NIST Biometric Quality Workshop

November 7-8, 2007

Analysis of Effect of Fingerprint Sample Quality in Template Ageing

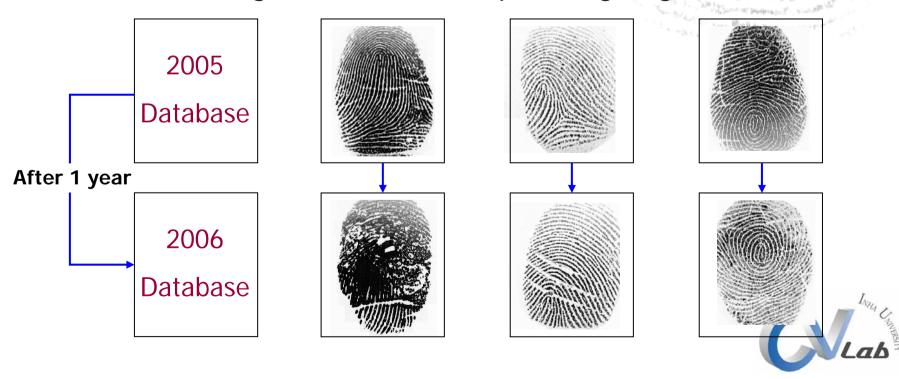
Jieun Ryu, Jihyeon Jang, Hale Kim Inha University Incheon, Korea November 8, 2007

Background

- Governmental biometrics-based services are multiyear basis:
 - Passport and Driver's license: 10 years
 - NID: no expiration date unless lost
- Long-term duration between enrollment and verification

Enrollment

Verification


Purpose

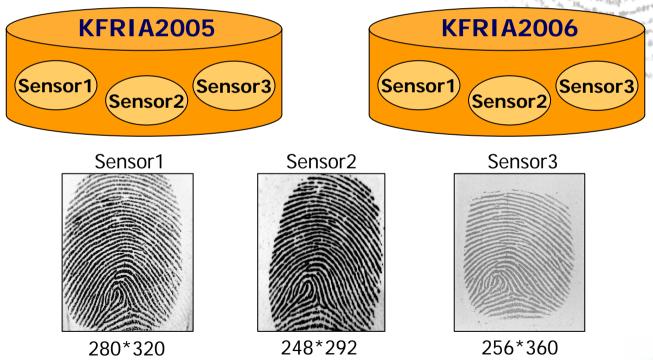
- To confirm 'Template Ageing'
- To define 'Measures and Processes for analysis of sample quality' in template ageing
- To find the 'Influencing factors' on Template Ageing

Definition

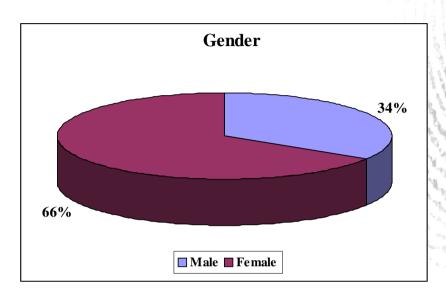
- Template Ageing
 - Time duration has an effect on matching performance.
- Ageing factor
 - Influencing factors on 'Template Ageing'

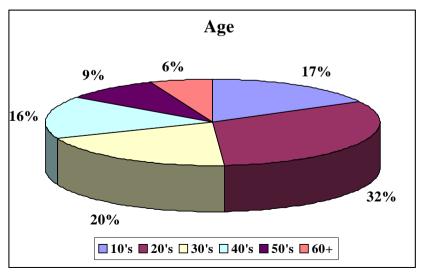
Experimental Set-up

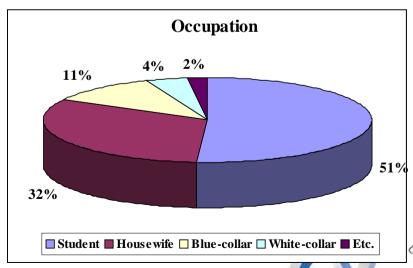
- ❖ Target Sensors
 - Optical : Digent, Nitgen
 - Semiconductor : UPEK
- ❖ Feature Extractor
 - MINDTCT
- Matcher
 - BOZORTH3
- Image Quality Tool
 - NFIQ

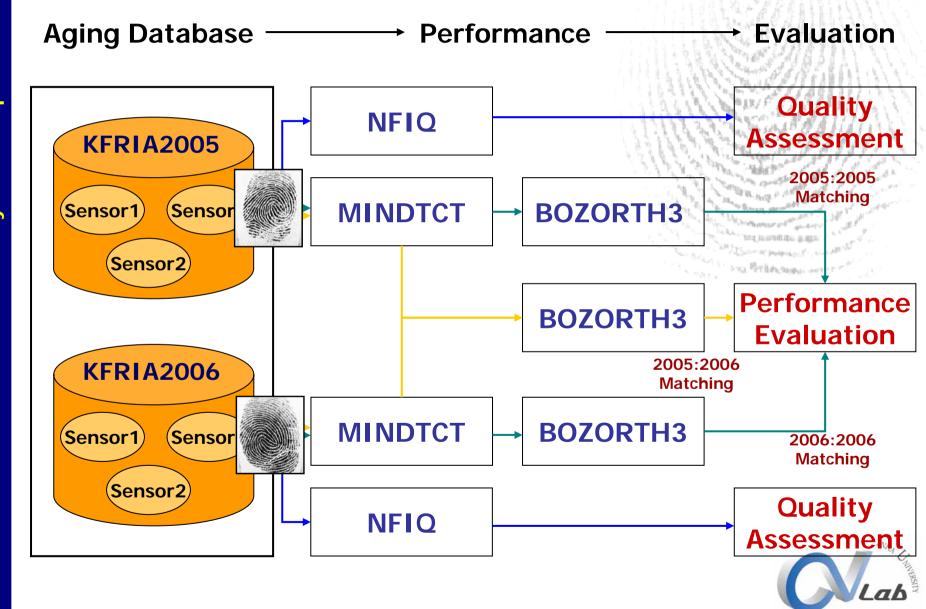


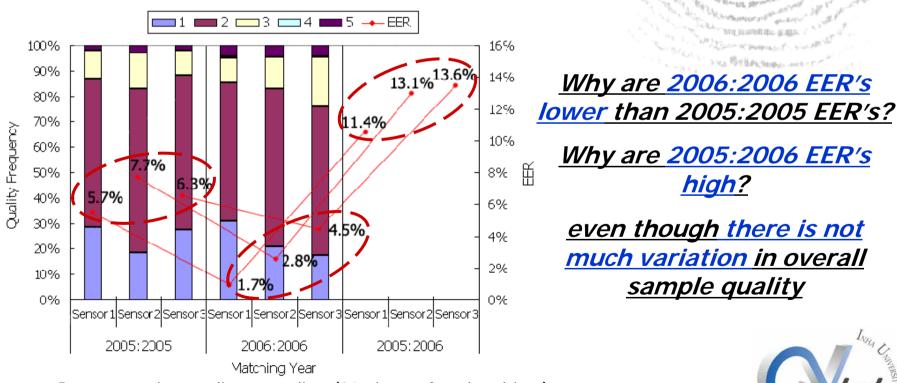
Specification of Database


- KFRIA Ageing DB
 - Total 13,200 fingerprint images
 - ◆ 2005: 100 persons * 6 fingers * 10 views * 3 sensors * 2 visits
 - ◆ 2006: 100 persons * 6 fingers * 10 views * 3 sensors * 2 visits




• KFRIA: Korea Fingerprint Recognition Interoperability Alliance


Demographics of Database


Experimental Procedures

Template Ageing

- Significant variation over time in matching performance
 - → Template Ageing
- It seems that there is not a close correlation between sample quality and matching performance

Relationship between Fingerprint Quality and Performance

Representative quality = median (20 views of each subject)

Detailed Quality Analysis

- Using sample quality Co-occurrence table
 - 1. MMQ (Median: Median Quality) Matrix
 - Row : Column
 - = median(20 views/subject) : median(20 views/subject)
 - 2. MVQ (Median: Views Quality) Matrix
 - Row : Column
 - = median(20 views/subject) : 20 views of each subject
 - 3. MPQ (Matching pairs Quality) Matrix
 - Row: Column = Genuine matching pairs of each subject

Median Sample Quality

Sample Quality Set of Subject1 (20 views)

 $= \{1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3\}$

11'

MMQ Matrix

- Sample quality
 - Row: Column
 - = median(20 views/subject) : median(20 views/subject)
- Total number
 - ◆ Total = Person * Finger = 100 * 6 = 600

[Sensor1] 2005:2006 MMQ Co-occurrence Matrix

2006 Median Quality 2005 Median Quality	1	2	3	4	5	Sum
1	18.33%	6.00%	0.67%	0.17%	1.33%	26.50%
2	11.00%	47.33%	4.17%	0.17%	1.83%	64.50%
3	0.83%	3.17%	2.50%	0.00%	0.83%	7.33%
4	0.00%	0.00%	0.33%	0.00%	0.00%	0.33%
5	0.00%	0.17%	0.83%	0.17%	0.17%	1.33%
Sum	30.17%	56.67%	8.50%	0.50%	4.17%	100.00%

✓ Matrix information
 Distribution of
 Representative sample quality

2006 Sample quality distribution

MVQ Matrix

Sample quality

Row: Column

= median(20 views/subject) : 20 views of each subject

Total number

Total = Person * Finger * Views = 100 * 6 * 20 = 12,000

[Sensor2] 2005:2005 MVQ Co-occurrence Matrix

2005 Each View Quality 2005 Median Quality	1	2	3	4	5	Sum
1	9.08%	4.89%	0.67%	0.01%	0.36%	15.00%
2	10.96%	53.35%	7.05%	0.03%	1.94%	73.33%
3	0.80%	3.43%	4.09%	0.07%	1.45%	9.83%
4	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
5	0.07%	0.22%	0.60%	0.00%	0.95%	1.83%
Sum	20.90%	61.88%	12.41%	0.11%	4.70%	100.00%

Matrix information
 Quality distribution
 of individual views

 \dot{M} edian sample quality = 2,

Quality levels of individual samples

MPQ Matrix

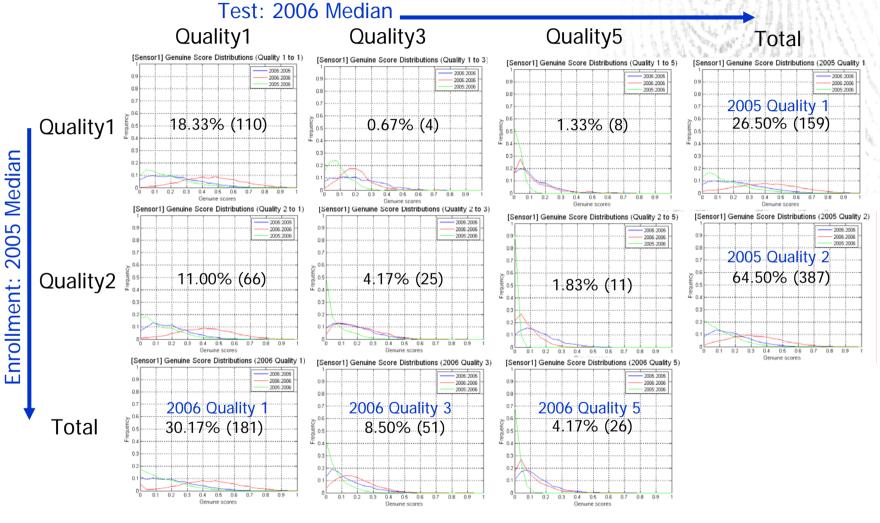
- Sample quality
 - Row: Column
 - = Genuine matching pairs of each subject = Enrolled : Tested
- Total number
 - Total = Genuine matching # * Person * Finger
 = 20 C₂ * 100 * 6 = 114,000

[Sensor1] 2006:2006 MPQ Co-occurrence Matrix

2006 Tested Template Quality 2006 Enrolled Template Quality	1	2	3	4	5	Sum
1	23.33%	7.09%	0.17%	0.01%	0.00%	30.61%
2	7.9%	43.9%	2.3%	0.0%	0.0%	54.02%
3	0.2%	3.3%	6.0%	0.2%	0.9%	10.51%
4	0.0%	0.0%	0.1%	0.2%	0.1%	0.44%
5	0.0%	0.0%	0.8%	0.1%	3.5%	4.42%
Sum	31.44%	54.23%	9.32%	0.43%	4.58%	100.00 %

Matrix information
 Directly related to matching performance

Analysis of Sample Quality and Matching Performance (1)


- ❖ To analyze relationship between sample quality and matching performance using MMQ Matrix
- How to analyze
 - Classify the genuine matching scores by 2005:2006 MMQ Co-occurrence Matrix

[Sensor1] 2005:2006 MMQ Matrix

2006 Median Quality 2005 Median Quality	1	2	3	4	5	Sum
1	18.33%	6.00%	0.67%	0.17%	1.33%	26.50%
2	11.00%	47.33%	4.17%	0.17%	1.83%	64.50%
3	0.83%	3.17%	2.50%	0.00%	0.83%	7.33%
4	0.00%	0.00%	0.33%	0.00%	0.00%	0.33%
5	0.00%	0.17%	0.83%	0.17%	0.17%	1.33%
Sum	30.17%	56.67%	8.50%	0.50%	4.17%	100.00%

Analysis of Sample Quality and Matching Performance (2)

Lower Quality → Score distribution shift to left → Increasing matching errors

Can any part of the Co-occurrence matrices provide the estimation of the matching error in Template ageing?

2006

Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	5
Quality	1	2	3	4	
Quality	1	2	3	4	
Quality	1	2	3	4	
Quality	1	2	3	4	
Quality	1	2	3		
Quality	1	2	3		
Quality	1	2	3		
Quality	1	2	3		
Quality	1	2	3		
Quality	1	2	3		
Quality	1	2	3		
Quality	1	2			
Quality	1	2			
Quality	1	2	3		
Quality	1	2			
Quality					

Lower Sample Qualities than before?

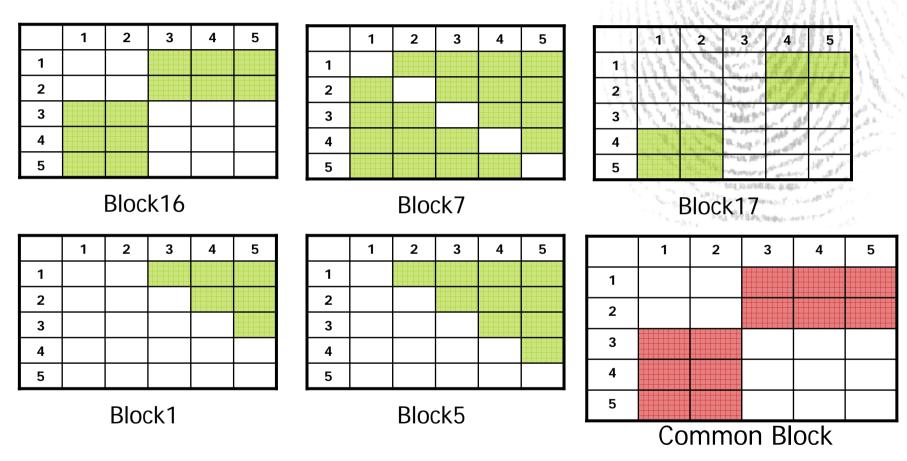
Or just bad Qualities?

Correlation between EER and Quality Block

- To find the influencing quality blocks on EER's
 - Define 19 kinds of blocks like below tables
 - Compute the correlation between EER's and sum of proportions of each block

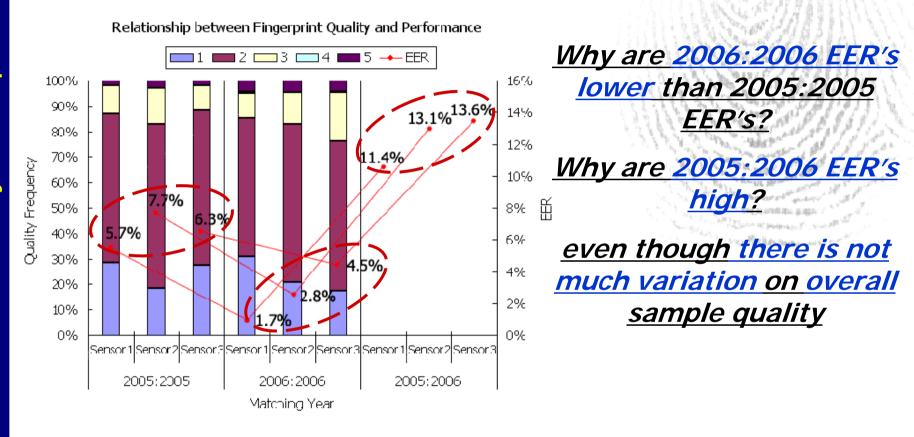
	1	2	3	4	5	Ī		1	2	3	4	5			1	2	3	4	5 The second
1						Ī	1							1					
2						Ī	2							2					
3						Ī	3							3					
4						Ī	4							4					
5							5							5					
	1	ı	ı	1		Г		1					1 1		1	1	_	ı	
	1	2	3	4	5			1	2	3	4	5			1	2	3	4	5
1	1	2	3	4	5		1	1	2	3	4	5		1	1	2	3	4	5
1 2	1	2	3	4	5		1 2	1	2	3	4	5		1 2	1	2	3	4	5
	1	2	3	4	5			1	2	3	4	5			1	2	3	4	5
2	1	2	3	4	5		2	1	2	3	4	5		2	1	2	3	4	5

Computing Correlation

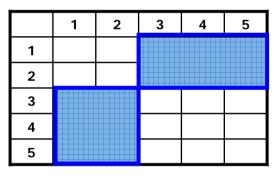

- How to compute correlation
 - For example, using MVQ Table on Block1
 - ◆ Matching year : A = 2005:2005, B = 2006:2006, C = 2005:2006

Matching								Action of the second	
year		Sensor1			Sensor2		The state of the s	Sensor3	
EER	Α	В	С	Α	В	C	Α	B.	C
EER	5.7%	1.7%	11.4%	7.7%	2.8%	13.1%	6.3%	4.5%5	13.6%
MEQ_Block1	S1_A	S1_B	S1_C	S2_A	S2_B	S2_C	S3_A	S3_B	S3_C

Positively High Correlation Blocks


High correlation blocks with EER's

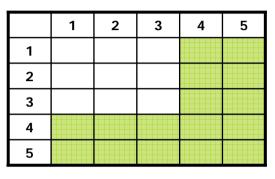
- → Large difference in sample quality over time
- → Significant 'Influencing Factors' on Template Ageing


Back to First Question

- → Due to variation in sample quality over time
- → Basis : MVQ matrix

Back to First Question

Block16


Matching Year Sensor	2005:2005	2006:2006	2005:2006
Sensor1	7.98 %	3.85 %	13.93 %
	5.7 %	1.7 %	11.4 %
Sensor2	10.23 %	4.95 %	14.57 %
	(7.7 %)	(2.8 %)	(13.1 %)
Sensor3	6.68 %	6.55 %	20.98 %
	(6.3 %)	(4.5 %)	(13.6 %)

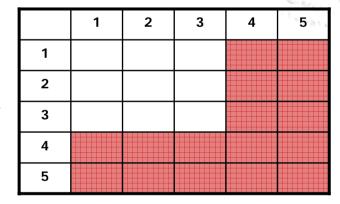
Block value from MVQ Co-occurrence matrix

Low Correlation Blocks

❖ Blocks of low correlation with EER's

 1
 2
 3
 4
 5

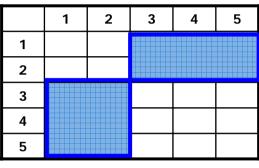
 1
 2


 3
 4

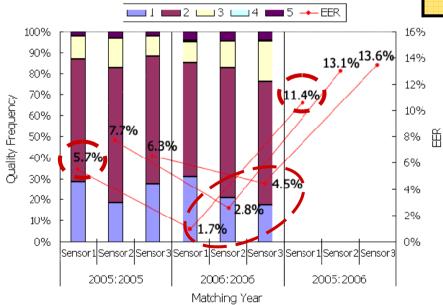
 5

Block15

Block14


Common Block

- → Combined with positively high correlation(PEER) block and negatively high correlation(NEER) block
- → Hard to estimate EER


EER vs. Correlation Block(1)

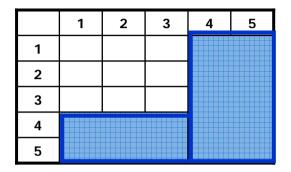
❖ Block name : PEER(Positive EER) Block

PEER Block

Relationship between Fingerprint Quality and Performance

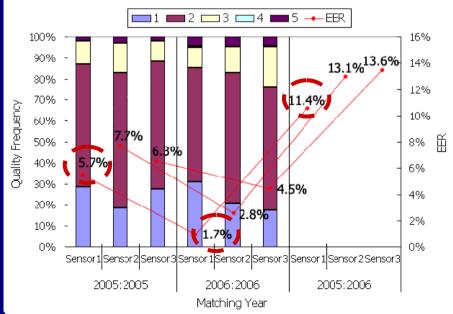
		Block	value · EER
Matching Year Sensor	2005:2005	2006:2006	2005:2006
Sensor1	7.98 %	3.85 %	13.93 %
	5.7 %	1.7 %	11.4 %
Sensor2	10.23 %	4.95 %	14.57 %
	(7.7 %)	2.8 %	(13.1 %)
Sensor3	6.68 %	6.55 %	20.98 %
	(6.3 %)	4.5 %	(13.6 %)

Block value from MVQ Co-occurrence matrix


Block characteristics

Possible to guess lower EER

among three sensors


EER vs. Correlation Block(2)

❖ Block name : LEER (Low Correlation) Block

LEER Block

Relationship between Fingerprint Quality and Performance

Matching Year Sensor	2005:2005	2006:2006	2005:2006
Sensor1	3.02 %	5.97 %	6.40 %
	5.7 %	1.7 %	11.4 %
Sensor2	4.46 %	6.02 %	6.72 %
	7.7 %	2.8 %	13.1 %
Sensor3	2.81 %	5.73 %	6.10 %
	6.3 %	4.5 %	13.6 %

Block value from MPQ Co-occurrence matrix

- Block characteristics
- 1. No relationship with EER
- 2. Because of combining with PEER

Block and NEER Block

Comparison of Co-occurrence Matrices

❖ MMQ Matrix

- No information regarding variation of sample quality
- Hard to link with EER

❖ MVQ & MPQ Matrices

- Useful to figure out relationship between sample quality and matching performance
- MVQ and MPQ matrices have similar performance

Conclusions

- Template ageing has been confirmed.
- Variation in sample quality is an important factor in template ageing.
- Various matrices and block measures have been defined for the analysis of correlation between sample quality and matching performance.
- Template Updating process is recommended in long-term usage applications of biometrics.

Future works

- Generalization of proposed matrices and measures for various databases such as FVC's
- Prediction of EER from proposed measures
- Evaluation of 'Level of Difficulty' of a database without actual matching
- Search for other factors influencing on 'Template Ageing'

Thank you for your attention!!

E-mail: jeryu@vision.inha.ac.kr

