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Outline

• Diffusion Databases: Key questions
• Technical issues

– Formalisms: Many!
– Data for databases: Many!
– Content of database: Types of diffusion data
– Approach for constructing db’s: Calphad only?
– Modeling/software: long, exciting road ahead

• Tracer diffusion databases
– Past Concerns, Current Approach
– DOE Isotope Program
– SIMS Instrumentation challenges
– Experimental challenges, current efforts
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Diffusion databases: Key Questions 
• Why do we need these?

– How is this information used for something 
useful?

• Who needs these?
– Industrial applications and partners
– Basic R&D efforts at universities, labs, etc.

• Who will support the work?
– Offices within the federal government

• Commerce (NIST), Energy (ORNL, Argonne, 
etc.), NSF, Homeland Security, NIH, 
Transportation, Defense (DARPA, Army, Air 
Force, etc.)

– Industry partners
– Industry/University/Government 

collaborations
• Sematech, SRC, Focus Centers, professional 

organizations, etc.
– International organizations, multinational 

partnerships

DOE/US-AMP Mg-ICME 
program requires thermo & 
diffusion databases



4 Managed by UT-Battelle
for the U.S. Department of Energy

Diffusion Formalisms for Databases

• Mobility 
• Phenomenological
• Others

– Interdiffusion (effective), Jump frequencies, …
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A: “Mobility” Formalism/Database: DICTRA

• Intrinsic flux expression that ignores cross-terms

• Mk is known as the “mobility” [Darken 1948]:
– One unique mobility for each component in a multicomponent system with above 

assumption
– Vacancy wind effects included (perhaps artificially) in diagonal terms since off-

diagonal phenomenological coefficients ignored

• Multicomponent Darken theory connects mobilities with tracer diffusion 
coefficients
– Diffusion coefficients in other frames (e.g., lab frame for interdiffusion) can be 

obtained from mobilities (or Lkk’s) and thermodynamic information by suitable 
transformations

Lawrence Darken
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• Interdiffusion Data: Convert to mobilities with thermo
– Steep concentration gradients, molar volume changes, grain 

boundary effects, can introduce errors in measurements and 
subsequent analysis:  still manageable

– Very long annealing times may be needed for improved accuracy if 
kinetics are slow
• Very difficult in compounds unless solubility range is extended

• Intrinsic Diffusion Data: Convert to mobilities with thermo
– Require suitable “inert” markers throughout diffusion zone

• Multiple markers rarely employed except at original “Kirkendall
Interface” due to experimental difficulties

– Vacancy super-saturation (porosity) or under-saturation can cause 
errors in both analysis

• Tracer Diffusion Data: Directly obtain mobilities
– Most reliable but use of radioactive tracers is time-consuming and 

expensive
– Tracer data using non-radioactive (stable) isotopes not established

Input for Mobility Databases:
Diffusion data + thermodynamics

ORNL
[H]/[Si], 
Obsidian
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B: Phenomenological Formalism:
Tracer Database

• Intrinsic fluxes defined in the lattice or Kirkendall frame where 
driving forces are chemical potential gradients

• Lki’s obtained from tracer diffusion database using Manning, 
Moleko et al., or latest theories

• Chemical potentials from Calphad databases

Tracer diffusion database is independent of thermodynamic database
No assumptions other than the usual phenomenological assumption
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• Interdiffusion
– Multicomponent version (extension of Fick’s Law) with 

concentration gradients as driving forces 

• Using “square-root diffusivity” approach interdiffusion coefficients can 
always be measured (sufficient solid solubility) (Morral et al.)

– Effective integrated interdiffusivities (Dayananda et al.)
• Amenable to databases?

Other Formalisms for Databases?

• Jump Frequencies
– Multicomponent intrinsic flux composed of biased and 

unbiased fluxes (DeHoff et al.)
– Γk are tracer jump frequencies
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Which Formalism to Use?

• Mobility or Phenomenological Formalism or Others?
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1. Initial concentration distribution for each component

2. Depending upon the formalism, kinetic descriptors as a 
function of composition, temperature or other variables

3. Thermodynamics of phase, if needed

4. Molar volume as a function of composition

Finite difference method for semi-infinite couples

• Simple yet effective 
algorithm

• Handles variable molar 
volumes

• Developed in MathCad –
user-friendly

• Efficient – practical output 
for a single diffusion 
couple in less than a 
minute

• Versatile – adaptable to 
various formalisms

Intrinsic Diffusion Simulation for 
Assessing Diffusion Formalisms

C. Iswaran, Ph.D. Thesis, Univ. 
of Florida,1993
Kulkarni & DeHoff, Acta Mat 
2005
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Simulation 
Algorithm

Initial concentrations (ck,i = Xk,i / V )

Fluxes computed using finite difference form

10 0 10
0

0.5
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X1 ,1 i

X1 ,2 i

X1 ,3 i

1010 x1i xinit1121
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Procedure for Assessing Darken 
(Mobility) and Manning (Phenom.)
A. Establishing consistency of experimental measurements and 

procedures
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B. Procedure for testing the D-M relations with aid of the simulation

Darken relations

Manning relations
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D-M Relations for Cu-Zn contd.

Concentration profiles Kirkendall shifts

Minor differences between Darken (mobility approach) and Manning
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Darken Relations for Au-Ni: Predicted 
Intrinsic Diffusion Coefficients

Darken: DAu 

• Problem with predicted Au intrinsic diffusion coefficient 

Au-Ni, 900oC
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Assessing Darken Relations for Au-Ni 
with Simulation

Concentration profile

Lattice shift profile 

Differences between predicted and experimental DAu results in large 
differences in lattice shift profiles
Manning correction outside limits (need to check Moleko et al. 
formalism)
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Similar composition dependence

Tracer diffusion coefficients

Thermodynamics from Jiang, 
Ishida et al., J. Phys. Chem. 

Sol., 2004.

log Dt Cu( ) 3.53− X Ni
1.16⋅ 3.6 X Zn

1.02⋅+ 9.46−

log Dt Ni( ) 4.05− X Ni
1.3⋅ 3.28 X Zn

1.07⋅+ 9.96−

log Dt Zn( ) 3.2− X Ni⋅ 5.21 X Zn
1.25⋅+ 9−
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Manning Relations in Cu-Ni-Zn: Fluxes
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Manning Relations in Cu-Ni-Zn: Lij’s
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Manning: Cu-Ni-Zn
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So Which Formalism to Use?

• Mobility or Phenomenological Formalism or Others?
– Phenomenological formalism slightly better for systems 

studied, so far…
• Fewer assumptions

– Better to have software capable of handling different 
formalisms, e.g., Phenomenological can handle Mobility 
formalism as a limiting case but not vice versa.

– Better to keep diffusion database independent of 
thermodynamic database.

– Tracer diffusion database that feeds into Lij’s has diffusivity 
units of cm2/s that provides more physical meaning to user.

Ultimately, choice of the individual user!



24 Managed by UT-Battelle
for the U.S. Department of Energy

Data for Diffusion Databases

• Interdiffusion Data
– Steep concentration gradients, molar volume changes, grain 

boundary effects, can introduce errors in measurements and 
subsequent analysis:  still manageable

– Very long annealing times may be needed for improved 
accuracy if kinetics are slow
• Very difficult in compounds unless solubility range is extended

• Intrinsic Diffusion Data
– Require suitable “inert” markers throughout diffusion zone

• Multiple markers rarely employed except at original “Kirkendall
Interface” due to experimental difficulties

– Vacancy super-saturation (porosity) or under-saturation can 
cause errors in both analysis

• Tracer Diffusion Data
– Most reliable but use of radioactive tracers is time-consuming 

and expensive
– Tracer data using non-radioactive (stable) isotopes not 

established but promising

Experimental data

ORNL
[H]/[Si], 
Obsidian
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Data for Databases contd.

• Mg data/mechanisms (Z.K. Liu., Wolverton et al.)
• NiAl intermetallic data/mechanisms (A. Van der Ven, …
• Other pure and compound systems
• Oxides (Ågren et al.), Nitrides, ?

First-principles data

Empirical data

• CIGS system:  Empirical approach by Ashby & Brown
– Utilized by Campbell, et al. for reference pure element 

diffusivities

• Interdiffusivities: Birchenall & Mehl, others
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Diffusion Databases: What should they 
contain?
• Volume diffusivities

– Mostly

• Orientation dependent diffusivities
– Important for non-isotropic elements (Mg, 

Zn) and compounds

• Grain boundary diffusivities: No 
systematic experimental effort (?)
– Bicrystals, tricrystals
– Modeling (Mishin et al.)
– Directly using EBSD + SIMS integrated 

system (the future…)

• Surface/Interface diffusivities
– Cu/SiN interfacial diffusion dominates 

electromigration flux in damascene 
interconnects

Self-diffusion in single crystals of Zn (hex.), In 
and Sn (tetrag.) parallel and perpendicular to 
their unique axis (Mehrer, Diffusion in Solids)

Self-diffusion in fcc metals in lattice (D), along 
grain boundaries (Dg), on surface (Ds) and 
liquid phase (Herzig and Mishin).
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Approach for Constructing Diffusion 
Databases

Calphad Approach (Volume diffusivities)
– Based on constructing models for multicomponent systems 

using assessed models from relevant binary systems
– Need pure element reference tracer diffusivities

• Use first principles or empirical approaches if data not available
• Conduct difficult experiments (CVD, high pressure, creative 

experiments

– Optimization of various types of data (tracer, interdiffusion, 
intrinsic diffusion, first principles, etc.) from various sources
• Employ desired weighting

– Composition dependence using Redlich-Kister type 
polynomial functions

– Temperature dependence using Arrhenius expressions
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Approach for Diffusion Dbs. Contd.

However …
• Calphad approach is convenient but …

– Diffusivities are absolute quantities and not relative like Gibbs 
energies that require reference state values.
• Hence standard element reference diffusivities need not be used if not 

available, e.g., Al hcp, Mg fcc.
• Because kinetic coefficients may vary by several orders in magnitude, 

small errors in non-measurable reference element values may cause 
large errors in unknown coefficients

– Some may prefer to keep diffusion database independent of 
thermodynamic database.
• Use only tracer diffusion or first principles data

– Hence, optimization efforts may be simplified

– Impurity diffusion, other diffusion mechanisms (aided with 
first principles analysis) may require more than a single 
polynomial model or non-polynomial models (?).
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Similar composition dependence

Tracer diffusion coefficientslog Dt Cu( ) 3.53− X Ni
1.16⋅ 3.6 X Zn

1.02⋅+ 9.46−

log Dt Ni( ) 4.05− X Ni
1.3⋅ 3.28 X Zn

1.07⋅+ 9.96−

log Dt Zn( ) 3.2− X Ni⋅ 5.21 X Zn
1.25⋅+ 9−
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Diffusion Modeling Software

• Type of diffusion database
– Integrated with thermodynamic db
– Independent of thermodynamic db

• 1D vs 3D
• Thin film vs Bulk

– Grain boundary, orientation, nucleation, texture, stress, etc.
• Phase Field / Crystal Phase Field

– Special cases only?
• Input information

– Molar volume, temperature, composition, crystal structure, 
different boundary conditions, etc.

• Ease of interface with other software and db’s
– Properties
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Tracer Diffusion Database

• Tracer diffusion coefficient in a homogeneous single-phase system from the 
thin film solution 

– Measure D*
k at each composition for samples annealed for different times; Repeat 

procedure at different temperatures; Plot D*k  vs 1/T to obtain Arrhenius 
parameters for each sample composition within various phases; Fit tracer 
diffusivities in a phase as a function of temperature and composition for binaries 
using polynomial functions for composition dependence.

• Tracer is an isotope of one of the elements in the homogeneous alloy that is 
present in extremely dilute amounts (ppm) so that
– Thin film solution for diffusion coefficient is valid and
– Initial composition of the alloy is unchanged

• Previously, only with a radioactive isotope could trace amounts of the isotope 
(tracer) be detected due to the high intensity of radiation (beta, gamma):
– Time, Money and Safety Issues

Tracer flux Thin film solution for Dk
*

Radioactive Isotopes
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Tracer Diffusion Database

• Use of stable isotopes has a dramatic effect on safety 
and reduced costs.

• Advancements in Secondary Ion Mass Spectrometry 
(SIMS) for the accurate detection of trace amounts of 
stable isotopes permits thin film solution to be utilized, 
i.e., essentially the same-simple analytical treatment as 
before.

• SIMS systems at ORNL and UCF measure isotopic ratio 
of concentrations as a function of depth or at any point 
in sample

• We can map elements, isotopes over an area of about 1 
cm2, and with a lateral resolution of about 1-2 μm, and 
depth resolution of about 10 nm.

• Future nano-SIMS integration with EBSD capability may 
enable measurement of:
– Diffusivities as a function of orientation in micro/nano

grained materials
– Grain boundary diffusivities

Stable Isotopes and SIMSStable Isotopes and SIMS

Cameca IMS 3F at UCF

Cameca IMS 4F at ORNL
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Tracer Diffusion contd.

Typical ranges of diffusivity (Mehrer, Diffusion in Solids)
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ORNL Isotopes Enriched by the Calutrons

Cannot avoid working with radioactive isotopes in 
some cases, e.g., Al, Mn, etc., but can still use SIMS
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$360M*
Worth of
Stable 
Isotopes
(* list price)

Inventory ORNL Isotopes
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Procedure for Tracer Diffusion 
Measurements (Review by Rothman)

To

(1) Prepare single phase alloy 
sample (e.g., Mg-5%Al) at To 

(7) Fit using 
suitable 
polynomials for 
functional form 
of isotopic 
diffusivity 
Dk*(X1, X2,…, 
T) (e.g. Au-Ni 
tracer diffusion 
at 900oC, 
Reynolds et al. 
Acta Met. ’57 )

(1)(1)
(2)(2) (3)(3) (4)(4)

(7)(7)

(4) Measure depth profile of 
isotope or isotope ratio with 
SIMS (e.g., O18 with Time of 
Flight technique, De Souza et 
al., Sol. State Ionics ’05)

1/T (10-4) K-1

7 8 9 10

D
* Au

 (c
m

2 /s
)

10-11

10-10

10-9

10-8

100% Ni 
80% Ni
65% Ni 
50% Ni
35% Ni
20% Ni
0% Ni 

100

80
65

50
35

20

0

0

50

(2) Deposit thin film 
(100 nm) of stable 
isotope of an alloy 
element (e.g., Mg26)  
on sample surface

(6)(6)
(5)(5) (6) Repeat for 

different 
temperatures 
and 
compositions 
to check for 
Arrhenius fits 
(e.g. Au in 
Au-Ni alloys, 
Kurtz et al., 
Acta Met.’55)

(3) Anneal at To for 
desired times (mins
to hrs) to cause 
isotope to diffuse 
inwards

(5) Fit depth profile data 
for  isotope in (4) with 
above thin film solution to 
extract tracer diffusivity 
D*.
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Sample 
Load/Lock

Sample

Duoplasmatron
(O-,O2

-,etc.)

Cs+ Gun

Primary Ion
Mass Selection

Primary
Ion Column

Secondary Ion Mass 
Spectrometer

ESA Magnet

Detector

Ion Image

Cameca ims-4f Ideally Suited for Isotope Ratio Depth Profiles
High Spatial Resolution (1μm), High Mass Resolution, High Sensitivity

Our Modifications – Increase Flexibility, Compatibility 
with SEM, Optical Microscopes, Reliability

SIMS: ORNL (CAMECA IMS-4F) & UCF (IMS-3F) $2-3M

Can measure isotopic 
ratios as a function of 
depth.
Can measure  multiple 
beams at a time.
Has imaging 
capability. 
System can be 
automated for high 
throughput 
measurements of 
samples on a wafer.
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Stable Isotopes Available
[Not Radioactive]

24 25 26 27 64 65 66 67 68 69 70

Mg Al Zn

m/z

Headroom

Ratios, e.g. [26Mg]/[24Mg] =14.04%

Nat. Ab., e.g., [25Mg]/[24Mg] =13.90%
…1% difference readily detected.
100% Available: ca. 104 Headroom

Alloy

Isotopically Labeled Alloy

Isotope R
atio

Δ Isotope Ratio Measured
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Cameca 3F
UCF

25Mg/24Mg 
(RSD)

26Mg/24Mg 
(RSD)

Reference 
value 0.127 0.139

Mg 0.129 
(<0.001)

0.138 
(<0.001)

Mg-Al-Zn 0.130 
(<0.001)

0.139 
(<0.001)

AZ31B-2 0.129 
(<0.001)

0.138 
(<0.001)

AM60B-2 0.130 
(<0.001)

0.139 
(<0.001)

Isotope Ratios Readily Measured…

Measurements independent of depth within 1% Relative 
Standard Deviation

25Mg/24Mg

Depth (nm)
.120

26Mg/24Mg

.130

.125

.135

.140

.145

.150
Early Validation UCF
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Sputtering Depth: Precisely Measured

• Sputtering Rate Uncertainty 
(uncertainty Primary Ion Current )
• Measure depth of each crater
• Sputter Rate Only for Scoping

Profilometer
Resolution: < 0.1 nm
Accuracy: Surface

Sputter Rate vs. Depth

Assumption
For any Given Crater, given primary ion 
current, Sputtering Rate Constant
… if Not Known Precisely

Standard: Si Sputtering

Real Data

Primary Ion Current: 
ca. 10-100 nA
Spot Size: 1-10 μm
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Vapor Deposition of Stable Isotopes –
Automated Sample Preparation System (ASAP)

• Clean, planarize sample surface prior 
to sputter deposition
– Plasma Clean (PC)
– Ion Beam Etching (IBE)
– Reactive Ion Etching (RIE)
– Ion Beam Sputter Coating (IBSC)

• Pure atmosphere (Ar) during ion beam 
sputter deposition
– Attempts to increase deposition rate (Xe?) 
– Metal getter system, in-situ gettering

being explored

• Load lock – multiple sample capability
• Controlled  thickness, automation

Top 
view
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Current Work in Mg-Al-Zn (Mg rich phase)
• Impurity diffusion (Al, Zn) studies in Mg.
• Improvements in current ion beam sputter tool to minimize 

oxygen levels in Mg isotope film.
• Future years: Mg-Al-Mn and Mg-Al-Zn-Mn

To
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Summary

• Justification for effort
– Clarity and specificity

• Address technical issues
– Volume databases alone may not be sufficient

• Grain boundary, orientation effects 
– 1D Software for bulk diffusion may not be enough

• Thin films, non-planar interfaces, varied boundary conditions

• Tracer diffusion databases
– Stable isotopes to the rescue but not always (Al, Pb, Mn, etc.)
– Free of major assumptions
– Independent of thermodynamics
– Can assess newer/improved formalisms as they develop
– Amenable to a variety of driving forces
– Necessary for line compounds, grain boundary measurements, …
– Instrumentation/experimentation challenges & costs are significant

• National Labs/Centers can play a major role
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