

Journey on Environmental Cleaning to UV-C Disinfection to Minimize HAI Crosstransmission risk at The Ohio State University

Julie E. Mangino MD, FSHEA, FIDSA Professor Emeritus at The OSU Wexner Medical Center 1/14/2020

Background

- Healthcare associated infections (HAIs):
 - Not present on admission; organisms-often multidrug resistant (MDRO), get to patient from hands of HCW and/or environment
 - MRSA, VRE, CRE, A. baumannii (MDRO) and C. difficile
 - Minimizing risk warrants a multifaceted approach with hand hygiene, antimicrobial stewardship, contact isolation and environmental cleaning/disinfection

Objective

- To share initial research on: environmental cleaning, the Surfacide UV-C emitter system and see a real world study of efficacy.
- Present OSUMC data over 4 years on:
 - Healthcare onset C. difficile infections (HO-CDI)
 - Implementation of multi-emitter systems over time

Transmission of Healthcare associated Pathogens

TABLE 2. Effect of the Colonization or Infection Status of the Prior Room Occupant on the Acquisition of Pathogens by Subsequent Occupants of the Same Room

Reference	Setting (study design)	Findings	Variables	Acquired	Did not acquire	Percentage difference	Adjusted ratio (95% CI)
Martinez et al ⁶⁵ (2003)	ICU, USA (9-month retrospective case- control study)	Placement within a room from which VRE had been cultured was associated with VRE ac- quisition in the subsequent room occupant	Admitted to room from which VRE had been cultured	13% of 30	2% of 60	87.5	OR: 81.7 (2.2–3,092)
Drees et al ²⁶	ICU, USA (14-month	Positive VRE room culture re-	Positive culture before admission or acquisition	8.0% of 50	4.8% of 588	40.5	HR: 4.3 (1.5-12.5)
(2008)	prospective cohort	sults or previous VRE-positive	Prior room occupant with VRE	38.0% of 50	20.2% of 588	46.7	HR: 3.8 (2.0-7.3)
<i>CID</i> 2008	study)	room occupants were associ- ated with VRE acquisition	Any room occupant with VRE in past 2 weeks	60.0% of 50	41.8% of 588	30.3	HR: 2.7 (1.4-5.3)
Nseir et al ⁶⁸	ICU, France (12-month	Admission to a room previously	Prior room occupant with A. baumannii	28.1% of 57	7.9% of 454	71.8	OR: 4.2 (2.0-8.8)
(2010)	prospective cohort study)	occupied by an A. bauman- nii- or P. aeruginosa-positive patient was associated with acquisition of these pathogens	Prior room occupant with P. aeruginosa	25.6% of 82	14.9% of 429	41.7	OR: 2.3 (1.2-4.3)
				Prior room occupant status			
				Positive (% acquired)	Negative (% acquired)		
Huang et al ⁶⁶	ICU, USA (20-month	Admission to a room previously	VRE status of prior room occupant	4.5% of 1.291	2.8% of 9.058	37.1	OR: 1.4 (1.0-1.9)
(2006)	retrospective cohort study)	occupied by a MRSA- or VRE-positive patient was as-	MRSA status of prior room occupant	3.9% of 1,454	2.9% of 8,697	28.8	OR: 1.4 (1.1–1.8)
Arch of IM 2006		sociated with acquisition of these pathogens					
Shaughnessy et al ⁶⁷ (2008)	ICU, USA (18-month retrospective cohort	Admission to a room previously occupied by a C. diffi-	C. difficile status of prior room occupant	11.0% of 91	4.6% of 1,679	58.3	HR: 2.3 (1.2-4.5)
ICHE 2011 study)		<i>cile</i> –positive patient was asso- ciated with <i>C. difficile</i> acquisition					

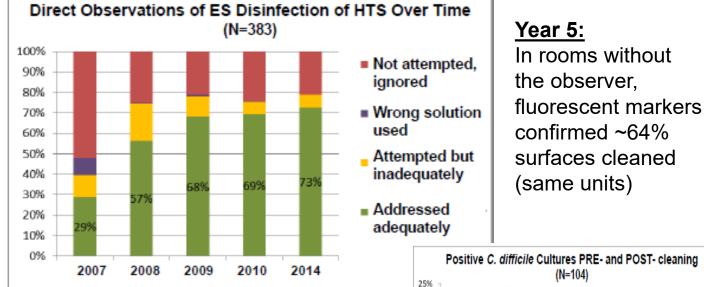
NOTE. Martinez et al,⁶⁵ Drees et al,⁵⁶ and Nseir et al⁶⁸ compared associations listed in the Variables column in patients who did acquire the pathogen with patients who did not acquire the pathogen; Huang et al⁶⁶ and Shaughnessy et al⁶⁷ compared the frequency of patients who acquired the pathogen depending on the status of the prior room occupant. CI, confidence interval; HR, hazard ratio; ICU, intensive care unit; MRSA, methicillin-resistant *Staphylococcus aureus*; OR, odds ratio; VRE, vancomycin-resistant enterococci.

³ OtterJA, Yezli S, French GL. *ICHE* July 2011;32 (7):687-699.

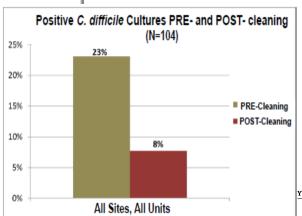
Environmental Cleaning Reduces Microbial Contamination

- Physical action to remove organic / inorganic materials
- Application of a disinfectant
- Monitoring to assure surfaces including high touch surfaces (i.e. bedrails, remote, monitor, tray table, toilet) are cleaned.
 - Little guidance exists on how to best monitor compliance
 - Most research focuses on post cleaning data, with less on actual observations of in room cleaning; limitations of Hawthorne effect with observations
 - Our objective on this first study was to see how do the EVS clean the rooms?

Mulvey D. *Jour of Hosp Infection* 2011 77;25-30 Penno K. *AJIC* 2017; 45:1208-13



Environmental Cleaning at the Cornerstone of Decreasing HAIs including *C. difficile* (Methods)

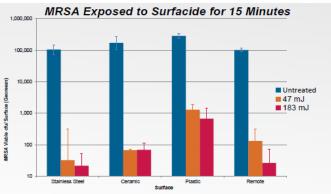

- Our focus was on inpatient units with highest HO-CDI rates
- Reviewed EVS policies; created observation checklist
 - Adequate= entire surface cleaned w/ approved solution
 - Attempted, but inadequate= only partial surfaces
 - Not attempted= ignored
 - Wrong cleaning agent= attempted, but non-approved solution
- IRB approved: introduction of observer, informed of intent
- Observations begun after an in-service with photos/written basics; third party EVS company in 5th year of study
- In 5th year, incorporated fluorescent targeted technology and environmental culturing for *C. difficile*.

Environmental Cleaning at the Cornerstone of Decreasing HAIs and CDI (Results)

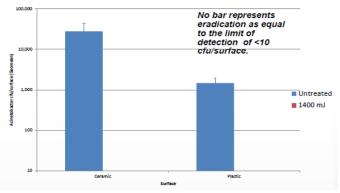
- Real time observations= 1 way to assess compliance
- Made recommendations to get to "adequate"
- Sustainable improvement requires ongoing re-education, monitoring, time

6

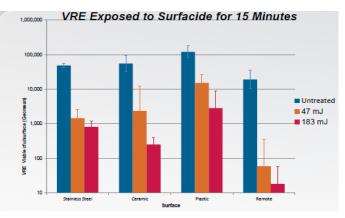
UV Disinfection: Energy Time and Distance to Eradicate MDRO and CDI


- A Surfacide[™] UV-C emitter was created and asked to determine energy, distance and time to eradicate organisms.
- Hospital isolates: MRSA, VRE, A. baumannii, CRE and C. diff were inoculated on 4 representative surfaces: soft (remote) and textured hard plastic (bedrail), ceramic (tile) and stainless steel (faucet) autoclaved/ sterilized (3x4 in surfaces)
- Vegetative bacteria+C. diff spores inoculated on each surface;
 - Target of 500,000 CFU/cm²; each surface was prepared in triplicate w/100µliters buffered peptone and controls
 - Surfaces air dried, placed at 4ft. (183mJ/cm²) and 8 ft. (47mJ/cm²) x15minuntes
 - Energy output initially developed based on prior publications
 - 22-26 mJ/cm² could be adequate?

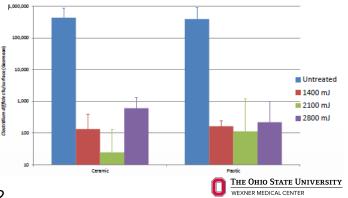
7


UV Disinfection: Energy Time and Distance to Eradicate MDRO and CDI

Phase 1: at 8 ft (47mJ) and 4 ft (183mJ)



Phase 2: 1400 mJ at 4 feet


Acinetobacter Exposed to Surfacide at 1400mJ

8 Liscynesky, C. et al Poster 939 IDWeek 2012

Effect of Surface Type, Orientation, and Energy Delivery on the Efficacy of a UV-C Disinfection system: How much Energy is Enough?

- After OSU phase 1/2 studies, goal was to put surfaces in a hospital room location where that surface normally is; estimate UV-C dose to impact reductions, with at least 1500mJ/cm² delivery. This represented redesigned increased output.
- C. diff, MRSA, VRE, A. baumannii and CRE-KP were targeted for a minimum inoculum of 5 x 10⁵ CFUs/cm²
 - Inoculated coupons were placed on top of corresponding representative surfaces: ceramic (toilet), smooth and textured plastic (remote, bedrails, monitor), stainless steel, (faucet, sink)
 - No moving of emitters necessary.
 - Data shown as log 10 reductions of CFUs vs controls

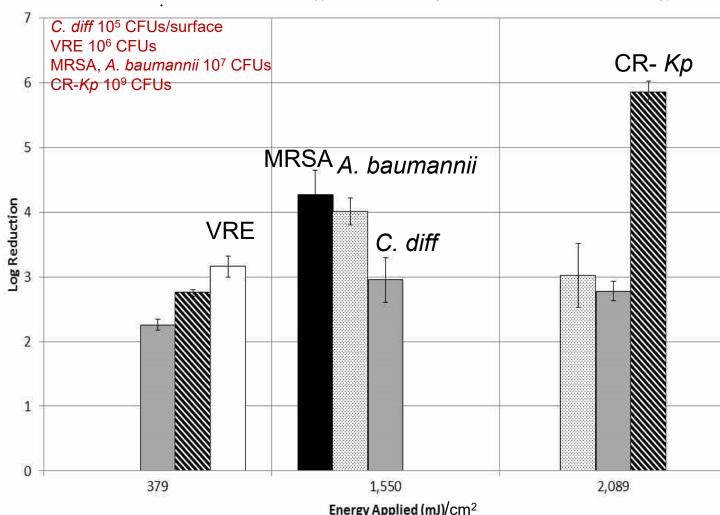
Boyce demonstrated that energy delivery is effected by shadows, distance from emitter and surface orientation.

Ohio State University

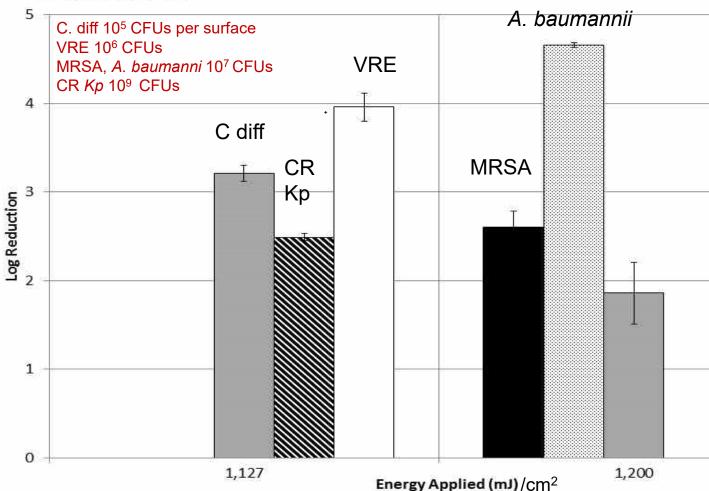
Boyce J et al Impact of Room Location on UVC irradiance dosage and antimicrobial effect Delivered by a mobile UV device. *ICHE* 2016;37;667-672.

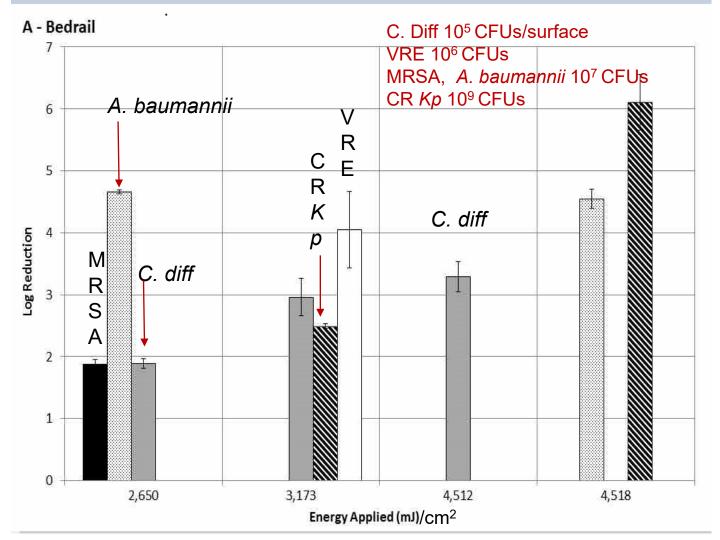
Surfacide[™] Triple Emitter System (Waukesha, Wi)

- 1 tower is 77 in. tall and 23 in. wide
- Position to minimize shadows (i.e. indirect surfaces) with 3 towers to deliver more energy in less time w/ reduced distance in one cycle.
- Laser mapping measures room size, objects, determines disinfection time
 - Studies done in room 256 sq meters + bathroom of 46 sq meters
- Electronic touch screen tablet controls emitters remotely


 Energy delivered ranged from 47-4,518 mJ/cm² over 3 study times and not all organisms were studied at each mJ/cm²

(1 J=1000mJ or 1,000,000µWs)





E - Toilet Seat Data bars not present at energy level indicate organism was not tested at that energy level.

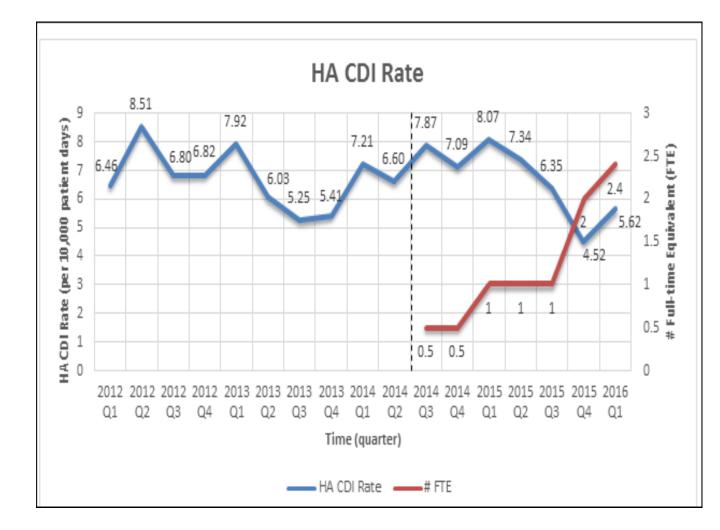
F - Bedside Monitor

The Effect of Ultraviolet Light on *C. difficile* **Spore Recovery Versus Bleach Alone**

	Manual Cleaning Versus UV-C N=476 cultures N=476 cultures							
	Post Bleach CFUs		Post UV-C CFUs					
Site	≥10 CFUs	<10 CFUs	≥10 CFUs	<10 CFUs	Post bleach			
Over-bed table	13	41	0	54	32/328 (13%) +			
Toilet seat	9	65	0	74	w/ ≥10CFU			
Computer keyboard	3	19	1	43				
Bathroom doorknob	2	20	0	22	<u>Post UV</u>			
Faucet handles	2	39	0	41	1/238 (0.4%) +			
Bed side rails	1	3	0	4	(keyboard had			
Bedside commode	1	11	0	12	10CFU)			
Recliner chair table	1	6	0	7				
Call light	0	2	0	2				

Clastridium difficile Culture Desults Effectiveness of

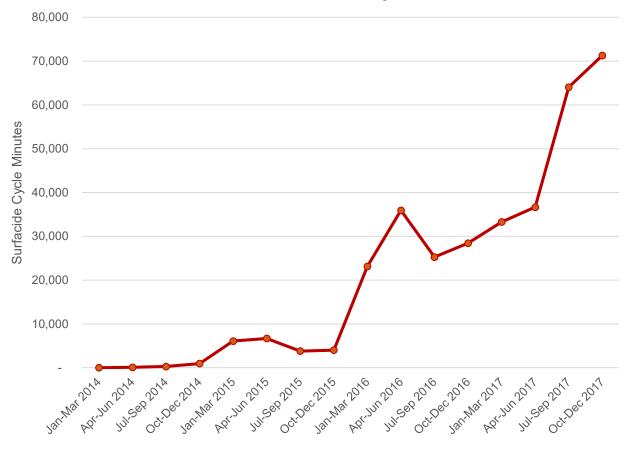
NOTE. CFU, colony-forming units; UV-C, ultraviolet light at


254 nanometers.

Liscynesky C et al ICHE 2017:1116-7.

<10=0-9 CFUs

OR 0.027; P<0.001


University Hospitals Ultraviolet-C Treatments

QRT	FISCAL YEAR	UV Treated	Isolation / Discharge	Restroom	OR	CATH PACU IPR	TOTAL	FTE
	14	July	11	00			11	0.5
2014 QRT 3	14	Aug	3	0			3	0.5
	14	Sept	8	0			8	0.5
	14	Oct	6	0			6	0.5
2014 QRT 4	14	Nov	11	0			11	0.5
	14	Dec	8	0			8	0.5
	15	Jan	3	0			3	0.5
2015 QRT 1	15	Feb	14	70			84	1
	15	Mar	15	100			115	1
	15	April	20	80		3	103	1
2015 QRT 2	15	May	14	40		10	64	1
	15	June	15	62		12	89	1
	15	July	0	45	0	0	45	1
2015 QRT 3	15	Aug	0	88	0	0	88	1
	15	Sept	0	30	0	0	30	1
	15	Oct	0	0	0	0	0	1
2015 QRT 4	15	Nov	68	5	0	0	73	2
	15	Dec	35	131	8	5	179	2
	16	Jan	47	377	0	0	424	2.4
2016 QRT 1	16	Feb	75	508	0	0	583	2.4
	16	Mar	43	738	30	53	864	2.4
	16	April	30	905	29	80	1044	2
2016 QRT 2	16	May	15	845	54	135	1049	2
	16	June	31	778	63	171	1043	2
	16	July	15	629	62	77	783	2
2016 QRT 3	16	August	23	488	79	166	756	1.8
	16	Sept	41	248 🛇		115	466	1.8
	16	Oct	24	388	65	362	839	1.8
2016 QRT 4	16	Nov	18	410	65	167	660	1.8
	16	Dec	69	243	54	132	498	2
	2016	Jan						
2017 QRT 1	2016	Feb						
	2016	Mar						

\$\$Lost data on tablet- (250 treatments estimate)2016 Q 3 staffing shortage-- UV tech did discharge room cleaning

OSUWMC: Total Surfacide Cycle Minutes

Conclusions

- Environmental cleaning alone is rarely optimal.
- This multi-emitter system Surfacide[™] showed:
 - Vegetative organisms are quicker to eradicate than spores;
 - Varying surface, orientation, organism burden and distance determines actual amount of energy delivered
 - Minimizing distance from emitter(s) to surfaces, maximizes energy delivered

THE OHIO STATE UNIVERSITY

- Laser technology maps objects before <u>each</u> cycle to determine size of room, surfaces and length of cycle
- Real world experience w/ C. difficile spores before and after UV-C validated efficacy
- Close collaboration of Clinical Epidemiology and EVS has led to improved healthcare onset *C. difficile* rates (HO-CDI) and much increased pride by EVS.

Acknowledgments

- Ken Woods MD, MPH
- Mike Garner, optical engineer, MSG Lighting
- Christina Liscynesky MD Associate Medical Director Clinical Epidemiology OSUWMC
- Iahn Gonsenhauser MD Director of Patient Safety at OSUWMC
- Jessica Dyzel, PHD Richter Labs
- Matt Vross, MS Richter Labs
- David Green, EVS Director
- Hannah Putterbaugh, BS Data Manager, Clinical Epidemiology
- Kelsey Budd, Surfacide for UV-C cycles performed at OSUWMC

Thank YOU!

Email: Julie.Mangino@osumc.edu

