

XRD/TEM/EELS Studies on Memory Device Structures

Santosh K. Kurinec Electrical & Microelectronic Engineering Rochester Institute of Technology Rochester, NY 14623 Santosh.kurinec@rit.edu

Frontiers of Characterization and Metrology for Nanoelectronics (FCMN) Dresden, Germany, April 14-16, 2015

Where is Rochester?

On Lake Ontario, one of the Great Lakes.

- Founded in 1829
- Privately endowed coeducational university
- 15,000 undergraduate and 3,000 graduate students
- More than 120,000 alumni world-wide

- Rochester is ~ 320 miles from NYC
- City population of ~250,000
- Six county area population of >1,000,000 people
- Strong Engineering and Business History
 - Eastman Kodak, Xerox, Bausch and Lomb
- 11 other colleges in the area
 - Totaling over 80,000 students

Strategically positioned for the growth of semiconductor industry in NY

Microelectronic Engineering @ RIT

Emphasis on semiconductor device design, process integration, Litho, DOE, SPC

Our 33 Years Moore's Law

- Non Volatile Memory Technologies rely on a variety of Materials
- Need for Advanced Characterizations
- Two Type of Devices Investigated are Presented
 - Magnetic Tunnel Junction
 - Phase Change Memory Devices

Co-Authors

- Sankha Mukherjee, Showa Denko, Singapore
- Archana Devasia, NASA/GSFC, MD, USA
- Kris Campbell, Boise State University, Boise, ID, USA
- David MacMahon, Micron Technology Inc., Manassas, VA, USA
- Simone Raoux, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
- Jean Jordan-Sweet, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
- Surendra Gupta, RIT
- David Cabrera, Corning, NY, USA

Memory Devices

6

Crystallization and Inter-diffusion in nanoscale thin films plays a Huge role in their functioning

7

TEM/EELS & XRD

8

MTJ Design/Fabrication

Deposited at Veeco using a multi-target sputter deposition system

Materials Characterization of Device Structures

Wide Range of Analytical Techniques Used in this Study

•MR at Cornell and NUS

Magnetic, ...

Multilayer Structures Created to Study Crystallization

MgO	Material stack designed for materials analysis	MgO
СоFеВ		
MgO		
CoFeB		
MgO		7 layers of
CoFeB		MgO CoFe Ru
MgO		
CoFeB		
MgO		
CoFeB		MgO
MgO		СоFeB
CoFeB		Ru
MgO		MgO
CoFeB		CoFeB
MgO		Ru
SiO ₂ [200nm]		SiO ₂ [200nm]
Si Wafer		Si Wafer

Study of Crystallization, B migration

Study of Inter-diffusion of Ru

Characterization Strategy

1. Study of B diffusion into MgO with Annealing Methodology: TEM & PEELS

Diffusion monitor layer: MgO (25nm)

CoFeB (6nm)
 MgO (2nm)

- XRD² analysis layer: 7 layer stack

2. Study of the Crystallization Process with Annealing Methodology: XRD² & TEM

Diffusion monitor layer: MgO (25nm)

3. Study of Ru diffusion into MgO/CoFeB with Annealing Methodology: TEM & PEELS

MgO (2nm) CoFeB (6nm) XRD² analysis layer: 7 layer stack Ru (2nm)

3. Study of the **Crystallization Process** with Annealing Methodology: **XRD² & TEM**

Study of Crystallization, B migration

2D XRD

Samples were annealed at various temperatures such as 250°C, 275°C, 350°C, 375°C, 385°C, 395°C, for 30min, and 60min.

XRD/TEM/EELS on Memory Structures, S. Kurinec, 2015

Observations

- 1. As-deposited MgO is crystalline
- 2. Grain-growth is observed with increased anneal temperature
- 3. As-deposited CoFeB is amorphous
- Crystallization of CoFeB begins at approximately 335°C. This also changes the slope of the 2θ change with temperature, corroborating the onset of CoFeB crystallization.
- 5. Increase in the CoFeB FWHM at 395°C is indicative of crystallographic degradation at that temperature.

Multiple CoFe grains for every MgO grain

Process Window < 395°C

Samples on which TEM/PEELS performed: Unannealed, 350°C, 385°C, 395°C

High-resolution TEM Micrograph of the un-annealed sample

Significant Grain Formation

High-resolution TEM Micrograph of the sample annealed at 385°C

Anomalous Grain Formation

High-resolution TEM Micrograph of the sample annealed at 395°C

TEM and PEELS

•PEELS is performed on 60 points along the line shown 0 refers to the first point, 59 refers to the last point , point-point spacing is 0.5Å

10×10⁴ Unannealed 5 O 0 50 Position 800 600 0 400 60 Energy Loss (eV) 200 10× 10 395°C 5 0 50 Position 800 600 0 400 60 Energy Loss (eV) 200

O spectrum

Energy-loss spectrum for B and O from three spatial positions are separated and plotted separately as shown above. These are marked by symbols 'a', 'b' and 'c'.

• At 'a', there is no B in the B spectrum, but O, as expected – B doesn't penetrate deep into MgO.

○ It thus leads to the **possibility of quantifying diffusion** as a result of annealing.

• Bonding nature of B significantly different in the CoFeB and MgO layers.

○ It leads to the possibility of **estimating** the **physical nature dictating B diffusion**.

$$D = D_0 \exp\left(-\frac{E_A}{kT}\right) \quad D_0 = 9.5 \times 10^{-8} \text{ cm}^2/\text{s}$$

 $E_A = 1.3 \pm 0.4 \text{ eV}$

395°C Anneal

500°C Anneal

- Ru does not interdiffuse at 395°C, but does at 500°C
- B segregates not only vertically into the MgO, but also laterally into itself
- Ru diffuses into CoFeB, where there is high concentrations of B

What do we do with this Information?

- The TMR increases as a function of CoFe grain size
- For samples that are completely made of CoFe, there is a marked increase in the TMR as a function of distance.
- However, in the presence of any trace of CoFeB this increase is seen to disappear.

Phase Change Memory

- High bias, fast (10 ns pulse) melts chalcogenide
- Swift quench freezes material into amorphous, high resistance state
- Medium bias, 100 ns pulse heats chalcogenide to glass transition temperature
- Slow cooling nucleates and crystallizes into low resistance state

Stacked Chalcogenide Layers for Phase Change Memory

- Bilayer Approach
 - Bottom layer Ge-Ch (GeTe or Ge₂Se₃)
 - Top Layer Sn-Ch (SnTe or SnSe)
- Ge-Ch
 - Homopolar bonds nucleation sites
 - Ge₂Se₃ higher T_G higher temperature tolerance
- Sn-Ch
 - > Ohmic contact
 - > Improved adhesion
 - Donates metal ions
- Induce phase change response possibility of lower V_{th} and current
- Tailor the characteristics of the memory layer
- Improve thermal cycling, reduce adhesion issues

Device Schematic

Fabricated device top view

Phase Transition Studies and Residual Stress Analysis

- XRD carried out on bilayers of Ge₂Se₃/SnTe and GeTe/SnTe
- Cu K α radiation, $\lambda = 1.5418$ Å

50 nm Sn-Ch	
30 nm Ge-Ch	
$50 \text{ nm } \text{SiO}_2$	
4" (100) Silicon	

Vantec 2000 Area Detector

Bruker D8 HRXRD at RIT Advanced Materials Characterization Lab

 Samples heated in an Anton-Paar DHS900 domed hot stage to different annealing temperatures under flowing N₂ @ 30°C/min, held for 10 min and cooled at the same rate

Ge₂Se₃/SnTe Bilayer

Measured *d* spacings are affected by residual stress and temperature dependent compositional changes

*180°C - 240°C: Gradual
decrease in d₂₀₀
* 240°C - 330°C: Sharp
decrease in d₂₀₀ - separation
of SnSe phase
> 330°C - 450°C: Decrease
and then increase in d₂₀₀
> At 360°C - possibility of

> At 360°C – possibility o second phase transition

200

50

e- x 10^3

GeTe/SnTe Bilayer

XRD/TEM/EELS on Memory Structures, S. Kurinec, 2015

GeTe/SnSe

e- x 10^3

GeTe/SnTe

GeTe/SnSe

Ge₂Se₃/SnTe

170°C

300°C

170°C – phase transition

300°C – structural transition

- Sn ions lower the crystallization temperature of Ge-chalcogenides
- Interdiffusion studies reveal the temperature limitations of each bilayer stack on processing
- Inclusion of SnTe shows higher endurance

Consumer electronics

Consumer electronics

Multi-bit applications

Automotive

Doped GST and GeTe

- Co-sputtering from Alloy Targets
- Composition determined by Rutherford Backscattering Spectroscopy (RBS) And Particle Induced X-ray Emission (PIXE)

Phase change material	Dopant	Composition (at. %)
GST	None	Ge 23.3 Sb 27.3 Te 49.4
GST	N	Ge 21.0 Sb 246 Te 44.5 N 9.9
GST	Si	Ge 22.6 Sb 26.5 Te 47.9 Si 3.0
GST	Ti	Ge 22.0 Sb 25.8 Te 46.7 Ti 5.5
GST	Al ₂ O ₃	Ge 22.4 Sb 26.2 Te 47.5 Al 0.4 O 3.5
GeTe	None	Ge 50.7 Te 49.3
GeTe	N	Ge 45.5 Te 44.2 N 10.3
GeTe	Si	Ge 48.7 Te 47.4 Si 3.9
GeTe	Ti	Ge 45.0 Te 43.8 Ti 11.2
GeTe	Al ₂ O ₃	Ge 46.7 Te 45.5 Al 0.8 O 7.0

TRXRD on Doped GST and GeTe

- Time resolved x-ray diffraction at Brookhaven National Lab
 - Intensity of diffracted peaks at a ramp of 1 °C/s to 450 °C.
 - Shows transition from amorphous to crystalline phase

Influence of Dopants on the Crystallization Temperature, Crystal Structure, Resistance, and Threshold Field for <u>GeTe and Ge_Sb_Te_Phase Change Materials</u>, S. Raoux, D. Cabrera, A. Devasia, S. Kurinec, H. Cheng, Y. Zhu, C. Breslin and J. Jordan-Sweet, European\Phase Change and Ovonics Symposium, September 2011, Zurich, Switzerland. θ to 2θ scans after temperature ramp shows phase transition

 Resistivity as a function of temperature shows resistance change as material crystallizes

Effect of Dopants on Crystallization & Threshold Field

- It was concluded that dopants raise chalcogenide crystallization temperature.
- Nitrogen dopant was the most effective, raising GeTe to 270 °C compared to undoped at 170 °C.

XI	RD (°C)
GST	160
NGST	230
TiGST	200
SiGST	175
AlO₂GST	170
GeTe	180
NGeTe	270
TiGeTe	220

220

200

Phase change material	Dopant	Threshold Field (V/µm)
GST	None	60
GST	Ν	70
GST	Si	79
GST	Ti	58
GST	Al_2O_3	96
GeTe	None	143
GeTe	Ν	248
GeTe	Si	193
GeTe	Ti	60
GeTe	Al_2O_3	70

Fig.1 Threshold fields achieved for different material compositions

High threshold fields are desirable for ultra-scaled devices because for a very small size of the amorphous region, the threshold voltage might become comparable to the reading voltage and the reading operation would disturb the state of the cell.

SiGeTe

AlO₂GeTe

Evolution of Phase Change Materials

Material	Characteristics
GST	Most widely researched, only single-bit operation possible
Bilayers of Ge- Ch/Sn-Ch	Tunable phase transition characteristics, superior adhesion to electrodes, possibility of multi-bit operation
GST or GeTe with Si, SiO ₂ , N or Ge dopants	Reduction in programming current, faster crystallization, improved thermal stability of crystalline phase
GST, AIST, GeSe, GeTe nanoparticles	Potential for scaling to very small dimensions, cost reduction by means of self-assembly and spin-on techniques

Metrology & Characterization Indispensable

More and more new materials are being introduced in emerging memory technologies

State of the Art Tools

Research on

*New Techniques

Education

*Metrology

*SPC

Acknowledgments

This work was supported in part by the NSF grant ECCS-0501460 and EEC-0530575.

NASA EPSCoR Grant # NNX07AT60A

National Synchrotron Light Source, Brookhaven National Laboratory, supported by the U.S. DOE, Contract # DE-AC02- 98CH10886

Chih-Ling Lee, Katrina Rook, Narsima Srinivasan, and Ramya Chandrasekaran (Veeco)