

Australian Government

Department of Industry, Science, Energy and Resources National Measurement Institute

WaterRA ColoSSoS Project

Inter-laboratory Study: SARS-CoV-2 in Wastewater

Dr Kate Griffiths

Bioanalysis Section, Australian National Measurement Institute

14th June 2021

Measurement for a fair, safe, healthy and competitive Australia | measurement.gov.au

Wastewater surveillance for SARS-CoV-2

- Phase 1: Method development
 - Multiple labs developed methods independently, using a range of materials for validation and calibration
 - Recovery methods: electronegative membranes, ultrafiltration, PEG, ultracentrifugation
 - RNA extraction methods: range of kits available
 - RT-qPCR kits, mastermixes, 1-step or 2-step and assays
 - Choice of calibrant / reporting units
- Phase 2: Compare method performance between different service providers
 - Limit of detection (LOD) / yield
 - Reproducibility
 - Quantitative accuracy
- Participants:
 - 11 in Australia and 1 in New Zealand
 - 2 water utilities, 3 Government labs, 2 commercial labs, 5 University labs;

Plan for the ColoSSoS inter-laboratory study

- Study materials provided:
 - 10 x 50 mL aliquots of domestic wastewater (grab sample, untreated)
 - 2 x frozen aliquots of inactivated virus ('V1' and 'V2') for spiking
 - 3 x sets of calibrant CRM (6 dilutions prepared from inactivated virus)

We were *very fortunate* to have domestic wastewater expected to be free of the virus and gamma-irradiated SARS-CoV-2 provided by the Victorian Infectious Diseases Reference Laboratory (VIDRL) – both game changers.

NMI Calibrant CRM

- The NMI calibrant:
 - Prepared from gamma-irradiated SARS-CoV-2 virus supplied by VIDRL
 - 6-point dilution series: 560, 245, 62, 18.5, 6.5 and 2.1 copies per 5 μL
 - Quantified in "copy number concentration of SARS-CoV-2 genome equivalents"
 - Quantified using RT-dPCR
 - Measurement uncertainty includes reverse transcription efficiency for conversion of RNA to DNA, using isotope dilution mass spectrometry (IDMS) data
 - Provides traceability to the International System of Units (SI mole)
 - 5μ L of each dilution to be added directly into the RT-PCR well

Calibrant (6 dilutions) analyzed in duplicate, plus NECs and NTCs

Results spreadsheet

Analysis of calibrant data

	Calibrant Number	Replicate Number	Copy Number per RT-qPCR	Log (Copy Number)	Cq Value
Calibrant	NA050	C1.3	580	2.76	26.84
		C1.4	580	2.76	26.79
	NA051	C2.3	245	2.39	28.02
		C2.4	245	2.39	28.03
	NA052	C3.3	62.0	1.79	30.04
		C3.4	62.0	1.79	30.00
	NA053	C4.3	18.5	1.27	31.94
		C4.4	18.5	1.27	31.91
	NA054	C5.3	6.5	0.81	33.16
		C5.4	6.5	0.81	33.42
	NA055	C6.3	2.1	0.32	34.47
		C6.4	2.1	0.32	35.25

Lab 6, US CDC N1 Assay Slope of -3.32 = 100 % RT-qPCR efficiency

$$\log_{10} c_i = \frac{C_q - Intercept}{Slope}$$

7

Reasons for using a calibrant

- 1. Measure reaction efficiencies
- 2. Report in appropriate units:

Copy number concentration of SARS-CoV-2 genome equivalents

Average Cq values produced by all participants using most concentrated calibrant dilution (NA050) @ 580 copies/5 μ L ±20 %.

Reported Cq values for the highest calibrant dilution range from 25.31 to 33.77

Reporting in Cq values, a Δ Cq of 8.43 represents **345x difference in copy number concentration**. In reality this is the **same material** measured by 12 different labs using 4 different RT-PCR assays

Reasons for using a calibrant

- 1. Measure reaction efficiencies
- 2. Report in appropriate units
- 3. Reduced assay-specific bias

Assay biases:

- amplicon length
- secondary structures
- fluorescence chemistries
- threshold position

Average Cq values produced by all participants using most concentrated calibrant dilution (NA050) @ 580 copies/5 μ L ±20 %.

It's preferable to report in traceable units rather than Cq values

Reasons for using a calibrant

- 1. Measure reaction efficiencies
- 2. Report in appropriate units
- 3. Reduced assay-specific biases
- 4. Provides traceability, allowing direct comparison of data between different laboratories

Calibrant \rightarrow copies per μ L of extracted RNA

Concentration Factor (CF) \rightarrow copies per mL of wastewater

Concentration Factor (CF)

$$CF = \frac{V_{sample \ before \ processing}}{V_{after \ recovery}} \times \frac{V_{concentrate \ used \ for \ RNA \ extraction}}{V_{after \ RNA \ extraction}} \times \frac{1}{DF}$$

Allows conversion of copies per µL of extracted RNA into copies per mL of wastewater

Reference: Pecson, B. M. *et al.* (2021) "Reproducibility and sensitivity of 36 methods to quantify the SARS-CoV-2 genetic signal in raw wastewater: findings from an interlaboratory methods evaluation in the US". Environmental Science Water Research and Technology 7: 504-520.

Wastewater samples S1 and S2: spiked with 'V1', analyzed on Day 0

Labs 5, 6 and 13 only used one assay; labs 2, 8 and 12 had data excluded for one assay

Summary of protocols used by participants

Virus Recovery	RNA Extraction	RT-PCR
Eight labs used electronegative membranes with range of pre- treatments:	Seven labs used Qiagen kits:PowerSoilPowerWater	Five labs used PerkinElmer kit including China CDC assays
	PowerMicrobiome	Two labs used Promega kit
centrifugation,acidification,	PowerViral	including US CDC assays
 addition of MgCl₂ 	Three labs used ThermoFisher kits:MagMax Viral Pathogen	Other kits used:ThermoFisher Combo kit,
One lab used 20 % PEG	MagMax Microbiome Ultra	Vazyme kit,
Two lab used ultrafiltration:centrifugal filtershollow-fibre concentrating pipette	 Other kits used: Macherey-Nagel RNA stool kit Roche High Pure Viral Nucleic Acid Vazyme fast pure viral RNA/DNA 	Three labs bought primers, probes, enzymes and buffers separately, including one using 2-step RT-PCR.

Percentage of recoveries of 'V1' spiked samples, assuming 740,000 SARS-CoV-2 genome equivalents were spiked into the 50 mL of wastewater).

Error bars are expanded relative uncertainties (95%) capturing participant measurement variation and V1 measurement uncertainty.

Detailed comparison of protocols with highest recoveries

	Lab 7	Lab 13	
Pre-treatment	Centrifugation @3,270 g spin at 4 °C for 30 min (solids removal)	Centrifugation @10,000 g for 30 min with extract from solids added back to cleared supernatant	
pH Adjustment	pH 3.5	pH 7.0-7.2	
Virus recovery	0.45 μm electronegative membrane, vacuum pump	20 % PEG precipitation, 2 hr incubation at 4 °C, 10,000 g spin for 30 min	
RNA extraction	RNeasy PowerMicrobiome® Kit (Qiagen) Shield™ reagent and phenol added during bead beating	High Pure Viral Nucleic Acid kit (Roche)	
Elution/diluent	Nuclease-free water	Nuclease-free water	
Style of RT-PCR	1-step	2-steps	
Assays	China CDC assays: N gene (FAM) and ORF1ab (Texas Red)	China CDC assay: N gene, FAM-labelled probe	
Temp. during plate set-up	25 °C	4 °C	
Enzymes/mastermixes	SARS-COV-2 Real Time 1-step RT-PCR assay kit (PerkinElmer)	SuperScript III [®] Reverse Transcriptase (Thermofisher) PerfeCta [®] qPCR ToughMix (Quanta Biosciences)	
Cycling parameters	RT: 37°C, 2 min, 50°C, 5 min, 42°C, 35 min Enzyme Activation: 94°C, 10 min Denaturation: 94°C, 10 sec Annealing: 55°C, 15 sec, Extension: 65°C, 45 sec Number of Cycles: 45	RT: 50°C, 30 min Enzyme Activation: 95°C, 180 sec Denaturation: 95°C, 15 sec Annealing/Extension: 60°C, 30 sec Number of Cycles: 45	
Dilution(s) for RNA	Neat and 1-in-10 dilution	Neat and 1-in-4 dilution	
Concentration Factors	CF1: 323, CF2: 32	CF1: 200, CF2: 50	

Conclusions

- All participants successfully detected RNA from the inactivated V1 virus spiked into wastewater
- Highest recoveries, great reproducibility and clean RNA using:
 - electronegative membranes with centrifugation and acidification as pretreatments
 - 20 % PEG
 - Major implications for lower income regions and ColoSSoS DFAT program
 - PEG method widely used for environmental surveillance of poliovirus familiar and low cost*
- SARS-CoV-2 calibrant and Concentration Factor for comparable reporting units:

"RNA copy number concentration of SARS-CoV-2 genome equivalents per mL of wastewater"

Acknowledgements

Collaboration on Sewage

Surveillance of SARS-CoV-2

- WaterRA for supporting and co-ordinating this study:
 - Dr Kelly Hill and Marlene Hsu
 - arlene Hsu
 - Victorian Infections Diseases Reference Laboratory for providing gamma-irradiated SARS-CoV-2:
 - Prof. Bruce Thorley and Dr. Julian Druce
- Task Leader for the ColoSSoS Task Group 2 and ColoSSoS Project Manager:
 - Dr Dan Deere
- All of the study participants
- Sydney Water for providing the domestic wastewater sample:
 - Kate McLennan and Anna Flack
- Pathwest and Sydney Water Laboratories for unwittingly assisting with the validation of the V1 and V2 material:
 - Jake Gazeley and Sudhi Payyappat
- The NMI Bioanalysis Team:
 - Dr D.G. Burke, (Manager); Dr K.R. Emslie (NMI Honorary Fellow); Dr A. Baoutina; Dr S. Bhat; Dr M. Forbes-Smith; Ms F. Hall; Dr D. Lynch; Mr J. McLaughlin; Ms L. Partis; Dr L.B. Pinheiro

Contact us for inquiries and calibrant CRM sales

Dr Kate Griffiths National Measurement Institute

Email: BioRM@measurement.gov.au Phone: +61 2 8467 3730 36 Bradfield Road, West Lindfield Sydney, NSW 2070, Australia **measurement.gov.au**