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Overview

» Main mathematical topics

1. Sensitivity analysis, screening, uncertainty quantification,
coarse-graining and model selection based on information inequalities

2. Model Robustness, Parameter Identifiability

3. Sensitivity analysis, screening and uncertainty quantification based
on information metrics for rare event problems

4. Focus on dynamics and non-equilibrium, driven molecular systems

» Main application area

> Predictive materials design. Catalysis and Chemical Kinetics.

> The main models in this connection are complex chemical reaction
networks—which are high (often very high) dimensional stochastic
systems.

» UQ/Sensitivity at mesoscales: kinetic Monte Carlo, complex reaction
networks, Langevin dynamics,...
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» Mean field, PDE-based models are inadequate due to the role of microstructure.
Need (at least) Kinetic Monte Carlo-level resolution.

» Need UQ methods for possibly stochastic dynamics, scaling for T > 1, N> 1
(long times, high dimensions). Multi-scale problems.
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(Right) Patched bimetallic catalysts for ammonia decomposition: W. Guo, D. G. Vlachos, Nature Communications (2015)
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Lattice Dynamics and Kinetic Monte Carlo (KMC)

Dynamics

» Adsorption/Desorption/Reactions/Surface diffusion

» Continuous Time Markov Chain modeling with state space
¥ = all configurations o

» Multi-site updates or most systems, e.g.

Pt{111), CO-poisoned, Pt{100), reaction fronts,
inactive state phase transition to active state

Suchorski et al ChemPhysChem (2010)
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Main mathematical ideas

Use of information metrics (relative entropy, related divergences) as a set of
analytically and computationally tractable measures of measures of distance or metrics
between models.

Information measures we use are not true metrics, but have excellent quantitative and qualitative properties. We use these measures to
develop practical and broadly applicable techniques for UQ with respect to ordinary observables, as well as those that are determined by

rare events.

> Use of large deviation ideas for the UQ and sensitivity analysis for rare event
problems.
Large deviations is the part of probability theory that estimates the probabilities of rare events and characterizes the most likely
pathway of the system leading to the rare event. Well known as a theoretical tool, our use is in the design and analysis of
computational methods for UQ.

» Information metrics on " path space” (i.e. all pertinent time series)

> Non-equilibrium Steady States (NESS): NESS # Z~1le=FH(7)
> Relative Entropy Rate: " pseudo-metric” on path-space.
> Path-Space Fisher Information Matrix

» Observables and UQ Information Inequalities for Sensitivity Screening that: scale
with system-size and time.
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Why information-based m

» Pseudo-distance between probabilistic models P, Q:

Ri (P Q) ::/Iog <g) dP

> Properties: (i) Ry (P| Q) > 0 and
> Other probability metrics and divergences:
Total Variation, Hellinger, sz F-divergence, etc. e.g.
P 2
Pl = [(5-1) @
Q
> Is relative entropy special? see later.
» Drawbacks:

> need absolute continuity, i.e. some probability models cannot be compared. Need
other methods (stochastic coupling, Malliavin calculus, etc)
» What is the connection with observables of interest?
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Information metrics in inference, model selection and

» Variational inference methods in machine learning
» Variational inference for building coarse-grained models in materials

» Information metrics for UQ and sensitivity analysis of stochastic
models

» Information metrics for quantifying predictive skill in model
selection/reduction
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Variational inference and coarse-graining

Loss of Information in Coarse-Graining, CG error, model fidelity : K., Vlachos J.
Chem. Phys. (2003), Majda, Abramov (2006), K., Plechac, Rey-Bellet,
Tsagkarogiannis (2014), Chen, Tong, Majda (2014) ...

RiL(P|Q) =N x O(e?), N = system size, € = tolerance

CG Parametrizations via Variational Inference: Shell (2008, 2012), Noid et al (2011),
Espanol, Zuninga (2011), Bilionis, Koutsourelakis (2012), Bilionis, Zabaras (2013), K.,
Plechac (2013) ...

min R (P Q(9)) -
Machine/Statistical Learning via Variational inference: Amari (1998), Jordan et al

(1999), Bottou (2003), Wainright, Jordan (2008), Hoffman, Blei, Wang, Paisley
(2013)...
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Example: Sensitivity analysis — Applications

Identifying Bimetallic Catalysts

Hansgen, Chen, Vlachos, Nature Chem. 2010

Metals BE, (kcalimol)
PATIPL 565

PIVRL 595
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PPt 89 5 3 .
2 el a9 * Optimum heat of chemisorption of
T PICoPt s70 N of ~130 kcal/mol
P PINPt 898 * NiPtPt is a good prospective
S | Ni-Pt-Pt NIRRE 1375 bimetallic surface
> CoPPt 1509 —
= FePPt 1699 S Crsumavy "
& [t 1622 3
= E 1
= PPt 1665 3
VPPt 1841 = o
TiPtPt 1915 S i
L . . . . . . . | o
350 400 450 500 550 600 650 700 750 n 1021 e — U,
Temperature (K) Ni 1138 0, Weatmotf

P Model sensitivity to lateral interactions: Parameter Sensitivity Analysis

Use costly DFT simulation and estimation only for sensitive parameters or important
mechanism of the KMC.

P Strong dependence on some molecular architecture (but insensitive to most): Uncertainty
Quantification

» Have we included all reactions? Model-form Uncertainty
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Complex Reaction Networks

Intermediates

Number of parameters

Left: Number of parameters in metal-catalyzed upgrade of small biomass derivatives for the production of renewable fuels and chemicals
vs. molecular size. The reaction network even of typical sugars, such as glucose, entails nearly a million of parameters. Right: Example of
reaction network of a small oxygenate (ethanol on platinum catalyst); the thickness of lines indicates the reaction flux.

J. E. Sutton and D. G. Vlachos. Chem. Engin. Sci. 2015.
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Sensitivity Analysis - some challenges

> Perform SA on stochastic (Langevin) and possibly discrete systems,
non-gaussian (KMC, reaction-networks).

Transient and long-time integration (numerical /approximation challenges).
Need to tackle non-equilibrium stochastic processes:
o NESS o Ce—BH(o)

> SA for molecular (and multi-physics) models with a very large number of
parameters. Sensitivity analysis and bounds that can be used for
screening.

> Parameters can be strongly correlated (e.g. due to thermodynamic
constraints, DFT calculations, etc) = type of "global” SA.

» Uncertainties related to rare events and induced multiscale aspects.

Pantazis, K., J. Chem. Phys. '13; K., Y. Pantazis, D. Vlachos, BMC Bioinformatics, '13, Pantazis et al., J. Chem. Phys. '15.
Arampatzis, Pantazis, Katsoulakis PLOS 1, (2015); Dupuis, Katsoulakis, Pantazis, Plechac SIAM UQ), (2016)
Sutton, Guo, Katsoulakis, and Vlachos, Nature Chemistry, to appear (2016)

1
2
3
4P. Dupuis, M. Katsoulakis, Y. Pantazis and L. Rey-Bellet (2016)
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Deterministic Sensitivity Analysis - Local SA

» System of ODEs:

y="F(y:0) ., y(0)=yeR"

o Goal: Perform SA on the model parameters § € R¥.
» Define sensitivity indices:
dy

= 90,

» A new system of ODEs is derived and augmented to the previous:

gsk—Fﬁ k=1,...,.K
dy

Sk = 39;(’

e need to solve K x N additional equations.

Markos Katsoulakis Mathematics & Statistics University of Massachusetts Path-space information metrics for uncertainty quantification of molecular s



Stochastic Sensitivity Analysis - Background

» Observable-based Methods:

> Finite-differencing:

E o+e[f —Epo[f(x
(et)_aEpe[f( = [F 0l f[()]—s—O(e)

€

v

Likelihood ratio method [P. Glynn, Comm. ACM (1990)]:

0

S(0.) = 55Epp

[F(x)] :/f(X)aePf(X)dX = Epy[f(x)0e log P! (x)]

v

Linear Response methods in (primarily equilibrium) Stat. Mechanics.
Pathwise derivatives, Malliavin Calculus methods.

Vast literature on gradient estimation for discrete event systems in
Queuing Theory and Operation Research.

v

v
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Stochastic SA - Observable-based

» Finite differencing:

E o+e[f(x)] — Epo[f(x
S0, ~ P [f(x)] pt[()]+o(€)

€

» Variance of the estimator controlled by:
var (f(x{ ") = f(x{)) = var (f(x{ 7)) + var (f(x{))
= 2cov (F(x{ ), f(x{))

Coupled processes

coverage
°
=

High Variance due to 02 ’m‘ i
sampling of two different N S SN SR S — perturbed

. 0 2 4 6 8 10 12 14 16 18 20
stochastic processes. Can time
we ”couple" the two N Uncoupled processes

processes? o6l

coverage
°
=

unperturbed | |
—— perturbed

0 2 a 6 8 10 12 14 16 18 20
time
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Stochastic Coupling Methods

Simulate joint process (x{ ", x!) with constrained marginals:

» Common Random Number/Common
Reaction Path approach:
[Rathinam, Sheppard, Khammash, J. 10
Chem. Phys., 2010]

> Markov (x7¢, x) for well-mixed
systems: 10
[Anderson, SIAM Numerical Analysis,
2012], [Srivastava, Anderson,
Rawlings, J. Chem. Phys., 2013] 10

> Markov (x7¢, x) for spatial KMC -
couplings based on

variance

~“{——Uncoupled
—CRN

—— Trivial Coupling
1 Unoptimized Coupling

coupling optimization principle: 10 — Optimived Goupling
[Arampatzis, K. , J.Chem.Phys., o s 10 15 20 25 a0 a5 40
2014] time

» Efficient methods, but impractical for
systems with a large # of parameters

Variance for different coupling methods in Lattice KMC:

[Arampatzis, K., J.Chem.Phys., '14]
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Sensitivity analysis - Information Theory Methods

Rke (Pe | P9+€) = Loss of Information due to perturbation by €

A. J. Majda and B. Gershgorin, Proc. Natl. Acad. Sci. (2010) - Maximum Entropy
principle
M. Komorowski et al, Proc. Natl. Acad. Sci. (2011) - Linear Noise Approximation

models or reaction networks

» Here the PDF is known, e.g. a Gibbs equilibrium p ~ Ce=#H(@) of
Gaussian fluctuations: allows for explicit calculations on R:

7(0)
Rt (1) ~ E,[3(H®) — H)] +log =

» Gradients of Ry (u | ,u(o)) become observables: stochastic
optimization methods.

» However, typically
p# Ce PHE)

in dynamics, non-equilibrium systems, non-gaussian fluctuations, etc.
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Sensitivity Analysis - Relative Entropy Rate (RER)

Rk (QO -1 9+€) = Loss of Information (in time-series) due to perturbation by e

» For long times T >> 1, RER is viewed as measure of parameter
sensitivity:

Rk (Qo 7l QG+€) =TH ( r Q¥ ) + R (17| 1)

> 0: parameter vector (for local sensitivity it is fixed)
> ¢: parameter vector perturbation

> (RER): (@07 Q%) = Euo [[ p(0,0") log e5:2yd o

» p(o,0’): transition probabilities (local dynamics).
_1 Zn 1| p’(0i,0i11)

PH“(U,%U[A)

> E,o.... steady-state sampling: 7"
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Path-space Fisher Information Matrix (FIM)

Under a smoothness assumption on 6, (checkable, on the rates only!)

1
H Qw1 Qf) = 3¢ Fau(QEm)e + O(Ie)

where the Fisher Information Matrix is defined as

FH(Qg,M) =E,o {/E p?(0,0")Vglog p®(0,0")Vglog p’(c,0')Td o’

Spectral analysis of FIM gives the most/least sensitive directions.
Sparse structure of the path FIM-see examples below.
Derivative-free sensitivity analysis method.

Characterizes robustness on simultaneous parameter perturbations.

vV v. v v .Yy

Determines parameter identifiability, e.g. Cramer-Rao Thms

L pantazis, K., J. Chem. Phys. (2013); K., Y. Pantazis, D. Vlachos, BMC Bioinformatics, (2013), Arampatzis, K. Pantazis PLOS 1
(2015).
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Path-space FIM - Sparsity

» For reaction networks, Langevin, etc. we typically have a block diagonal
structure in the FIM

» Scalable computations - FIM scales linearly in the number of parameters.
» Contains key information:

> Graph structure
» Dynamics on the graph: reaction rates and their functional form

Reactions Parameters Fisher Information Matrix

\.
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How " predictive” ? Information Inequalities and Qols

» Observables/Qols f: Csiszar-Kullback-Pinsker inequality:

[Ep[f] — Eq[f]l < ll¢lloc V2R (P|Q)

1K , L. Rey-Bellet, J. Wang, '16; Dupuis, M. K., Pantazis, PlechacSIAM UQ '16
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How " predictive” ? Information Inequalities and Qols

» Observables/Qols f: Csiszar-Kullback-Pinsker inequality:

[Ep[f] — Eq[f]l < ll¢lloc V2R (P|Q)

» Does not scale with system size N, time T.

> Same with x? bounds (Chapman Robbins inequality).

1K , L. Rey-Bellet, J. Wang, '16; Dupuis, M. K., Pantazis, PlechacSIAM UQ '16
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How " predictive” ? Information Inequalities and Qols

» Observables/Qols f: Csiszar-Kullback-Pinsker inequality:

[Ep[f] — Eq[f]l < ll¢lloc V2R (P|Q)

» Does not scale with system size N, time T.
> Same with x? bounds (Chapman Robbins inequality).

UQ Information Inequalities!:
=Z_(P,Q;f) <Eq[f] —Ep[f] < =4(P,Q; ),

> Goal-oriented divergence =4 (P, Q; f):
» =1 (P,Q;f) >0, (resp. =_(P,Q;f) <0)

» =1 (P,Q;f)=0if and only if P = Q a.s. or f is deterministic
P—a.s.

> Divergence contains information on Qol f, e.g.
> Linearization — SA bounds:
Z(P, Q: f) = /Varp[f]\/ 2Rk (Q| P) + O(Rk. (Q| P))
> Variational representation: = (P, Q : f) = infa>0 {é/\P,f(Oé) + éRKL (P1Q)}

» To date the only bound scaling with system size N, time T.
lK , L. Rey-Bellet, J. Wang, '16; Dupuis, M. K., Pantazis, PlechacSIAM UQ '16
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Screening Strategy - Information Metrics & Observables

> Biological network describing Epidermal Growth Factor Receptor. [Kholodenko et.al., J. Biol. Chem., 1999]
Data from: http://www.ebi.ac.uk/biomodels-main/BIOMDO000000048

> 47 reactions, 23 species, 23 observables, 50 parameters, 23 X 50 = 1150 sensitivities

Sensitivity Index for EGFR model. #Sensitivities=1150

50% (111) 3
25
g +25% (165) 2
H
g
£ 15
H
E
3 +15% (224) 1
o5
+10% (650) o

5 20 25 30 3
cummulative sqri(RER)

Screening model sensitivities based on the path-FIM upper bound:

Cramer-Rao inequality on path space

lArampatzis, Pantazis, Katsoulakis PLOS 1, (2015); Dupuis, Katsoulakis, Pantazis, Plechac SIAM UQ, (2016)
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Sensitivity for Langevin dynamics

Potential: V(q) = Vang/e(q) + Vbond(q) + VLJ(q)
Bond potential: Viong(ry) = %Kb(ro — r,-J-)2
Angle potential: Vinge(0ijk) = %Kg(@o - 9ijk)2

Interaction potential:

N
Viu(ri) = 0 "ij

vy VvYy

6
<@> ] if rj < reut.

i
otherwise.

» Parameter vector:

_r¢c-¢c ¢c-¢c C-H C—-H H-H _H—H T
9_[€L_] Y01y €y 01y H€ 4 0y 7Kb7r07K67r9]

e Relative Entropy Rate: (related to force-matching in coarse-graining)
1 —
H(QYQ) = 5B [(F**“(q) = F?(q))T (o0 ") "1 (F**(q) — F*())]

e Fisher Information Matrix:

Fr(Q%) =E,0[VoF’(q) (o0T)'VeF(q)] ,

1V. Harmandaris, A. Tsourtis, M.K., Pantazis J. Chem. Phys. (2015)
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Rare events and multi-scale problems

» Patched bimetallic catalysts for ammonia decomposition
» Ammonia decomposition: 2NH3; — N> 4+ 3H>

» Multiple time scales:

NHj; adsorption — J
NH,* dissociation _%
NH," di y g
NH: di — : 8

2H* desorption

2N* association (110) edge o
2N* association (100) edge %
N, desorption g

1E-5 1E-4 1E-3 001 0.1 1 10 100
Event frequency per site (1/s)

Steady-state statistics indicating the frequency of elementary reactions and the flow of reaction flux. The net, forward and reverse rates in
red, blue and yellow bars, respectively. Reactions with equal forward and reverse bars (for example, NH3 adsorption/desorption) are in
partial equilibrium. Diffusion steps are not depicted, because of being fast and equilibrated, and dehydrogenations at edges are left out
from the graph due to their negligible contribution.

W. Guo, D. G. Vlachos, Nature Communications (2015)
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Rare events and multi-scale problems

An elementary example:

€ € € € 1 € € 1 € €
dX“ = bIX“, Y]dt . dY = ZB(X", Y)dt+ 5 (X, Y )dWe,

Ase—0, X — X in [0, T]:

dX; = b[X;]dt, where b[x] :/b[x,y]ux(dy),

> ux(dy): invariant measure of fast equation after fixing the value of
Xi = x.

» The averaged equation is deterministic and is derived as a limit in
fixed time intervals [0, T].

» For long time integration rare events appear which are not captured
by the deterministic limit X.
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Sensitivity analysis for rare events

> An event A is rare if P(A) < 1. We usually consider log P(A).

» Other applications to: reliability analysis, queueing theory, operation
research, insurance, statistical mechanics, etc.

v

Sensitivity analysis for rare events:

Sa(P?) := 0y log PY(A) = %2(4/;\)

v

Relative entropy is NOT the most appropriate divergence:
Rare event bounds based on Renyi divergence:

log Q(A) — log P(A) ~ Ra (Q| P)

v

v

Renyi divergence: R, (Q|P) := ﬁ log Ep [(%)a]

lAtar. Chowdhary and Dupuis, SIAM UQ '14
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Sensitivity analysis for rare events

> An event A is rare if P(A) < 1. We usually consider log P(A).

» Other applications to: reliability analysis, queueing theory, operation
research, insurance, statistical mechanics, etc.

v

Sensitivity analysis for rare events:

Sa(P?) := 0y log PY(A) = %2(4/;\)

v

Relative entropy is NOT the most appropriate divergence:
Rare event bounds based on Renyi divergence:

log Q(A) — log P(A) ~ Ra (Q| P)

v

v

Renyi divergence: R, (Q|P) := ﬁ log Ep [(%)a]

L 10gQ(A) - 1Ra (QIP) <
1 @

QIr

1 1
log P(A) < ar1 log Q(A) + T—HRQ+1 (P Q)

lAtar. Chowdhary and Dupuis, SIAM UQ '14
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Sensitivity analysis for rare events

> Sensitivity bounds (Q = P?*¢, P = P? and o = 1(ao + O(e))):

supfl:l(_a) — IogPQ(A) < SA(PG) < inf M

in
a>0 « a>0 «

v

H(c) := log Eps [exp{adg log P?}]
Renyi-like quantity: cumulant generating function of 9y log P?.

v

Sensitivity screening bounds involve the calculation of a rare event.

v

Extensions to bound rate function derivatives (Large Deviations,
Moderate Deviations, etc).

v

General Risk-Sensitive observables for characterizing rare events:

Iog/ efdp
X

1P. Dupuis, M. Katsoulakis, Y. Pantazis and L. Rey-Bellet (2016)
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Uncertainty and Correlations in DFT Calculation

» DFT uncertainties

- Arise from approximate exchange-correlation functional; vary significantly with functional
P Chemical kinetics parameters are correlated

- Introduce correlative UQ for reaction networks

» Employ Hierarchical Bayesian methods to create probabilistic model.

Example: Ethanol Steam Reforming (ESR) for hydrogen production

Steam reforming is a catalysis-based method for producing hydrogen or other useful products from fuels such as natural gas. E.g. can

convert flared ("stranded") gas such as methane into a more practical source of energy.

00—

10 E
1.4 $1
billion!

ICubic meters of C valgy . In fuel lost
natural gas flared GHG emjgsior e annually
in 2011

N
)
1
1

O

Species Uncertainties
— 1 T T T

-20 -10 0 10 20
Ethanol (kcal/mol)

Ethoxy (kcal/mol)
o
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Correlative SA & UQ - Mathematical Formulation

P Necessary to consider ensembles of models (Bayesian formulation):

P(X10)p(9) ,

> P(X]0): Forward model, i.e. pdf of state X for fixed parameter 6 (reaction network,
KMC, etc).
Observables: f(0) = [ h(X)P(X|0)dX ,

> p(6): distribution of 6.

> Correlations between the parameter sets 0 = (01, 62):

p(01,02) = p(62101)p(61),  p(61): marginal

P> V1F(61): Local correlative sensitivity index
Fix 61 and consider correlations with 65:

F(el)=/f(91,92)p(92|91)d92

> Global correlative SI: fg1 |[V1F(61)|p(61)d6:

P We build on the mathematical tools developed earlier: UQ Information Inequalities, pFIM,
etc.

1Sutton‘ Guo, Katsoulakis, and Vlachos, Nature Chemistry, to appear (2016)
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Correlations Strongly Impact Predictions

»  Apply the methodology to a complex reaction network of ethanol steam reforming on a
Pt/Al,O3 catalyst with 67 species and 160 reactions.

» Correlations reduce significantly the number of important parameters

P Sensitivity of key parameters differ when correlations are included

CH,CHOH*+2*>CH,CHO*+H*
CH,CH,0H*

e
CH,CH,OH*+*»CH,CHOH*+H*
CH,CO*

CH,CHOH*

CH,CHO*
CH,CHOH*+*CH,COH*+H*
CH,CHO*CH,CO*+H*
CH,CO*

CH,CO*>CH,*+CO*
CH,COH* E

CHCO*CH*+CO* E
CH,COH*-CH,C*+OH*

CH,*>CH,"#H*
CH,*
co*

"

P Il Uncorrelated ]
CH,CO*—CH,CO*+H* Il Correlated
CH,COH*~CH,COH"+H* , . . . .

00 02 04 06 08 10

lSutton‘ Guo, Katsoulakis, and Vlachos, Nature Chemistry, to appear (2016)
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Conclusions

» SA methods for mesoscale models: stochastic (Langevin) and
possibly discrete systems (KMC, reaction-networks).

» Sensitivity screening for molecular models with a very large number
of parameters

» Tackle non-equilibrium stochastic processes:

» Coupled mechanisms (reaction-diffusion), reaction networks, driven
systems, multi-physics models, etc.

» Methods for parameters which are strongly correlated (e.g. due to
thermodynamic constraints, DFT calculations, etc) = type of
"global” SA.

» Transient and long-time integration (numerical /approximation
challenges).

» Some information-based methods for UQ and sensitivity analysis of
rare events; Renyi methods
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