

Recent Progress in Determining Gravitational

Constant G at HUST

Jun Luo

Center for Gravitational Experiments, Huazhong University of Science & Technology Oct. 9, 2014, NIST

HUST-09 experiment

Recent progress

Newtonian gravitational law and first G value

1687, Newton's law

First G value

$$F_1 = F_2 = G \frac{m_1 \times m_2}{r^2}$$

3

G was known earliest, but its measurement precision is worst

Quantity	2010 rel. std.	_	Quantity	2010 rel. std.
	uncert. $u_{\rm r}$	_		uncert. $u_{\rm r}$
α	3.2×10^{-10}	_	F	2.2×10^{-8}
$R_{ m K}$	3.2×10^{-10}		$\gamma_{ m p}^{\prime}$	2.5×10^{-8}
a_0	3.2×10^{-10}		$\mu_{ m B}$	2.2×10^{-8}
$\lambda_{ m C}$	6.5×10^{-10}		$\mu_{ m N}$	2.2×10^{-8}
$r_{ m e}$	9.7×10^{-10}		$\mu_{ m e}$	2.2×10^{-8}
$\sigma_{ m e}$	1.9×10^{-9}		$\mu_{ m p}$	2.4×10^{-8}
h	4.4×10^{-8}		R	9.1×10^{-7}
$m_{ m e}$	4.4×10^{-8}		\boldsymbol{k}	9.1×10^{-7}
$m_{ m h}$	4.4×10^{-8}		$V_{ m m}$	9.1×10^{-7}
$m_{oldsymbollpha}$	4.4×10^{-8}		c_2	9.1×10^{-7}
$N_{ m A}$	4.4×10^{-8}		σ	$3.6 imes 10^{-6}$
$E_{\mathbf{h}}$	4.4×10^{-8}		G	1.2×10^{-4}
c_1	4.4×10^{-8}			λ <i>Π</i> 100
e	2.2×10^{-8}		F = F	$' = G \frac{WIM}{M}$
$K_{ m J}$	2.2×10^{-8}			r^{2} r^{2}

CODATA recommended values of the fundamental physical constants: 2010 Rev. Mod. Phys. 84(2012)1527

Current situation (*G* **values < 50 ppm)**

consistent with each other at only ~500 ppm

HUST-09 experiment

Time-of-swing method

1.Determination of $P_g = \Delta C_g / I$ 2. $\Delta \omega^2$ between near and far positions 3. Anelasticity of torsion fiber ΔK

HUST-09 experimental design

Merits:

- 1. Spherical source mass
- 2. Simple pendulum
- 3. All in vacuum
- 4. Measure the anelasticity directly

Vacuum feedthrough Prehanger fiber Magnetic damper Copper disk Shielding cylinder holder Tungsten fiber Reflecting mirror Aluminum clamp Shielding cylinder Pendulum Source masses Rotating plane Supporting rings Counterbalancing rings Turntable Vacuum chamber (cutaway view) = Ground

Shortage:

The period (535 s) changes only $\sim 0.6\%$

Experimental environment

*G*o: unit technologies, preliminary experiment From 1999 to 2006

G1: first G measurement

```
From August, 2006 to July, 2008
```

*G***2**: repeated *G* measurement (change the positions, orientations of the spheres and different people)

From June, 2008 to December, 2008

Final *G*: Published at 2009

PRL, 102, 240801, 2009

HUST-09 G value

Results of $G (10^{-11} \text{ m}^3\text{kg}^{-1}\text{s}^{-2})$ $G1 = (6.67352 \pm 0.00019)$ $G2 = (6.67346 \pm 0.00021)$ consistent with 9 ppm !

Combined result:

 $G = (6.67349 \pm 0.00018)$

26.3 ppm

PRL 102 (2009) 240801 PRD 82 (2010) 022001

TABLE I. One σ uncertainty budget (in units of ppm).				
Error Sources	Corrections	Δc	G/G	
Pendulum		5.07		
Dimensions			1.95	
Attitude			0.13	
Nonalignment with fiber			0.45	
Flatness			0.34	
Clamp			1.65	
Density inhomogeneity			≤0.21	
Coating layer	-24.28		4.33	
Edge flaw	-0.12		0.17	
Source masses		10.68		
Masses			0.82	
Distance of GC			9.64	
Density inhomogeneity			4.50	
XYZ positions			0.48	
Fiber		18.76		
Nonlinearity			< 0.70	
Thermoelasticity	-39.83		1.52	
Anelasticity	-211.80		18.69	
Aging			< 0.01	
Gravitational nonlinearity	7.73	0.30		
Magnetic damper	17.54	0.31		
Magnetic field		0.40		
Electrostatic field		0.10		
Combined statistical $\Delta(\omega^2)$		14.18		
Total		26.33		

Possible problems in HUST-09:

- Anelasticity of fiber : too large
- Correction to coating layers : model dependent
- Thermoelasticity of fiber : it was averaged

Our tactics:

- improved time-of-swing method
 - angular acceleration feedback method

To evaluate the potential systematic errors

HUST-09 experiment

1. Improved time-of-swing method

To reduce large corrections and	Error sources	Corrections (ppm)	$\delta G/G$ (ppm)
· · · ·	Torsion pendulum		5.05 [5.05]
errors, improvements are	Dimension		1.95
	Attitude		0.13 [0.07]
1. Aluminum laver	Density inhomogeneity		< 0.21
	Chamfer property		0.34
	Three chips	-0.12	0.17
	Coating layer	-24.28	4.33
2. Three-point mount	Clamp and ferrule		1.65
	Reflecting mirror		0.03
	Source masses		10.66 [10.64]
	Masses		0.82
2 Conner tube	Distance of GCs		9.64 [9.61]
J. copper tube	Density inhomogeneity		4.50
	Relative positions		1.10 [1.31]
	Height of pendulum		0.76 [0.40]
4. High-Q silica fiber	Height of spheres		0.48 [0.27]
	Position of torsion fiber		0.63 [1.22]
$Q \approx 5 \wedge 10^{-1}$	Position of turntable		0.05
	θ_0		0.06 [0.01]
	Fiber		18.76
5. Gravity compensation	Thermoelecticity	20.02 [0.27]	< 0.70
	Analosticity	- 39.83 [8.37]	1.52 [0.82]
	Aging	-211.80	18.09
6 Thick torsion fiber	Aging Gravitational poplinearity	7 73 [4 70]	0.30 [0.20]
	Magnetic damper	17.54	0.30 [0.20]
	Magnetic field	17.34	0.31
]]]]]]]]]]]]]]]]]	Flectrostatic field		0.40
7. Improved shielding	Statistical $\Lambda \omega^2$		18 / 3 [23 31]
	Total		28 86 [32 17]
	Combined		26.33

14

Prepare a high-Q silica fiber

Silica fiber: Length: 900 mm Diameter: 38-50 µm

Coated with germanium: 8-nm-thickness bismuth: 11-nm-thickness

3-mm rod (SuprasilR 311)

Oxygen-natural gas flame

Kuroda effect:

$$\frac{\Delta G}{G} = \frac{1}{\pi Q} < 6.4 \text{ ppm}$$

Use lighter coating material (AL)

16

HUST-09 torsion balance

> Coated with Cu+Au

Material	Density (g/cm ³)	Mass of coating layer (mg)	Correction to G (ppm)	
Cu	8.96	40.962(0.026)	24.29(4.22)	
Au	19.26	49.803(0.020)	-24.28(4.55)	
Al	2.70	4.47(0.42)	-1.81(0.91)	

Reduce the thermal gradient around fiber

A hollow Cu-tube was used to surround the fiber

$$K = K_0 (1 + \alpha_K \Delta \tilde{T})$$

$$T = 2\pi \sqrt{I/K} \Rightarrow \alpha_{K} = \alpha_{I} - 2\alpha_{T}$$

 $\alpha_{K} = 100(3) \times 10^{-6} / C$

Correction to thermoelasticity of fiber : 38.50(1.50) ppm

Redesign the magnetic damper

Its correction to G: 17.54(0.31) ppm to 0.13(0.01) ppm

Background gravitational field

Using lead blocks to compensate

After 3 times compensation

Error to G measurements:

Single date-set(3days) <0.03 ppm

Long time (72days) <0.38 ppm

Present results of ToS method

Error sources	Corrections (ppm)	$\delta G/G$ (ppm)	. 1 8 1(0 9 1) nnm
Torsion pendulum		5.05 [5.05]	1.01(0.51) ppm
Dimension		1.95	29.50(1.50) mmm
Attitude		0.13 [0.07]	• • • • • • • • • • • • • • • • • • •
Density inhomogeneity		< 0.21	
Chamfer property		0.34	
Three chips	-0.12	0.17	/ / < 0.3 / ppm
Coating layer	-24.28	4.33	
Clamp and ferrule		1.65	
Reflecting mirror		0.03	
Source masses		10.66 [10.64]	
Masses		0.82	1 = 0.12(0.01) mmm
Distance of GCs		9.64 [9.61]	// 0.13(0.01) ppm
Density inhomogeneity		4.50	
Relative positions		1.10 [1.31]	
Height of pendulum		0.76 [0.40]	
Height of spheres		0.48 [0.27]	
Position of torsion fiber		0.63 [1.22]	/ /
Position of turntable		0.05	
θ_0		0.06 [0.01]	
Fiber		18.76	
Nonlinearity		< 0.70	/
Thermoelasticity	-39.83 [8.37]	1.52 [0.82]	
Anelasticity	-211.80	18.69	
Aging		< 0.01	
Gravitational nonlinearity	7.73 [4.79]	0.30 [0.20]	
Magnetic damper	17.54	0.31	
Magnetic field		0.40	
Electrostatic field		0.10	< 15 ppm (13 sets)
Statistical $\Delta \omega^2$		18.43 [23.31]	
Total		28.86 [32.17]	< 20 nnm (?)
Combined		26.33	

2. Angular acceleration feedback method

Advantages

The torsion fiber does not twist

- 1. Independence on torsion fiber properties
- 2. Pendulum mass distribution need not be determined exactly
- 3. Separate the environmental gravitational gradients

Uwash-2000 and our questions

Our questionable points:

- 1. thermal effect of the aluminum shelf
- 2. gap and its stability between spheres
- 3. effect from slow creep
 - deformation of fiber

 $G = (6.674255 \pm 0.000092)$ $\times 10^{-11} \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \quad 14 \text{ppm}$

Use ULE to lower thermal effect of sphere's shelf

Al thermal coefficient $\sim 20 \times 10^{-6}$ /°C ULE thermal coefficient $< 0.1 \times 10^{-6}$ /°C

ULE Shelf

Distance (mm)	Expansion Coefficient (/°C)	Temperature Fluctuation (°C)	Distance Variation (µm)	Relative Uncertainty (ppm)
Horizontal 342.319	0.1×10⁻⁶		0.02	0.10
Vertical 139.751	0.1×10⁻⁶	0.7	0.01	0.04

Gap and its stability between spheres

Distance Vs Temperature

Re-modeling the measuring equation

In torsion balance's frame, equation of motion will be

$$I\ddot{\theta}(t) + \gamma\dot{\theta}(t) + k_0\theta(t) = \tau_b(t) + \tau_g(t) - I\ddot{\Theta}(t) + \left[\gamma\dot{\theta}_{drift}(t) + k_0\theta_{drift}(t)\right]$$

Measuring equation:

$$\ddot{\Theta}(t) = \alpha_{g}(t) - \left[\ddot{\theta}(t) + 2\beta\dot{\theta}(t) + \omega_{0}^{2}\theta(t) \right] + \alpha_{b}(t) + \left[2\beta\dot{\theta}_{drift}(t) + \omega_{0}^{2}\theta_{drift}(t) \right]$$
Spheres' Correction to the residual deflection angle of torsion balance effect (~ 1ppm) (compensated) Correction to the slow creep of fiber (compensated) Correction (compensated) Correction (compensate) Co

Effects from slow creep of fiber

$$\theta_{dirft}(t) \approx \theta_0 + \omega_{drift} t$$

 θ_0 : initial residual deflection angle. $\omega_{drift}t$: slow linear creep deformation of fiber

Contribution to the signal frequency $\boldsymbol{\omega}$

$$A_{drift} = \frac{2\omega_0^2}{mT} \int_0^{mT} \cos\left(\omega t + \phi\right) \theta_{dirft} \left(t\right) dt = \frac{2\omega_0^2 \omega_{dirft}}{\omega} \sin\left(\phi\right)$$

Compared with the signal amplitude:

$$\frac{A_{drift}}{A_{spheres}} = \frac{2\omega_0^2 \omega_{dirft}}{\omega A_{spheres}} \sin\left(\phi\right) \begin{cases} A: 462 \times 10^{-9} \text{ rad/s}^2 \\ \omega_0: 2\pi \times 2.4 \text{ mHz} = 0.015 \text{ rad/s} \\ \omega: 2\pi \times 3.0 \text{ mHz} = 0.019 \text{ rad/s} \\ \omega_{drift}: 2 \mu \text{ rad/hour} = 5.6 \times 10^{-10} \text{ rad/s} \end{cases} = 2.87 \times 10^{-5} \sin\left(\phi\right)$$

Which means that the linear creep of fiber could produce 28.7ppm error maximally, and the initial phase of the signal should be measured.

Updated apparatus

El d' **Air Bearing** 0.0

SS316 Spheres

ULE **Shelves**

Gear Bearing Turntable

Shock-proof Platform

Vacuum **Chamber**

Turntable

Torsion Balance (not visible)

We obtained a G value (HUST-09) by the ToS method, the relative uncertainty is about 26 ppm.

Summary

- A high-Q silica fiber is used to measure G by the ToS method, and the possible systematic errors of HUST-09 were re-considered. The present experimental results show that the uncertainty of the improved G will be less than 20 ppm.
- The angular acceleration feedback method is used, and several possible systematic errors are considered. The measured angular acceleration shows the relative uncertainty is less than 15ppm, and the expected G will also be less than 20ppm.

We hope to get the two G values with the uncertainties of less than 20 ppm very soon and