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Goals and Impact

● Beam time is valuable – 
limited access

● Want more efficient 
measurements as not all 
are required

● Software to be 
implemented on multiple 
instruments (BT4, BT7, 
etc.) using NICE
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Order Parameters You’re Familiar With
● Liquid-gas transitions use 

density (calculated using M, 
P, and T) as order 
parameter

● Distinguishes phases 
(difference in properties)

● Other parameters are useful 
for other materials
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Magnetic Order Parameter
● Magnets use 

“orientation”
● The magnitude of 

magnetic (dipole) fields 
in the “normal” direction 

● Phases are magnetic 
and nonmagnetic

Ferromagnetic

Paramagnetic
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● Scattering intensity is 
proportional to 
magnetism

● Temperature where 
intensity becomes 0 
is also where the 
material becomes 
weakly magnetic

Magnetic Order Parameter
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The Measurement
● In most basic form, a curve 

fitting problem
● Solved by classical fitters 

(bumps)
● Goal is picking most 

informative point on curve 
given what has been 
measured so far, using 
constant increases in 
temperature

6



The Measurement
● In most basic form, a curve 

fitting problem
● Solved by classical fitters 

(bumps)
● Goal is picking most 

informative point on curve 
given what has been 
measured so far, using 
constant increases in 
temperature

7



Reinforcement Learning
Defined:
Teaching a computer to make optimal 
decisions using rewards

How does it work?
1. The agent is in an environment
2. The environment returns a 

state
3. Agent makes action based on 

state
4. Agent is rewarded after action
5. Algorithm learns how to best 

make actions based on rewards
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Reinforcement Learning
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Applying Reinforcement Learning
● Action: positive change in 

temperature 
● State: last measured 

temperature 
● Reward: low chi squared 
● Ends episode with low chi 

squared, too many steps, or 
temperature too high 
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Other Parameters to Fit

● Jt: Magnetic moment

● Nf: Number of magnetic ions/volume (number density)

● Bk: Background intensity



Results: Stage One

Algorithm improves with more 
episodes, takes less steps to fit 
the transition temperature 

Model successfully finds transition 
temperatures (yellow) when 
experiment parameters are similar 
to training values 12
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Results: Stage Two (failure)

● Fitting on new set of four random variables each episode
● Better reflects application
● Worsening convergence, mediocre rewards
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Results: Stage Two (failure)

● Limit random variables to three
● Mildly better in trends, but bad preliminary results
● 30, 25 measurements is not ideal
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(bimodality?)
● Distinct groups in reward 

and convergence graphs
● Represent successful fits 

and failed fits where 
algorithm went over max 
temperature

● Distinction between the 
two may be low transition 
temperature

#
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Tn: 240Tn: 123

On Fitting

Fit is much better before measuring past the transition temperature
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Results: Stage Two (failure)

● Two variables!
● Does well consistently with fast convergence
● However, no improvement - success from fitter

# #



Future Steps

● Improve convergence 
and reward trends 
through reward function, 
fitter usage

● Replace simulated data 
with real-world data

● Implement model in 
application software to 
work with NICE
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Questions
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