Challenges in Creating a Pure Element Tracer Diffusion Database

Nagraj Kulkarni

University of Tennessee

Oak Ridge National Laboratory

NIST Diffusion Workshop

Gaithersburg, MD

March 26, 2009

Outline

- Diffusion Databases: Key questions
- Technical issues
 - Formalisms: Many!
 - Data for databases: Many!
 - Content of database: Types of diffusion data
 - Approach for constructing db's: Calphad only?
 - Modeling/software: long, exciting road ahead
- Tracer diffusion databases
 - Past Concerns, Current Approach
 - DOE Isotope Program
 - SIMS Instrumentation challenges
 - Mana Experimental challenges, current efforts

Diffusion databases: Key Questions

- Why do we need these?
 - How is this information used for something useful?
- Who needs these?
 - Industrial applications and partners
 - Basic R&D efforts at universities, labs, etc.
- Who will support the work?
 - Offices within the federal government
 - Commerce (NIST), Energy (ORNL, Argonne, etc.), NSF, Homeland Security, NIH, Transportation, Defense (DARPA, Army, Air Force, etc.)
 - Industry partners
 - Industry/University/Government collaborations
 - Sematech, SRC, Focus Centers, professional organizations, etc.
 - International organizations, multinational Manapartnerships for the U.S. Department of Energy

DOE/US-AMP Mg-ICME program requires thermo & diffusion databases

Diffusion Formalisms for Databases

- Mobility
- Phenomenological
- Others
 - Interdiffusion (effective), Jump frequencies, ...

A: "Mobility" Formalism/Database: DICTRA

• Intrinsic flux expression that ignores cross-terms

$$J_{k} = -\sum_{i=1}^{n} L_{ki} \frac{\partial \mu_{i}}{\partial x} = -L_{kk} \frac{\partial \mu_{k}}{\partial x} = -c_{k} M_{k} \frac{\partial \mu_{k}}{\partial x} \qquad (L_{ki} = 0, k \neq i)$$

• M_k is known as the "mobility" [Darken 1948]:

Lawrence Darken

- One unique mobility for each component in a multicomponent system with above assumption
- Vacancy wind effects included (perhaps artificially) in diagonal terms since offdiagonal phenomenological coefficients ignored
- Multicomponent Darken theory connects mobilities with tracer diffusion coefficients
 - Diffusion coefficients in other frames (e.g., lab frame for interdiffusion) can be obtained from mobilities (or Lkk's) and thermodynamic information by suitable transformations

$$L_{kk} = c_k M_k = \frac{c_k D_k^*}{R T}$$

Input for Mobility Databases: Diffusion data + thermodynamics

- Interdiffusion Data: Convert to mobilities with thermo
 - Steep concentration gradients, molar volume changes, grain boundary effects, can introduce errors in measurements and subsequent analysis: still manageable
 - Very long annealing times may be needed for improved accuracy if § ...s
 kinetics are slow
 - Very difficult in *compounds* unless solubility range is extended
- Intrinsic Diffusion Data: Convert to mobilities with thermo
 - Require suitable "inert" markers throughout diffusion zone
 - Multiple markers rarely employed except at original "Kirkendall Interface" due to experimental difficulties
 - Vacancy super-saturation (porosity) or under-saturation can caus errors in both analysis
- Tracer Diffusion Data: Directly obtain mobilities
 - Most reliable but use of radioactive tracers is time-consuming and expensive
- ⁶ Managed **Fracer** data using non-radioactive (stable) isotopes not established

B: Phenomenological Formalism: Tracer Database

• Intrinsic fluxes defined in the lattice or Kirkendall frame where driving forces are chemical potential gradients

$$J_{k} = -\sum_{i=1}^{n-1} L_{ki}^{n} \operatorname{grad} \mu_{i} \qquad (k = 1, 2, ..., n) \qquad \sum_{k=1}^{n} J_{k} = -J_{v}$$

 L_{ki}'s obtained from tracer diffusion database using Manning, Moleko *et al.*, or latest theories

$$L_{11} = \frac{X_1}{V} \cdot \frac{Dt_1}{R \cdot T} \cdot \left[1 + \frac{2 \cdot X_1 \cdot Dt_1}{M_o \cdot (X_1 \cdot Dt_1 + X_2 \cdot Dt_2 + X_3 \cdot Dt_3)} \right]$$
$$L_{12} = \frac{2 \cdot X_1 \cdot Dt_1 \cdot X_2 \cdot Dt_2}{V \cdot R \cdot T \cdot M_o \cdot (X_1 \cdot Dt_1 + X_2 \cdot Dt_2 + X_3 \cdot Dt_3)} \right]$$

Chemical potentials from Calphad databases

> Tracer diffusion database is independent of thermodynamic database

No assumptions other than the usual phenomenological assumptions 7 Managed by UT-Battelle for the U.S. Department of Energy

Other Formalisms for Databases?

Interdiffusion

 Multicomponent version (extension of Fick's Law) with concentration gradients as driving forces

$$J_k = -\sum_{j=1}^{n-1} D_{kj}^n \operatorname{grad} c_j$$

- Using "square-root diffusivity" approach interdiffusion coefficients can always be measured (sufficient solid solubility) (Morral et al.)
- Effective integrated interdiffusivities (Dayananda et al.)
 - Amenable to databases?
- Jump Frequencies
 - Multicomponent intrinsic flux composed of biased and unbiased fluxes (DeHoff et al.)
 - Mana To by are tracer jump frequencies

$$J_{k} = 2\alpha_{k+}\lambda c_{k}\Gamma_{k} - \frac{1}{6}\lambda^{2}\frac{dc_{k}\Gamma_{k}}{dx}$$

Which Formalism to Use?

• Mobility or Phenomenological Formalism or Others?

Intrinsic Diffusion Simulation for Assessing Diffusion Formalisms

- 1. Initial concentration distribution for each component
- 2. Depending upon the formalism, kinetic descriptors as a 2005 function of composition, temperature or other variables
- 3. Thermodynamics of phase, if needed
- 4. Molar volume as a function of composition

¹⁰ Managed Finite difference method for semi-infinite couples

C. Iswaran, Ph.D. Thesis, Univ. of Florida,1993 Kulkarni & DeHoff, Acta Mat 2005

- Simple yet effective algorithm
- Handles variable molar volumes
- Developed in MathCad user-friendly
- Efficient practical output for a single diffusion couple in less than a minute
- Versatile adaptable to K various formalisms
 Ridge

Simulation Algorithm

Initial concentrations ($C_{k,i} = X_{k,i} / V$)

$$J_{k,i}^{K} = -D_{k,i}^{K} \frac{c_{k,i+1} - c_{k,i-1}}{x_{k,i+1} - x_{k,i-1}}$$

Fluxes computed using finite difference form

Procedure for Assessing Darken (Mobility) and Manning (Phenom.)

A. Establishing consistency of experimental measurements and procedures

B. Procedure for testing the D-M relations with aid of the simulation

$$D_A = D_A^* (1 + \frac{\partial \ln \gamma_A}{\partial \ln X_A}) = D_A^* \Phi$$
$$D_B = D_B^* (1 + \frac{\partial \ln \gamma_B}{\partial \ln X_B}) = D_B^* \Phi$$

$$D^o = (X_B D_A^* + X_A D_B^*) \Phi$$

Darken relations

$$D_A = D_A^* \Phi (1 + V_A)$$
$$D_B = D_B^* \Phi (1 - V_B)$$

$$D^o = (X_B D_A^* + X_A D_B^*) \Phi S$$

Manning relations

Assessing D-M Relations for Cu-Zn

[Anusavice et al., Met. Trans., 1972]

Problem with predicted intrinsic coefficients at high Zn compositions

D-M Relations for Cu-Zn contd.

¹⁵ Minor differences between Darken (mobility approach) and Manning

Darken Relations for Au-Ni: Predicted Intrinsic Diffusion Coefficients

Problem with predicted Au intrinsic diffusion coefficient

Assessing Darken Relations for Au-Ni with Simulation

Lattice shift profile

Differences between predicted and experimental D_{Au} results in large differences in lattice shift profiles
 Manning correction outside limits (need to check Moleko et al. formalism)
 Managed by UT-Battelle for the U.S. Department of Energy

Mobility Formalism: Cu-Ni-Zn

$$\log(\text{Dt}_{\text{Cu}}) = -3.53 \cdot X_{\text{Ni}}^{1.16} + 3.6 \cdot X_{\text{Zn}}^{1.02} - 9.46$$

 $\log(\text{Dt}_{\text{Ni}}) = -4.05 \cdot X_{\text{Ni}}^{1.3} + 3.28 \cdot X_{\text{Zn}}^{1.07} - 9.96$

$$\log(\text{Dt}_{Zn}) = -3.2 \cdot X_{Ni} + 5.21 \cdot X_{Zn}^{1.25} - 9$$

 $D_{Zn}^{*} > D_{Cu}^{*} > D_{Ni}^{*}$

Similar composition dependence

Tracer diffusion coefficients

Anusavice & DeHoff, Met. Trans. A., 1972

Thermodynamics from Jiang, Ishida *et al.*, *J. Phys. Chem. Sol.*, 2004.

Mobility Formalism: Cu-Ni-Zn contd.

Mobility formalism provides reasonable composition paths Underestimates Kirkendall shifts

Manning Relations in Cu-Ni-Zn: Fluxes

$$J_{i} = -L_{ii} \cdot \frac{d}{dx} \mu_{i} - \sum_{j} L_{ij} \cdot \frac{d}{dx} \mu_{j}$$

$$J_{1} = R \cdot T \cdot \left[-L_{11} \left(\frac{\Phi_{11}}{X_{1}} \cdot \frac{d}{dx} X_{1} + \frac{\Phi_{12}}{X_{2}} \cdot \frac{d}{dx} X_{2} \right) - L_{12} \left(\frac{\Phi_{22}}{X_{2}} \cdot \frac{d}{dx} X_{2} + \frac{\Phi_{21}}{X_{1}} \cdot \frac{d}{dx} X_{1} \right) - \frac{L_{13}}{X_{3}} \cdot (-1) \cdot \left[X_{1} \cdot \left(\frac{\Phi_{11}}{X_{1}} \cdot \frac{d}{dx} X_{1} + \frac{\Phi_{12}}{X_{2}} \cdot \frac{d}{dx} X_{2} \right) + X_{2} \cdot \left(\frac{\Phi_{22}}{X_{2}} \cdot \frac{d}{dx} X_{2} + \frac{\Phi_{21}}{X_{1}} \cdot \frac{d}{dx} X_{1} \right) - \frac{L_{13}}{X_{3}} \cdot (-1) \cdot \left[X_{1} \cdot \left(\frac{\Phi_{11}}{X_{1}} \cdot \frac{d}{dx} X_{1} + \frac{\Phi_{12}}{X_{2}} \cdot \frac{d}{dx} X_{2} \right) + X_{2} \cdot \left(\frac{\Phi_{22}}{X_{2}} \cdot \frac{d}{dx} X_{2} + \frac{\Phi_{21}}{X_{1}} \cdot \frac{d}{dx} X_{1} \right) \right]$$

$$J_{2} = R \cdot T \cdot \left[-L_{21} \left(\frac{\Phi_{11}}{X_{1}} \cdot \frac{d}{dx} X_{1} + \frac{\Phi_{12}}{X_{2}} \cdot \frac{d}{dx} X_{2} \right) - L_{22} \left(\frac{\Phi_{22}}{X_{2}} \cdot \frac{d}{dx} X_{2} + \frac{\Phi_{21}}{X_{1}} \cdot \frac{d}{dx} X_{1} \right) - \frac{L_{23}}{X_{3}} \cdot (-1) \cdot \left[X_{1} \cdot \left(\frac{\Phi_{11}}{X_{1}} \cdot \frac{d}{dx} X_{1} + \frac{\Phi_{12}}{X_{2}} \cdot \frac{d}{dx} X_{2} \right) + X_{2} \cdot \left(\frac{\Phi_{22}}{X_{2}} \cdot \frac{d}{dx} X_{2} + \frac{\Phi_{21}}{X_{1}} \cdot \frac{d}{dx} X_{1} \right) - \frac{L_{23}}{X_{3}} \cdot (-1) \cdot \left[X_{1} \cdot \left(\frac{\Phi_{11}}{X_{1}} \cdot \frac{d}{dx} X_{1} + \frac{\Phi_{12}}{X_{2}} \cdot \frac{d}{dx} X_{2} \right) + X_{2} \cdot \left(\frac{\Phi_{22}}{X_{2}} \cdot \frac{d}{dx} X_{2} + \frac{\Phi_{21}}{X_{1}} \cdot \frac{d}{dx} X_{1} \right) \right]$$

$$J_{3} = R \cdot T \cdot \left[-L_{31} \left(\frac{\Phi_{11}}{X_1} \cdot \frac{d}{dx} X_1 + \frac{\Phi_{12}}{X_2} \cdot \frac{d}{dx} X_2 \right) - L_{32} \left(\frac{\Phi_{22}}{X_2} \cdot \frac{d}{dx} X_2 + \frac{\Phi_{21}}{X_1} \cdot \frac{d}{dx} X_1 \right) - \frac{L_{33}}{X_3} \cdot (-1) \cdot \left[X_1 \cdot \left(\frac{\Phi_{11}}{X_1} \cdot \frac{d}{dx} X_1 + \frac{\Phi_{12}}{X_2} \cdot \frac{d}{dx} X_2 \right) + X_2 \cdot \left(\frac{\Phi_{22}}{X_2} \cdot \frac{d}{dx} X_2 + \frac{\Phi_{21}}{X_1} \cdot \frac{d}{dx} X_1 \right) - \frac{L_{33}}{X_3} \cdot (-1) \cdot \left[X_1 \cdot \left(\frac{\Phi_{11}}{X_1} \cdot \frac{d}{dx} X_1 + \frac{\Phi_{12}}{X_2} \cdot \frac{d}{dx} X_2 \right) + X_2 \cdot \left(\frac{\Phi_{22}}{X_2} \cdot \frac{d}{dx} X_2 + \frac{\Phi_{21}}{X_1} \cdot \frac{d}{dx} X_1 \right) \right]$$

Manning Relations in Cu-Ni-Zn: Lij's

$$L_{11} = \frac{X_1}{V} \cdot \frac{Dt_1}{R \cdot T} \cdot \left[1 + \frac{2 \cdot X_1 \cdot Dt_1}{M_0 \cdot (X_1 \cdot Dt_1 + X_2 \cdot Dt_2 + X_3 \cdot Dt_3)} \right]$$
$$L_{12} = \frac{2 \cdot X_1 \cdot Dt_1 \cdot X_2 \cdot Dt_2}{V \cdot R \cdot T \cdot M_0 \cdot (X_1 \cdot Dt_1 + X_2 \cdot Dt_2 + X_3 \cdot Dt_3)}$$
$$L_{13} = \frac{2 \cdot X_1 \cdot Dt_1 \cdot X_3 \cdot Dt_3}{V \cdot R \cdot T \cdot M_0 \cdot (X_1 \cdot Dt_1 + X_2 \cdot Dt_2 + X_3 \cdot Dt_3)}$$

$$L_{22} = \frac{X_2}{V} \cdot \frac{Dt_2}{R \cdot T} \cdot \left[1 + \frac{2 \cdot X_2 \cdot Dt_2}{M_o \cdot (X_1 \cdot Dt_1 + X_2 \cdot Dt_2 + X_3 \cdot Dt_3)} \right]$$
$$L_{23} = \frac{2 \cdot X_2 \cdot Dt_2 \cdot X_3 \cdot Dt_3}{V \cdot R \cdot T \cdot M_o \cdot (X_1 \cdot Dt_1 + X_2 \cdot Dt_2 + X_3 \cdot Dt_3)}$$

$$\underset{\text{for the U.S. I}}{\text{Managed by}} L_{33} = \frac{X_3}{V} \cdot \frac{\text{Dt}_3}{\text{R} \cdot \text{T}} \cdot \left[1 + \frac{2 \cdot X_3 \cdot \text{Dt}_3}{\text{M}_0 \cdot \left(X_1 \cdot \text{Dt}_1 + X_2 \cdot \text{Dt}_2 + X_3 \cdot \text{Dt}_3\right)} \right]$$

21

 $L_{ij} = L_{ji}$

metro Ni

50

GE

40

35

40

45

Ni

So Which Formalism to Use?

- Mobility or Phenomenological Formalism or Others?
 - Phenomenological formalism slightly better for systems studied, so far...
 - Fewer assumptions
 - Better to have software capable of handling different formalisms, e.g., Phenomenological can handle Mobility formalism as a limiting case but not vice versa.
 - Better to keep diffusion database independent of thermodynamic database.
 - Tracer diffusion database that feeds into Lij's has diffusivity units of cm²/s that provides more physical meaning to user.

>Ultimately, choice of the individual user!

Data for Diffusion Databases

Experimental data

- Interdiffusion Data
 - Steep concentration gradients, molar volume changes, grain boundary effects, can introduce errors in measurements and subsequent analysis: still manageable
 - Very long annealing times may be needed for improved accuracy if kinetics are slow
 - Very difficult in *compounds* unless solubility range is extended
- Intrinsic Diffusion Data
 - Require suitable "inert" markers throughout diffusion zone
 - Multiple markers rarely employed except at original "Kirkendall Interface" due to experimental difficulties
 - Vacancy super-saturation (porosity) or under-saturation can cause errors in both analysis
- Tracer Diffusion Data
 - Most reliable but use of radioactive tracers is time-consuming and expensive
- 24 Manage Tracer data using non-radioactive (stable) isotopes not for the Vestablished but promising

Data for Databases contd. First-principles data

- Mg data/mechanisms (Z.K. Liu., Wolverton et al.)
- NiAl intermetallic data/mechanisms (A. Van der Ven, ...
- Other pure and compound systems
- Oxides (Ågren et al.), Nitrides, ?

Empirical data

- CIGS system: Empirical approach by Ashby & Brown
 - Utilized by Campbell, et al. for reference pure element diffusivities
- Interdiffusivities: Birchenall & Mehl, others

Diffusion Databases: What should they contain?

- Volume diffusivities
 - Mostly
- Orientation dependent diffusivities
 - Important for non-isotropic elements (Mg, Zn) and compounds
- Grain boundary diffusivities: No systematic experimental effort (?)
 - Bicrystals, tricrystals
 - Modeling (Mishin et al.)
 - Directly using EBSD + SIMS integrated system (the future...)
- Surface/Interface diffusivities
 - Cu/SiN interfacial diffusion dominates electromigration flux in damascene interconnects

for the U.S. Department of Energy

Self-diffusion in single crystals of Zn (hex.), In and Sn (tetrag.) parallel and perpendicular to their unique axis (Mehrer. Diffusion in Solids)

Approach for Constructing Diffusion Databases

Calphad Approach (Volume diffusivities)

- Based on constructing models for multicomponent systems using assessed models from relevant binary systems
- Need pure element reference tracer diffusivities
 - Use first principles or empirical approaches if data not available
 - Conduct difficult experiments (CVD, high pressure, creative experiments
- Optimization of various types of data (tracer, interdiffusion, intrinsic diffusion, first principles, etc.) from various sources
 - Employ desired weighting
- Composition dependence using Redlich-Kister type polynomial functions
- 27 Temperature dependence using Arrhenius expressions

Approach for Diffusion Dbs. Contd.

However ...

• Calphad approach is convenient but ...

- Diffusivities are absolute quantities and not relative like Gibbs energies that require reference state values.
 - Hence standard element reference diffusivities need not be used if not available, e.g., AI hcp, Mg fcc.
 - Because kinetic coefficients may vary by several orders in magnitude, small errors in non-measurable reference element values may cause large errors in unknown coefficients
- Some may prefer to keep diffusion database independent of thermodynamic database.
 - Use only tracer diffusion or first principles data
 - Hence, optimization efforts may be simplified
- Impurity diffusion, other diffusion mechanisms (aided with first principles analysis) may require more than a single polynomial model or non-polynomial models (?).

Tracer Data Fit for Cu-Ni-Zn

$$\log(\text{Dt}_{\text{Cu}}) = -3.53 \cdot X_{\text{Ni}}^{1.16} + 3.6 \cdot X_{\text{Zn}}^{1.02} - 9.46$$

 $\log(\text{Dt}_{\text{Ni}}) = -4.05 \cdot X_{\text{Ni}}^{1.3} + 3.28 \cdot X_{\text{Zn}}^{1.07} - 9.96$

$$\log(\text{Dt}_{Zn}) = -3.2 \cdot X_{Ni} + 5.21 \cdot X_{Zn}^{1.25} - 9$$

 $D_{Zn}^{*} > D_{Cu}^{*} > D_{Ni}^{*}$

Similar composition dependence

Tracer diffusion coefficients

Anusavice & DeHoff, Met. Trans. A., 1972

Diffusion Modeling Software

- Type of diffusion database
 - Integrated with thermodynamic db
 - Independent of thermodynamic db
- 1D vs 3D
- Thin film vs Bulk
 - Grain boundary, orientation, nucleation, texture, stress, etc.
- Phase Field / Crystal Phase Field
 - Special cases only?
- Input information
 - Molar volume, temperature, composition, crystal structure, different boundary conditions, etc.

Ease of interface with other software and db's

Tracer Diffusion Database

Radioactive Isotopes

 Tracer diffusion coefficient in a homogeneous single-phase system from the thin film solution

Tracer flux

$$J_{k}^{U,Fick} = -D_{k}^{*} \frac{\partial c_{k}}{\partial x}$$
Thin film solution for D_{k}^{*}

$$c^{*}(x,t) = \frac{S}{2\sqrt{\pi D^{*}t}} \exp\left(-\frac{x^{2}}{4D^{*}t}\right)$$

- Measure D^{*}_k at each composition for samples annealed for different times; Repeat procedure at different temperatures; Plot D^{*}k vs 1/T to obtain Arrhenius parameters for each sample composition within various phases; Fit tracer diffusivities in a phase as a function of temperature and composition for binaries using polynomial functions for composition dependence.
- Tracer is an isotope of one of the elements in the homogeneous alloy that is present in extremely dilute amounts (ppm) so that
 - Thin film solution for diffusion coefficient is valid and
 - Initial composition of the alloy is unchanged
- Previously, only with a radioactive isotope could trace amounts of the isotope (tracer) be detected due to the high intensity of radiation (beta, gamma):

 — Time, Money and Safety Issues
 Managed by UT-Battelle for the U.S. Department of Energy

Tracer Diffusion Database

Stable Isotopes and SIMS

- Use of stable isotopes has a dramatic effect on safety and reduced costs.
- Advancements in Secondary Ion Mass Spectrometry (SIMS) for the accurate detection of trace amounts of stable isotopes permits thin film solution to be utilized, i.e., essentially the same-simple analytical treatment as before.
- SIMS systems at ORNL and UCF measure isotopic ratio of concentrations as a function of depth or at any point in sample
- We can map elements, isotopes over an area of about 1 cm^2 , and with a lateral resolution of about 1-2 μm , and depth resolution of about 10 nm.
- Future nano-SIMS integration with EBSD capability may enable measurement of:
 - Diffusivities as a function of orientation in micro/nano grained materials
- 32 Managed by UT-Battelle for the U.S Grain boundary diffusivities

Cameca IMS 4F at ORNL

Cameca IMS 3F at UCF

Tracer Diffusion contd.

Typical ranges of diffusivity (Mehrer, Diffusion in Solids)

ORNL Isotopes Enriched by the Calutrons

Cannot avoid working with radioactive isotopes in some cases, e.g., AI, Mn, etc., but can still use SIMS

Inventory ORNL Isotopes

\$360M* Worth of Stable Isotopes

(* list price)

Procedure for Tracer Diffusion Measurements (Review by Rothman)

SIMS: ORNL (CAMECA IMS-4F) & UCF (IMS-3F) \$2-3M

Cameca ims-4f Ideally Suited for Isotope Ratio Depth Profiles High Spatial Resolution (1 μ m), High Mass Resolution, High Sensitivity

Stable Isotopes Available [Not Radioactive] [

Isotopically Labeled Alloy

∆ Isotope Ratio Measured

Headroom

Ratios, e.g. [²⁶Mg]/[²⁴Mg] =14.**04**% Nat. Ab., e.g., [²⁵Mg]/[²⁴Mg] =13.**90**% ...1% difference readily detected. 100% Available: ca. 10⁴ Headroom

Isotope Ratios Readily Measured...

Measurements independent of depth within 1% Relative Standard Deviation

Sputtering Depth: Precisely Measured

for the U.S. Department of Energy

DGE

Vapor Deposition of Stable Isotopes – Automated Sample Preparation System (ASAP)

- Clean, planarize sample surface prior to sputter deposition
 - Plasma Clean (PC)
 - Ion Beam Etching (IBE)
 - Reactive Ion Etching (RIE)
 - Ion Beam Sputter Coating (IBSC)
- Pure atmosphere (Ar) during ion beam sputter deposition
 - Attempts to increase deposition rate (Xe?)
 - Metal getter system, in-situ gettering being explored
- Load lock multiple sample capability
- Controlled thickness, automation

Current Work in Mg-Al-Zn (Mg rich phase)

- Impurity diffusion (AI, Zn) studies in Mg.
- Improvements in current ion beam sputter tool to minimize oxygen levels in Mg isotope film.
- Future years: Mg-AI-Mn and Mg-AI-Zn-Mn

Summary

- Justification for effort
 - Clarity and specificity
- Address technical issues
 - Volume databases alone may not be sufficient
 - Grain boundary, orientation effects
 - 1D Software for bulk diffusion may not be enough
 - Thin films, non-planar interfaces, varied boundary conditions
- Tracer diffusion databases
 - Stable isotopes to the rescue but not always (AI, Pb, Mn, etc.)
 - Free of major assumptions
 - Independent of thermodynamics
 - Can assess newer/improved formalisms as they develop
 - Amenable to a variety of driving forces
 - Necessary for line compounds, grain boundary measurements, ...
 - Instrumentation/experimentation challenges & costs are significant
 - 43 Managed by UT-Battelle for the •.s. National Labs/Centers can play a major role

Acknowledgements

U.S. Department of Energy Assistant Secretary for Energy Efficiency and Renewable Energy Office of Vehicle Technologies as part of the Automotive Lightweight Materials Program under contract DE-AC05-000R22725 with UT-Battelle, LLC

<u>Collaborators</u>

Peter Todd, John Henry, Harry Meyer, Lee Zevenbergen, Scott Aaron: ORNL Yongho Sohn, Mikhael Klimov, Kevin Coffey: UCF

Special Thanks

John Allison (Mg-ICME): Ford Phil Sklad and Dave Warren: Automotive Lightweight Materials Program Oak Ridge National Laboratory

