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Overview

I Main mathematical topics

1. Sensitivity analysis, screening, uncertainty quantification,
coarse-graining and model selection based on information inequalities

2. Model Robustness, Parameter Identifiability
3. Sensitivity analysis, screening and uncertainty quantification based

on information metrics for rare event problems
4. Focus on dynamics and non-equilibrium, driven molecular systems

I Main application area

I Predictive materials design. Catalysis and Chemical Kinetics.
I The main models in this connection are complex chemical reaction

networks–which are high (often very high) dimensional stochastic
systems.

I UQ/Sensitivity at mesoscales: kinetic Monte Carlo, complex reaction
networks, Langevin dynamics,...
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I Mean field, PDE-based models are inadequate due to the role of microstructure.
Need (at least) Kinetic Monte Carlo-level resolution.

I Need UQ methods for possibly stochastic dynamics, scaling for T � 1, N � 1
(long times, high dimensions). Multi-scale problems.
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Lattice Dynamics and Kinetic Monte Carlo (KMC)

Dynamics

I Adsorption/Desorption/Reactions/Surface diffusion

1 2 N...

I Continuous Time Markov Chain modeling with state space
Σ = all configurations σ

I Multi-site updates or most systems, e.g.

Suchorski et al ChemPhysChem (2010)
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Main mathematical ideas

Use of information metrics (relative entropy, related divergences) as a set of
analytically and computationally tractable measures of measures of distance or metrics
between models.
Information measures we use are not true metrics, but have excellent quantitative and qualitative properties. We use these measures to

develop practical and broadly applicable techniques for UQ with respect to ordinary observables, as well as those that are determined by

rare events.

I Use of large deviation ideas for the UQ and sensitivity analysis for rare event
problems.

Large deviations is the part of probability theory that estimates the probabilities of rare events and characterizes the most likely

pathway of the system leading to the rare event. Well known as a theoretical tool, our use is in the design and analysis of

computational methods for UQ.

I Information metrics on ”path space” (i.e. all pertinent time series)

I Non-equilibrium Steady States (NESS): NESS 6= Z−1e−βH(σ)

I Relative Entropy Rate: ”pseudo-metric” on path-space.
I Path-Space Fisher Information Matrix

I Observables and UQ Information Inequalities for Sensitivity Screening that: scale
with system-size and time.
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Why information-based methods?

I Pseudo-distance between probabilistic models P,Q:

RKL (P |Q) :=

∫
log

(
P

Q

)
dP

I Properties: (i) RKL (P |Q) ≥ 0 and
(ii) RKL (P |Q) = 0 iff P = Q a.e.

I Other probability metrics and divergences:

Total Variation, Hellinger, χ2, F-divergence, etc. e.g.

χ2(P || Q) =

∫ (P
Q
− 1
)2

dQ.

I Is relative entropy special? see later.

I Drawbacks:
I need absolute continuity, i.e. some probability models cannot be compared. Need

other methods (stochastic coupling, Malliavin calculus, etc)
I What is the connection with observables of interest?
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Information metrics in inference, model selection and UQ

I Variational inference methods in machine learning

I Variational inference for building coarse-grained models in materials

I Information metrics for UQ and sensitivity analysis of stochastic
models

I Information metrics for quantifying predictive skill in model
selection/reduction
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Variational inference and coarse-graining

Loss of Information in Coarse-Graining, CG error, model fidelity : K., Vlachos J.
Chem. Phys. (2003), Majda, Abramov (2006), K., Plechac, Rey-Bellet,
Tsagkarogiannis (2014), Chen, Tong, Majda (2014) ...

RKL (P |Q) = N ×O(εp) , N = system size, ε = tolerance

CG Parametrizations via Variational Inference: Shell (2008, 2012), Noid et al (2011),
Espanol, Zuninga (2011), Bilionis, Koutsourelakis (2012), Bilionis, Zabaras (2013), K.,
Plechac (2013) ...

min
θ
RKL (P |Q(θ)) .

Machine/Statistical Learning via Variational inference: Amari (1998), Jordan et al
(1999), Bottou (2003), Wainright, Jordan (2008), Hoffman, Blei, Wang, Paisley
(2013)...
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Example: Sensitivity analysis – Applications
Identifying Bimetallic Catalysts

Hansgen, Chen, Vlachos, Nature Chem. 2010

 

Molecular Architecture 
 Plays a Pivotal Role in Emergent Materials 

3.0 Langmuir 
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Hansgen, Chen, and Vlachos, Nature Chem. 2, 484-489 (2010) 

Ni-Pt-Pt 

Identifying Bimetallic Catalysts 

• Optimum heat of chemisorption of 
N of ~130 kcal/mol 

• NiPtPt is a good prospective 
bimetallic surface 

Surface Subsurface 

Metals BEN (kcal/mol) 
PtTiPt 56.5 
PtVPt 59.5 
PtCrPt 72.6 
PtMnPt 84.9 
PtFePt 83.9 
PtCoPt 87.0 
PtNiPt 89.8 
NiPtPt 137.5 
CoPtPt 159.9 
FePtPt 169.9 
MnPtPt 162.2 
CrPtPt 166.5 
VPtPt 184.1 
TiPtPt 191.5 

Configuration Metal (111)  
Surface 

Nitrogen Binding 
Energy 

(kcal/mol) 
 Pt-Ti-Pt 70.7 
 Pt-V-Pt 81.0 
 Pt-Cr-Pt 76.3 
 Pt-Mn-Pt 77.6 
 Pt-Fe-Pt 78.4 
 Pt-Co-Pt 83.4 
 Pt-Ni-Pt 87.5 
 Pt 102.1 
 Ni 113.8 
 Ni-Pt-Pt 130.7 
 Co-Pt-Pt 126.5 
 Fe-Pt-Pt 134.1 
 Mn-Pt-Pt 207.2 
 Cr-Pt-Pt 188.3 
 V-Pt-Pt 188.1 
 Ti-Pt-Pt 176.1 

 

I Model sensitivity to lateral interactions: Parameter Sensitivity Analysis

Use costly DFT simulation and estimation only for sensitive parameters or important
mechanism of the KMC.

I Strong dependence on some molecular architecture (but insensitive to most): Uncertainty
Quantification

I Have we included all reactions? Model-form Uncertainty
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Complex Reaction Networks

TA1.%%

Combinatorial%explosion%in%the%number%of%parameters."Complex"multiscale,"multi1body"physics"
problems"expose"a"dual"explosion"in"the"number"of"parameters,"driven"by"the"sheer"size"of"a"
network"(reaction)network,based))and"the"many1body"effects"in"condensed"matter"physics"(lateral)
interaction,based)."Figure"1"shows"the"number"of"elementary"reactions"in"the"metal1catalyzed"
conversion"of"small"oxygenated"molecules,"obtained"from"lignocellulosic"biomass,"into"
renewable"fuels"and"chemicals"vs."the"molecular"size."1"The"number"of"reactions"(blue"bars)"
increases"exponentially"with"molecular"size"and"is"well"into"the"millions"even"for"small"size"molecules.1,"2"
This)large)reaction)network,based)explosion)makes"parameter"estimation"using"first1principles"
calculations,"such"as"density"functional"theory"(DFT),"impossible."Importantly,"each"rate"constant"can"
profoundly"change"with"lateral"interactions"between"species"on"a"catalyst.2,"3"Given"the"large"number"of"
species"(red"bars),"a"priori"parameterization"even"of"a"single"rate"constant"of"a"complex"reaction"
network"is"impractical;"there"are"simply"too"many"species"and"too"many"spatial"arrangements"of"them"
to"parameterize"a"rate"constant"using"DFT"(lateral)interaction,based)explosion)in)parametrization).1,"2"
Aside"from"this"dual"challenge"in"combinatorial"explosion"in"parameters,"UQ"of"such"high"dimensionality"
problems"is"also"very"demanding."It"is"this"class"of"problems"that"our"methods"will"be"applied"to."

"

)

 "

Figure)1.)Left:)Number)
of)parameters)in)
metal,catalyzed)
upgrade)of)small)
biomass)derivatives)
for)the)production)of)
renewable)fuels)and)
chemicals)vs.)
molecular)size.)The)
reaction)network)even)
of)typical)sugars,)such)
as)glucose,)entails)
nearly)a)million)of)
parameters.)Taken)

from)Ref.3)Right:)Example)of)reaction)network)of)a)small)oxygenate)(ethanol)on)platinum)catalyst).)

"

1." J."E."Sutton,"and"D."G."Vlachos,"Building"large"microkinetic"models"with"first1principles׳"accuracy"
at"reduced"computational"cost."Chemical)Engineering)Science"121(0),"1901199,"(2015)."

2." M."Salciccioli,"M."Stamatakis,"S."Caratzoulas,"and"D."G."Vlachos,"A"review"of"multiscale"modeling"
of"metal1catalyzed"reactions:"Mechanism"development"for"complexity"and"emergent"behavior."
Chem.)Eng.)Sci."66,"4319–4355,"(2011)."

3." A."B."Mhadeshwar,"J."R."Kitchin,"M."A."Barteau,"and"D."G."Vlachos,"The"role"of"adsorbate1
adsorbate"interactions"in"the"rate"controlling"step"and"most"abundant"reaction"intermediate"of"
NH3"decomposition"on"Ru."Cat.)Letters"96(112),"13122,"(2004)."
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Left: Number of parameters in metal-catalyzed upgrade of small biomass derivatives for the production of renewable fuels and chemicals
vs. molecular size. The reaction network even of typical sugars, such as glucose, entails nearly a million of parameters. Right: Example of
reaction network of a small oxygenate (ethanol on platinum catalyst); the thickness of lines indicates the reaction flux.

J. E. Sutton and D. G. Vlachos. Chem. Engin. Sci. 2015.
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Sensitivity Analysis - some challenges

I Perform SA on stochastic (Langevin) and possibly discrete systems,
non-gaussian (KMC, reaction-networks).

I Transient and long-time integration (numerical/approximation challenges).

I Need to tackle non-equilibrium stochastic processes:

• NESS 6= Ce−βH(σ)

I SA for molecular (and multi-physics) models with a very large number of
parameters. Sensitivity analysis and bounds that can be used for
screening.

I Parameters can be strongly correlated (e.g. due to thermodynamic
constraints, DFT calculations, etc) =⇒ type of ”global” SA.

I Uncertainties related to rare events and induced multiscale aspects.

1
Pantazis, K., J. Chem. Phys. ’13; K., Y. Pantazis, D. Vlachos, BMC Bioinformatics, ’13, Pantazis et al., J. Chem. Phys. ’15.

2
Arampatzis, Pantazis, Katsoulakis PLOS 1, (2015); Dupuis, Katsoulakis, Pantazis, Plechac SIAM UQ, (2016)

3
Sutton, Guo, Katsoulakis, and Vlachos, Nature Chemistry, to appear (2016)

4
P. Dupuis, M. Katsoulakis, Y. Pantazis and L. Rey-Bellet (2016)
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Deterministic Sensitivity Analysis - Local SA

I System of ODEs:

ẏ = f (y ; θ) , y(0) = y0 ∈ RN

• Goal: Perform SA on the model parameters θ ∈ RK .

I Define sensitivity indices:

sk =
∂y

∂θk

I A new system of ODEs is derived and augmented to the previous:

ṡk =
∂f

∂y
sk +

∂f

∂θk
, k = 1, ...,K

• need to solve K × N additional equations.
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Stochastic Sensitivity Analysis - Background

I Observable-based Methods:

I Finite-differencing:

S(θ, t) =
∂

∂θ
EPθt

[f (x)] =
EPθ+ε

t
[f (x)]− EPθt

[f (x)]

ε
+ O(ε)

I Likelihood ratio method [P. Glynn, Comm. ACM (1990)]:

S(θ, t) =
∂

∂θ
EPθt

[f (x)] =

∫
f (x)∂θP

θ
t (x)dx = EPθt

[f (x)∂θ logPθt (x)]

I Linear Response methods in (primarily equilibrium) Stat. Mechanics.
I Pathwise derivatives, Malliavin Calculus methods.
I Vast literature on gradient estimation for discrete event systems in

Queuing Theory and Operation Research.
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Stochastic SA - Observable-based

I Finite differencing:

S(θ, t) ≈
E
Pθ+ε
t

[f (x)]− EPθt
[f (x)]

ε
+ O(ε)

I Variance of the estimator controlled by:

var (f (xθ+ε
t )− f (xθt )) = var (f (xθ+ε

t )) + var (f (xθt ))

− 2cov (f (xθ+ε
t ), f (xθt ))

High Variance due to
sampling of two different
stochastic processes. Can
we ”couple” the two
processes?
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Stochastic Coupling Methods

Simulate joint process (xθ+ε
t , xθt ) with constrained marginals:

I Common Random Number/Common
Reaction Path approach:
[Rathinam, Sheppard, Khammash, J.
Chem. Phys., 2010]

I Markov (xθ+ε
t , xθt ) for well–mixed

systems:
[Anderson, SIAM Numerical Analysis,
2012], [Srivastava, Anderson,
Rawlings, J. Chem. Phys., 2013]

I Markov (xθ+ε
t , xθt ) for spatial KMC -

couplings based on
coupling optimization principle:
[Arampatzis, K. , J.Chem.Phys.,
2014]

I Efficient methods, but impractical for
systems with a large # of parameters
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Variance for different coupling methods in Lattice KMC:

[Arampatzis, K., J.Chem.Phys., ’14]
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Sensitivity analysis - Information Theory Methods

RKL

(
Pθ |Pθ+ε

)
= Loss of Information due to perturbation by ε

A. J. Majda and B. Gershgorin, Proc. Natl. Acad. Sci. (2010) - Maximum Entropy
principle

M. Komorowski et al, Proc. Natl. Acad. Sci. (2011) - Linear Noise Approximation

models or reaction networks

I Here the PDF is known, e.g. a Gibbs equilibrium µ ∼ Ce−βH(σ) or
Gaussian fluctuations: allows for explicit calculations on R:

RKL

(
µ |µ(0)

)
∼ Eµ[β(H(0) − H)] + log

Z (0)

Z

I Gradients of RKL

(
µ |µ(0)

)
become observables: stochastic

optimization methods.

I However, typically
µ 6= Ce−βH(σ)

in dynamics, non-equilibrium systems, non-gaussian fluctuations, etc.

Markos Katsoulakis Mathematics & Statistics University of Massachusetts AmherstPath-space information metrics for uncertainty quantification of molecular systems



Sensitivity Analysis - Relative Entropy Rate (RER)

RKL

(
Qθ

0,T |Q
θ+ε
0,T

)
= Loss of Information (in time-series) due to perturbation by ε

I For long times T >> 1, RER is viewed as measure of parameter
sensitivity:

RKL

(
Qθ

0,T |Qθ+ε
0,T

)
= TH

(
Qθ

0,T |Qθ+ε
0,T

)
+RKL

(
µθ |µθ+ε

)
I θ: parameter vector (for local sensitivity it is fixed)
I ε: parameter vector perturbation

I (RER): H
(
Qθ

0,T |Q
θ+ε
0,T

)
= Eµθ

[∫
pθ(σ, σ′) log pθ(σ,σ′)

pθ+ε(σ,σ′)
d σ′

]
I p(σ, σ′): transition probabilities (local dynamics).

I Eµθ .... steady-state sampling: H̄(n)
2 = 1

n

∑n−1
i=0 log

pθ(σi ,σi+1)

pθ+ε(σi ,σi+1)
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Path-space Fisher Information Matrix (FIM)

Under a smoothness assumption on θ, (checkable, on the rates only!)

H
(
Qθ

0,M |Qθ+ε
0,M

)
=

1

2
εTFH

(
Qθ

0,M

)
ε+ O(|ε|3)

where the Fisher Information Matrix is defined as

FH
(
Qθ

0,M

)
= Eµθ

[∫
E

pθ(σ, σ′)∇θ log pθ(σ, σ′)∇θ log pθ(σ, σ′)Td σ′
]

I Spectral analysis of FIM gives the most/least sensitive directions.

I Sparse structure of the path FIM-see examples below.

I Derivative-free sensitivity analysis method.

I Characterizes robustness on simultaneous parameter perturbations.

I Determines parameter identifiability, e.g. Cramer-Rao Thms

1
Pantazis, K., J. Chem. Phys. (2013); K., Y. Pantazis, D. Vlachos, BMC Bioinformatics, (2013), Arampatzis, K. Pantazis PLOS 1

(2015).
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Path-space FIM - Sparsity

I For reaction networks, Langevin, etc. we typically have a block diagonal
structure in the FIM

I Scalable computations - FIM scales linearly in the number of parameters.

I Contains key information:

I Graph structure
I Dynamics on the graph: reaction rates and their functional form

Reactions Parameters Fisher Information Matrix
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How ”predictive”? Information Inequalities and QoIs

I Observables/QoIs f : Csiszar-Kullback-Pinsker inequality:

|EP [f ]− EQ [f ]| ≤ ||φ||∞
√

2RKL (P |Q)

I Does not scale with system size N, time T .

I Same with χ2 bounds (Chapman Robbins inequality).

UQ Information Inequalities1:

Ξ−(P,Q; f ) ≤ EQ [f ]− EP [f ] ≤ Ξ+(P,Q; f ) ,

I Goal-oriented divergence Ξ±(P,Q; f ):

I Ξ±(P,Q; f ) ≥ 0, (resp. Ξ−(P,Q; f ) ≤ 0)
I Ξ±(P,Q; f ) = 0 if and only if P = Q a.s. or f is deterministic

P−a.s.
I Divergence contains information on QoI f , e.g.
I Linearization – SA bounds:

Ξ+(P,Q; f ) =
√

VarP [f ]
√

2RKL (Q |P) +O(RKL (Q |P))

I Variational representation: Ξ+(P,Q : f ) = infα>0

{
1
α

ΛP,f (α) + 1
α
RKL (P |Q)

}
I To date the only bound scaling with system size N, time T .

1
K., L. Rey-Bellet, J. Wang, ’16; Dupuis, M. K., Pantazis, PlechacSIAM UQ ’16
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K., L. Rey-Bellet, J. Wang, ’16; Dupuis, M. K., Pantazis, PlechacSIAM UQ ’16
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Screening Strategy - Information Metrics & Observables

I Biological network describing Epidermal Growth Factor Receptor. [Kholodenko et.al., J. Biol. Chem., 1999]
Data from: http://www.ebi.ac.uk/biomodels-main/BIOMD0000000048

I 47 reactions, 23 species, 23 observables, 50 parameters, 23 × 50 = 1150 sensitivities
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Screening model sensitivities based on the path-FIM upper bound:

|Sf (θk )| ≤

√√√√ ∞∑
i=−∞

Af (i)
√

FH(Qθ)k,k

Cramer-Rao inequality on path space

1
Arampatzis, Pantazis, Katsoulakis PLOS 1, (2015); Dupuis, Katsoulakis, Pantazis, Plechac SIAM UQ, (2016)
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Sensitivity for Langevin dynamics

I Potential: V (q) = Vangle(q) + Vbond (q) + VLJ(q)

I Bond potential: Vbond (rij ) = 1
2
Kb(r0 − rij )

2

I Angle potential: Vangle(θijk ) = 1
2
Kθ(θ0 − θijk )2

I Interaction potential:

VLJ(rij ) =

4εLJ

[(
σLJ
rij

)12
−
(
σLJ
rij

)6]
if rij < rcut .

0 otherwise.

I Parameter vector:
θ = [εC−C

LJ , σC−C
LJ , εC−H

LJ , σC−H
LJ , εH−H

LJ , σH−H
LJ ,Kb, r0,Kθ, rθ]T

• Relative Entropy Rate: (related to force-matching in coarse-graining)

H(Qθ|Qθ+ε) =
1

2
Eµθ [(F θ+ε(q)− F θ(q))T (σσT )−1(F θ+ε(q)− F θ(q))]

• Fisher Information Matrix:

FH(Qθ) = Eµθ [∇θF θ(q)T (σσT )−1∇θF θ(q)] ,

1
V. Harmandaris, A. Tsourtis, M.K., Pantazis J. Chem. Phys. (2015)
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Rare events and multi-scale problems

I Patched bimetallic catalysts for ammonia decomposition

I Ammonia decomposition: 2NH3 → N2 + 3H2

I Multiple time scales:

Steady-state statistics indicating the frequency of elementary reactions and the flow of reaction flux. The net, forward and reverse rates in
red, blue and yellow bars, respectively. Reactions with equal forward and reverse bars (for example, NH3 adsorption/desorption) are in
partial equilibrium. Diffusion steps are not depicted, because of being fast and equilibrated, and dehydrogenations at edges are left out
from the graph due to their negligible contribution.

W. Guo, D. G. Vlachos, Nature Communications (2015)
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Rare events and multi-scale problems
An elementary example:

dX ε = b[X ε,Y ε]dt , dY ε =
1

ε
B(X ε,Y ε)dt +

1

ε1/2
Σ(X ε,Y ε)dWt ,

As ε→ 0, X ε → X̄ in [0,T ]:

dX̄t = b̄[X̄t ]dt , where b̄[x ] =

∫
b[x , y ]µx(dy) ,

I µx(dy): invariant measure of fast equation after fixing the value of
X ε
t = x .

I The averaged equation is deterministic and is derived as a limit in
fixed time intervals [0,T ].

I For long time integration rare events appear which are not captured
by the deterministic limit X̄ .
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Sensitivity analysis for rare events

I An event A is rare if P(A)� 1. We usually consider logP(A).
I Other applications to: reliability analysis, queueing theory, operation

research, insurance, statistical mechanics, etc.

I Sensitivity analysis for rare events:

SA(Pθ) := ∂θ logPθ(A) =
∂θP

θ(A)

Pθ(A)

I Relative entropy is NOT the most appropriate divergence:
I Rare event bounds based on Renyi divergence:

log Q(A)− log P(A) ∼ Rα (Q |P)

I Renyi divergence: Rα (Q |P) := 1
α−1 logEP

[(
dQ
dP

)α]

1

α− 1
log Q(A)−

1

α
Rα (Q |P) ≤

1

α
log P(A) ≤

1

α+ 1
log Q(A) +

1

α+ 1
Rα+1 (P |Q)

1
Atar, Chowdhary and Dupuis, SIAM UQ ’14
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Sensitivity analysis for rare events

I Sensitivity bounds (Q = Pθ+ε, P = Pθ and α = 1
ε (α0 + O(ε))):

sup
α>0
− H̄(−α)− logPθ(A)

α
≤ SA(Pθ) ≤ inf

α>0

H̄(α)− logPθ(A)

α

I H̄(α) := logEPθ [exp{α∂θ logPθ}]
Renyi-like quantity: cumulant generating function of ∂θ logPθ.

I Sensitivity screening bounds involve the calculation of a rare event.

I Extensions to bound rate function derivatives (Large Deviations,
Moderate Deviations, etc).

I General Risk-Sensitive observables for characterizing rare events:

log

∫
X
eFdP

1
P. Dupuis, M. Katsoulakis, Y. Pantazis and L. Rey-Bellet (2016)
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Uncertainty and Correlations in DFT Calculations

I DFT uncertainties

- Arise from approximate exchange-correlation functional; vary significantly with functional

I Chemical kinetics parameters are correlated

- Introduce correlative UQ for reaction networks

I Employ Hierarchical Bayesian methods to create probabilistic model.

Example: Ethanol Steam Reforming (ESR) for hydrogen production

Steam reforming is a catalysis-based method for producing hydrogen or other useful products from fuels such as natural gas. E.g. can

convert flared (”stranded”) gas such as methane into a more practical source of energy.

"  Opportunity: 
•  Transform an 

environmental and 
societal problem to a 
profitable, 
sustainable enterprise 

"  Grand Science 
Challenges: 

•  Convert methane to 
larger more valuable 
chemicals via 
discovering paths, 
catalysts, and 
processes 

•  Develop portable 
microchemical 
technology 

1.4 
billion1 
Cubic meters of 

natural gas flared 
in 2011 

1 
million2 
Cars-equivalent 

in GHG emissions 
annually 

$1 
billion2 

In fuel lost 
annually 

 

Stranded Gas 

1Tollefson, Oil boom raises burning issues, Nature, March 19, 2013 
2Ref. North Dakota flared off $1 billion worth of natural gas last year, Scientific American, Sept. 12, 2013 (May 2012-May 2013) 
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Figure 1. Bayesian estimated posterior predictive probability distribution function (contours) demonstrating strong 
correlated uncertainties in the ethanol and ethoxy enthalpies of formation (a). Contours correspond to the probability 
density (maximum probability density is about 1.5x10-2). The distribution describes the DFT data points (squares) 
very well. The multivariate probability distribution includes all other species energies which are not shown here. 
Correlations in uncertainties in the DFT computed activation energy of C-H bond scission (dehydrogenation 
reactions) vs. the corresponding reaction energy uncertainties (squares) (b). Similar correlations exist among other 
species energies and reactions. Effect of correlations on the identity of influential species enthalpy and reaction 
activation energy perturbations (i.e., those with a normalized global sensitivity index of at least 0.05) on the ethanol 
conversion (c). Normalized global sensitivity indices are calculated by dividing the raw global sensitivity indices 
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Correlative SA & UQ - Mathematical Formulation

I Necessary to consider ensembles of models (Bayesian formulation):

P(X |θ)p(θ) ,

I P(X |θ): Forward model, i.e. pdf of state X for fixed parameter θ (reaction network,
KMC, etc).

Observables: f (θ) =
∫
h(X )P(X |θ)dX ,

I p(θ): distribution of θ.

I Correlations between the parameter sets θ = (θ1, θ2):

p(θ1, θ2) = p(θ2|θ1)p(θ1) , p(θ1): marginal

I ∇1F (θ1): Local correlative sensitivity index
Fix θ1 and consider correlations with θ2:

F (θ1) =

∫
f (θ1, θ2)p(θ2|θ1)dθ2

I Global correlative SI:
∫

Θ1 |∇1F (θ1)|p(θ1)dθ1

I We build on the mathematical tools developed earlier: UQ Information Inequalities, pFIM,
etc.

1
Sutton, Guo, Katsoulakis, and Vlachos, Nature Chemistry, to appear (2016)
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Correlations Strongly Impact Predictions

I Apply the methodology to a complex reaction network of ethanol steam reforming on a
Pt/Al2O3 catalyst with 67 species and 160 reactions.

I Correlations reduce significantly the number of important parameters

I Sensitivity of key parameters differ when correlations are included
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#

#

Figure 1. Bayesian estimated posterior predictive probability distribution function (contours) demonstrating strong 
correlated uncertainties in the ethanol and ethoxy enthalpies of formation (a). Contours correspond to the probability 
density (maximum probability density is about 1.5x10-2). The distribution describes the DFT data points (squares) 
very well. The multivariate probability distribution includes all other species energies which are not shown here. 
Correlations in uncertainties in the DFT computed activation energy of C-H bond scission (dehydrogenation 
reactions) vs. the corresponding reaction energy uncertainties (squares) (b). Similar correlations exist among other 
species energies and reactions. Effect of correlations on the identity of influential species enthalpy and reaction 
activation energy perturbations (i.e., those with a normalized global sensitivity index of at least 0.05) on the ethanol 
conversion (c). Normalized global sensitivity indices are calculated by dividing the raw global sensitivity indices 

1
Sutton, Guo, Katsoulakis, and Vlachos, Nature Chemistry, to appear (2016)
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Conclusions

I SA methods for mesoscale models: stochastic (Langevin) and
possibly discrete systems (KMC, reaction-networks).

I Sensitivity screening for molecular models with a very large number
of parameters

I Tackle non-equilibrium stochastic processes:

I Coupled mechanisms (reaction-diffusion), reaction networks, driven
systems, multi-physics models, etc.

I Methods for parameters which are strongly correlated (e.g. due to
thermodynamic constraints, DFT calculations, etc) =⇒ type of
”global” SA.

I Transient and long-time integration (numerical/approximation
challenges).

I Some information-based methods for UQ and sensitivity analysis of
rare events; Renyi methods

Markos Katsoulakis Mathematics & Statistics University of Massachusetts AmherstPath-space information metrics for uncertainty quantification of molecular systems



References

I Sensitivity Analysis in Path Space (information-theoretic, goal-oriented)

A Relative Entropy Rate Method for Path Space Sensitivity Analysis of Stationary Complex Stochastic Dynamics, Y. Pantazis,
M.K., J. Chem. Phys. (2013).

Parametric Sensitivity Analysis for Biochemical Reaction Networks based on Pathwise Information Theory, M. K., D. Vlachos, Y.
Pantazis, BMC Bioinformatics, (2013).

Measuring the irreversibility of numerical schemes for reversible stochastic differential equations, M. K. Y. Pantazis, L.
Rey-Bellet., ESAIM: Math. Model. Num. Analysis, (2014).

Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations, M. K. and G. Arampatzis, J. Chem. Phys., (2014).

Accelerated Sensitivity Analysis for High-Dimensional Stochastic Reaction Networks, G. Arampatzis, Y. Pantazis, M. K. PLOS1
(2015).

Sensitivity Bounds and Error Estimates for Stochastic Models, P. Dupuis, M. K., P. Plechac, Y. Pantazis SIAM UQ (under
revision) (2015).

Parametric Sensitivity Analysis for Stochastic Molecular Systems using Pathwise Information Metrics, A. Tsourtis, V.
Harmandaris, M. K., Y.Pantazis J. Chem. Phys. (2015).

I Coarse-graining (path-space, multi-body effects, non-equilibrium)

Information-theoretic tools for parametrized coarse-graining of non-equilibrium extended systems, M. K., P. Plechac,
J. Chem. Phys. (2013).

Coarse-graining schemes for stochastic lattice systems with short and long-range interactions, M. K., P. Plechac, L. Rey-Bellet
and D. Tsagkarogiannis, Math. Comp., (2014).

Spatial two-level interacting particle simulations and information theory-based error quantification, E. Kalligiannaki, M. K. , P.
Plechac SIAM Sci. Comp., 36, A634A667 (2014).

Measuring the irreversibility of numerical schemes for reversible stochastic differential equations, M. K. Y. Pantazis, L.
Rey-Bellet., ESAIM: Math. Model. Num. Analysis, (2014).

Path-space variational inference for non-equilibrium coarse-grained systems, V. Harmandaris, E. Kalligiannaki, M. K. and P.
Plechac, J. Comp. Phys., submitted, (2015).

See also: Markos Katsoulakis’ Homepage, ResearchGate Profile

Markos Katsoulakis Mathematics & Statistics University of Massachusetts AmherstPath-space information metrics for uncertainty quantification of molecular systems

http://www.math.umass.edu/~markos/
https://www.researchgate.net/profile/Markos_Katsoulakis/



