Foundation Models and their Use in Software Systems -Trust and Governance

Karthikeyan Natesan Ramamurthy Trustworthy Machine Intelligence **IBM Research AI**

NIST Workshop – SSDF for Generative AI and Dual Use FMs

Secure Use of LLMs and Generative AI Systems

Our leadership in trustworthy AI



AI Ecosystem & Policy

PAI, EU Commission High Level Expert Group on AI, NIST, AI Caucus, National AI Strategy, ...

Science of Trustworthy AI

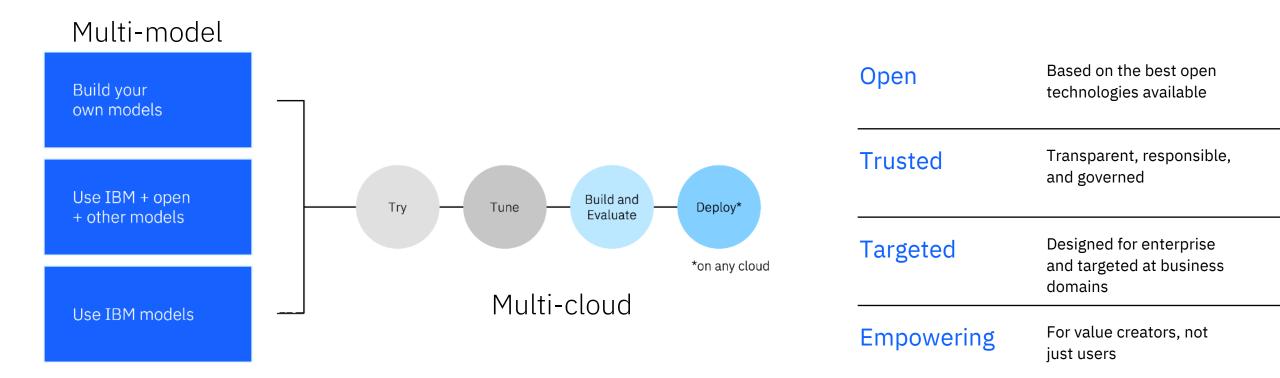
foundational works in algorithmic fairness, explainability, robustness, UQ, and transparency.

200+ publications

in top AI venues (NeurIPs, AAAI, ICML, ICLR, IJCAI, KDD, CVPR, ICASSP, FAccT, AIES, FSE)

>10,000 citations since 2017

won FICO Explainability Challenge won VizWiz Challenge 2020 WIRED / HBS Tech Spotlight 2021 WIRED / HBS Tech Spotlight won Schmdt Futures AI for Good award IBM's Approach to Foundation Models & Generative AI for Business



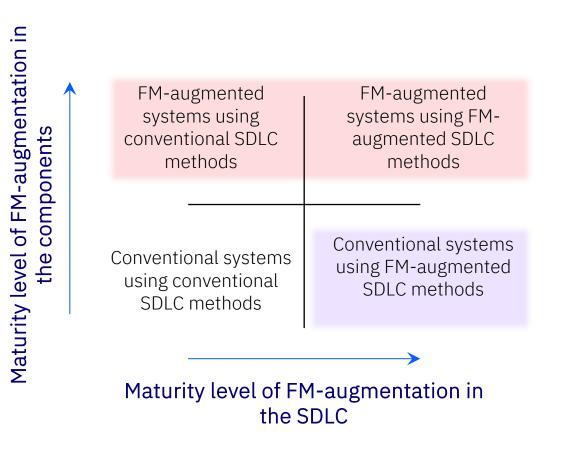
How can FMs/Generative AI be used in SDLC?

- Methods for software development life cycle (SDLC) as well as the individual software components can be augmented with FMs.

- FM-augmented SDLC techniques includes using FMs for code generation/assistance/review, developing test cases, requirements formulation, design, and documentation.

- Examples of FM-augmented components include using LLMs for generating marketing material, summarizing emails, classifying content as kid-safe and answering user questions based on a knowledge store.

- Trust and governance issues can crop up in both situations and need to be understood and mitigated.



https://insights.sei.cmu.edu/blog/application-of-large-language-models-llms-in-software-engineering-overblown-hype-ordisruptive-change/ [Figure adapted from here]

Examples of FMs/GenAI as components in software systems

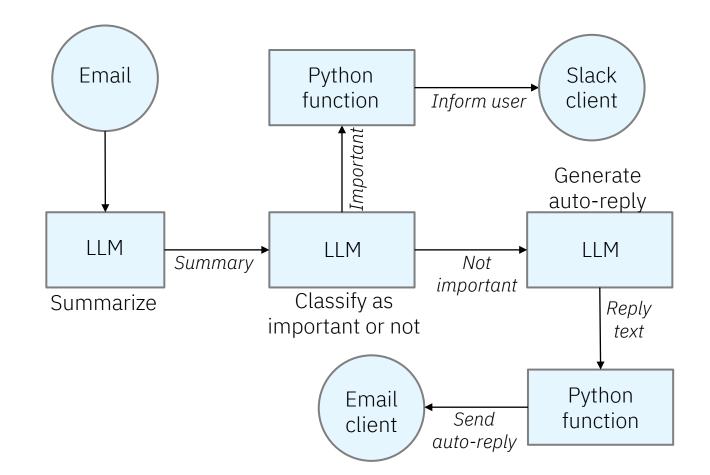
- Code generation/documentation for developers – natural language to code, explaining code in natural language.

- Content creation, analysis, paraphrasing, summarization of text/data.

- Search, QA.

- Clustering and classification.

Trust and governance is important in both the individual FM components and for the overall system.



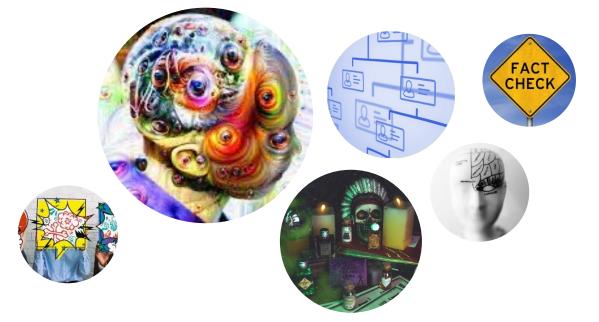
FM-augmented software system for email summarization and triage

What does it take to trust an LLM?

Some AI risks are the **same as in traditional data science**

- poor predictive accuracy
- lack of fairness and equity
- lack of explainability
- model uncertainty
- distribution shifts (drift)

- poisoning attacks
- evasion attacks
 - extraction attacks
 - inference attacks
 - model transparency



But many risks are **entirely new in foundation models** *few examples below*

- hallucinations
- lack of factuality or faithfulness
- lack of source attribution
- privacy leakage

- toxicity, profanities, and hate speech
- bullying and gaslighting
- prompt injection attacks

Occur when LLMs are used in "classical ML" tasks, e.g., prediction and classification, and have well-defined metrics and defenses, i.e. IBM Trust 360 toolkits.

Occur when LLMs are used in generative tasks, and do not yet have well-defined metrics and defenses.

The range of risks and issues that occur in LLMs is broad, and will be handled in a variety of different ways

https://www.ibm.com/downloads/cas/E5KE5KRZ

We've created a taxonomy of risks to make sure that they are appropriately **handled in our technology solutions and governance frameworks.**

1. Risks associated with input

	Group	Risk	Indicator
Training and tuning phase	Fairness	Bias like historical, representational or measurement bias	Amplified
	Robustness	An adversary or malicious insider injecting false, misleading, malicious or incorrect samples	Traditional
	Value alignment	Using undesirable output, such as inaccurate or inappropriate user content, from downstream applications for retraining purposes	New
	Data laws	Legal restrictions on moving or using data	Traditional
	Intellectual property	Copyright and other IP issues with the content	Amplified
	Transparency	The ability to disclose what content is collected, how it will be used and stored, and who has access	Amplified
	Privacy	Inclusion or presence of personal identifiable information and sensitive personal information	Traditional
		Challenges around the ability to provide data subject rights, for example, opt out, right to access or right to be forgotten	Amplified

Inference phase	Privacy	Disclosing personal information or sensitive personal information as a part of prompt sent to the model	New	
	Intellectual property	Disclosing copyright information or other IP information as part of the prompt sent to the model	New	
	Robustness	Vulnerabilities to adversarial attacks like evasion, which is an attempt to make a model output incorrect by perturbing the data sent to the trained model	Amplified	
		Vulnerabilities to adversarial attacks like prompt injection, which forces a different output to be produced; prompt leaking, which is the disclosure of the system prompt; or jailbreaking, which is avoiding guardrails established in the system prompt	New	

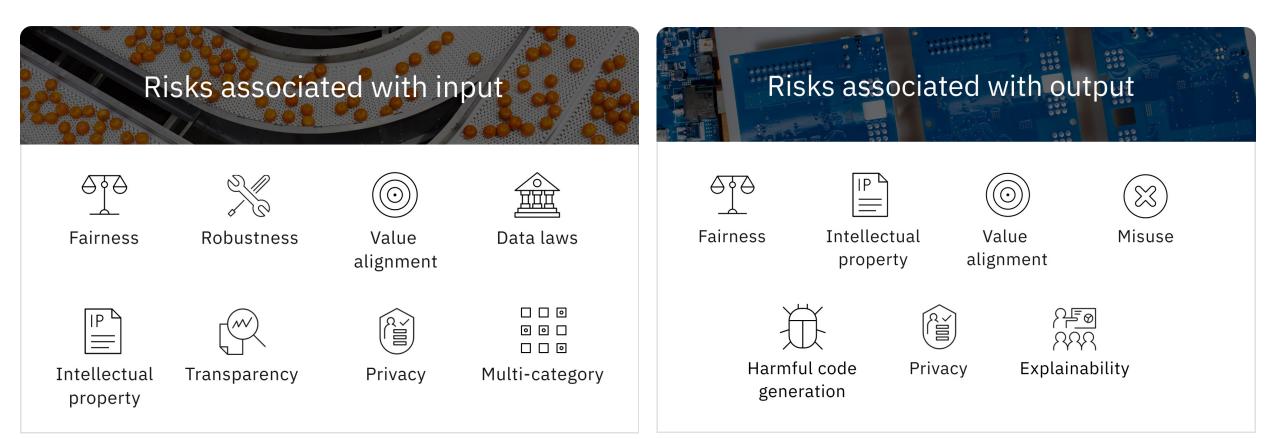
2. Risks associated with output

Group	Risk	Indicator
Fairness	Bias in the generated content	New
	Performance disparity across individuals or groups	Traditional
Intellectual property	Copyright infringement, including compliance with open-source license agreements	New
Value alignment	Hallucination—false content generation	New
	Toxic, hateful, abusive and aggressive output	New
Misuse	Spread disinformation—deliberate creation of misleading information	Amplified
	Generate toxic, hateful, abusive and aggressive content	New
	Nonconsensual use of people's likeness—deepfakes	Amplified
	Dangerous use—creating plans to develop weapons or malware	New
	Deceptive use of generated content—intentional nondisclosure of AI-generated content	New

Harmful code generation	Execution of harmful generated code	New
Privacy	Exposing personal information or sensitive personal information in generated content	New
Explainability	Challenges in explaining why output was generated	Amplified
Traceability	Challenges in determining original source and facts of the generated output	New

We've created a detailed AI risk atlas of 44 harms:

https://dataplatform.cloud.ibm.com/docs/content/wsj/ai-risk-atlas/ai-risk-atlas.html?context=wx&audience=wdp

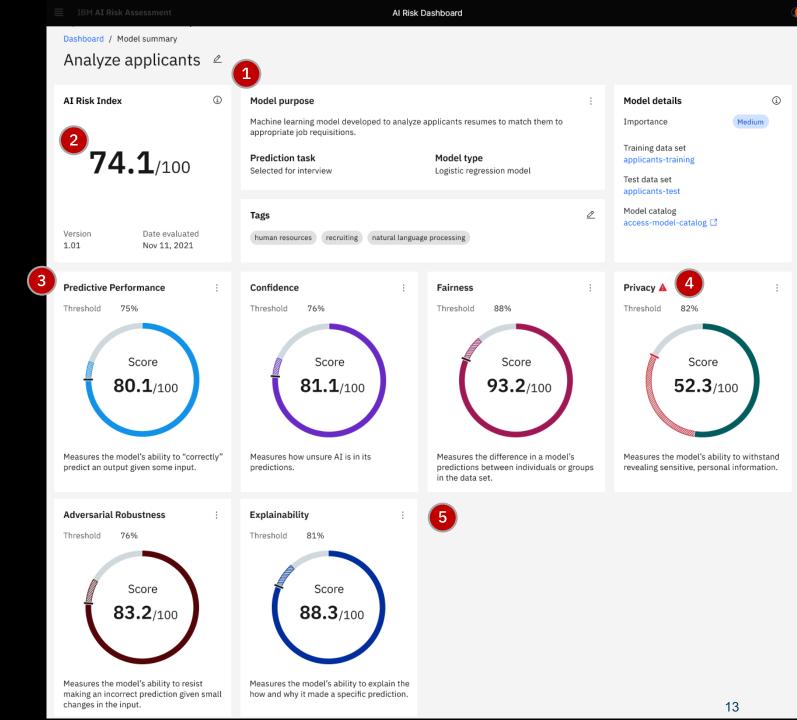


IBM RESEARCH INNOVATION Risk Assessment Model Summary View

Snapshot view of the model that provides overall assessment and ongoing monitoring with a breakdown by dimension. Highlights issues and opportunities for investigating the issues by dimension.

Model summary overview and details

- **2** Overall score for the model with breakdown by dimensions
- 3 Scores by dimension with corresponding threshold
- Dimension of the model that falls below the predefined threshold
- 5 Ability to further investigate features of the dimension to understand score



Metrics for evaluating Large Language Models

Summarization Metrics

- Reference based Metrics
- From Hugging Face Evaluate Package
 - <u>ROUGE</u> Rouge 1, Rouge 2, Rouge L, Rouge LSUM
 - <u>SARI</u>
 - Text Quality
 - Normalized F1, Precision, Recall
 - <u>METEOR</u>
- <u>BLEU</u>
- From OpenSource
 - <u>Sentence Similarity</u>
 - Jaccard Similarity
 - Cosine Similarity
- <u>Levenshtein distance based Diversity</u> <u>metrics</u>

Reference-free Metrics

- From IBM Research
- HAP Detection
- PII Detection
- From Open Source
 - Readability, complexity
 - <u>Blanc</u>

Entity Extraction Metrics

(Deterministic data extraction, Contextual text extraction – example contract clause)

- From Hugging Face Evaluate Package
- <u>Seq eval</u>
- From IBM Research Suggested Metrics
- Micro & Macro F1, Precision, Recall

Content Generation Metrics

- From Hugging Face Evaluate Package
- <u>ROUGE</u> ROUGE 1, ROUGE 2, ROUGE L, ROUGE LSUM
- <u>BLEU</u>
- <u>METEOR</u>
- exact match
- From Open Source
- <u>Readability, complexity</u>
- Levenshtein distance based
 Diversity metrics
- From IBM Research
 - HAP Detection
 - PII Detection

Q&A Metrics

(RAG – Retrieval Augmented Generation = Search & Summarize)

- From Hugging Face Evaluate Package
- <u>ROUGE</u> ROUGE 1, ROUGE 2, ROUGE L, ROUGE LSUM
- <u>BLEU</u>
- <u>METEOR</u>
- <u>exact match</u>

From Open Source

- ROUGE
- From IBM Research
- HAP Detection
- PII Detection

Explainability Monitoring

Attribution - IBM Research's alternative to cosine similarity

Drift Monitoring - OpenScale specific algorithms

- Structure Drift
- Content Drift
- Confidence Drift
- Distribution Drift
- Root Cause Analysis

Classification Metrics

- Metrics that OpenScale already monitors for Text Classification
- <u>Accuracy</u>
- Precision
- Recall
- <u>ROC AUC</u>
- F1 Score

From Hugging Face Evaluate Package

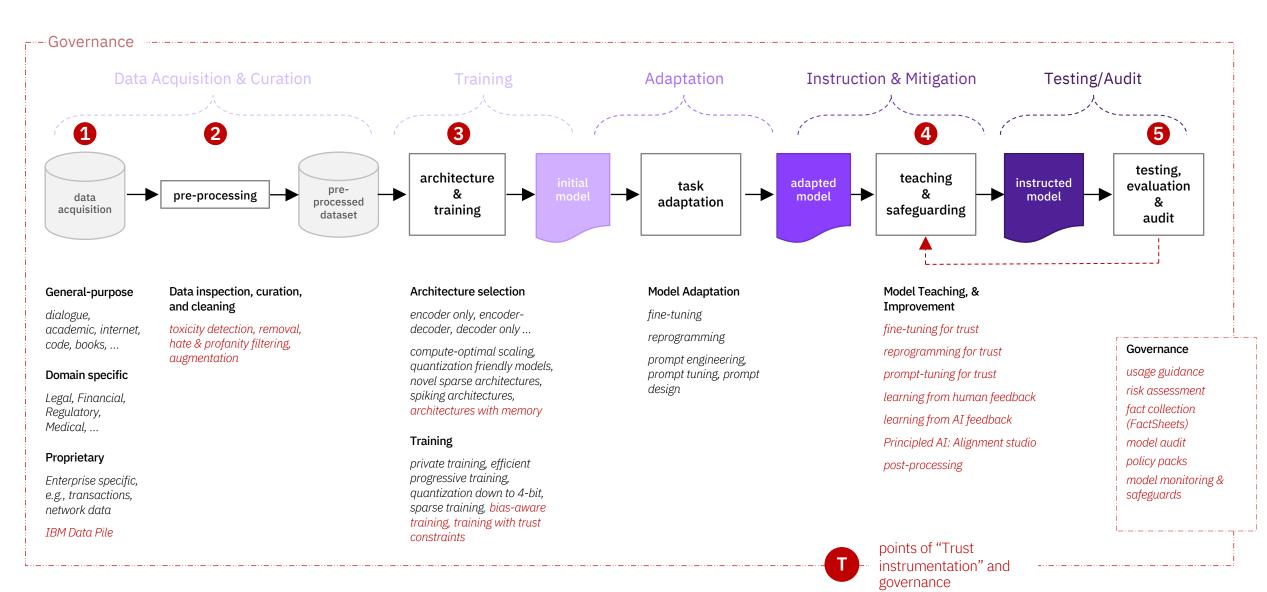
- Brier Score
- <u>Matthews Correlation Coefficient</u>
- Label Skew

Fairness/Bias Monitoring

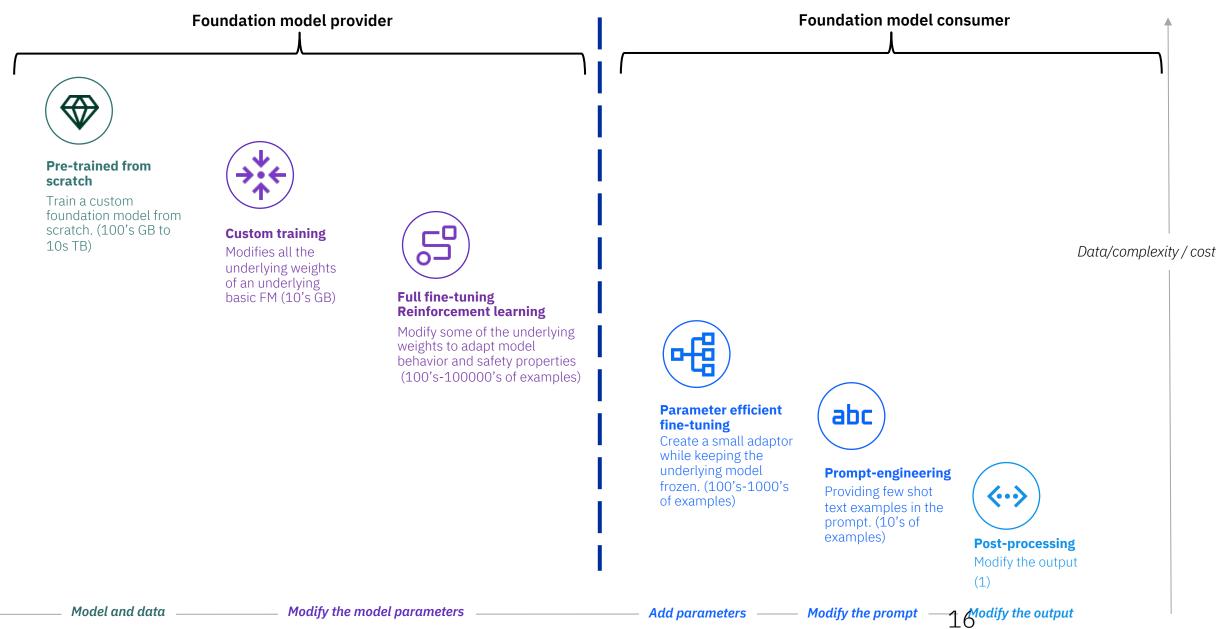
- Protected Attributes Exaction on the prompt output and evaluate Fairness on Classification output
- Fairness evaluation when fairness attributes are logged as meta attributes via., Payload/Feedback Logging

Traditional AI to Generative AI

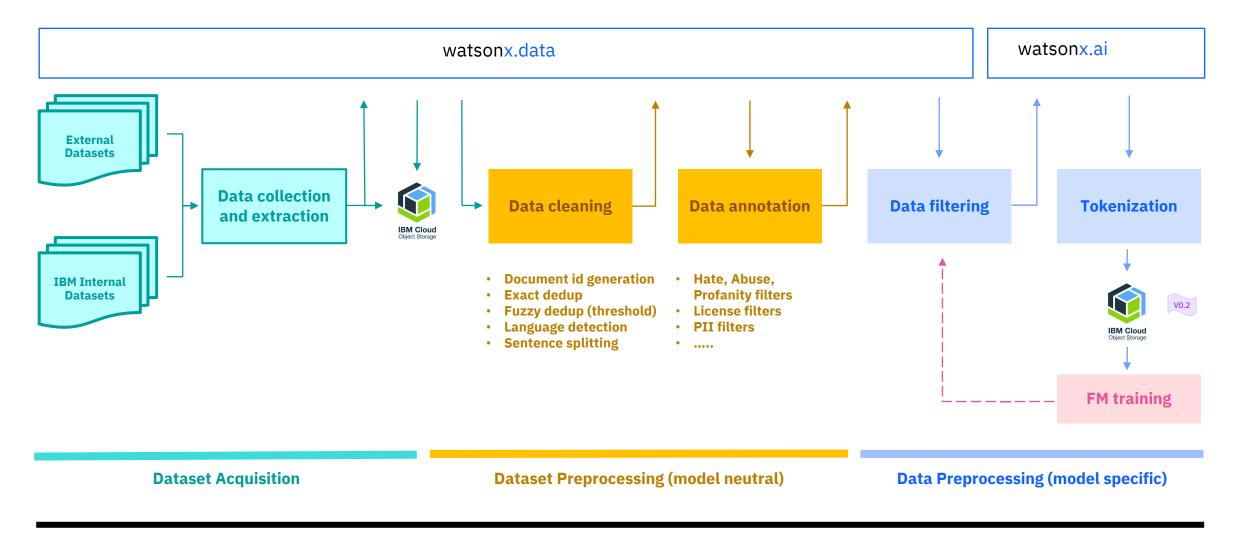
Trustworthy & safe foundation model lifecycle for enterprise FM governance



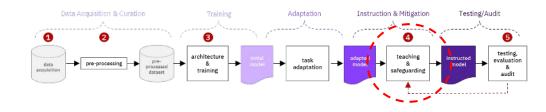
The Foundation model journey: from training to usage



Data Governance underlying IBM models



IBM RESEARCH INNOVATION Principled AI: The Mitigators Novel safeguards, guardrails, and other correction mechanisms



fine-tuning, prompt-tuning, reprogramming, and post-processing for bias correction "Equi-Tuning: Group Equivariant Fine-Tuning of Pretrained Models," AAAI 2023 "Fair Infinitesimal Jackknife: Mitigating the Influence of Biased Training Data Points Without Refitting," NeurIPS 2022 "Fairness Reprogramming," NeurIPS 2022 "Post-processing for Individual Fairness," NeurIPS 2021

quantifying uncertainty in model outputs "Learning Prediction Intervals for Model Performance," AAAI 2021

explaining model outputs "Let the CAT out of the bag: Contrastive Attributed explanations for Text," ACL 2022

detecting generated text

"RADAR: Robust AI-Text Detection via Adversarial Learning," NeurIPS 2023 "GLTR: Statistical detection and visualization of generated text," ACL 2019

measuring faithfulness

"X-FACTOR: A Cross-metric Evaluation of Factual Correctness in Abstractive Summarization," EMNLP 2022

detecting undesirable behaviors

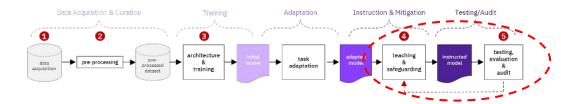
"Finspector: A Human-Centered Visual Inspection Tool for Exploring and Comparing Biases among Foundation Models," ACL 2023 "Detecting Egregious Conversations between Customers and Virtual Agents," NAACL 2018

privacy preservation

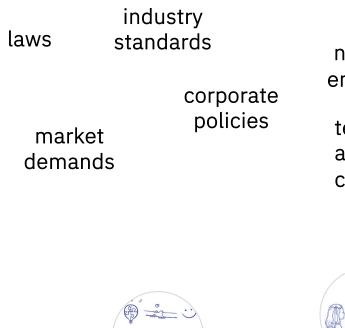
"Reprogrammable-FL: Improving Utility-Privacy Tradeoff in Federated Learning via Model Reprogramming," IEEE SaTML 2023

Generic harms vs. specific harms

Common across sectors and use cases



Unique or particular to a company



social norms of end-users

technology architecture constraints

Ope	n AI					Anth	ropic				Meta			
InstructGPT				Constitutional AI				Llama-2-Chat						
Sec 1 Sec 2 Collect demonstration data, Collect comparison data, and train a supervised policy, and train a reward model.		Optimize a policy as the reward model as reinforcement learn	sing	Helpful BLHF								FINE-TUNING		
A prompt is sampled from our prompt dataset.	Detti-temori Indepensional	A prompt and several model outputs are sampled	Depict the way-	A new prompt is sampled from the dataset.	No to a story Alton trap		Harmful Samples	Revision				8 <u>8</u> 0	Present Hood	-> Rejection
A labeler demonstrates the desired output behavior.	L Service and Network	A labeler ranks		The policy generates an output.	+	Generate Responses to 'Red Tearning'	Constitutional AI Fee for Self-Improvem	ent Finetuned Preference	RLAIF Training with	Final RL-CAI		Aman gudennos data mada	Annual Palar	
This data is used to fine-tune OPT-3 with supervised learning.		This data is used to train our reward model	•••• •	The reward model calculates a reward for the output.	+ - 2 🛞 +	Prompts Eliciting Pairs of Samples	£	Model (PM)	PM + SL-CAI Models	Internet	Pretoanny dete	Larby		
		reward model.	0.0.0.0	The reward is used to update the policy using PPO.	r _k									

Alignment approaches are too generic and cannot be controlled

Framers

Instructors

19

Auditors

Principled AI alignment studio

For the entire software lifecycle with FM components

- Trust and governance is critical for each FM component in the software system.
- It is important also to ensure that the entire software system is governed end-to-end and subjected to risk assessment and mitigation.

- Trust and governance for the entire software system with FM components has not been subject to rigorous study yet. However, even for standalone LLMs, adversarial fine-tuning has been shown to break alignment with a handful of instances.

- The first step toward trust and governance for the entire software system is to understand the risks and develop benchmarks for quantifying the risks.
- The next step is to develop ways for mitigating the risks.
- Some of the existing risk and mitigation measures developed for FMs could be used for the entire software system also.

Take-home messages

- Use of FMs in general and LLMs in particular is very promising in existing software systems.
- They can be used as components (FM-augmented systems) or can be used to guide the SDLC (FM-augmented SDLC) or in both (FM augmented systems built with FM augmented SDLC).
- Trust challenges are similar in all these cases.
- Ensuring that the individual FM components are trustworthy is *necessary* but *not sufficient* since downstream and upstream components can still make the software system un-trustworthy.
- End-to-end assessment of trust is critical need to understand, quantify, and mitigate risks.

