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Metrology 2002/3
Precision: < 1 Å ,Resolution: 0.8 Å

Why bother improving electron microscopy further?



HELIOS

Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a UC Berkeley physicist 
who won the 1939 Nobel Prize in physics for his invention of the cyclotron.

THE LAB AT A 
GLANCE

- 11  Nobel Laureates 
- 13 National Medal of 
Science members 
- 61  National Academy 
of Science members 
- $700 Million  
Contributed to the local 
economy 
- 800 University students 
trained each year 
- 4,000  Employees
- 200  Site acreage

LBNL in a Changing Environment
Changing needs
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Helios
New Program

http://www.lbl.gov/LBL-Programs/helios-serc/

Efficient for sustaining life 

Efficient for making fuel?

Natural photosynthesis

Artificial photosynthesis
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Electron Microscopy : Status in 2002

EM commonly images  atom columns
Imaging of single atoms is an exception

3D EM with atomic resolution requires single atom sensitivity

N1,2
Si0.9 nm

OAM, Berkeley, 2000
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TEAM0.5:
•2 Cs correctors
•High brightness gun
•Monochromator
•Improved electrical/mechanical stability
Spatial resolution: 0.5 Å
Energy resolution: 0.1 eV, 1 sec
User facility since 10/2008

The TEAM Project
New tools: Next generation electron microscopes

The TEAM team
•FEI Company: B. Freitag, M. Bischoff, H. van Lin, S. 
Lazar, G. Knippels, P. Tiemeijer, M. van der Stam, S. 
von Harrach, M. Stekelenburg, 
•CEOS: M. Haider, S. Uhlemann, H. Müller, P. Hart, 
•ANL: B. Kabius, D. Miller, 
•UCUI:I. Petrov, E. A. Olson T. Donchev,
•ORNL: E.A. Kenik, A.R. Lupini, J. Bentley, S.J. 
Pennycook
•NCEM: U. Dahmen, P. Denes, T. Duden, R. Erni C. 
Kisielowski, A.M. Minor, V. Radmilovic, Q.M. 
Ramasse, A.K. Schmid, M. Watanabe

Currently shipped to Berkeley
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Model TEAM 0.5, 300 kV, Cs = 0 mm LaB6, 100 kV, Cs = 1 mm

Graphene: Fourier components

Scherzer image, ∆f = -1.1 nm Scherzer image, ∆f = -75 nm
1.97 nm

The Importance of Resolution
TEM Simulation: H adatom on graphene

CTF describes frequency region 
of predictable phase shifts 
resulting in predictable atom 
positions

CTF = 0 describes unpredictable 
phase shifts resulting in 
unpredictable atom positions 
(resolution limit)

142 pm
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1.97 nm

The Uniqueness Aspect 
Defects in graphene

Lateral relaxation Nitrogen adatom (vacancy created) 

Hydrogen adatomLateral relaxation & substitution

= 20 pm 
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The  Uniqueness  Aspect 
Reason: Limited resolution

V-Nadatom, Crelaxed, BN, …. 
can be confused with the “H contrast”

There is 4/3 π 1503 pm3 of space available to place atoms (set phases) @ 3 Å resolution

Nadatom, Ferelaxed (Z=26), …
can be confused with the  “C contrast”

Resolution enhancement largely relaxes the uniqueness problem
Ferelaxed

TEAM 0.5, 
300 kV, 
Cs = 0 mm
f = -1.1 nm

LaB6, 
100 kV, 
Cs = 1 mm
f = -75 nm
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Resolution and Noise
Simulation: S/N ratio for single light atoms

H

0.14
nm

Simulation example: graphene (C)  & hydrogen, 80 kV

S/ N ratios are boosted by resolution improvement

It may be possible to detect H (radiation damage)
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S/N = 3.8 (~ 0.8 Å) S/N = 0.6 (~ 2 Å)

Average      Stand. Dev Average      Stand. Dev

1.4 Å (7700 counts) 1.4 Å (3900 counts)

TEAM 0.5 (Cs-corrector / Monochromator) Titan (Cs-corrector)

TEAM0.5 ---- Titan
Comparison / graphene
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0.14 nm

Model Experiment

80 kV & Monochromator
Cs = - 0.015 mm, C5 = 5 mm
Information  Limit  < 0.1 nm 
Reconstructed phase image

TEAM 0.5 - 80 kV
Graphene - ERW  boosts sensitivity
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Schniepp et al. 2006

Defects in 
semiconductors 

Or
Epoxy, hydroxyl, 
carboxyl groups 

Graphene oxide (O:30 %)

Functionalization or Doping?
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OAM (0.8 Å since 1999) TITAN (0.8 Å, Cs corrector)             TEAM 0.5 (0.5 Å, Cs corr., X-FEG, MC)

An Instrument Comparison
Reconstructed phase images of Au [110]
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• Focus stability reflects:
– Electrical stability
– Mechanical stability
– Temperature
– Pressure
– Noise
– Sample stability
– Measurement precision
– Site 

• Next generation EM:
Improvements are outstanding

Time

20 nm 

20 nm 

OAM
Resolution: 

0.9 Å reliable

0.8 Å achievable

TEAM0.5
Resolution: 

0.5 Å reliable

Instrument Stability is Essential
OAM - TEAM 0.5
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TEAM0.5: Next Generation EM 
Resolution tests @ 300kV

•Results are consistent, information transfer & resolution < 50 pm 
•Resolution definition by column width & noise most useful
•Natural column width (1s state) of  ~ 0.5 Å is now a physical limit to resolution 

 

5 0  p m    5 0  p m  

STEM: 
Fourier components

STEM: Ge [114]
Dumbbell resolution

STEM: 
Instrument resolution

TEM: Young FringesTEM: Au {111]
Single column width

STEM: Au [111]
Single atom width

46 + 3 pm

R. Erni, M.D. Rossell, C. Kisielowski, U. Dahmen, Phys. Rev. 
Lett. 102, 096101 (2009)



HELIOS

Contrast Interpretation
Focus series
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Contrast Interpretation
Focus spread TEAM: 0.7 Å

a)

S/N ratio of one 
gold atom: 10 

b)

Depth precision 
reaches 2.9 Å

c)

Atoms can be 
counted

d) 

3D information 
from 1 projection
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TEAM 0.5 
Single atom detection and depth precision

•Single atom sensitivity across the Periodic Table

•Element identification by contrast interpretation

•Depth precision reaches interatomic distances

New: narrow focus spread < 10 Å (gold)New: unprecedented S/N ratios (graphene)



HELIOS

OAM

TEAM

Object-Limited Resolution
Light atoms: Simulation diamond [112]

It is unreasonable to expect 0.51 Å “dumbbell” images from diamond [112] 

t = 4 Å

No depth-dependence 
included

t = 8.7 Å

Depth-dependence 
included

51 pm

x

y

z

8.7 Å
4.4 Å

1.4 Å
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Object-Limited Resolution
Heavy atoms: TEM experiments, gold

OAM

Au [110]

TEAM

Q uic k T im   
 dec om p

are needed t o  s   
  

 
     picture.

 nd a
 r

     pict ure

Experiment
Au [110]

  
 

a re  n e ed ed     

Experiment
Au [111]

Electron channeling

limits resolution to ~ 0.5 Å :

Au [110]: 0.5 Å not achievable

Au [111]: 0.5 Å achievable

Au [111]
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Object-Limited Resolution
Heavy atoms: STEM experiments, gold

Electron channeling limits resolution in 
HAADF images, too
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Towards 3D Electron Microscopy
STEM Depth sectioning (Au [110]): df = 6 nm - nm resolution
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Towards 3D Electron Microscopy 
Self Interstitials in Ge [110]

 
Ge[110], D. Alloyeau, B. Freitag, S. Dang. L.W. Wang, C.Kisielowski, Phys. Rev. B. 2009, in press

•First detection of self interstitials & 3D reconstruction from single projection

•Dose limits now imaging of soft and hard materials
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Progress

OAM: 300 kV, EWR

TEAM0.5 

single image 

80 kV

TEAM0.5: 

300 kV, EWR

TEAM0.5 

single image 

300 kV

TEAM0.5: 

80 kV, EWR

300

kV

There is plenty of room for improvement (TEAM1)
S/N ratio of 20 for 1 gold atom is feasible
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Conclusions

Opportunities
•Single atom detection across the Periodic System is now possible 

Atomic resolution tomography, depth precision, catalysis,…

•Resolution debate has reached physically meaningful limits

Instead, contrast (S/N ratios) becomes the important measure

•Electron tomography with atomic resolution becomes feasible

Challenges
•Radiation damage becomes a limiting factor even in hard materials

•Sample preparation is more demanding

•Image interpretation is increasingly demanding

Seeing may be believing but understanding is still science
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