Sequential or simultaneous combination of stress factors

Michael Köhl

Fraunhofer-Institut für Solare Energiesysteme ISE

NIST/Atlas Workshop December 2017

www.ise.fraunhofer.de

Evaluation of the service life time and energy yield in different climates:

weathering

The stressors are acting simultaneously:

- Sun-light
- Temperature
- Temperatur cycles (thermomechanical stresses)
- Mechanical stresses (wind, snow)
- Moisture
- Electrical current and voltage
- Soiling or bio-contamination
- Pollutants (salt, SO2....)

The stressors are to be tested simultaneously, but

The stressors cannot be applied together !

Acceleration by enhanced stress levels

- Correlated (G, T, thermomech. pressure)
- Non-correlated (Mech, T)
- Anti-correlated (T ⇔ rh)

No suitable test cabinets !?

The stressors cannot be applied together !

Time constants:

irradiation < voltage < wind < temperature < humidity < soiling

=> sequential testing => cyclic testing

Extended damp-heat testing (85% rh)

Accelerated damp-heat testing (85% rh) at different temperature levels

🗾 Fraunhofer

© Fraunhofer ISE

Evaluation of the service life time and energy yield in different climates

Modelling of the mechanical stress levels

- Static mechanical loads by wind
- Daily temperature changes
- Vibrations

	Wind @ 130km/h	Thermo- mech	Vibrations	IEC 61215	
Maximum ∆ T		48		125	К
Maximum Δ d	12,00	1,60	0,25	4,17	mm
Maximum Δ p	1200	160	25	417	Ра
Maximum Δ l	4,00	0,58	0,08	1,50	%
# of cycles	x/a	9125	10-20 Hz	200	

Elongation to breakor

Temperature induced mechanical stress

Day/night temperature differences

	maritime	moderate	arid	alpine	tropical		IEC 61215
Maximum Δ T	17	44	48	40	42	К	125
Maximum Δ d	0,57	1,47	1,60	1,33	1,40	mm	4,17
Maximum Δ p	56,67	146,67	160,00	133,33	140,00	Ра	416,67
Maximum Δ l	0,20	0,53	0,58	0,48	0,50	%	1,50

Factor 3 in climate impact between maritime and arid

Factor 3 in acceleration between arid and Tc test

Thermo-mechanical stress by temperature cycling

Tc – testing according to IEC 61215 from -40°C to 85°C

Coffin-Manson Modell for temperature cycling (-40°C / 85°C)

r	maritime	moderate	Arid	alpine	tropical	
Maximum 🛆 T	17	44	48	40	42	К
acceleration	7,4	2,8	2,6	3,1	3,0	К
lifetime 1600 cycles	32,2	12,5	11,4	13,7	13,0	а
lifetime 8000 cycles	161,2	62,3	57,1	68,5	65,2	а
$\Delta T_{test} = 125K$ Acceleration factor: $a = (\Delta T_{test} / \Delta T_{meas})^{C}$		3500 - 3000 - So 2500 - Jo 2500 - Jo 2000 -			r r a a t	naritime noderate arid alpine ropical
25 years := 9125 cycles		1500 - 1000 - 1000				
C ist material-dependend parameter, to be determined (literature: 1 – 3)		500 - 0 -	Tmax = 85	°C	1,6 1,8	2,0
Climate-Impact: I			Coffin-Manson	-exponent c		

UV testing for different climates

Factor 2 – 4 for different climates is possible

But about a factor of 10 for testing times compared to IEC 61215 (15kWh/m² @ 60°C)

ALT at 85°C sample temperature

Activation energy [kJ/mol]

	Ea (kJ/mol)	arid	maritime	moderate	alpine	for 25a
	0	2261	2368	1388	1294	kWh/m²
Tamb	40	154	135	77	34	kWh/m²
Tmod	40	541	275	237	127	kWh/m²

Temperature of different modules in UV-testing cabinet

Temperature of different modules in UV-testing cabinet

Surface temperature with UV-light in addition

Relevant spectral irradiation from solar side onto back-sheet

SOPHIA backsheet round robin

Measurements from Canary island

Module temperature during UV-D/H testing after ventilation improvement

Different acceleration:

- Factor 1.3 in humidity gradient
- Factor 1.5 in acceleration by temperature (@60kJ/mol)

Combi tests: first humidity permeation, than UV with humidity

Is high humidity relevant?

Is irradiation healing?

Is constant load testing relevant?

Sequential combi-test procedure

based on the IEC standard tests because of convenience

Initial cycle for setting humidity level:

1000 h	85°C / 85% rh		> 30%
100 Tc	-40°C / +85°C => humidity freeze testing	< 20%	
500 h cor	nbined DH/UV at ~85°C module temperature (100kWh/m²)		> 20%

Repeated cycles:

500 h85°C / 85% rh for refreshment of humidity in the encapsulant < 15%</th>100 Tc-40°C / +85°C => humidity freeze testing> 20%500 h combined DH/UV at ~85°C module temperature> 20%

Combi-testing compared to extended damp-heat-testing

Combi-testing compared to damp-heat-testing

Faster degradation with cyclic testing

Fraunhofer

Fraunhofer

© Fraunhofer ISE

Results from combi-test-cycles compared with damp-heat

Isc drop because of UV

Factor 1.0 for UV

Factor 0.5 for UV

Results from combi-test-cycles compared with damp-heat

Time-transformation 0.5 for UV-testing (sample temperature)

Challenges:

Development of models for accelerated aging

Impact of voltage/current

Evaluation of a test-sequence representing real life for a certain time-period

Development of test-sequences for different climatic locations

Evaluation of test-sequences representing different stress levels for service life-time assessment

Development of suitable test equipment

Comparison with field failures (modules proven to be stable must be old)

Accelerated life testing

Select two of them !!!

