests complete.

The ability to link one or more shadow requests to any user-
generated request enabled many of the hidden aspects of IMPI to
be performed in the MPI layer. Most of the queue manipulation
code of LAM is contained in the various flavors of MPI_TEST
and MPI_WAIT. Enabling shadow requests entailed rewriting
much of this code.

B.1 Redirected Send Requests

In order to effect seamless communication with ranks on
other IMPI hosts, it is necessary to intercept messages bound
for remote ranks and redirect them to the i npi d. For example,
when MPI_SEND is used to send a message to a rank on a dif-
ferent IMPI host, the message must be redirected to the i mpi d
instead. That is, when the send request is initially created, LAM
determines that the message is bound for a remote IMPI proc
and switches the destination to the i npi d.

Before the user message is sent, a lamgiappe header is formed
and sent to the i npi d. When the i npi d receives the lam-
giappe, it allocates a buffer for the incoming message and calls



MPI_RECV to receive the real message. Note that it is safe to
use the blocking MPI_RECV call because the header is always
immediately followed by its corresponding data message.

For non-blocking and persistent sends, all flavors of MPI_-
TEST and MPI_WAIT will not indicate that the request has fin-
ished until the header and user data have both been sent.

Synchronous mode sends, however, post an additional
shadow request — a receive from the i npi d. MPI mandates
that synchronous mode sends do not return until the destina-
tion starts to receive the message. The long message protocol in
IMPI described in Sec. 11-C.2 conveniently handles this case —
synchronous mode messages are sent as long messages. When
the synchronization ACK is returned by the remote IMPI host
(step 5 in Fig. 12), the local host will send a “ping” message
to the sending rank (step 6 in Fig. 12), letting it know that the
synchronous send has completed.

B.2 Redirected Receive Requests

There is no way to know ahead of time whether a message
received from the i npi d will be synchronous or not. Indeed,
the MP1 API does not provide a mechanism for determining if
a received message was the result of a synchronous send. Even
though the underlying implementation has this information, it is
buried deep within the LAM progression engine (it is actually
in lowest regions of the three c2c RPIs), and is difficult to prop-
agate up to the MPI layer. But the MPI layer needs to know if
the send was synchronous or not in order to potentially send an
ACK back to the i npi d (step 4 in Fig. 12).

Since the decision to send an ACK (or not) must be made in
the MPI layer in the user’s program, it is not possible to pig-
gyback the “synchronous” flag on the main message data with-
out potentially corrupting the user data, or causing an incidental
memory copy. Hence, the synchronous flag must be contained
in an additional message.

One potential solution to this problem is to send a query to the
i mpi d asking if the received message was synchronous. How-
ever, this “active query” model would entail sending a query
every time a message is received from the i npi d, this could
create undue latency and bandwidth overhead.

Hence, a passive solution was used. The i mpi d sends the
additional ping message only if the message was synchronous.
This ping will always precede the main message; the guaranteed
ordering allows the MPI layer to determine if the message was
synchronous. That is, a shadow receive is posted on every re-
ceive request that will receive the ping from the i npi d (step
3 in Fig. 12). If the ping request completes, the message was
synchronous, and it triggers an ACK to be sent to the i mpi d
(which is, itself, a shadow request linked to the ping request). If
the ping request does not complete by the time the main mes-
sage request completes, the message was not synchronous, and
the ping request is canceled.

B.3 MPI_BARRIER

IMPI mandates an MPI_BARRIER inside of MPI._-
FINALIZE. This entailed adding much of the infrastructure for
IMPI collective algorithms to LAM. Since the IMPI collectives
are implemented on top of point-to-point functionality, the ma-
jority of LAM’s collective infrastructure had to do with seg-

menting communicators into local and remote groups. Any
communicator in LAM that contains ranks on a different IMPI
host now has a shadow communicator. The shadow communi-
cator has a unique context ID and contains only the local LAM
ranks from the real communicator.

Shadow communicators are used for the local phases of
collective operations. For example, Fig. 4 shows that an
MPI_BARRIER on a communicator with ranks from multiple
IMPI hosts has two local phases and one global phase. With
shadow communicators created and maintained elsewhere in
LAM, MPI_BARRIER is implemented as:

/'l Local phase

MPI _Barri er (shadow_conmuni cator);

/1 d obal phase

/1 [...IMPl-mandated al gorithm..]

/'l Local phase
MPI _Barri er (shadow_conmuni cat or) ;

C. Shutdown Sequence

As mentioned previously, the call to MPI_FINALIZE trig-
gers a message to be sent to the i npi d indicating that it is
shutting down. When all of the local LAM ranks have called
MPI_FINALIZE, the i npi d will quit the main polling loop.
The IMPI client code in the i nmpi d will send a message to the
IMPI server indicating that it is shutting down, and then call
MPI_FINALIZE itself before exiting.

D. Limitations of Implementation

The current implementation of IMPI in LAM/MPI does not
allow any MPI collectives other than MPI_BARRIER. While
the infrastructure for the remainder of the data-passing col-
lectives is already in place, implementing the collective com-
municator constructors (e.g., MPI_.COMM_SPLIT) will require
significant modifications to the current design. It was real-
ized late in the process that the i mpi d contains many assump-
tions that the communicator being used to pass messages is
MPI_COMM_WORLD. This will need to change; the i npi d
will probably need to become aware of all communicators that
are created, at least in the local LAM.

Canceling sent messages is a difficult problem, especially in
a distributed environment. As such, LAM/MPI does not sup-
port MPI_.CANCEL on send requests. Since LAM itself does
not support this functionality, there was little point in including
cancel support in the IMPI functionality, either.

V. RESULTS

The LAM/MPI implementation of IMPI passes all the point-
to-point tests of the NIST IMPI conformance tester. Hence,
when vendors make IMPI implementations available, LAM
should be able to interoperate with them.

One use for IMPI (especially while LAM/MPI is the only
MPI implementation that has IMPI support) is for running par-
allel jobs over WAN distances. IMPI is useful in this situation
because a low number of sockets are used, thereby lowering the
possibility of network disruption (for example).

To measure the overhead of IMPI protocol, a standard ping-
pong test was conducted between machines at the University of
Notre Dame in Indiana and Lawrence Berkeley National Lab in
California. A 400Mhz Intel Pentium-11 machine running Linux
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Fig. 13. Ping-pong timing results using IMPI and MPI.

2.2.12 was used at each end. Each machine was unloaded and
located on a 100Mbps local switched network. The measured
available bandwidth between Notre Dame and LBL at the time
of the test was 2.3Mbps.

Figure 13 shows timing results comparing various sized ping-
pongs between Notre Dame and LBNL using IMPI and using
a single LAM spanning both hosts. As expected, the IMPI re-
sults reflect the overhead in the three-hop design of IMPI. These
results should not be taken as an indictment of IMPI (or this
particular implementation), however. The value of IMPI is in al-
lowing highly-tuned implementations of MPI to work together.
In some cases, having IMP1 available will be the difference be-
tween being able to conduct an experiment or not. In other cases,
the proper performance comparison to make will be to compare
vendor-tuned implementations communicating over IMPI with
a portable implementation (such as LAM) running on all hosts.
To be able to conduct such experiments awaits the delivery of
at least one vendor implementation of IMPI. Naturally, we hope
that this particular implementation will give encouragement and
impetus to the vendors to do so.

V1. CONCLUSIONS

LAM/MPI has proved that IMPI works, and several vendors
on the IMPI Steering Committee have voted in favor of the
proposed IMPI standard. Having IMPI-enabled vendor-tuned
MPI implementations will enable not only larger, and poten-
tially more efficient MPI jobs, it also joins MPI with the growing
field of geographically distant parallel computing research — the
study of linking distant resources into a single parallel resource.

More information about LAM/MPI, as well as the software

package is available fromht t p: / / ww. npi . nd. edu/ | an .

A. Future Work

LAM/MPI has some limitations in its implementation of
IMPI which need to be addressed:
« Finish implementing the data-passing collectives, such as
MPI_SCATTER, MPI_GATHER, etc.
« Re-design the i npi d allowing communicator constructors.
« Optimize the collectives; the pseudocode algorithms in the
IMPI standard are only a first attempt, and use well-known al-
gorithms. More research is needed in this area.
o Re-structure LAM/MPI to use generic multi-protocols; re-
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design the RPI to be used in a rank-pairwise manner such that
multiple RPIs can be used in a single program.
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