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Overview
The “problems” as seen by a metrologist
Metrology for contamination analysis in 
Semiconductor Fabrication
New enabling technology needed
Inventions required to impact the problem
Analytical chemistry metrology tools
– Standard methods and new methods
– IDMS, IPMS, SIDMS

Speciation and why it is important
– “Chemically Significant Data” 

Bob Helms, SEMATECH – ULSI 3/25/02
Thomas Theis, IBM-ULSI 3/25/02

Time relevant inclusive data – initial tests
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The Problem:The Problem:
At these dimensions Contamination is a critical 
parameter in the function and assembly of 
Semiconductors and Nanotechnology devices

Nanotechnology - As devices become 3 to 
20 atoms in size, nanotechnology and 
micromachines predict contamination 
determines the viability of the device
Semiconductor - As semiconductor line 
widths go to <0.13 micrometers 
contamination become a critical limitation 
of the performance of these devices
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The Relationship:The Relationship: As trend in ultraAs trend in ultra--trace element trace element 
analysis go lower, previous techniques become analysis go lower, previous techniques become 
inadequate and new methods are required to inadequate and new methods are required to 
maintain or achieve accuracy & precisionmaintain or achieve accuracy & precision

“New Thresholds Require New Methods”“New Thresholds Require New Methods”

%%
mgmg
µµgg
ngng
pgpg
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How much contamination does it take to act as a 
monkey wrench in the gears at the molecular level?

NanotechnologyNanotechnology
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ITRS Challenge #1

Semiconductor Road MapSemiconductor Road Map for Development 
Important Industry Directions!

“Key Area of the 2001 edition of the ITRS 
focus on the yield model and defect budget, 
defect detection and characterization, yield 
learning, and wafer environment 
contamination control.”

Reference: “Examining upcoming yield enhancement 
challenges in the 2001 roadmap” Micro, February 2002
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The Challenge?
ITRS Challenge #2

“The most critical challenge is to find 
ways to determine the effects of trace 
impurities on device performance and 
yield.”

Reference: “Examining upcoming yield enhancement
challenges in the 2001 roadmap” 

- Micro, February 2002

Authors: Christopher Long, IBM; 
Milton Godwin, Applied Materials;
Manuela Huber, Sematech/Infineon;
Richard Jarvis, Sematech/AMD
Fred Lakhani, Sematech
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Moore’s Law & Drives Contaminate Analysis
Device dimensions increase importance and implementation of 
contamination measurement metrology
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Moore’s Law
Analytically 
Significant 
Threshold
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History of Contaminate Analysis 
for Semiconductors

1970 20001980 1990

Need for Automated 
On-Line
Mass Spectrometry
“Chemically Relevant”

Automated Microscopes
With Pattern RecognitionVisual Inspection

Laser Particle Counters Vapor Phase Decomposition

TXRF Analysis, VPD/TXRF

Laboratory Metal Analysis by 
ICP-MS

critical nature of contamination metrology 
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State-of-the-art: mid 2000
Project Begins

Elemental metal analysis primarily
– Few anion, organic and no species information

Species evaluation not considered feasible
6-12-24-48 hour sample to data turnaround is 
usual for metal analysis in semiconductor fabs
Lack of on-line metrology for liquids
Up to 60 liquid cleaning steps required in 
some advanced wafer processing
Constituent analysis needs emerging eg. Cu 
ECD
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U.S. Industries had before 
addressed a selected set 
of these critical metrology 
issues in an industry 
government consortium 
known as CAALS:
NIST
Hewlett-Packard
Perkin-Elmer
Dupont
Union Carbide
Kodak
Department of Energy
Zymark
et. al.  
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<± 25% at the quantitation limit± 25% at the quantitation limitAccuracy

5-10 sample/hr (5 min/sample)24 to 72 hoursThroughput

Based on Mass SpectrometerICP-MSTechnology

<5 mL5 mLSample Volume

NIST tracible

Direct Analysis, Automated CalibrationCalibration Curves

Calibration and 
Quantitation
Standards

< 20 ppt< 20 ppt
Limit of 
Detection

AutomatedManual
Sample 
Preparation

Inorganics and OrganicsInorganics

Elements and speciesElements

Cations (+) and anions (-)Cations (+)

20 - 28 Trace ContaminantsDepends Upon Available StandardsMonitors

UPW, SC1, SC2, IPA, DHF, HN03, H2O2UPW, SC1, SC2, IPA, DHF, HN03, H2O2Sample Matrix

Real-time, In-line, In-fab: Trace 
contamination monitoring of standard 

aqueous semiconductor solutionsLab applications
Target 
Application

Desired TechnologyICP-MSItem

“Wish List”
Desired TechnologyState-of-the-art ICP-MS
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Demanding Technology 
Requires 

Demanding Metrology
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Example:Example: Comparison of Comparison of InterlaboratoryInterlaboratory results of results of 
an Aqueous Standard and Whole Bloodan Aqueous Standard and Whole Blood
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Threshold had changed!
1. New thresholds can not be reached 

through former techniques.  
2. New techniques are required

Laboratories Aqueous StandardLaboratories Aqueous Standard Laboratories Whole BloodLaboratories Whole Blood
Reproduced from "The Role of the Analytical Blank in Accurate TrReproduced from "The Role of the Analytical Blank in Accurate Trace Analysis"ace Analysis"
by T. J. Murphy, National Bureau of Standards Special Publicatioby T. J. Murphy, National Bureau of Standards Special Publication 422,n 422,
Accuracy in Trace Analysis: Sampling, Sample Handling, and AnalyAccuracy in Trace Analysis: Sampling, Sample Handling, and Analysis,sis,
Proceedings of the 7th IMR Symposium, Oct. 7Proceedings of the 7th IMR Symposium, Oct. 7--11, 1974, Pub. 1976.11, 1974, Pub. 1976.
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New Technology RequiredNew Technology Required

An Unconventional Instrument:

An Automated real-time integrated sample 
preparation and analysis system for 
inorganics, organics, and species, for the 
majority of cleaning and process solutions

What to do?

Invent and Engineer a New Technology
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Recall – ITRS Challenge #2

“The most critical challenge is to find 
ways to determine the effects of trace 
impurities on device performance and 
yield.”

i.e. Statistically valid correlation and modeling
i.e. “Chemically” significant determinations

Reference: “Examining upcoming yield enhancement
challenges in the 2001 roadmap” 

- Micro, February 2002

Authors: Christopher Long, IBM; 
Milton Godwin, Applied Materials;
Manuela Huber, Sematech/Infineon;
Richard Jarvis, Sematech/AMD
Fred Lakhani, Sematech
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Cations(+) & Anions(-)

AnionsCations
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Elemental Species 
Organic Molecules 
Inorganic Complex Species 
Organic Complex Species

Elements & Species:

Elements Species
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Why Have Mass Spectrometers Not Been 
Used in 

On-Line, Real Time, Multi-matrix Rapid 
Sequential Analysis?

Manual calibration requirement
Lack of long term stability
Matrix interferences 
Lack of instrument sensitivity in some matrices
Inappropriate and unstable MS ionization sources
Unavailability of fully automated systems
Lack of applicable sample preparation integrated and 
automation with the mass spectrometer
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Mass Spectrometer Calibration

Mass Spectrometer Drift 
Requires Continual Calibration
Method of Calibration Must be Reliable
Method Desired to be Matrix Independent
Calibration Solutions Should Inexpensive
Method must be very fast
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Quantitation: 
Traditional Calibration Curve

Instrumentation Drift over time
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Example, Examination of One Approach: Example, Examination of One Approach: 
OnOn--Line, RealLine, Real--Time, Automated, Direct Quantization Time, Automated, Direct Quantization 

forfor
Elements, Elements, 
Species and Species and 
Complex Molecular SpeciesComplex Molecular Species

Direct Quantization through On-Line IDMS
and SIDMS as a new capability: 
– In Process Mass Spectrometry or “IPMS”

Fundamental enabling technology
Alternative and simultaneous measurement 
of elements, molecules, and molecular 
species
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Questions to consider:Questions to consider:

1.1. What new technology What new technology 
do you see that you do not do you see that you do not 
expect?expect?

2. Does technology Changes2. Does technology Changes
the way we do things? the way we do things? 
3. Does it change what we 3. Does it change what we 
call “normal”?call “normal”?

4. Do you think his son will 4. Do you think his son will 
use a drum?use a drum?
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Mass Spectrometer Drift
Example: IPMS vs. Traditional -

IPMS reduces or eliminates effects of mass spectrometer drift, IPMS reduces or eliminates effects of mass spectrometer drift, 
enabling automation enabling automation (patent pending)(patent pending)

Metara IPMS  vs . Traditional Calibration
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Mass Spectrometer Signal StabilityMass Spectrometer Signal Stability
Example: IPMS compensating for MS stability, Example: IPMS compensating for MS stability, 

retaining accuracy, and enabling automation retaining accuracy, and enabling automation (patent pending)(patent pending)

Metara IPMS vs . Traditional Calibration
for 10 ppb Copper
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With a typical analytical instrument, air bubbles in the sample introduction system may 
cause a dramatic instability and/or decrease in signal.

However, 63Cu: 65Cu isotope ratio measured by the IPMS Method remain constant.
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Technology Overview

Metrology System 

Information.
.

.
.

.
.

.
. ..
. .

.. .

Sample

Data

640 pptSpecies

190 ppt Organic 
Molecules

1.23 ppbIonic & Metalic

Conc.Element
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Quantification Method
Metara In-Process Mass Spectrometry (IPMS)

e.g. Mass-Spectra of Copper Samples

m/z           
63 65
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m/z           
63 65
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n
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ty
63Cu & 65Cu occur 

naturally in a 69:31 
abundance ratio.

Isotopically-enriched 
solutions are commercially 

available (e.g. 5:95).

‘Natural’  Copper  sample ‘Enriched’  Copper  sample

00

63Cu+
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Quantification Method
Metara IPMS

A sample of copper of unknown concentration is ‘spiked’ with a 
known amount of an isotopically-enriched standard, and introduced 
into the LMS-300 TCA.

m/z           
63 65

In
te

n
si

ty

Mass Spectrum

65Cu+63Cu+

Contributions to 
signals from the 
spike.

Contributions to 
signals from the 
sample.
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Quantification Method
Metara IPMS

The concentration of 
copper in the sample is 
deduced from the RATIO
of the isotope signals…

190 pptCu
1.23 ppbFe

640 pptNi

Conc.Element
m/z           

In
te

n
si

ty

Mass Spectrum

65Cu+63Cu+

This calculation is exemplified 
in a later example.
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Metara IPMS Calculation

Ratio    (     ) ( Amount of B from Sample + Amount of B from Spike )
(  Amount of A from Sample + Amount of A from Spike  )

Isotope B
Isotope A

=
In

te
n
si

ty

Mass Spectrum

A B

Contributions to the 
signals from the
Spike.

… cntd

Contributions to the  
signals from the
Sample.
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Calculation & Formula
In

te
ns

ity

Mass Spectrum

A B

… cntd

( Bs Cs Vs + Bsp Csp Vsp )
( As Cs Vs + Asp Csp Vsp )

Ratio  =

Where:

As =  Fraction of isotope A in sample (natural)

Bs =  Fraction of isotope B in sample (natural)

Asp =  Fraction of isotope A in spike (altered)

Bsp =  Fraction of isotope B in spike (altered)

Cs =  Concentration of element in sample

Csp =  Concentration of element in spike

Vs =  Volume of the sample

Vsp =  Volume of the spike

Known?Known?

Solve for Cs , (the concentration of the element in the sample) …

So …

(      )Ratio                    
( Amount of B from Sample + Amount of B from Spike )
( Amount of A from Sample + Amount of A from Spike )

Isotope B
Isotope A

=
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1) The isotope ratio in the enriched spike standard, 

= 0.05 : 0.95 (63Cu : 65Cu)   (Asp & Bsp)

2) The concentration of the spike standard solution, 

= 0.88 ppb  =  13.6 nmol/L (Csp)

3) The relative volumes of the spike and sample. 

= 0.13 (spike / sample)                (Vsp / Vs)

4) Measured Isotope Ratio 

= 0.82  (63Cu / 65Cu)                    (Ratio)

5) Natural Isotope Ratio

= 0.692 : 0.308 (63Cu : 65Cu)        (As & Bs)

186 pptCu

Conc.Element

m/z

In
te

ns
ity

Mass Spectrum

65Cu+63Cu+

Quantitation of Cu

( Bs Cs Vs +  Bsp Csp Vsp )

( As Cs Vs +  Asp Csp Vsp )
Ratio  =

( Asp – Ratio ×Bsp )
( Ratio × Bs – As  )

(   )                Cs = Csp

Rearrange the equation to solve for Cs

Known & Measured ValuesKnown & Measured Values

So …

13.6 nmol/L  × 0.13 ×
( 0.05 – 0.82 × 0.95 )

( 0.82 × 0.308 – 0.692 )
Cs =

CCs == 2.93 2.93 nmolnmol/L/L = = 0.186  ppb0.186  ppb

… cntd

Vsp

Vs
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First Row Transition Metals
In Hard Ionization Mode

Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn
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IP-MS Performance for SC1 at 2 ppb 
90% Confidence Limits, n = 3
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On-line Monitoring: Cu, Ni and Mn
Concentrations vs. Time in a SC1 Cleaning Bath
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Trend Data for Cu in UPW

Cu in UPW
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Elements & Species

Elements Species
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Ionization: Cations, Anions, Species

The instrument can detect cations, anions, 
and molecular species by reversing the polarity 

of appropriate voltages in the mass-
spectrometer and using soft or hard ionization.

Positive Mode Negative Mode

ChlorideCopper

Accelerator [SPS • H]-

Sulfate
Suppressor

Sodium Accelerator [SPS •3H] +
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Chemical Species Measurement
Reveal Fundamental Molecular 

Structure and Chemical Mechanisms 

Contamination control depends directly on 
molecular species and mechanisms causing 
the contamination or controlling the process
Species reveal the chemical processes 
involved and contain information relating the  
– Origin
– Effect
– Prevention
– Remediation 
– System
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Ni, Cu, Zn In Soft Ionization Mode
Include Organic Molecular Ions

100 ppt Ni, Cu, Zn
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Speciation Example: 
Cu Species Identification in 

Semiconductor Solutions
Elemental quantitative mode: total Cu

Speciation mode – Process info
Example
– UPW bath:  [Cu(H2O)4 ]2+

– HF bath:      [CuF(H2O)3 ]+

– SC-1 bath:   [Cu(NH3)2(H2O)4]2+

– SC-2 bath:   [Cu(OOH)Cl2]-

Identifying Cu species in the monitored process, 
reveals sources, pathways and mechanisms of the 
Cu contamination.
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Ionization: Elemental vs. Speciation

Speciation Mode of Analysis for   
Organics & Inorganic Complexes

• ‘Soft’ mode – the molecular ions are imparted with a low 
kinetic energy in the gas-phase.

• Gentle collisions minimize fragmentation and ligand loss.

• The integrity of the solution-species is preserved: 

• Diagnostic tool for revealing the chemistry of the process

• Provides rich information for yield enhancement tools

Accelerator Suppressor Leveler
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Mass Spectrum of Complex Sample:
Cu plating bath solution
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‘polymeric species’

‘Complex Organometallic Ligand ’

= Organometallic cluster ions
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Cu ‘reagent’: Speciation Mode 
Qualitative and Quantitative
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Ionic clusters of copper, sulfate & water (CuSO4 + H2SO4 + H2O)

• ‘Soft Ionization’ in Speciation Mode encourages detection of intact clusters of copper ions with
sulfate and water, by minimizing their fragmentation in the mass-spectrometer.

• These parameters have selected for copper sulfate clusters containing  2 & 3 copper ions (at below and 
above m/z ~ 500 respectively) with a charge, z, of +1.

• The chemical formulae of the species are reliable, although the structural assignments are speculative.
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Qualitative Identification and Quantitative 
Analysis of one Copper species:

• The isotope peak pattern is consistent with the chemical formulation; the most abundant 
isotopes of both copper and sulfur differ by 2 a.m.u. (63Cu & 65Cu, and 32S & 34S).

• There is an excellent match between the measured & calculated masses for the major 
isotope peak (354.7922 and 354.7916 a.m.u. respectively).

• The set of peaks of lower intensity offset by 1 a.m.u. is consistent with the                  .   
formulation [Cu2S2H4O10]+, perhaps formed by the collisional loss of a hydrogen atom 
in the mass-spectrometer.

[Cu2S2H5O10]+
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Quantitation of the Accelerator 
Bis(3-sulfopropyl) disulfide (SPS) by 

Isotopically-Enriched Spike
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Trend Data
Rate of Accelerator (SPS) Change in a 

Cu-ECD Test Facility
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Decomposition of the Accelerator SPS 
in an Aged Sample
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Mass Spectrum of Complex Sample
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ITRS Challenge #2

What is the Challenge?
“The most critical challenge is to find 
ways to determine the effects of trace 
impurities on device performance and 
yield.”

Reference: “Examining upcoming yield enhancement 
challenges in the 2001 roadmap” 

-Micro, February 2002
Authors: Christopher Long, IBM; 

Milton Godwin, Applied Materials;
Manuela Huber, Sematech/Infineon;
Richard Jarvis, Sematech/AMD
Fred Lakhani, Sematech
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The Integrated System
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Time-of-Flight Mass Analyzer
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IPMS (ES-TOF) Vs. ICP-MS
Item LMS-300 TCA ICP-MS

Target Application
Real-time, In-line Trace contamination monitoring 

of standard aqueous semiconductor solutions Lab applications

Sample Matrix UPW, SC1, SC2, IPA, DHF, HN03, H2O2 UPW, SC1, SC2, IPA, DHF, HN03, H2O2

Monitors 16 (22) Trace Contaminants Depends Upon Available Standards
Cations (+) and anions (-) Cations (+)

Elements and species Elements
Inorganics and Organics Inorganics

Sample 
Preparation Automatic Manual
Limit of Detection < 20 ppt < 20 ppt

Calibration and 
Quantitation 
Standards Enriched isotope elemental standard (250 ppb) Calibration Curves

NIST natural isotope standard (10 ppm)
Sample Volume 2 mL 5 mL
Technology In-Process Mass Spectrometry (IPMS) ICP-MS
Throughput 8 sample/hr (7.5 min/sample) 24 to 72 hours
Accuracy ± 25% at the quantitation limit ± 25% at the quantitation limit
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Trace Contamination Analyzer (TCA) 
Semiconductor Solution Metrology 
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“Enriched” Isotope Solutions Standards”
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One semiconductor instrument being 
tested and one being assembled in 

clean room
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Decision Information in Graphical User Interface (Beta) 
(Element selection individualized for a specific Fab)
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Thank YOU

This is not your fathers kind of chemistry any more!
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Micromachines of the future will be on an unprecedented scale with
atomic and molecular domains where constituent and contaminant 

analysis must be on these same scales
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