Federal Building and Fire Safety Investigation of the World Trade Center Disaster

Condition of Thermal Insulation: Methodology

June 23, 2003

Nick Carino John Gross Kuldeep Prasad Fahim Sadek Monica Starnes Jiann Yang

Building and Fire Research Laboratory National Institute of Standards and Technology U.S. Department of Commerce

Disclaimer

Certain commercial entities, equipment, products, or materials are identified in this presentation in order to describe a procedure or concept adequately or to trace the history of the procedures and practices used. Such identification is not intended to imply recommendation, endorsement, or implication that the entities, products, materials, or equipment are necessarily the best available for the purpose.

Thermal-Structural Modeling

- Analysis of undamaged buildings exposed to postulated fires
- Analysis of damaged buildings exposed to 9/11 fires
- Condition of fireproofing needs to be characterized

Overview

- Sensitivity study
- In-place conditions
 - History of sprayed fire resistive material (SFRM)
 - Measurements
 - Statistical analysis
- Equivalent thickness
- Thermal properties
- Response to impact
- Summary

Sensitivity Study

- Effects of thickness variability and "gaps" in SFRM
- Simplified finite-element analysis
 - > 1 in. thick steel plate, 60 in. long
 - Average thickness: 0 to 2.0 in.
 - Standard deviation: 0 to 1.0 in.
 - Gap length: 0 to 30 in.
- Exposure: 1100 °C fire
- Compute temperature history of steel

NIST

Model

Model

- Use psuedo-random number generator to select SFRM thickness at cross-section
 - Based on average thickness and standard deviation

Example

Uniform Thickness

Standard Deviation = 1 in.

Effect of Gap in SFRM

Sensitivity Study

- Variability in thickness of SFRM reduces its effectiveness
- Gap in SFRM:
 - Local heating
 - Path for heat flow into member

History of SFRM in WTC Towers

- 1969: Decision to use 1/2 in. CAFCO® BLAZESHIELD ® Type D
- 1970: CAFCO® BLAZESHIELD® Type D discontinued at 38th floor, replaced with CAFCO® BLAZESHIELD® Type D/CF
- 1994: Thickness measurements on floor trusses on 23rd and 24th floors
- 1995: PA initiated study of SFRM thickness during tenant alterations
- 1999: PA established guidelines for SFRM replacement and repair
- Late 90s: SFRM upgraded to 1 ½ in. with CAFCO® BLAZESHEILD® Type II

Specified Thickness

October 30, 1969 PA Correspondence

- \succ Columns < 14WF228: 2 3/16 in.*
- \succ Columns \geq 14WF228: 1 3/16 in.
- Beams, spandrels, floor trusses: $\frac{1}{2}$ in

Alcoa Drawings (Note 11)

- \geq 3 h on spandrels $\frac{1}{2}$ in. 1/2 in. V.A.**
- 4 h on columns (heavy)
- 1995 Upgrade Study
 - Floor trusses

1 3/16 in. 7/8 in. V.A.

 $1\frac{1}{2}$ in.

*CAFCO® BLAZESHIELD® Type D **V.A. = Vermiculite aggregate plaster

Thickness Measurements

- 1994 measurements on 23rd and 24th floors of WTC 1
- Analysis of photographs taken in the 1990s
- Thickness measurements in PA Construction Audit Reports from late 1990s
- 1999 measurements of beams and columns in WTC 1 shaft 14/15

Floors 23 and 24 Trusses (1994)

- 16 randomly selected trusses per floor
- 6 replicate measurements on "flanges and web"

Normal Probability Plots

 Thickness appears better described by log-normal distribution

NIST

Lognormal Distribution

Analysis of Photographs

- Original SFRM: WTC 1 (22, 23, 27) in mid 1990s
- Upgraded SFRM, WTC 1 (below 31) in 1998

Results of Photo Analysis

- Original SFRM thickness distribution appears to be lognormal
- Upgraded SFRM thickness distribution appears to be normal

Summary of Photo Analysis

Floor Truss	Average Thickness	Std. Dev.	Coeff. of Variation	
Original Main	0.6 in.	0.3 in.	0.5	
Original Bridging	0.4 in.	0.25 in.	0.6	
Original Strut	0.4 in.	0.2 in.	0.5	
Upgraded Main	1.7 in.	0.4 in.	0.2	

Construction Audit Reports

- 18 data sets for WTC 1 (93, 95, 98, 99 and 100)
- 14 data sets for WTC 2 (77, 78, 88, 89, 92)

Combined Measurements

- Lognormal distribution appears more appropriate
- Overall average = 2.5 in.
- Overall standard deviation = 0.6 in.

Core Beams and Columns

 April 1999 measurements in shaft 14/15 of WTC 1 (1st to 45th floor)

> Average = 1.0 in. St. Dev. = 0.2 in.

Average = 0.8 in. St. Dev. = 0.2 in.

NIST

Summary of SFRM Thickness

Data Source	Element	Average	St. Dev.	Coeff. of Variation
PA Measurements	Truss	0.7 in.	0.2 in.*	0.2*
Photos	Main Truss	0.6 in.	0.3 in.	0.5
	Brdg. Truss	0.4 in.	0.25 in.	0.6
	Strut	0.4 in.	0.2 in.	0.5
PA	Main Upgraded	1.7 in.	0.4 in	0.2
Measurements	Truss Upgraded	2.5 in	0.6 in.	
PA	Core Beams	1.0 in.	0.2 in.	0.2
Measurements	Core Columns	0.8 in.	0.2 in.	0.25

*Variability of averages

Equivalent Thickness

- Variability of thickness reduces effectiveness of SFRM
- Not practical to include variable thickness in thermal modeling
- Establish "equivalent uniform thickness" that provides thermal protection equivalent to variable thickness
- Approach
 - Bar model with variable thickness SFRM
 - Compute elongation under 12,500 psi tensile stress as a function of time
 - Compare with elongation obtained with uniform thickness SFRM

Cases Considered (Floor Truss)

- Lognormal distribution
- Original SFRM: t_{avg} = 0.75 in., st. dev. = 0.3 in.
- Upgraded SFRM: t_{avg} = 2.5 in., st. dev. = 0.6 in.
- 3 sets of psuedo-random numbers
- 100 elements for 60 in. bar
- 5-point smoothing

5-point Smoothing

Results for Original SFRM

Results for Upgraded SFRM

Fireproofing Thickness in Thermal Modeling

- Floor trusses (Original):
 - Main: T = 0.6 in.
 - Bridging (Two-way): T = 0.6 in.
 - > Bridging (One-way) and struts: T = 0.3 in.
 - > Saddle and damper: T = 0 in.
- Floor trusses (Upgrade):

> T = 2.2 in., except dampers T = 0 in.

- Other elements: Specified thickness
 - Average tends to exceed specified thickness
 - Variability reduces effectiveness

Thermal and Physical Properties of SFRM

Materials

- CAFCO® BLAZESHIELD® Type DC/F (Original)
- CAFCO® BLAZESHIELD® Type II (Upgrade)
- Monokote® MK-5® (WTC 7)
- Properties as function of temperature
 - Thermal conductivity
 - Specific heat capacity
 - Density
 - Coefficient of thermal expansion

Example Results

Thermal Conductivity

Specific Heat Capacity

Impact Damage

- SFRM was dislodged
 - Debris field
 - Localized accelerations and deformations
- Estimate extent of dislodged SFRM
 - Measure static adhesive and cohesive tensile strength
 - Develop "failure criteria"
 - Impact analysis and engineering judgment to estimate extent of dislodged SFRM

1/4 in. Steel Plate

Simple Models

Planar Substrate

$$a = \frac{f_b}{\rho t}$$

Encased Substrate

Impact Tests

Determine acceleration to dislodge SFRM

Summary

- Methodology for assessing condition of SFRM has been reviewed
- Variability of SFRM thickness is taken into account by use of "equivalent thickness"
- Available data used to obtain rational thickness values

> Floor trusses: original T = 0.6 in.

- > Floor trusses: upgraded T = 2.2 in.
- Others: Specified thickness
- Temperature dependence of thermal properties established
- Mechanical damage to be estimated on the basis of tests and analysis

