Energy Levels of Krypton, Kr I through Kr XXXVI

Jack Sugar and Arlene Musgrove

Atomic Physics Division, Physics Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899

Received March 19, 1991; revised manuscript received June 24, 1991

The energy levels of the krypton atom, in all stages of ionization for which experimental data are available, have been compiled. No data has yet been published for Kr XI through Kr XVII. For H-like krypton very accurate calculated level values are compiled. In all, data for 29 spectra are given. Experimental g-factors are included for Kr I and Kr II. Calculated percentage compositions of levels are given for 12 ions. A value for the ionzation energy of each ion, either experimental or theoretical, is included.

Key words: atomic; energy levels; ions; krypton; spectra.

1.	Introducti	on	859					
2.	Acknowle	dgments	860					
3.								
	Kr 1		863					
	Kr II	(Br I sequence)	875					
	Kr III	(Se I sequence)	880					
	Kr IV	(As I sequence)	882					
	Kr v	(Ge I sequence)	883					
	Kr vi	(Ga I sequence)	884					
	Kr vii	(Zn I sequence)	886					
	Kr viii	(Cu I sequence)	888					
	Kr IX	(Ni I sequence)	891					
	Kr x	(Co I sequence)	892					
	Kr XI	(Fe I sequence)	894					
	Kr XII	(Mn I sequence)	894					
	Kr XIII	(Cr I sequence)	894					
	Kr xiv	(V I sequence)	895					
	Kr xv	(Ti I sequence)	895					
	Kr xvi	(Sc I sequence)	895					
	Kr xvn	(Ca I sequence)	896					
		· · ·						

1. Introduction

In 1952 Moore published a compilation of energy levels of krypton containing the results of extensive analyses of Kr I through Kr IV along with four levels of Kr IX (Ni-like). Today, we have energy levels for most stages of ionization of Kr and very accurate calculated levels for H-like ions. New work on Kr I through Kr IV has been published. Much of the new experimental data were obtained with light sources such as the sliding spark, low inductance triggered spark, laser, tokamak, and beamfoil, most of which were unheard of in 1952.

©1991 by the U.S. Secretary of Commerce on behalf of the United States. This copyright is assigned to the American Institute of Physics and the American Chemical Society.

Reprints available from ACS; see Reprints List at back of issue.

Contents

Kr xviii	(K I sequence)	896
Kr xix	(Ar I sequence)	897
Kr xx	(Cl I sequence)	897
Kr xxi	(S I sequence)	898
Kr XXII	(P I sequence)	899
Kr XXIII	(Si I sequence)	900
Kr xxiv	(Al I sequence)	901
Kr xxv	(Mg I sequence)	902
Kr xxvi	(Na I sequence)	904
Kr xxvii	(Ne I sequence)	905
Kr xxviii	(F I sequence)	906
Kr xxix	(O I sequence)	908
Kr xxx	(N I sequence)	909
Kr xxxi	(C I sequence)	910
Kr xxxii	(B I sequence)	911
Kr XXXIII	(Be I sequence)	912
Kr XXXIV	(Li I sequence)	913
Kr xxxv	(He I sequence)	914
Kr xxxvi	(H I sequence)	915
	- /	

The present critical compilation of the atomic energy levels of krypton in all stages of ionization is part of an ongoing program of the NIST (formerly NBS) Atomic Energy Levels Data Center to compile similar data for all the elements. Our publications include helium by Martin [1973, 1987], sodium, magnesium, aluminum, and silicon by Martin and Zalubas [1981, 1980, 1979, 1983], and phosphorus and sulfur by Martin, Zalubas, and Musgrove [1985, 1990], potassium through nickel by Sugar and Corliss [1985], copper and molybdenum by Sugar and Musgrove [1990, 1988], and lanthanum through lutetium by Martin, Zalubas, and Hagan [1978]

Companion works containing all published wavelengths for the higher stages of ionization have been prepared in collaboration with the Japanese Atomic Energy Research Institute in Tokai-Mura, Japan. These include titanium by Mori *et al.* [1986] and iron, nickel, copper nd molybdenum by Shirai *et al.* [1990, 1987a, 1991, 987b]. In addition, wavelength compilations including ata for all stages of ionization have been published for c by Kaufman and Sugar [1988] and for Mg and Al by aufman and Martin [1991a, 1991b].

The strong lines of Kr I to Kr v are contained in the *RC Handbook of Chemistry and Physics*, "Line Spectra the Elements," edited by Reader and Corliss [1990]. compilation published by Kelly [1987] gives all wavengths of krypton ions below 2000 Å and their classifications.

In the present work all energy levels are given in units cm^{-1} . An estimate of the uncertainty of the energy vel values or wavelengths determining them is given th each ion. Ionization energies are also given in eV th the conversion factor 8065.5410(24) cm⁻¹/eV pubhed by Cohen and Taylor [1987].

We have included under the heading "Leading perntages" the results of calculations that express the cinvector percentage composition of levels (rounded to e nearest percent) in terms of the basis states of a igle configuration, or more than one configuration here configuration interaction has been included. We re first the percentage of the basis state corresponding the level's name; next the second largest percentage gether with the related basis state. Generally, when e leading percentage is less than 40%, no name is en. However, when two different parent states give e to the same final term and the sum of their percentes is $\geq 40\%$, the level is designated by the higher perntage term. For an unnamed level, the term symbol for : leading percentage follows the percentage. The user ould of course bear in mind that the percentages are del dependent, so that the results of different calculans may yield notably different percentages.

For configurations of equivalent *d*-electrons, several ms of the same *LS* type may occur. These are theoretlly distinguished by their seniority number. In our npilations they are designated in the notation of Niel-1 and Koster [1963]. For example, in the $3d^5$ configuion there are three ²D terms with seniorities of 1, 3, 1 5. These terms are denoted as ²D1, ²D2, and ²D3 pectively, by Nielson and Koster.

We use without comment notations for various couig schemes as appropriate. Martin, Zalubas, and gan [1978] give a complete summary of the coupling ations used here, tables of the allowed terms for ivalent electrons, etc.

The text for each ion does not include a complete iew of the literature but is intended to credit the macontributions. In assembling the data for each specm, we referred to the following bibliographies:

- Papers cited by Moore (1952)
- C. E. Moore (1969)
- L. Hagan and W. C. Martin (1972)
- L. Hagan (1977)
- R. Zalubas and A. Albright (1980)
- A. Musgrove and R. Zalubas (1985)

vii. Bibliographic file of publications since December 1983 maintained by the NIST Atomic Energy Levels Data Center

2. Acknowledgments

This work was supported in part by the U. S. Department of Energy, Division of Magnetic Fusion Energy.

References for the Introduction

- Cohen, E. R., and Taylor, B. N. [1987], Rev. Mod. Phys. 59, 1121.
- Hagan, L. [1977], Bibliography on Atomic Energy Levels and Spectra, July 1971 through June 1975, Natl. Bur. Stand. (U.S.) Spec. Publ. 363, Suppl. 1.
- Hagan, L., and Martin, W. C. [1972], Bibliography on Atomic Energy Levels and Spectra, July 1968 through June 1971, Natl. Bur. Stand. (U.S.) Spec. Publ. 363.
- Kaufman, V., and Martin, W. C. [1991a], J. Phys. Chem. Ref. Data 20, 83.
- Kaufman, V., and Martin, W. C. [1991b], J. Phys. Chem. Ref. Data 20, 775.
- Kaufman, V., and Sugar, J. [1988], J. Phys. Chem. Ref. Data 17, 1679.
- Kelly, R. L. [1987], J. Phys. Chem. Ref. Data 16, Suppl. 1.
- Martin, W. C. [1973], J. Phys. Chem. Ref. Data 2, 257.
- Martin, W. C. [1987], Phys. Rev. A 36, 3575.
- Martin, W. C., and Zalubas, R. [1979], J. Phys. Chem. Ref. Data 8, 817.
- Martin, W. C., and Zalubas, R. [1980], J. Phys. Chem. Ref. Data 9, 1.
- Martin, W. C., and Zalubas, R. [1981], J. Phys. Chem. Ref. Data 10, 153.
- Martin, W. C., and Zalubas, R. [1983], J. Phys. Chem. Ref. Data 12, 323.
- Martin, W. C., Zalubas, R., and Hagan, L. [1978], *Atomic Energy Levels The Rare-Earth Elements*, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. (U.S.) 60, 422 pp.
- Martin, W. C., Zalubas, R., and Musgrove, A. [1985], J. Phys. Chem Ref. Data 14, 751.
- Martin, W. C., Zalubas, R., and Musgrove, A. [1990], J. Phys. Chem Ref. Data 19, 821.
- Moore, C. E. [1952], Atomic Energy Levels, Natl. Bur. Stand. (U.S.) Circ. 467, Vol. II (reissued in 1971 as Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. (U.S.) 35, Vol. II).
- Moore, C. E. [1969], Bibliography on the Analyses of Optical Atomic Spectra, Natl. Bur. Stand. (U.S.) Spec. Publ. 306, Sec. 2.
- Mori, K., Wiese, W. L., Shirai, T., Nakai, Y., Ozawa, K., and Kato, T. [1986], At. Data Nucl. Data Tables 34, 79.
- Musgrove, A., and Zalubas, R. [1985], Bibliography on Atomic Energy Levels and Spectra, July 1979 through December 1983, Natl. Bur. Stand. (U.S.) Spec. Publ. 363, Suppl. 3.
- Nielson, C. W., and Koster, G. F. [1963], Spectroscopic Coefficients for the pⁿ, dⁿ, and fⁿ Configurations, 275 pp. (M.I.T. Press, Cambridge, MA).
- Reader, J., and Corliss, C. H., Eds. [1990], "Line Spectra of the Elements," CRC Handbook of Chemistry and Physics, 71st Edition, D. R. Lide, Ed., CRC Press Inc., Boca Raton, FL.
- Shirai, T., Mori, K., Sugar, J., Wiese, W. L., Nakai, Y., and Ozawa, K. [1987a], At. Data Nucl. Data Tables 37, 235.
- Shirai, T., Nakai, Y., Ozawa, K., Ishii, K., Sugar, J., and Mori, K. [1987b], J. Phys. Chem. Ref. Data 16, 327.
- Shirai, T., Funatake, Y., Mori, K., Sugar, J., Wiese, W. L., and Nakai, Y. [1990], J. Phys. Chem. Ref. Data 19, 127.
- Shirai, T., Nakagaki, T., Nakai, Y., Sugar, J., Ishii, K., and Mori, K. [1991], J. Phys. Chem. Ref. Data 20, 1.
- Sugar, J., and Corliss, C. [1985], J. Phys. Chem. Ref. Data 14, Suppl. 2. Sugar, J., and Musgrove, A. [1988], J. Phys. Chem. Ref. Data 17, 155.
- Sugar, J., and Musgrove, A. [1990], J. Phys. Chem. Ref. Data 19, 527. Zalubas, R., and Albright, A. [1980], Bibliography on Atomic Energy
- Levels and Spectra, July 1975 through June 1979, Natl. Bur. Stand. (U.S.) Spec. Publ. 363, Suppl. 2.

Ground state $1s^22s^22p^63s^23p^63d^{10}4s^24p^{6-1}S_0$

Ionization energy 112 914.40 \pm 0.03 cm ¹ (13.999 606 \pm 0.000 004 eV)

Meggers, de Bruin, and Humphreys [1929] gave the first extensive description of the neutral spectrum of krypton suitable for determining the energy level structure. They measured 205 lines in the range of 3302-9751 Å and classified nearly all of them. They utilized the vacuum ultraviolet measurements of the two resonance lines at 1164.88 Å and 1235.85 Å by Abbink and Dorgelo [1928] to connect their system of levels to the ground state.

Meggers *et al.* [1931] gave a new description of the spectrum obtained with a Geissler tube, increasing the number of observed lines to 460 and improving the accuracy of the measurements of most of the lines to ± 0.05 Å. The level values were revised to take into account interferometric measurements in the infrared by Humphreys [1930]. Further observations in the infrared by Meggers and Humphreys [1933] increased the number of known lines in the range of 7601 Å to 12 124 Å to 200, and led to another extension of the term structure.

Independent observations and analysis of the spectrum by Gremmer [1929, 1932] confirmed the results of Meggers and Humphreys. Observations were extended to 2.19 μ m by Sittner and Peck [1949] by means of a low voltage spark discharge in krypton. Most of these lines were predicted by the known levels.

Combining all the wavelength data available, Edlén [1946] redetermined the energy levels with an uncertainty of ± 0.05 cm⁻¹. These were published by Moore [1952], in her compilation of *Atomic Energy Levels*.

In 1960 the meter was defined as a multiple of the line of Kr⁸⁶ at 6057.802 10 Å in vacuum. In this connection Edlén, in 1964, urged the determination of a set of energy levels of Kr⁸⁶ based on interferometric measurements that could be used to establish a set of wavelength standards. Kaufman and Humphreys [1969] undertook this project, utilizing the 235 interferometrically measured lines then available to establish the energy levels of Kr⁸⁶. From these levels 530 wavelengths were calculated in the range of 3300 – 40 700 Å with an uncertainty of ± 0.000 10 Å. Relative to the lowest $4p^{5}5s$ level, the uncertainty of these level values is ± 0.0003 cm⁻¹. Their absolute uncertainty relative to the ground state of ± 0.15 cm⁻¹ was due to the uncertainty in the measurement of the resonance lines by Petersson [1964].

By means of a resonant two-photon ionization experiment Trickl *et al.* [1989] measured resonance lines from the $4p^{5}5s$, 6s, and 7s configurations with an average uncertainty of 1 part in 10^{7} . They found that

 0.0679 ± 0.0060 cm⁻¹ must be subtracted from the energy levels of Kaufman and Humphreys an 0.805 ± 0.010 cm⁻¹ from the levels compiled by Mooi [1952].

We have compiled the levels given by Kaufman an Humphreys as corrected by Trickl *et al.* [1989]. Thes levels, given to four decimal places, have an uncertain of ± 0.0003 cm⁻¹ relative to the $4p^{5}(^{2}P_{3/2})5s^{2}[^{3}/_{2}]^{2}$ lev and ± 0.0060 cm⁻¹ relative to the ground state. Add tional levels from Moore's publication, corrected t Trickl *et al.*, are given here with two decimal place value with an uncertainty of ± 0.05 cm⁻¹. The more accurat levels are those of Kr⁸⁶. Since the uncertainty of th Moore values is greater than the isotope shifts measure by Jackson [1979], no correction for this needs to b made to Moore's levels.

Many absorption experiments have been carried or with krypton in the ground state as well as in excite states. These have provided many Rydberg series tha would be obscured by ordering these levels numerically Therefore, they are given in groups belonging to th same series. Generally the first few members are not in cluded in the series group, but are given with their terr group. For example, the $4s^24p^5(2P_{3/2}^o)ns$ series group be gins at n = 13. The series members for n = 6 - 12 ar combined in J_1l -coupling pairs. The absorption experi ments are summarized in Table 1. There is little overlaj of series observations except for Beutler [1935] an Yoshino and Tanaka [1979]. The latter results are mor accurate and more extensive, and are therefore quote here.

Beutler [1935] observed 4p⁵ns and 4p⁵nd series to n = 12 and n = 14, respectively. Yoshino and Tanak: [1979] extended the Beutler *nd* series to n = 60 and the ns to n = 33, adding several more series of these configu rations. These results have a measurement uncertaint of ± 0.3 cm⁻¹. Delsart *et al.* [1981a] derived additiona series terms as well as new np and nf series by optogal vanic detection, starting from an excited level. In an ad ditional paper, Delsart et al. [1981b] reported many series observed by two-photon field ionization from ; metastable state populated in a microwave discharge Their measurement uncertainty is ± 0.03 Å. These n. and *nd* series were observed from n = 24 - 61 with J. values of 1-3. We quote these results along with those of Yoshino and Tanaka for the remaining series members. Delsart et al. [1981a, 1981b] derived a value for the first series limit of 112914.47 ± 0.03 cm⁻¹. Because their vel values are derived relative to the excited levels reorted by Kaufman and Humphreys, we corrected the nization energy by subtracting 0.0679 cm⁻¹.

Both Beutler and Yoshino and Tanaka observed *ns* and *nd* series terminating on the second limit, the $r^{5}(^{2}P_{1/2}^{o})$ term of Kr II, the latter authors extending the *d* series to n = 59. From this they derived a value for the ries limit of $118\ 284.6\pm0.2\ cm^{-1}$. A more accurate alue of $118\ 284.50\pm0.05\ cm^{-1}$ may be obtained from the first limit plus the $4p^{5}{}^{2}P^{o}$ interval of Kr II.

Both $4p^{5}(^{2}P_{1/2}^{\circ})np$ and nf series were observed by bunning and Stebbings [1974] using a pulsed tunable iser with a metastable Kr beam. They estimate their reasurement uncertainty to be $\pm 8 \text{ cm}^{-1}$. These series ave also been populated by four-photon excitation from he ground state by Blazewicz *et al.* [1987]. They meaured level values with an uncertainty of $\pm 4 \text{ cm}^{-1}$. They bserved sharp, intense *nf* peaks interleaved with much reaker *np* peaks. Both consist of unresolved terms of a iven *n* with J = 2 and 4.

By means of an optogalvanic double resonance xperiment, Wada *et al.* [1986] observed the $p^{5}({}^{2}P_{1/2}^{\circ})7d \, {}^{2}[{}^{5}/_{2}]_{2,3}^{\circ}$, the $4p^{5}({}^{2}P_{1/2}^{\circ})7d \, {}^{2}[{}^{3}/_{2}]_{1,2}^{\circ}$, and the $p^{5}({}^{2}P_{1/2}^{\circ})9s \, {}^{2}[{}^{1}/_{2}]_{0,1}^{\circ}$ levels. We quote these results.

Rydberg series arising from absorption from the 3d and 4s shells were obtained by Codling and Madden 1964, 1971] using synchrotron radiation. A total of 153 absorption lines in the range of 337-500 Å are given by Codling and Madden [1971], but most of these are not classified. In the range 450-500 Å they identified the $ls 4p^{6}np$ series from n = 5 - 19 with a level uncertainty of ± 15 cm⁻¹. Two series were observed at 131 - 136 Å by Codling and Madden [1964] arising from excitation of he 3d shell, and having the upper levels $3d^{9}(^{2}D_{32,52})$ $ls^{2}4p^{6}np$ for n = 5 - 8. The measurement uncertainty is ± 0.1 Å giving a level uncertainty of ± 500 cm⁻¹. They also derived the series limits with these data. These results are quoted here.

Some energy levels arising from inner shell excitations by electron impact have been located. The lowest-lying doubly excited state, $4s^24p^{4}5s^{2} {}^{3}P_2$ was identified by Valin and Marmet [1975] at 22.83 ± 0.05 eV. They also give the $4s^24p^{4}5s^{2} {}^{3}P_{0,1}^{\circ}$ blend at 23.39 ± 0.05 eV and the ${}^{1}D_{2}^{\circ}$ at 24.56 ± 0.05 eV. These are in agreement with the earlier assignments by Gerber *et al.* [1972]. Several other resonances observed by Valin and Marmet are identified as $4s^{2}4p^{4}5snl$ states. These results obtained by electron impact excitation are not included in the table of energy levels.

On the basis of a theoretical study of the odd parity series by Aymar *et al.* [1981] the levels 111 003 cm⁻¹ and 111 072 cm⁻¹ have been designated $4p^{5}({}^{2}P_{3/2}^{\circ})7s$ [1/2][°] and $4p^{5}({}^{2}P_{3/2}^{\circ})9d$ [1/2][°] respectively. Yoshino and Tanaka agree with this assignment. The second of these levels, however, has no major component greater than 32% while the first has 60% as given here.

The g-values of the $4p^{5}5p$ levels given to five decimal places were observed by optically pumping $4p^{5}5s$ metastable krypton atoms to magnetic sublevels of

J. Phys. Chem. Ref. Data, Vol. 20, No. 5, 1991

 $4p^{5}5p$. This work was done by Abu-Safia *et al*. [1981] and by Abu-Safia and Margerie [1983]. The remaining *g*values were measured by Green *et al*. [1940] and Green [1943] who used an arc discharge in a magnetic field.

Sage and Lecler [1985] have measured a g-value for the $4p^{5}(^{2}P_{1/2}^{\circ})5s^{2}[^{1}/_{2}]_{0}^{\circ}$ level of Kr⁸³ of 0.974(4)×10⁻⁴ by optical pumping and magnetic resonance.

TABLE 1. Observed Series in Kr 1

Configuration	Term	n-range	Reference
4s ² 4p ⁵ (² P _{3/2})nd	² [³ / ₂] ₁	4-8 4-60 24-45	Beutler [1935] Yoshino and Tanaka [1979] Delsart <i>et al</i> . [1981b]
4s ² 4p ⁵ (² P ^o _{3/2})nd	² [³ / ₂] ⁶ / ₂	15–25 24–61	Delsart <i>et al</i> . [1981a] Delsart <i>et al</i> . [1981b]
4s ² 4p ⁵ (² P ^o _{3/2})nd	² [¹ / ₂] ₁	4-29 24-35	Yoshino and Tanaka [1979] Delsart <i>et al</i> . [1981b]
4s ² 4p ⁵ (² P _{3/2})nd	² [⁵ / ₂] ²	24-50	Delsart et al. [1981b]
4s ² 4p ⁵ (² P _{3/2})nd	² [⁵ / ₂]3	24 - 46	Delsart et al. [1981b]
4s ² 4p ⁵ (² P _{3/2})nd	² [⁷ / ₂] ₃	15–25 24–53	Delsart <i>et al.</i> [1981a] Delsart <i>et al.</i> [1981b]
4s ² 4p ⁵ (² P ^o _{3/2})ns	² [³ / ₂] ₁	6-11 5-33	Beutler [1935] Yoshino and Tanaka [1979]
4s ² 4p ⁵ (² P _{1/2})ns	²[¹/2]î	8-12 5-30	Beutler [1935] Yoshino and Tanaka [1979]
4s ² 4p ⁵ (² P _{3/2})ns	² [³ / ₂] ²	26 - 60	Delsart et al. [1981b]
4s ² 4p ⁵ (² P _{3/2})ry	²[⁵ /2]3	15 - 19	Delsart et al. [1981a]
4s ² 4p ⁵ (² P _{3/2})nf	2[7/2]	13-18	Delsart et al. [1981a]
4s ² 4p ⁵ (² P _{3/2})nf	²[%]	13 - 18	Delsart et al. [1981a]
4s ² 4p ⁵ (² P° _{1/2})nd	²[³/2]î	6-14 4-59	Beutler [1935] Yoshino and Tanaka [1979]
4s ² 4p ⁵ (² P _{1/2})ns	² [¹ / ₂]î	6-12 5-30	Beutler [1935] Yoshino and Tanaka [1979]
4s ² 4p ⁵ (² P _{1/2})np	² [¹ / ₂] ₁	8-25	Dunning and Stebbings [1974
4s ² 4p ⁵ (² P _{1/2})nf		5-9 7-18	Dunning and Stebbings [1974 Blazewicz et al. [1987]
4s ² 4p ⁵ (² P° _{1/2})np		10-14	Blazewicz et al. [1987]
4s 4p ⁶ np		5-19	Codling and Madden [1971]
3d9(2D512)4s24p6np	(⁵ /2, ³ /2)1	5-8	Codling and Madden [1964]
3d 9(2D3/2)4s 24p 6np	(³ / ₂ , ¹ / ₂) ^o ₁	5-8	Codling and Madden [1964]

References

Abbink, J. H., and Dorgelo, H. B. [1928], Z. Phys. 47, 221.

Abu-Safia, H., Grandin, J. P., and Husson, X. [1981], J. Phys. B 14, 3363.

Abu-Safia, H., and Margerie, J. [1983], J. Phys. B 16, 927.

Aymar, M., Robaux, O., and Thomas, C. [1981], J. Phys. B 14, 4255. Beutler, H. [1935], Z. Phys. 93, 177.

Blazewicz, P. R., Stockdale, J. A. D., Miller, J. C., Efthimiopoulos, T., and Fotakis, C. [1987], Phys. Rev. A 35, 1092.

Codling, K., and Madden, R. P. [1964], Phys. Rev. Lett. 12, 106.

Codling, K., and Madden, R. P. [1971], Phys. Rev. A 4, 2261.

Delsart, C., Keller, J. -C., and Thomas, C. [1981a], J. Phys. B 14, 3355. Delsart, C., Keller, J. -C., and Thomas, C. [1981b], J. Phys. B 14, 4241. Dunning, F. B., and Stebbings, R. F. [1974], Phys. Rev. A 9, 2378.

- Edlén, B. [1946], unpublished material.
- Edlén, B. [1964], Trans. Int. Astron. Union 12A, 139.
- Gerber, G., Morgenstern, R., and Niehaus, A. [1972], J. Phys. B 5, 1396.
- Green, J. B. [1943], Phys. Rev. 64, 151.
- Green, J. B., Bowman, D. W., and Hurlburt, E. H. [1940], Phys. Rev. 58, 1094.
- Gremmer, W. [1929], Z. Phys. 54, 199.
- Gremmer, W. [1932], Z. Phys. 73, 620.
- Humphreys, C. J. [1930], J. Res. Natl. Bur. Stand. (U. S.) 5, 1041.
- Jackson, D. A. [1979], J. Opt. Soc. Am. 69, 503.
- Kaufman, V., and Humphreys, C. J. [1969], J. Opt. Soc. Am. 59, 1614.
- Meggers, W. F., de Bruin, T. L., and Humphreys, C. J. [1929], J. Res. Natl. Bur. Stand. (U. S.) 3, 129.
- Meggers, W. F., de Bruin, T. L., and Humphreys, C. J. [1931], J. Res. Natl. Bur. Stand. (U. S.) 7, 643.

Configuration

4s²4p⁵(²P_{3/2})6p

²[¹/₂]

L

Torm

- Meggers, W. F., and Humphreys, C. J. [1933], J. Res. Natl. Bur. Stat (U. S.) 10, 427.
- Moore, C. E. [1952], Atomic Energy Levels, Natl. Bur. Stand. (U. S. Circ. 467, Vol. II; [1971], reprinted as Natl. Stand. Ref. Data Se Natl. Bur. Stand. (U.S.) 35, Vol. II.
- Petersson, B. [1964], Ark. Fys. 27, 317.

Level (cm⁻¹)

102 887.1878

103 761.6280

1.834

- Sage, F., and Lecler, D. [1985], J. Phys. (Paris) 46, 545.
- Sittner, W. R., and Peck, E. R. [1949], J. Opt. Soc. Am. 39, 474.
- Trickl, T., Vrakking, M. J. J., Cromwell, E., Lee, Y. T., and Kur A. H. [1989], Phys. Rev. A 39, 2948.
- Valin, M., and Marmet, P. [1975], J. Phys. B 8, 2953.
- Wada, A., Adachi, Y., and Hirose, C. [1986], J. Phys. Chem. 90, 664

~

Yoshino, K., and Tanaka, Y. [1979], J. Opt. Soc. Am. 69, 159.

Configuration	Term	J	Level (cm ⁻¹)	g
$4s^24p^6$	¹ S	0	0.0000	
4s ² 4p ⁵ (² P _{3/2})5s	² [³ / ₂]°	2	79 971.7321	1.502
		1	80 916.7575	1.242
4s ² 4p ⁵ (² P° _{1/2})5s	² [¹ / ₂]°	0	85 191.6075	
		1	85 846.6945	1.259
4s ² 4p ⁵ (² P _{3/2})5p	² [¹ / ₂]	1	91 168.5073	1.893
		0	94 092.8557	
4s ² 4p ⁵ (² P _{3/2})5p	² [⁵ / ₂]	3	92 294.3938	1.336
		2	92 307.3714	1.10108
4s ² 4p ⁵ (² P _{3/2})5p	² [³ / ₂]	1	92 964.3871	1.00958
	• • • •	2	93 123.3337	1.38371
4s ² 4p ⁵ (² P _{3/2})4d	² [¹ / ₂]°	0	96 771.4884	
		1	97 085.1882	
4s ² 4p ⁵ (² P _{1/2})5p	² [³ / ₂]	1	97 595.9086	0.64687
		2	97 945.1597	1.18194
4s ² 4p ⁵ (² P _{3/2})4d	² [³ / ₂]°	2	97 687.7742	
		1	99 646.2086	
4s ² 4p ⁵ (² P _{3/2})4d	² [⁷ / ₂]°	4	97 797.2818	
	• • • • •	3	98 226.2633	
4s ² 4p ⁵ (² P _{1/2})5p	² [¹ / ₂]	1	97 919.1400	1.452
· · ····	• • • •	0	98 855.0632	
4s ² 4p ⁵ (² P _{3/2})4d	² [⁵ / ₂]°	2	98 867.4243	
× · 0/47		3	99 079.3619	
4s ² 4p ⁵ (² P _{3/2})6s	$2[3/2]^{\circ}$	2	99 626.8753	
A \	L ·	1	99 894.0402	

Kr I

T

8(

Kr I – Continued

Configuration	Term	J	Level (cm ⁻¹)	g
4s ² 4p ⁵ (² P _{3/2})6p	² [⁵ / ₂]	3 2	103 115.6286 103 121.1362	1.333 1.107
$4s^24p^5(^2P_{1/2}^\circ)4d$	²[³/₂]°	2	103 266.3335 104 887.3097	1.018
4s ² 4p ⁵ (² P _{3/2})6p	² [³ / ₂]	1 2	103 313.4669 103 362.6067	1.034 1.403
4s ² 4p ⁵ (² P _{1/2})4d	² [⁵ / ₂]°	2	103 362.6067 103 442.6852	1.400
4-24-5/2D9) ~ J	211/ 10	3	103 701.4334	1.098
4s ² 4p ⁵ (² P _{3/2})5d	² [¹ / ₂]°	1 0	103 801.7882 104 073.4663	1.098
4s ² 4p ⁵ (² P _{3/2})5d	² [⁷ / ₂]°	3 4	104 916.4746 104 630.56	1.050
$4s^24p^5(^2\mathrm{P}_{3/2}^\circ)5d$	²[³/₂]°	2	105 007.2398 105 648.4287	1.295 0.935
4s ² 4p ⁵ (² P _{1/2})6s	² [¹ / ₂]°	01	105 091.34 105 146.32	
4s ² 4p ⁵ (² P _{3/2})5d	² [⁵ / ₂]°	2 3	105 163.4940 105 208.4706	1,006 1.243
4s ² 4p ⁵ (² P _{3/2})7s	² [³ / ₂]°	2 1	105 647.4482 105 770.6953	1.496 1.097
4s ² 4p ⁵ (² P _{3/2})4f	² [³ / ₂]	$\frac{1}{2}$	105 964.4407 105 965.5570	0.52
4s ² 4p ⁵ (² P _{1/2})4f	² [⁹ / ₂]	5	105 988.80	
4s ² 4p ⁵ (² P _{3/2})4f	² [⁵ / ₂]	32	106 020.8375 106 021.6016	
4s ² 4p ⁵ (² P _{3/2})4f	² [⁷ /2]	3,4	106 047.38	
4s ² 4p ⁵ (² P _{3/2})7p	² [¹ / ₂]	1 0	107 005.3663 107 410.3742	1.795
4s ² 4p ⁵ (² P _{3/2})7p	² [⁵ / ₂]	23	107 140.7949 107 141.1660	
4s ² 4p ⁵ (² P _{3/2})7p	$2[3/_2]$	1 2	107 221.3282 107 246.6824	1.041
4s²4p⁵(²P₃⁄2)6d	² [¹ / ₂]°	0	107 603.5951 107 676.1446	1.348
4s ² 4p ⁵ (² P _{3/2})6d	² [⁷ / ₂]°	4	107 778.9595	1.231
4s ² 4p ⁵ (² P _{3/2})6d	² [³ / ₂]°	3 2	107 876.9038 107 796.8747	1.073
102105(200 201	215/ 10	1	108 258.7507	0.823
$4s^24p^5(^2\mathrm{P}_{3/2}^\circ)6d$	² [⁵ / ₂]°	$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	107 992.7823 108 046.3060	0.965 1.254

Configuration	Term	J	Level (cm ⁻¹)	g
4s ² 4p ⁵ (² P _{3/2})8s	² [³ / ₂]°	2 1	108 324.9779 108 373.0375	1.506 1.171
4s ² 4p ⁵ (² P _{1/2})6p	² [³ / ₂]	1 2	108 438.2555 108 567.7650	0.648 1.158
4s ² 4p ⁵ (² P _{3/2})5f	² [³ / ₂]	2 1	108 471.1225 108 480.7462	1.09 0.61
4s ² 4p ⁵ (² P _{3/2})5f	² [⁹ / ₂]	5 4	108 486.9391 108 487.0740	
4s ² 4p ⁵ (² P _{3/2})5f	² [⁵ / ₂]	3 2	108 503.2326 108 503.8663	
$4s^24p^{5}(^2\mathrm{P}_{1/2}^{\circ})6p$	² [¹ / ₂]	1 0	108 514.1776 108 821.5639	1.401
4s ² 4p ⁵ (² P _{3/2})5f	² [⁷ / ₂]	3,4	108 517.03	
$4s^24p^5(^2\mathrm{P}_{3/2}^2)8p$	² [¹ / ₂]	1 0	109 082.7646 109 296.1863	1.795
4s ² 4p ⁵ (² P _{3/2})8p	² [⁵ / ₂]	3 2	109 103.2973 109 105.78	
$4s^24p^{5}(^2\mathrm{P}^{\circ}_{3/2})8p$	² [³ / ₂]	1 2	109 149.6890 109 160.9517	1.014 1.411
4s ² 4p ⁵ (² P _{3/2})7d	² [¹ / ₂]°	0 1	109 330.9773 109 342.9326	1.355
4s ² 4p ⁵ (² P _{3/2})7d	² [³ / ₂]°	2 1	109 375.2833 109 688.7511	1.315 0.797
4s ² 4p ⁵ (² P _{3/2})7d	²[⁷ /₂]°	43	109 433.9038 109 471.4165	1.228 1.094
$4s^24p^5(^2\mathrm{P}_{3/2}^\circ)7d$	² [⁵ / ₂]°	2 3	109 527.5227 109 578.9940	0.954 1.231
4s ² 4p ⁵ (² P _{3/2})9s	² [³ / ₂]°	2 1	109 751.9593 109 779.3081	$1.495 \\ 1.174$
4s ² 4p ⁵ (² P _{8/2})6f	² [³ / ₂]	1 2	109 836.14 109 836.76	
4s ² 4p ⁵ (² P _{3/2})6f	² [⁹ / ₂]	4	109 843.1265	
4s ² 4p ⁵ (² P _{3/2})6f	² [⁵ / ₂]	3 2	109 852.3011 109 852.75	
4s ² 4p ⁵ (² P _{3/2})6f	² [⁷ / ₂]	3 4	109 860.3335 109 860.3609	
$4s^24p^5(^2\mathrm{P}_{1/2}^{\circ})5d$	² [³ / ₂]°	2	110 103.2299 110 733.26	1.169
$4s^24p^5(^2 ext{P}_{1/2}^\circ)5d$	² [⁵ / ₂]°	2 3	110 121.9917 110 237.4160	0.899 1.140

Kr I – Continued

Kr I – Continued

Configuration	Term	J	Level (cm ⁻¹)	g
4s ² 4p ⁵ (² P _{3/2})9p	² [¹ / ₂]	1 0	110 180.07 110 308.13	
4s ² 4p ⁵ (² P _{3/2})9p	² [⁵ / ₂]	3 2	110 209.55 110 209.84	
4s ² 4p ⁵ (² P _{3/2})9p	² [³ / ₂]	1 2	110 234.84 110 242.82	
4s ² 4p ⁵ (² P _{3/2})8d	² [¹ / ₂]°	1 0	110 290.3120 110 355.6214	1.294
4s ² 4p ⁵ (² P _{3/2})8d	² [⁷ / ₂]°	4 3	110 403.6333 110 470.9140	1.236 1.037
4s ² 4p ⁵ (² P _{3/2})8d	² [⁵ / ₂]°	2 3	110 496.7083 110 508.1304	1.005 1.227
4s ² 4p ⁵ (² P _{3/2})8d	² [³ / ₂]°	21	110 512.8220 110 514.0901	
4s ² 4p ⁵ (² P _{3/2})10s	² [³ / ₂]°	2 1	110 608.3537 110 619.0701	1.161
4s ² 4p ⁵ (² P _{3/2})7f	² [³ / ₂]	1 2	110 655.44 110 656.00	
4s ² 4p ⁵ (² P _{3/2})7f	² [⁹ / ₂]	4,5	110 659.89	
4s ² 4p ⁵ (² P _{3/2})7f	² [⁵ / ₂]	3 2	110 665.44 110 665.74	
4s ² 4p ⁵ (² P _{3/2})7f	² [⁷ / ₂]	3,4	110 670.66	
4s ² 4p ⁵ (² P _{3/2})10p	² [¹ / ₂]	1 0	110 872.42 110 956.23	
4s ² 4p ⁵ (² P _{3/2})10p	² [³ / ₂]	2	110 916.06	
4s ² 4p ⁵ (² P _{3/2})9d	² [¹ / ₂]°	0 1	110 933.3525 111 002.9789	1.208
4s ² 4p ⁵ (² P _{1/2})7s	² [¹ / ₂]°	1	111 003.0	
$4s^24p^5(^2\mathrm{P}^{9}_{3/2})9d$	² [⁷ / ₂]°	4 3	111 018.8713 111 047.1626	
4s ² 4p ⁵ (² P _{3/2})9d	²[³/₂]°	2 1	111 047.06 111 154.3	
4s ² 4p ⁵ (² P _{3/2})9d	² [⁵ / ₂]°	2 3	111 071.44 111 079.05	
4s ² 4p ⁵ (² P _{3/2})11s	²[³/₂]°	2 1	111 154.39 111 170.82	
4s ² 4p ⁵ (² P _{3/2})8f	² [³ / ₂]	1	111 186.53	
4s ² 4p ⁵ (² P _{3/2})8f	² [⁹ / ₂]	4,5	111 189.49	

Configuration	Term	J	Level (cm ⁻¹)	g
4s ² 4p ⁵ (² P _{3/2})8f	² [⁵ / ₂]	3	111 192.65	
		2	111 192.98	
$4s^24p^5(^2P_{1/2}^\circ)4f$	² [⁷ / ₂]	4	111 377.9	
-10 -1p (- 1/2) /	[72]	3	111 378.41	
	2-5		111 000 00	
$4s^24p^5(^2P_{1/2}^\circ)4f$	² [⁵ / ₂]	32	111 380.30 111 381.88	
			111 501.00	
4s ² 4p ⁵ (² P _{3/2})11p	2[1/2]	0	111 390.6	
$4s^24p^{5}(^{2}P_{3/2}^{\circ})10d$	² [¹ / ₂]°	0	111 412.43	
10 10 (13/2) - 00	[/2]	1	111 428.56	
4-24-5(2D9)10d	217/ 19		111 433.1407	
4s ² 4p ⁵ (² P _{3/2})10d	² [⁷ / ₂]°	4 3	111 433.1407 111 450.42	
	0.5			
$4s^24p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})10d$	² [³ / ₂]°	2	111 445.38	
		1	111 520.2	
4s ² 4p ⁵ (² P _{3/2})10d	² [⁵ / ₂]°	2	111 467.34	
		3	111 474.07	
4s ² 4p ⁵ (² P _{3/2})12s	² [³ / ₂]°	2	111 527.82	
		1	111 536.62	
4s ² 4p ⁵ (² P _{3/2})9f	² [³ / ₂]	1	111 550.5	
4s ² 4p ⁵ (² P _{3/2})9f	² [⁹ / ₂]	5	111 552.36	
4s ² 4p ⁵ (² P _{3/2})9f	² [⁵ / ₂]	3	111 555.76	
4s ² 4p ⁵ (² P _{3/2})11d	² [¹ / ₂]°	0	111 708.31	
10 ip (13/2)110	[72]	1	111 718.15	
4.24.5(200.)11.1	217/ 10		111 795 9979	
$4s^24p^5(^2P_{3/2}^\circ)11d$	² [⁷ / ₂]°	4	111 725.2078 111 736.85	
		Ŭ		
$4s^{2}4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})11d$	² [³ / ₂]°	2	111 731.13	
		1	111 786.1	
4s ² 4p ⁵ (² P _{3/2})11d	² [⁵ / ₂]°	3	111 754.34	
4s ² 4p ⁵ (² P _{3/2})13s	$2[3/2]^{\circ}$	1	111 799.9	
4s ² 4p ⁵ (² P _{3/2})14s	² [³ / ₂]°	1	111 994.5	
$4s^24p^5(^2P_{3/2}^{\circ})15s$	$\frac{2[3/2]^{\circ}}{2[3/19]}$	1	112 142.4	
4s ² 4p ⁵ (² P _{3/2})16s 4s ² 4p ⁵ (² P _{3/2})17s	$2[3/2]^{\circ}$ $2[3/2]^{\circ}$	1 1	<i>112 257.3</i> 112 348.3	
$4s^24p^5(^2P_{3/2}^\circ)18s$	² [³ / ₂]°	1	112 421.7	
4s ² 4p ⁵ (² P _{3/2})19s	² [³ / ₂]°	1	112 481.6	
$s^{2}4p^{5}(^{2}P_{3/2}^{\circ})20s$	² [³ / ₂]° ² [³ / ₁ 9	1	112 531.2	
4s ² 4p ⁵ (² P _{3/2})21s 4s ² 4p ⁵ (² P _{3/2})22s	² [³ / ₂]° ² [³ / ₂]°	1	112 572.8 112 608.0	
4s ² 4p ⁵ (² P _{3/2})23s	² [³ / ₂]°	1	112 637.9	
$4s^24p^5(^2P_{3/2}^2)24s$	$2[3/2]^{\circ}$	1	112 663.8	
4s ² 4p ⁵ (² P _{3/2})25s 4s ² 4p ⁵ (² P _{3/2})26s	² [³ / ₂]° ² [³ / ₂]°	1 1	112 686.1 112 705.7	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})27s$	² [³ / ₂]°	1	112 722.7	
4s ² 4p ⁵ (² P _{3/2})28s	² [³ / ₂]°	1	112 737.8	
s ² 4p ⁵ (² P ^o _{3/2})29s	² [³ / ₂]°		112 751.1	

Kr I – Continued

Kr I		Con	tinu	led
------	--	-----	------	-----

Configuration	Term	J	Level (cm ⁻¹)	g
4s ² 4p ⁵ (² P _{3/2})30s	² [³ / ₂]°	1	112 762.9	
$4s^24p^5(^2P_{3/2}^\circ)31s$	² [³ / ₂]°	1	112 773.6	
4s ² 4p ⁵ (² P _{3/2})32s	² [³ / ₂]°	1	112 783.1	
4s ² 4p ⁵ (² P _{3/2})33s	² [³ / ₂]°	1 -	112 791.8	
4s ² 4p ⁵ (² P _{3/2})10f	² [³ / ₂]	1	111 809.6	
4s ² 4p ⁵ (² P _{3/2})10f	² [⁹ / ₂]	5	111 811.5	
4s ² 4p ⁵ (² P _{3/2})10f	² [⁵ / ₂]	3	111 813.4	
4s ² 4p ⁵ (² P _{3/2})13p	² [¹ / ₂]	0	111 914	
4s ² 4p ⁵ (² P _{3/2})14p	2[1/2]	0	112 080	
4s ² 4p ⁵ (² P _{3/2})15p	2[1/2]	0	112 208	
$4s^24p^5(^2P_{3/2}^\circ)16p$	² [¹ / ₂]	0	112 310	
4s ² 4p ⁵ (² P ^o _{3/2})12d	² [⁷ / ₂]°	4	111 938.70	
		3	111 946.90	
$4s^{2}4p^{5}(^{2}P_{3/2}^{o})12d$	² [³ / ₂] ⁹	1	111 983.3	
$4s^24p^5(^2P^{\circ}_{3/2})13d$	² [³ / ₂]°	1	112 133.2	
4s ² 4p ⁵ (² P _{3/2})14d	² [³ / ₂]°	1	112 249.7	
$4s^24p^5(^2P_{3/2}^\circ)15d$	$2[3/2]^{\circ}$	1	112 342.0	
$4s^24p^5(^2P_{3/2}^\circ)16d$	${}^{2}[{}^{3}/_{2}]^{\circ}$	1	112 416.4	
$4s^24p^5(^2P_{3/2}^\circ)17d$	² [³ / ₂]°	1	112 477.2	
$4s^24p^5(^2P_{3/2}^\circ)18d$	$2[3/2]^{\circ}$		112 527.5	
$4s^24p^5(^2P_{3/2}^\circ)19d$	$2[3/2]^{\circ}$	1	112 569.7	
$4s^24p^5(^2P_{3/2}^\circ)20d$	$2[3/2]^{\circ}$	1	112 605.2 112 635.6	
4s ² 4p ⁵ (² P _{3/2})21d 4s ² 4p ⁵ (² P _{3/2})22d	² [³ / ₂]° ² [³ / ₂]°		112 655.6	
$4s^{2}4p^{5}(^{2}P_{3/2}^{2})23d$	$\binom{72}{2}{\binom{3}{2}}^{\circ}$	1	112 684.3	
$4s^{2}4p^{5}(^{2}P_{3/2}^{2})24d$	$\binom{1}{2}{\binom{2}{2}}^{2}{\binom{3}{2}}^{2}$		112 084.5	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})25d$	${}^{2}[{}^{3}/_{2}]^{\circ}$	1	112 705.55	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})26d$	${}^{2}[{}^{3}/_{2}]^{\circ}$	1	112 736.46	
4s ² 4p ⁵ (² P _{3/2})27d	² [³ / ₂]°	1	112 749.97	
4s ² 4p ⁵ (² P _{3/2})28d	² [³ / ₂]°	1	112 762.00	
4s ² 4p ⁵ (² P _{3/2})29d	$2[3/2]^{\circ}$	1	112 772.75	
$4s^24p^5(^2P_{3/2}^{\circ})30d$	² [³ / ₂]°	1	112 782.40	
4s ² 4p ⁵ (² P _{3/2})31d	² [³ / ₂]°	1	112 791.10	
4s ² 4p ⁵ (² P _{3/2})32d	² [³ / ₂]°	1	112 798.97	
4s ² 4p ⁵ (² P _{3/2})33d	² [³ / ₂]°	1	112 806.12	
$4s^24p^5(^2P^{\circ}_{3/2})34d$	² [³ / ₂]°	1	112 812.59	
4s ² 4p ⁵ (² P _{3/2})35d	² [³ / ₂]°	1	112 818.53	
4s ² 4p ⁵ (² P _{3/2})36d	² [³ / ₂]°	1	112 823.96	
$4s^24p^{5}(^2\mathrm{P}^{\mathrm{o}}_{3/2})37d$	² [³ / ₂]°	1	112 828.93	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})38d$	² [³ / ₂]°	1	112 833.50	
4s ² 4p ⁵ (² P _{3/2})39d	² [³ / ₂]°	1	112 837.74	
4s ² 4p ⁵ (² P ^o _{3/2})40d	${}^{2}[{}^{3}/_{2}]^{\circ}$	1	112 841.62	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})41d$	${}^{2}[{}^{3}/_{2}]^{\circ}$	1	112 845.24	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})42d$	$\binom{2[3]{2}}{2[3]{19}}$	1	112 848.58	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})43d$	$\binom{2[3/2]^{\circ}}{2[3/19]}$	1	112 851.68	
$\frac{4s^24p^5(^2\mathrm{P}_{3/2}^{\circ})44d}{4s^24p^5(^2\mathrm{P}_{3/2}^{\circ})45d}$	$2[3/2]^{\circ}$ $2[3/2]^{\circ}$	· 1 1	112 854.58 112 857.28	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})45d$ $4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})46d$	² [³ / ₂] [°]		112 857.28 112 860.0	
$4s^{2}4p^{\circ}(^{2}P_{3/2}^{\circ})46d$ $4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})47d$	$2[3/2]^{\circ}$ $2[3/2]^{\circ}$		112 860.0 112 862.4	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})48d$	² [³ / ₂] ^o	1	112 862.4 112 864.6	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})49d$	$2[3/2]^{\circ}$	1	112 866.6	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})50d$	$2[3/2]^{2}$	1	112 868.6	
$4s^{-4}p^{-(-P_{3/2})50d}$ $4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})51d$	$2[3/2]^{\circ}$	1	112 808.0	
$4s^{2}4p^{5}(^{2}P_{3/2}^{2})52d$	² [³ / ₂]°	1	112 872.1	

Configuration	Term	J	Level (cm ⁻¹)	g
4s ² 4p ⁵ (² P _{3/2})53d	² [³ / ₂]°	1	112 873.8	
4s ² 4p ⁵ (² P _{3/2})54d	$2[3/2]^{\circ}$	1	112 875.3	
4s ² 4p ⁵ (² P _{3/2})55d	² [³ / ₂]°	1	112 876.8	
4s ² 4p ⁵ (² P _{3/2})56d	² [³ / ₂]°	1	112 878.1	
$4s^2 4p^5 (^2P_{3/2}^2)57d$	² [³ / ₂]°	1	112 879.4	1
$4s^2 4p^5 (^2P_{3/2}^2)58d$	² [³ / ₂]°	i	112 880.6	
$4s^24p^5(^2P_{3/2}^2)59d$	² [³ / ₂]°		112 881.9	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})60d$	2[³ / ₂]°	1		
	[/2]	1	112 883.4	
4s ² 4p ⁵ (² P _{3/2})13d	² [⁷ / ₂]°	4	112 099.74	
4s ² 4p ⁵ (² P _{3/2})15p	² [⁵ / ₂]	3	112 197.91	
4s ² 4p ⁵ (² P _{3/2})16p	² [⁵ / ₂]	3	112 301.11	
4s ² 4p ⁵ (² P _{3/2})17p	² [⁵ / ₂]	3		
4s ² 4p ⁵ (² P _{3/2})18p	2[5/2]	3	112 450.30	
4s ² 4p ⁵ (² P _{3/2})19p	² [⁵ / ₂]	3	112 505.29	
4s ² 4p ⁵ (² P _{3/2})13f	² [⁹ / ₂]		112 262.63	
$4s^24p^5(^2P_{3/2}^\circ)14f$	² [⁹ / ₂]		112 202.00	
$4s^2 4p^{\circ}(^2P_{3/2}^{\circ})15f$	² [⁹ / ₂]		112 352.57	
$4s^24p^5(^2P_{3/2}^2)16f$	² [⁹ / ₂]		112 484.45	
$4s^24p^5(^2P_{3/2}^2)17f$	² [⁹ / ₂]		112 484.45	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})18f$	² [⁹ / ₂]			
	[[/2]		112 574.79	
4s ² 4p ⁵ (² P _{3/2})13f	² [⁷ / ₂]		112 264.35	
4s ² 4p ⁵ (² P _{3/2})14f	² [⁷ / ₂]		112 353.95	
4s ² 4p ⁵ (² P _{3/2})15f	² [⁷ /2]		112 426.22	
4s ² 4p ⁵ (² P _{3/2})16f	² [⁷ / ₂]		112 485.35	
$4s^24p^5(^2P_{3/2}^\circ)17f$	2[7/2]		112 534.35	
$4s^24p^5(^2P_{3/2}^\circ)18f$	² [⁷ / ₂]		112 534.55	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})15d$	² [³ / ₂]°	2	112 321.68	
$4s^24p^5(^2P_{3/2}^\circ)16d$	² [³ / ₂]°	2	112 399.80	
$4s^24p^{5}(^{2}P^{o}_{3/2})17d$	² [³ / ₂]°	2	112 463.47	
4s ² 4p ⁵ (² P _{3/2})18d	² [³ / ₂]°	2	112 516.01	
4s ² 4p ⁵ (² P _{3/2})19d	² [³ / ₂]°	2	112 559.89	
4s ² 4p ⁵ (² P _{3/2})20d	² [³ / ₂]°	2	112 596.91	
$4s^24p^5(^2P^{\circ}_{3/2})21d$	² [³ / ₂]°	2	112 628.43	
4s ² 4p ⁵ (² P _{3/2})22d	$2[3/2]^{\circ}$	2	112 655.48	
4s ² 4p ⁵ (² P _{3/2})23d	² [³ / ₂]°	2	112 678.88	
4s ² 4p ⁵ (² P _{3/2})24d	² [³ / ₂]°	2	112 699.26	
4s ² 4p ⁵ (² P _{3/2})25d	² [³ / ₂]°	2	112 717.10	
4s ² 4p ⁵ (² P _{3/2})26d	² [³ / ₂]°	2	112 732.73	
$4s^24p^5(^2P_{3/2}^\circ)27d$	$2[3/2]^{2}$	2	112 732.75	
4s ² 4p ⁵ (² P _{3/2})28d	$2[3/2]^{2}$	2	112 759.01	
$4s^24p^5(^2P_{3/2}^\circ)29d$	² [³ / ₂]°	2		
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})30d$	¹ /2] ² [³ / ₂]°	2	112 770.07	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})31d$	[/2] 2(3/ 10		112 779.99	
$4s^{2}4p^{5}(^{2}P_{3/2}^{2})31d$ $4s^{2}4p^{5}(^{2}P_{3/2}^{2})32d$	$\binom{2[3]_{2}}{2[3]_{2}}^{\circ}$	2	112 788.92	
	$2[3/2]^{\circ}$	2	112 796.99	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})33d$	$\frac{2[3/2]^{\circ}}{2(2+1)^{\circ}}$	2	112 804.29	
$4s^24p^5(^2P_{3/2}^\circ)34d$	² [³ / ₂]°	2	112 810.96	
$4s^24p^5(^2P_{3/2}^\circ)35d$	² [³ / ₂]°	2	112 817.02	
$4s^24p^5(^2P_{3/2}^\circ)36d$	² [³ / ₂]°	2	112 822.58	
4s ² 4p ⁵ (² P _{3/2})37d	² [³ / ₂]°	2	112 827.66	
4s ² 4p ⁵ (² P _{3/2})38d	² [³ / ₂]°	2	112 832.34	
4s ² 4p ⁵ (² P _{3/2})39d	$2[3/2]^{\circ}$	2	112 836.66	
$4s^24p^5(^2P_{3/2}^\circ)40d$	² [³ / ₂]°	2	112 840.67	
$4s^24p^5(^2P_{3/2}^\circ)41d$	² [³ / ₂]°	2	112 844.30	
$4s^24p^5(^2P_{3/2}^\circ)42d$	² [³ / ₂]°	2	112 847.73	
$4s^24p^{5}(^{2}P_{3/2}^{\circ})43d$	² [³ / ₂]°	2	110 071.10	

Kr I – Continued

Kr I - 0	Continued
----------	-----------

Configuration	Term	J	Level (cm^{-1})	g
4s ² 4p ⁵ (² P _{3/2})44d	² [³ / ₂]°	2	112 853.84	
$4s^24p^5(^2P_{3/2}^2)45d$	² [³ / ₂]°	2	112 856.60	
4s ² 4p ⁵ (² P _{3/2})46d	² [³ / ₂]°	2	112 859.16	
4s ² 4p ⁵ (² P _{3/2})47d	² [³ / ₂]°	2	112 861.57	
4s ² 4p ⁵ (² P _{3/2})48d	² [³ / ₂]°	2	112 863.88	
$4s^24p^5(^2P_{3/2}^2)49d$	² [³ / ₂]°	2	112 865.91	
4s ² 4p ⁵ (² P _{3/2})50d	² [³ / ₂]°	2	112 867.91	
4s ² 4p ⁵ (² P _{3/2})51d	² [³ / ₂]°	2	112 869.76	
4s ² 4p ⁵ (² P _{3/2})52d	² [³ / ₂]°	2	112 871.51	
4s ² 4p ⁵ (² P _{3/2})53d	² [³ / ₂]°	2	112 873.16	
4s ² 4p ⁵ (² P _{3/2})54d	² [³ / ₂]°	2	112 874.75	
4s ² 4p ⁵ (² P _{3/2})55d	² [³ / ₂]°	2	112 876.21	
4s ² 4p ⁵ (² P _{3/2})56d	² [³ / ₂]°	2	112 877.61	
4s ² 4p ⁵ (² P _{3/2})57d	² [³ / ₂]°	2	112 878.92	
4s ² 4p ⁵ (² P _{3/2})58d	² [³ / ₂]°	2	112 880.15	
4s ² 4p ⁵ (² P _{3/2})59d	² [³ / ₂]°	2	112 881.33	
4s ² 4p ⁵ (² P ^o _{3/2})60d	² [³ / ₂]°	2	112 822.45	
4s ² 4p ⁵ (² P _{3/2})61d	² [³ / ₂]°	2	112 883.51	
4s ² 4p ⁵ (² P _{3/2})15d	² [⁷ / ₂]°	3	112 325.10	
4s ² 4p ⁵ (² P _{3/2})16d	² [⁷ / ₂]°	3	112 402.74	
$4s^24p^5(^2P_{3/2}^2)17d$	$2[7/2]^{\circ}$	3	112 466.03	
4s ² 4p ⁵ (² P _{3/2})18d	°[⁷ /2]°	3	112 518.23	
$4s^2 4p^6 (^2P_{3/2}^\circ) 19d$	² [⁷ / ₂]°	3	112 561.84	
4s ² 4p ⁵ (² P _{3/2})20d	² [⁷ / ₂]°	3	112 598.64	
4s ² 4p ⁵ (² P ^o _{3/2})21d	² [⁷ / ₂]°	3	112 629.97	
4s ² 4p ⁵ (² P ^o _{3/2})22d	² [⁷ / ₂]°	3	112 656.92	
4s ² 4p ⁵ (² P _{3/2})23d	² [⁷ / ₂]°	3	112 680.09	
4s ² 4p ⁵ (² P _{3/2})24d	² [⁷ / ₂]°	3	112 700.35	
4s ² 4p ⁵ (² P _{3/2})25d	² [⁷ / ₂] ^o	3	112 718.06	
4s ² 4p ⁵ (² P _{3/2})26d	² [⁷ / ₂]°	3	112 733.60	
$4s^24p^5(^2P_{3/2}^\circ)27d$	² [⁷ / ₂]°	3	112 747.43	
4s ² 4p ⁵ (² P _{3/2})28d	² [⁷ / ₂]°	3	112 759.73	
4s ² 4p ⁵ (² P _{3/2})29d	² [⁷ / ₂]°	3	112 770.72	
$4s^24p^5(^2P_{3/2}^\circ)30d$	² [⁷ / ₂]°	3	112 780.60	
$4s^24p^5(^2P_{3/2}^\circ)31d$	² [⁷ / ₂]°	3	112 789.46	
$4s^24p^5(^2P_{3/2}^\circ)32d$	² [⁷ / ₂]°	3	112 797.48	
4s ² 4p ⁵ (² P _{3/2})33d	² [⁷ / ₂]°	3	112 804.71	
4s ² 4p ⁵ (² P _{3/2})34d	² [⁷ / ₂]°	3	112 811.37	
4s ² 4p ⁵ (² P _{3/2})35d	² [⁷ /2] ^o	3	112 817.41	
4s ² 4p ⁵ (² P _{3/2})36d	² [⁷ / ₂]°	3	112 822.94	
$4s^24p^5(^2P_{3/2}^2)37d$	² [⁷ / ₂]°	3	112 827.99	
4s ² 4p ⁵ (² P _{3/2})38d	² [⁷ / ₂]°	3	112 832.64	
4s ² 4p ⁵ (² P _{3/2})39d	² [⁷ / ₂]°	3	112 836.93	
4s ² 4p ⁵ (² P _{3/2})40d	² [⁷ /2] ^o	3	112 840.87	
$4s^24p^5(^2P_{3/2}^\circ)41d$	² [⁷ / ₂]°	3	112 844.55	
4s ² 4p ⁵ (² P _{3/2})42d	² [⁷ / ₂]°	3	112 847.94	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})43d$	² [⁷ / ₂]°	3	112 851.12	
$4s^24p^5(^2P_{3/2}^{\circ})44d$	² [⁷ / ₂]°	3	112 854.04	
$4s^24p^{5}(^2P_{3/2}^{\circ})45d$	² [⁷ / ₂] ^o	3	112 856.78	
4s ² 4p ⁵ (² P _{3/2})46d	² [⁷ / ₂]°	3	112 859.34	
$4s^24p^{6}(^2P_{3/2}^{\circ})47d$	² [⁷ / ₂]°	3	112 861.71	
$4s^24p^5(^2P_{3/2}^\circ)48d$	² [⁷ / ₂]°	3	112 863.96	
4s ² 4p ⁵ (² P _{3/2})49d	² [⁷ / ₂]°	3	112 866.06	
4s ² 4p ⁵ (² P _{3/2})50d	² [⁷ / ₂]°	3	112 868.03	
4s ² 4p ⁵ (² P _{3/2})51d	² [⁷ / ₂]°	3	112 869.86	
$4s^24p^{5}(^{2}P_{3/2}^{o})52d$	² [⁷ / ₂]°	3	112 871.61	
4s ² 4p ⁵ (² P _{3/2})53d	² [⁷ / ₂]°	3	112 873.23 I	

Phys. Chem. Ref. Data, Vol. 20, No. 5, 1991

Kr I - Continued

Configuration	Term	J	Level (cm ⁻¹)	g
4s ² 4p ⁵ (² P _{3/2})24d	² [¹ / ₂]°	1	112 698.47	
$4s^24p^5(^2\Gamma_{3/2}^2)25d$	² [¹ / ₂]°	1	112 716.38	
$4s^24p^{5}(^2P_{3/2}^{\circ})26d$	² [¹ / ₂]°	1	112 732.19	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})27d$	$2[1/2]^{2}$	1	112 746.16	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})28d$	² [¹ / ₂]°	1	112 758.62	
$4s^{2}4p^{5}(^{2}P_{3/2}^{2})29d$	$\binom{72}{2}$	1	112 769.70	
$4s^{2}4p^{5}(^{2}P_{3/2}^{2})30d$	$\binom{1}{2}{\binom{1}{2}}^{2}$	1	112 779.69	
$45 4p (F_{3/2}) = 01 d$			112 788.65	
$4s^24p^5(^2P_{3/2}^\circ)31d$	$2[1/2]^{\circ}$	1		
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})32d$	² [¹ / ₂]°	1	112 796.74	
4s ² 4p ⁵ (² P _{3/2})33d	² [¹ / ₂]°	1	112 804.12	
$4s^24p^5(^2P^{\circ}_{3/2})34d$	² [¹ / ₂]°		112 810.76	
4s ² 4p ⁵ (² P _{3/2})35d	² [¹ / ₂]°	1	112 816.85	
4s ² 4p ⁵ (² P _{3/2})24d	² [⁵ / ₂]°	2	112 701.19	
4s ² 4p ⁵ (² P _{3/2})25d	² [⁵ / ₂]°	2	112 718.79	
$4s^24p^5(^2P_{3/2}^\circ)26d$	² [⁵ / ₂]°	2	112 734.32	
$4s^24p^5(^2P_{3/2}^\circ)27d$	² [⁵ / ₂]°	2	112 748.06	
$4s^24p^5(^2P_{3/2}^\circ)28d$	² [⁵ / ₂]°	2	112 760.30	
$4s^{2}4p^{5}(^{2}P_{3/2}^{2})29d$		2	112 700.30	
	$2[5/2]^{\circ}$	2		
$4s^24p^5(^2P_{3/2}^\circ)30d$	² [⁵ / ₂]°		112 781.03	
$4s^24p^5(^2P_{3/2}^\circ)31d$	² [⁵ / ₂]°	2	112 789.86	
4s ² 4p ⁵ (² P _{3/2})32d	² [⁵ / ₂]°	2	112 797.85	
4s ² 4p ⁵ (² P _{3/2})33d	² [⁵ / ₂]°	2	112 805.06	
4s ² 4p ⁵ (² P _{3/2})34d	² [⁵ / ₂]°	2 2	112 811.67	
4s ² 4p ⁵ (² P _{3/2})35d	² [⁵ / ₂]°	2	112 817.66	
4s ² 4p ⁵ (² P _{3/2})36d	² [⁵ / ₂]°	2	112 823.18	
4s ² 4p ⁵ (² P _{3/2})37d	² [⁵ / ₂]°	2	112 828.22	
4s ² 4p ⁵ (² P _{3/2})38d	² [⁵ / ₂]°	2	112 832.85	
4s ² 4p ⁵ (² P _{3/2})39d	² [⁵ / ₂]°	2	112 837.13	
$4s^2 4p^5 (^2P_{3/2}^{\circ})40d$	² [⁵ / ₂]°	2	112 841.06	
$4s^2 4p^5 (^2P_{3/2}^{\circ})41d$	² [⁵ / ₂]°	2	112 844.71	
$4s^24p^5(^2P_{3/2}^\circ)42d$	² [⁵ / ₂]°	2	112 848.10	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})43d$	$\binom{72}{2}{\binom{5}{2}}^{\circ}$	2	112 848.10	
$4s^24p^5(^2P_{3/2}^\circ)44d$	² [⁵ / ₂]°	2	112 854.19	
4s ² 4p ⁵ (² P _{3/2})45d	² [⁵ /2] [°]	2	112 856.91	
4s ² 4p ⁵ (² P _{3/2})46d	² [⁵ / ₂]°	2	112 859.43	
4s ² 4p ⁵ (² P _{3/2})47d	² [⁵ / ₂]°	2	112 861.84	
4s ² 4p ⁵ (² P _{3/2})48d	² [⁵ / ₂]°	2	112 864.04	
4s ² 4p ⁵ (² P _{3/2})49d	² [⁵ / ₂]°	2	112 866.11	
4s ² 4p ⁵ (² P _{3/2})50d	² [⁵ / ₂]°	2	112 868.11	
4s ² 4p ⁵ (² P _{3/2})24d	² [⁵ / ₂]°	3	112 701.80	
$4s^24p^5(^2P_{3/2}^\circ)25d$	² [⁵ / ₂]°	3	112 719.35	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})26d$	² [⁵ / ₂]°	3	112 734.80	
$4s^{2}4p^{5}(^{2}P_{3/2}^{2})27d$				
43 41 (13/2)410 4024m 5(210)10	² [⁵ / ₂]°	3	112 748.52	
$4s^{2}4p^{5}(^{2}P_{3/2}^{*})28d$	$\frac{2}{5}$	3	112 760.71	
$4s^2 4p^5(^2P_{3/2}^\circ)29d$	² [⁵ / ₂]°	3	112 771.59	
4s ² 4p ⁵ (² P _{3/2})30d	² [⁵ / ₂]°	3	112 781.37	
4s ² 4p ⁵ (² P _{3/2})31d	² [⁵ / ₂]°	3	112 790.17	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})32d$	² [⁵ / ₂]°	3	112 798.11	
4s ² 4p ⁵ (² P _{3/2})33d	² [⁵ / ₂]°	3	112 805.31	
4s ² 4p ⁵ (² P _{3/2})34d	² [⁵ / ₂]°	3	112 811.90	
$4s^24p^5(^2P_{3/2}^2)35d$	² [⁵ / ₂]°	3	112 817.90	
$4s^24p^5(^2P_{3/2}^2)36d$	² [⁵ / ₂]°	3	112 823.37	
$4s^{2}4p^{5}(^{2}P_{3/2}^{2})37d$	² [⁵ / ₂]°	3	112 828.41	
$4s^{2}4p^{5}(^{2}P_{3/2}^{2})38d$	[/2] ² [⁵ / ₂]°	3	112 833.02	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})39d$	$2[5/2]^{\circ}$	3	112 837.28	
4s ² 4p ⁵ (² P _{3/2})40d	² [⁵ / ₂]°	3	112 841.20	
A . Z A D / Z DQ \ A 1 J	$2[5/2]^{\circ}$	3	112 844.85	
$\begin{array}{c c} 4s^2 4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})41d \\ 4s^2 4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})42d \end{array}$	2[⁵ / ₂]°	3	112 848.27	

Configuration	Term	J	Level (cm ⁻¹)	g
4s ² 4p ⁵ (² P _{3/2})43d	² [⁵ / ₂]°	3	112 851.34	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})44d$	² [⁵ / ₂]°	3	112 854.26	
4s ² 4p ⁵ (² P _{3/2})45d	² [⁵ / ₂]°	3	112 856.99	
4s ² 4p ⁵ (² P _{3/2})46d	² [⁵ / ₂]°	3	112 859.56	
4s ² 4p ⁵ (² P _{3/2})26s	213/ 10		119 505 10	
	² [³ / ₂]°	2	112 705.10	
$4s^24p^6(^2P_{3/2}^2)27s$	² [³ / ₂]°	2	112 722.26	
$4s^24p^5(^2P_{3/2}^\circ)28s$	² [³ / ₂]°	2	112 737.37	1
4s ² 4p ⁵ (² P _{3/2})29s	² [³ / ₂]°	2	112 750.74	
4s ² 4p ⁵ (² P _{3/2})30s	² [³ / ₂]°	2	112 762.74	
4s ² 4p ⁵ (² P _{3/2})31s	² [³ / ₂]°	2	112 773.41	
4s ² 4p ⁵ (² P _{3/2})32s	² [³ / ₂]°	2	112 783.01	
4s ² 4p ⁵ (² P _{3/2})33s	² [³ / ₂]°	2	112 791.61	
4s ² 4p ⁵ (² P _{3/2})34s	² [³ / ₂]°	2	112 799.47	
4s ² 4p ⁵ (² P _{3/2})35s	² [³ / ₂]°	2	112 806.56	
4s ² 4p ⁵ (² P _{3/2})36s	$2[3/2]^{\circ}$	2	112 813.02	
4s ² 4p ⁵ (² P _{3/2})37s	² [³ / ₂]°	2	112 818.92	
4s ² 4p ⁵ (² P _{3/2})38s	² [³ / ₂]°	2	112 824.32	
$4s^24p^5(^2P_{3/2}^\circ)39s$	² [³ / ₂]°	2	112 829.25	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})40s$	² [³ / ₂]°	2		1
$4s^{2}4p^{5}(^{2}P_{3/2}^{2})41s$			112 833.81	
$4s^{2}4p^{5}(^{2}P_{3/2}^{\circ})42s$	$2[3/2]^{\circ}$	}	112 838.01	
	$2[3/2]^{\circ}$	2	112 841.90	
4s ² 4p ⁵ (² P _{3/2})43s	² [³ / ₂]°	2	112 845.48]
4s ² 4p ⁵ (² P _{3/2})44s	² [³ / ₂]°	2	112 848.81	1
4s ² 4p ⁵ (² P _{3/2})45s	² [³ / ₂]°	2	112 851.91	
4s ² 4p ⁵ (² P _{3/2})46s	² [³ / ₂]°	2	112 854.79	
4s ² 4p ⁵ (² P _{3/2})47s	$2[3/_{2}]^{\circ}$	2	112 857.48	
4s ² 4p ⁵ (² P _{3/2})48s	$2[3/_{2}]^{\circ}$	2	112 859.96	
4s ² 4p ⁵ (² P _{3/2})49s	² [³ /2]°	2	112 862.33	
4s ² 4p ⁵ (² P _{3/2})50s	² [³ / ₂]°	2	112 864.52	
4s ² 4p ⁵ (² P _{3/2})51s	² [³ / ₂]°	2	112 866.57	
4s ² 4p ⁵ (² P _{3/2})52s	² [³ / ₂]°	2	112 868.50	
4s ² 4p ⁵ (² P _{3/2})53s	² [³ / ₂]°	2	112 870.35	
4s ² 4p ⁵ (² P _{3/2})54s	² [³ / ₂]°	2	112 872.06	
$4s^24p^{5}(^2P_{3/2}^{\circ})55s$	² [³ / ₂]°	2	112 873.63	
$4s^24p^5(^2P_{3/2}^\circ)56s$	² [³ / ₂]°	2	112 875.20	
$4s^{2}4p^{5}(^{2}P_{3/2}^{2})57s$	$\binom{72}{2}$	2		
			112 876.63	
$4s^24p^5(^2P_{3/2}^\circ)58s$	$2[3/2]^{\circ}$	2	112 878.01	-
4s ² 4p ⁵ (² P _{3/2})59s	² [³ / ₂]°	2	112 879.28	
4s ² 4p ⁵ (² P _{3/2})60s	² [³ / ₂]°	2	112 880.49	
Kr II (² P _{3/2})	Limit		112 914.40	•••••
4s ² 4p ⁵ (² P _{1/2})6d	² [³ / ₂]°	1	113 530	
4s ² 4p ⁵ (² P _{1/2})5f			110.000	
$4_{2}^{2} 4_{1} \frac{(-\Gamma_{1/2})}{(2} \frac{1}{2} $			113 866	
$4s^24p^5(^2P_{1/2}^\circ)6f$			115 219	
$4s^24p^5(^2P_{1/2}^\circ)7f$			116 043	
4s ² 4p ⁵ (² P ^o _{1/2})8f			116 572	
4s ² 4p ⁵ (² P _{1/2})9f			116 932	
4s ² 4p ⁵ (² P ^o _{1/2})10f			117 192	
4s ² 4p ⁵ (² P _{1/2})11f		.	117 381	
$4s^{2}4p^{5}(^{2}P_{1/2}^{\circ})12f$			117 536	
4s ² 4p ⁵ (² P _{1/2})13f			117 644	
$4s^24p^5(^2P_{1/2}^\circ)14f$			117 741	
$4s^24p^5(^2P_{1/2}^\circ)15f$			117 800	
1/2/10J			117 868	
$4s^2 4n^5 (^2 P_2^{\circ}) 1Rf$				
$4s^{2}4p^{5}(^{2}P_{1/2}^{0})16f$ $4s^{2}4p^{5}(^{2}P_{1/2}^{0})17f$			117 917	

J. Phys. Chem. Ref. Data, Vol. 20, No. 5, 1991

Configuration	Term	J	Level (cm ⁻¹)	g
$4s^24p^5(^2P_{1/2}^{\circ})8p$	² [¹ / ₂]	1	114 494	
$4s^{-4}p^{-(-r_{1/2})}p^{-(-r_{1/2$	$2^{[1/2]}$		114 494	
	$\begin{bmatrix} 1/2 \\ 2 \\ 1/2 \end{bmatrix}$			
$4s^{2}4p^{5}(^{2}P_{1/2}^{\circ})10p$			116 271	1
$4s^{2}4p^{5}(^{2}P_{1/2}^{\circ})11p$	2[1/2]	1	116 731	
$4s^{2}4p^{5}(^{2}P_{1/2}^{\circ})12p$	2[1/2]	1	117 047	
$4s^24p^5(^2P_{1/2}^\circ)13p$	2[1/2]	1	117 274	
$4s^24p^5(^2P_{1/2}^\circ)14p$	² [¹ / ₂]	1	117 440	
$4s^24p^5(^2P_{1/2}^\circ)15p$	2[1/2]	1	117 575	
4s ² 4p ⁵ (² P _{1/2})16p	2[1/2]	1	117 677	
$4s^24p^5(^2P_{1/2}^\circ)17p$	² [¹ / ₂]	1	117 762	
4s ² 4p ⁵ (² P° _{1/2})18p	² [¹ / ₂]	1	117 826	
4s ² 4p ⁵ (² P° _{1/2})19p	² [¹ / ₂]	1	117 876	
4s ² 4p ⁵ (² P _{1/2})20p	² [¹ / ₂]	1	117 921	
4s ² 4p ⁵ (² P _{1/2})21p	2[1/2]	1	117 961	
4s ² 4p ⁵ (² P _{1/2})22p	$2^{2}[1/_{2}]$	1	117 998	
4s ² 4p ⁵ (² P _{1/2})23p	² [¹ / ₂]	1	118 026	
4s ² 4p ⁵ (² P _{1/2})24p	$2^{2}[1/_{2}]$	1	118 050	
4s ² 4p ⁵ (² P _{1/2})25p	² [¹ / ₂]	1	118 074	
$4s^24p^5(^2P_{1/2}^\circ)7d$	² [⁵ / ₂]°	2	114 729	
		3	114 878	
$4s^24p^5(^2\mathrm{P}^\circ_{1/2})7d$	² [³ / ₂]°	2	114 833	
		1	115 019	
4s ² 4p ⁵ (² P _{1/2})9s	² [¹ / ₂]°	0	115 123	
		1	115 135	
4s ² 4p ⁵ (² P° _{1/2})10p			116 321	
$4s^24p^5(^2P_{1/2}^\circ)11p$			116 767	
4s ² 4p ⁵ (² P _{1/2})12p			117 054	
4s ² 4p ⁵ (² P _{1/2})13p			117 306	
4s ² 4p ⁵ (² P _{1/2})14p			117 453	
Кг II (² Р° _{1/2})	Limit		118 284.50	•••••••••••••••••••••••••••••••••••••••
· · · · · ·			110 204.50	
4s 4p ⁶ 5p	(¹ /2, ¹ /2)°	1	201 005	
4s 4p ⁶ 6p	(¹ / ₂ , ¹ / ₂)°	1	212 098	
4s 4p ⁶ 5p	(¹ /2, ³ /2)°	1	201 584	
4s 4p ⁶ 6p	$(1/2,3/2)^{\circ}$	1	212 211	
$4s4p^67p$	$(1/2, 3/2)^{\circ}$	1	216 118	
$4s4p^{6}8p$	$(1/2, 3/2)^{\circ}$	1	218 012	
4s 4p 69p	$(1/2, 3/2)^{\circ}$	1	219 241	
$4s4p^610p$	$(1/2, 3/2)^{\circ}$	1	219 911	
$4s4p^611p$	(1/2, 1/2) $(1/2, 3/2)^{\circ}$	1	220 395	
$4s4p^{6}12p$	(1/2, 1/2) $(1/2, 3/2)^{\circ}$		220 535	1
$4s4p^{6}13p$	(1/2, 1/2) $(1/2, 3/2)^{\circ}$	1	220 907	
$4s4p^{6}14p$	$(\frac{1}{2},\frac{1}{2})^{\circ}$			
$434p^{-14p}$ $4s4p^{6}15p$			221 073	
	$\binom{1}{2}, \frac{3}{2}^{\circ}$	1	221 205	
$4s4p^{6}16p$	$(\frac{1}{2},\frac{3}{2})^{\circ}$	1	221 307	
$4s4p^{6}17p$	$(\frac{1}{2},\frac{3}{2})^{\circ}$	1	221 391	
4s4p ⁶ 18p 4s4p ⁶ 19p	(¹ / ₂ , ³ / ₂)° (¹ / ₂ , ³ / ₂)°	1 1	221 455	
	111 0/ 10		221 508	

Kr I – Continued

J. SUGAR AND A. MUSGHOVE

Configuration	Term	J	Level (cm ⁻¹)	g	
Kr 11 (² S _{1/2})	Limit		221 914.76	¦	
3d ⁹ 4s ² 4p ⁶ 5p	(⁵ /2, ³ /2)°	1	735 940		
$3d^{9}4s^{2}4p^{6}6p$	$({}^{5}/{}_{2},{}^{3}/{}_{2})^{\circ}$	1	746 830		
$3d^{9}4s^{2}4p^{6}7p$	$({}^{5}/{}_{2},{}^{3}/{}_{2})^{\circ}$	1	750 920		
$3d^{9}4s^{2}4p^{6}8p$	(⁵ /2, ³ /2)°	1	752 900		
Kr 11 (2D _{5/2})	Limit		756 770		
3d ⁹ 4s ² 4p ⁶ 5p	(³ /2, ¹ /2)°	1	745 770		
3d ⁹ 4s ² 4p ⁶ 6p	$(^{3}/_{2}, ^{1}/_{2})^{\circ}$	1	756 890		
3d ⁹ 4s ² 4p ⁶ 7p	$(^{3}/_{2}, ^{1}/_{2})^{\circ}$	1	760 860		
3d ⁹ 4s ² 4p ⁶ 8p	(³ /2, ¹ /2)°	1	762 830		
Kr 11 (2D _{3/2})	Limit		766 580		

Kr I – Continued

Phys. Chem. Ref. Data, Vol. 20, No. 5, 1991

Br I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{10}4s^24p^{5}{}^{2}P_{3/2}^{\circ}$

Ionization energy 196 475.4 \pm 1.0 cm⁻¹ (24

 $(24.35985 \pm 0.0001 \text{ eV})$

An extensive analysis of this spectrum was given by de Bruin *et al.* [1933] who observed 1050 lines from $2080-10\ 660\ \text{Å}$. Boyce [1935] extended the measurements in the range of $559-964\ \text{Å}$, giving 82 classified lines, but obtained no new levels. The known configurations at that time were $4s^24p^5$, $4s4p^6$, and $4s^24p^4nl$ with nl = 4d, 5s, 5p, 5f, 5g, 6s, and 7s.

New observations of the spectrum in the wavelength range of 550-2450 Å were made by Minnhagen *et al.* [1969], thus covering the gap between the published sets of data. The overall uncertainty of these new measurements is ± 0.005 Å. Approximately 300 new lines were obtained in this work. They revised some of the earlier level designations and extended the number of known levels, particularly for the *nf* configurations. The 5g levels of de Bruin *et al.* were dropped. These new data were used to derive the value for the ionization energy.

All the level values and designations given here are from Minnhagen *et al.* except for 18 levels of the $4p^{4}5s$ and $4p^{4}5p$ configurations revised by Humphreys and Paul [1970] on the basis of interferometric measurements of 21 lines. These levels are given three decimal place values relative to the $4p^{4}({}^{3}P)5s {}^{4}P_{5/2}$ level at 112 828.27 cm⁻¹. Their published values are relative to the level value 112 830.00 cm⁻¹ given in Moore's [1952] compilation.

Bredice *et al.* [1988] have observed 52 new lines in the range of 1700-8700 Å using a pulsed capillary dis-

charge. Classifications according to the level design tions of Minnhagen are given.

Percentage compositions for the mixed configuratic $4s 4p^6$, $4p^{4}5s$, and $4p^{4}4d$ were calculated by El Sherb and Farrag [1976]. Later Smid and Hansen [198 showed that ϵd continuum states must be included in t interaction with the $4s 4p^{6} {}^2S_{1/2}$ as they contain 18% this state. We give the Smid and Hansen results for t distribution of this state in $4s 4p^6$, $4s^24p^4$ (¹D)4d, a: $4s^24p^4$ (¹D)5d and take the remaining energy level con positions from El Sherbini and Farrag.

The g-values were derived by Bakker and de Bru [1931] and are included in the paper by de Bruin et i [1933].

References

Bakker, C. J., and de Bruin, T. L. [1931], Z. Phys. 69, 36.

- Boyce, J. C. [1935], Phys. Rev. 47, 718.
- Bredice, F., Raineri, M., Reyna Almandos, J., and Gallardo, M. [198 Spectrosc. Lett. 21, 11.
- de Bruin, T. L., Humphreys, C. J., and Meggers, W. F. [1933], J. R. Natl. Bur. Stand. (U.S.) 11, 409.
- El Sherbini, T. M., and Farrag, A. A. [1976], J. Phys. B 9, 2797.
- Humphreys, C. J., and Paul, E., Jr. [1970], J. Opt. Soc. Am. 60, 200
- Minnhagen, L., Strihed, H., and Petersson, B. [1969], Ark. Fys. 39, 4
- Moore, C. E. [1952], Atomic Energy Levels, Natl. Bur. Stand. (U. Circ. 467, Vol. II; [1971], reprinted as Natl. Stand. Ref. Data Se Natl. Bur. Stand. (U.S.) 35, Vol. II.
- Smid, H., and Hansen, J. E. [1983], J. Phys. B 16, 3339.

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
4s ² 4p ⁵	²₽°	³ /2 ¹ /2	0.00 5 370.10			
$4s4p^6$	² S	¹ / ₂	109 000.36		57	43 4s ² 4p ⁴ (¹ D)4d ² S
4s ² 4p ⁴ (³ P)5s	⁴ P	⁵ /2 ³ /2	112 828.27 115 092.012	1.60 1.54	96 59	$\begin{array}{rrr} 3 & 4s^2 4p^4 ({}^{1}\text{D}) 5s^2 \text{D} \\ 36 & 4s^2 4p^4 ({}^{3}\text{P}) 5s^2 \text{P} \end{array}$
		$\frac{1}{2}$	117 603.016	2.64	78	$13 4s^24p^4(^3P)4d^4D$
4s ² 4p ⁴ (³ P)5s	² P	³ / ₂	118 474.359	1.52	58	38 4s ² 4p ⁴ (³ P)5s ⁴ P
		¹ / ₂	121 002.149	0.70	78	$13 4s^2 4p^4 (^{3}P)4d^{-4}D$
4s ² 4p ⁴ (³ P)4d	⁴ D	7/2	120 209.87		93	5 4s ² 4p ⁴ (³ P)4d ⁴ F
		⁵ /2 ³ /2	120 426.93 121 000.37		91 80	3 " 3 4s ² 4p ⁴ (³ P)4d ⁴ P
		$\frac{12}{1/2}$	121 000.57	0.00	89 79	3 4s ² 4p ⁴ (³ P)4d ⁴ P 17 4s ² 4p ⁴ (³ P)5s ² P

Kr II

Kr II – Continued

4s²4p⁴(³P)4d	⁴ F	⁹ /2	126 000.82	1	1			1 2 . Adm
				1	94		6	4s ² 4p ⁴ (¹ D)4d ² G
		⁷ /2	127 929.52	1	72		20	4s ² 4p ⁴ (³ P)4d ² F
		⁵ /2	129 697.19		91		4	"
		3/2	130 512.73		96			
4s ² 4p ⁴ (¹ D)5s	² D	3/2	127 597.49	0.80	76		8	4s ² 4p ⁴ (¹ D)4d ² D
		5/2	127 861.51	1.20	89		4	n n
$4s^24p^44d$		¹ /2	129 515.08		99	4s ² 4p ⁴ (³ P)4d ⁴ P	29	4s ² 4p ⁴ (¹ D)4d ² P
4s ² 4p ⁴ (³ P)4d	⁴P	¹ /2	130 893.45		61		21	4s ² 4p ⁴ (³ P)4d ² P
		5/2	132 970.49		68		11	4s ² 4p ⁴ (³ P)4d ² F
4s ² 4p ⁴ (³ P)4d	² P	³ /2	131 375.45		76		9	4s ² 4p ⁴ (¹ D)4d ² P
4s ² 4p ⁴ (³ P)4d	² F	7/2	131 632.11		65		22	4s ² 4p ⁴ (³ P)4d ⁴ F
		5/2	134 566.95		47		26	4s ² 4p ⁴ (³ P)4d ⁴ P
$4s^24p^44d$		³ / ₂	132 965.52		35	4s ² 4p ⁴ (³ P)4d ⁴ P	22	4s ² 4p ⁴ (¹ D)4d ² D
4s ² 4p ⁴ (³ P)5p	⁴ P°	5/2	133 923.859	1.58				
		$^{3}/_{2}$	134 286.667	1.67	J			
		1/2	135 781.264	1.98				
$4s^24p^44d$		³ /2	134 621.41		34	4s ² 4p ⁴ (³ P)4d ² D	33	4s ² 4p ⁴ (1D)4d ² P
4s ² 4p ⁴ (³ P)5p	⁴D°	7/2	135 781.415	1.43				
		5/2	136 069.229	1.23				
		3/2	138 379.610	1.26				
		1/2	140 161.462	0.00				
$4s^24p^44d$		⁵ /2	137 098.16		34	4s ² 4p ⁴ (³ P)4d ² D	34	4s²4p⁴(³P)4d ² F
4s ² 4p ⁴ (³ P)5p	² P°	¹ /2	139 101.568	1.78				
	•	³ /2	140 135.395	1.26				
$4s^24p^4(^{3}P)5p$	² D°	⁵ /2	140 117.228	1.34				
		³ /2	141 993.940	1.33				
4s ² 4p ⁴ (³ P)5p	⁴ S°	³ / ₂	141 720.955	1.54				
4s ² 4p ⁴ (³ P)5p	² S°	¹ / ₂	142 361.840	1.50				
4s ² 4p ⁴ (¹ S)5s	² S	1/2	145 811.90	2.00	85		6	4s ² 4p ⁴ (¹ D)4d ² S
4s ² 4p ⁴ (¹ D)5p	² F°	5/2	149 171.64	0.86				
		7/2	149 702.80	1.14				
4s ² 4p ⁴ (¹ D)4d	2D	5/2	149 514.06		49		39	4s ² 4p ⁴ (³ P)4d ² D
		3/2	150 178.13		48		45	"
4s ² 4p ⁴ (¹ D)5p	² P°	³ /2	150 201.68	1.33				
		$\frac{1}{2}$	152 239.19	0.70				
$4s^{2}4p^{4}(^{1}D)4d$	² P	$^{3}/_{2}$	151 826.36		F0		07	4s ² 4p ⁴ (³ P)4d ⁴ P
	F	$\frac{1}{2}$	152 185.02		59 53		37 45	$4s^{2}4p^{4}(^{3}P)4d^{2}P$ $4s^{2}4p^{4}(^{3}P)4d^{2}P$
4s ² 4p ⁴ (¹ D)5p	² D°						-	
to the construction of the second	יני <u></u>	³ /2 ⁵ /2	152 190.13 152 314.48	0.80 1.20				

J. Phys. Chem. Ref. Data, Vol. 20, No. 5, 1991

Configuration	Term	J	Level (cm ⁻¹)	g	L	eading percen	tages
4s ² 4p ⁴ (³ P)6s	⁴ P	⁵ /2	157 077.34	1.60			
		³ / ₂	157 883.65	1.39			
		1/2	161 875.62	2.34			
4s ² 4p ⁴ (¹ D)4d	² S	¹ / ₂	160 794.93	2.07	54	12	4s4p ⁶² S
4s ² 4p ⁴ (¹ S)4d	² D	⁵ /2	161 011.83	2.47	89	6	4s ² 4p ⁴ (¹ D)4d ² D
		3/2	161 407.57		84	8	17
4s ² 4p ⁴ (³ P)5d	⁴ D	7/2	161 283.59	1.40			
		5/2	161 450.10	1.37			
		$^{3}/_{2}$	162 057.31	1.33			
		¹ / ₂	162 564.41	0.92			
4s ² 4p ⁴ (³ P)6s	² P	³ /2	161 800.17				
		¹ / ₂	163 031.91	0.88			
4s ² 4p ⁴ (³ P)5d	⁴ F	⁹ /2	162 207.13	1.33			
		7/2	162 530.21	1.17			
		⁵ /2	165 075.60	1.12			
		³ / ₂	165 140.18	1.40			
4s ² 4p ⁴ (³ P)6p	4P°	5/2	164 372.15				
		3/2	164 646.33				
4s ² 4p ⁴ (³ P)5d	⁴ P	¹ / ₂	164 437.45	1.94			
		³ /2	167 045.38	0.52			
		5/2	167 517.16	1.04			
ls ² 4p ⁴ (³ P)6p	⁴ D°	7/2	164 950.83				
		7/2 5/2	165 057.18				
		³ /2	166 153.43				
$1s^{2}4p^{4}(^{3}P)5d$	² F	7/2	166 578.05				
		5/2	166 999.69				
ls ² 4p ⁴ (³ P)5d	² P	¹ / ₂	166 951.56	0.51			
		3/2	167 911.34	1.18			
ls ² 4p ⁴ (³ P ₂)4f	² [4]°	⁹ /2	168 083.78				
		7/2 7/2	168 116.32				
ls ² 4p ⁴ (³ P ₂)4f	² [3]°	⁵ /2	168 181.44				
w -1µ (12/1)	[0]	$\frac{7}{7}$	168 258.54				
24-4(10)5-	² P°						
s ² 4p ⁴ (¹ S)5p	P P	$\frac{1}{2}$ $\frac{3}{2}$	168 261.27 168 937.54	1.24 0.90			
0				0.00			
s ² 4p ⁴ (³ P ₂)4f	²[2]°	³ /2	168 383.26				
		⁵ /2	168 460.67				
ls ² 4p ⁴ (³ P ₂)4f	² [5]°	¹¹ / ₂	168 474.09				
		⁹ /2	168 488.99				
s ² 4p ⁴ (³ P ₂)4f	² [1]°	¹ /2	168 628.47				
<u>-</u> r (+ 2 <i>j</i> ≤j		³ /2	168 717.10				
s ² 4p ⁴ (³ P)5d	² D	5 7	160 709 19	1.15			
13 41D ("P)Da	1 "U	5/2	169 703.13	1.15			

Kr II – Continued

J. SUGAR AND A. MUSGROVE

Configuration	Term	J	Level (cm^{-1})	g	Leading percentages
s ² 4p ⁴ (¹ D)6s	²D	⁵ /2 ³ /2	171 968.85 172 050.11	1.20 0.80	
4s ² 4p ⁴ (³ P ₁)4f	²[2]°	³ /2 ⁵ /2	172 712.56 172 771.65		
s ² 4p ⁴ (³ P ₁)4f	²[4]°	9/2 7/2	172 800.24 172 855.40		
4s ² 4p ⁴ (³ P ₁)4f	²[3]°	7/2 5/2	173 128.92 173 154.78		
4s ² 4p ⁴ (³ P)7s	4P	⁵ /2 ³ /2 ¹ /2	173 307.95 173 638.28 178 053.05		
4s ² 4p ⁴ (³ P ₀)4f	²[3]°	7/2 5/2	173 673.73 173 686.12		
4s ² 4p ⁴ (³ P)6d	4D	7/2 5/2	175 339.62 175 431.28		
4s ² 4p ⁴ (³ P)6d	⁴F	9/2 7/2	175 664.77 175 844.05		
4s ² 4p ⁴ (¹ D)5d	²G	7/2 9/2	175 889.93 176 591.22	0.89 1.11	
ls ² 4p ⁴ (¹ D)5d	² D	³ /2 ⁵ /2	176 109.24 178 318.69	1.20	
ls ² 4p ⁴ (¹ D)5d	² P	$\frac{3}{2}{\frac{1}{2}}$	177 682.11 178 504.89?	1.18	
ls ² 4p ⁴ (¹ D)5d	² F	⁵ /2 7/2	177 708.50 177 907.24	0.89 1.14	
ls ² 4p ⁴ (³ P)7s	² P	$\frac{3}{2}$ $\frac{1}{2}$	177 955.08 178 785.88		
ls ² 4p ⁴ (³ P ₂)5f	²[4]°	9/2 7/2	178 341.88 178 361.50		
s ² 4p ⁴ (³ P ₂)5f	²[3]°	⁵ /2 ⁷ /2	178 402.42 178 462.50		
s ² 4p ⁴ (³ P ₂)5f	²[2]°	³ /2 ⁵ /2	178 511.13 178 569.56		
s ² 4p ⁴ (³ P ₂)5f	²[5]°	¹¹ /2 ⁹ /2	178 543.80 178 556.06		
s ² 4p ⁴ (³ P ₂)5f	²[1]°	$\frac{1}{2}$ $\frac{3}{2}$	178 653.80 178 682.44		
s ² 4p ⁴ (³ P)8s	⁴ P	⁵ /2 ³ /2	181 199.76 181 378.63		
s ² 4p ⁴ (³ P ₁)5f	²[4]°	9/2 7/2	182 947.03 183 001.89		

78

. Phys. Chem. Ref. Data, Vol. 20, No. 5, 1991

Kr II – Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
4s ² 4p ⁴ (³ P ₁)5f	²[2]°	⁵ /2 ³ /2	182 947.34 182 963.85		
4s ² 4p ⁴ (³ P ₁)5f	²[3]°	⁷ /2 ⁵ /2	183 126.90 183 154.58		
4s ² 4p ⁴ (³ P ₀)5f	²[3]°	⁷ /2 ⁵ /2	183 728.60 183 737.40		
4s ² 4p ⁴ (³ P ₂)6f	²[4]°	⁹ /2 ⁷ /2	183 938.95 183 983.37		
4s ² 4p ⁴ (³ P ₂)6f	²[3]°	⁵ /2	184 027.39		
4s ² 4p ⁴ (³ P ₂)6f	² [5]°	¹¹ /2 ⁹ /2	184 041.28 184 049.68		
4s ² 4p ⁴ (³ P ₂)6f	²[2]°	³ /2	184 045.18		
4s ² 4p ⁴ (³ P ₂)6f	² [1]°	$\frac{1}{2}$ $\frac{3}{2}$	184 109.22 184 134.64		
$4s^24p^4(^{3}P_2)7f$	² [4]°	⁹ /2 ⁷ /2	187 274.16 187 282.19		
4s ² 4p ⁴ (³ P ₂)7f	²[5]°	¹¹ / ₂ ⁹ / ₂	187 355.52 187 360.53		
4s ² 4p ⁴ (³ P ₁)6f	²[4]°	9/2 7/2	188 512.46 188 545.00		
4s ² 4p ⁴ (³ P ₁)6f	²[3]°	⁵ /2	188 618.25		
ls ² 4p ⁴ (³ P ₂)8f	²[4]°	⁹ /2	189 445.50		
4s ² 4p ⁴ (³ P ₂)8f	²[5]°	¹¹ / ₂ ⁹ / ₂	189 503.65 189 507.85		
ls ² 4p ⁴ (³ P ₂)9f	²[4]°	⁹ /2	190 936.53		
s ² 4p ⁴ (³ P ₂)9f	²[5]°	¹¹ /2 ⁹ /2	190 974.91 190 977.53		
4s ² 4p ⁴ (³ P ₂)10f	²[5]°	¹¹ / ₂	192 025.51		
Кгш (³ Р2)	Limit	•••••	196 475.4	••••••	

87

isoelectronic sequence

bund state $1s^22s^22p^63s^23p^63d^{10}4s^24p^{43}P_2$

ization energy $298\,020 \pm 100 \,\mathrm{cm^{-1}}$ (36.950 ± 0.010 eV)

Iumphreys [1935] identified 369 lines of this spectrum the range 2116-7353 Å from observations with a sed Geissler-tube discharge. He estimated his wave-3th uncertainty as ± 0.01 Å. An additional range of elengths from 500-2000 Å was observed by Boyce 35] with a wavelength uncertainty of ± 0.01 Å. nbining their observations, Boyce and Humphreys ntified levels of the configurations $4s^24p^4$, $4s^4p^5$, and $1p^3nl$ where nl = 4d, 5s, 5p, 5d, and 6s. All the levels given by Humphreys [1935] while Boyce [1935] gives sifications for the lines in his range of observations. z energy level uncertainty is ± 0.3 cm⁻¹.

(innhagen et al. [1969] reobserved the spectrum from -1200 Å with a pulsed rf light source in order to ain more accurate values for the levels of the $4s^24p^4$ figuration. His wavelength uncertainty is ± 0.005 Å. he spectrum was remeasured in the range of -8200 Å by Bredice et al. [1988]. The excitation was ained with a theta pinch for the vacuum ultraviolet elength region and a high-voltage spark for the visiregion. Measurement uncertainties of ± 0.01 Å are orted for the theta-pinch data and ± 0.01 to ± 0.03 Å the spark data. About 140 new lines were classified four new levels were found for the $4p^{3}4d$ and $4p^{3}5p$ figurations. Designations for several levels were nged based on comparisons along the isoelectronic uence. New values for all the energy levels, except se of the $4p^{3}5d$ and 6s configurations were deterled with an uncertainty of $\pm 0.60 \text{ cm}^{-1}$. We have pted the level values derived by Bredice et al. The 5d and 6s levels are taken from Humphreys, with a rection of 1.10 cm⁻¹ subtracted from his level values is to adjust them to those of Bredice et al. Igentoft et al. [1984] measured the line

right of the second se

Iumphreys derived the value for the ionization energy m ns and nd series.

References

- Agentoft, M., Andersen, T., Hansen, J. E., Persson, W., and Pettersson, S. G. [1984], Phys. Scr. 29, 57.
- Boyce, J. C. [1935], Phys. Rev. 47, 718.

Bredice, F., Reyna Almandos, J., Gallardo, M., Di Rocco, H. O., and Trigueiros, A. G. [1988], J. Opt. Soc. Am. B 5, 222.

Humphreys, C. J. [1935], Phys. Rev. 47, 712.

McGuire, E. J. [1975], Phys. Rev. A 11, 17.

Minnhagen, L., Strihed, H., and Petersson, B. [1969], Ark. Fys. 39, 471.

Vr.	111	
nr	111	

Configuration	Term	J	Level (cm ⁻¹)
$4s^24p^4$	³ P	2	0.0
-		1	4 548.4
•		0	5 312.9
4s ² 4p ⁴	¹ D	2	14 644.3
$4s^24p^4$	1S	0	33 079.6
4s 4p ⁵	³ P°	2	115 930.93
		1	119 380.23
		0	121 542.96
$4s^{2}4p^{3}(^{4}S^{\circ})4d$	⁵ D°	0	138 446.69
		1	138 470.97
		2	138 480.60
		3	138 492.55
	· · · · ·	4	138 649.15
4s 4p ⁵	1P°	1	141 876.16
4s ² 4p ³ (⁴ S°)5s	⁵ S°	2	145 718.87
4s ² 4p ³ (⁴ S°)4d	³ D°	2	147 804.55
		3	148 735.32
		1	149 071.85
4s²4p³(4S°)5s	³ S°	1	151 580.19
4s ² 4p ³ (² D°)4d	³ F°	2	153 563.20
4 4 9 4		3	154 699.86
		4	156 081.96
4s ² 4p ³ (² D°)4d	¹ S°	0	154 399.71
4s ² 4p ³ (² D°)4d	³ G°	3	159 996.43
	_	4	160 414.86
		5	161 108.61

Kr III – Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
4s ² 4p ³ (² D°)4d	¹ G°	4	162 841.05	4s ² 4p ³ (² D°)5p	¹ F	. 3	194 962.81
4s ² 4p ³ (² D°)5s	³ D°	1	163 268.92	4s ² 4p ³ (² D°)4d	¹ F°	3	196 286.25
43 1p (=)		2	163 635.84				
		3	165 053.45	4s ² 4p ³ (² D°)5p	³ P	2	198 107.78
						0	198 788.86
4s ² 4p ³ (² P°)4d	¹ D°	2	165 463.40			1	198 824.35
$4s^24p^3(^2P^{o})4d$	³ D°	1	170 202.30	4s ² 4p ³ (² D°)5p	¹ D	2	202 895.94
		2	172 465.48		_		
		3	174 830.66	4s ² 4p ³ (² P°)5p	³ D	1	207 247.01
	•					2	208 508.99
4s ² 4p ³ (² D°)5s	¹ D°	2	170 898.94			3	209 868.53
4s ² 4p ³ (² P°)4d	³ P°	0	171 995.87	4s ² 4p ³ (² D°)5p	³ S	1	208 609.54
		1	172 983.11			1	
		2	176 790.75	4s ² 4p ³ (² P°)5p	³ P	1	209 284.41
					}	0	209 786.34
4s ² 4p ³ (² P°)4d	³ F°	3	174 450.95			2	213 057.53
		4	175 042.98	4-24-3(200)5-	10		010 100 /1
		2	175 211.16	4s ² 4p ³ (² P°)5p	¹ D	2	212 123.41
4s ² 4p ³ (⁴ S°)5p	⁵ P	1	175 543.82	4s ² 4p ³ (² P°)5p	¹ P	1	212 263.74
		2	175 778.64				· ·
	-	3	176 520.02	4s ² 4p ³ (⁴ S°)6s	⁵ S°	2	215 521.17
4s ² 4p ³ (² P°)5s	³ P°	0	178 243.52	4s ² 4p ³ (⁴ S°)5d	⁵ D°	0	216 500.19
		1	178 259.01		}	1	216 514.20
		2	180 247.09	х. - С		2	216 528.22
						3	216 544.54
4s ² 4p ³ (⁴ S°)5p	³ P	1	179 628.83			4	216 604.06
		2	180 082.95				
		0	180 237.12	4s ² 4p ³ (⁴ S°)5d	³ D°	2 1	217 375.56
4s ² 4p ³ (² P°)5s	¹ P°	1.	181 263.46			3	219 294.34 220 758.83
4-24-3(200) 4 1	300		100.001.00	4 24 3(400.0	300		
4s ² 4p ³ (² D°)4d	³ S°	1	182 264.93	4s ² 4p ³ (⁴ S°)6s	³ S°	1	221 842.30
4s ² 4p ³ (² P°)4d	¹ F°	3	182 966.83	4s ² 4p ³ (² D°)6s	³ D°	2	233 110.53
4s ² 4p ³ (² D°)4d	875.0		101.001.00			3	234 566.10
45-4p°(-D°)4d	³ D°	3	184 891.82	4 24 2000 0 1	100		
		2 1	188 569.14 190 226.21	4s ² 4p ³ (² D°)5d	¹ D°	2	233 346.28
		-	200 00000	4s ² 4p ³ (² D°)6s	¹ D°	2	236 182.57
^{4s²} 4p ³ (² D°)4d	³ P°	2	185 688.63				
$4s^24p^3(^2D^\circ)4d$	¹ Pº	1	188 233.23	4s ² 4p ³ (² D°)5d	1°	1	237 970.03
	г	1	100 233.23	4s ² 4p ³ (² D°)5d	2°	2	238 607.22
^{4s²4p³(²D°)5p}	³ D	1	190 723.58				
		2	193 855.36	4s ² 4p ³ (² P°)6s	³ P°	1	249 166.88
		3	195 478.00			2	250 910.73
^{4s²4p³(²D°)5p}	³ F	2	192 701.85	$4p^6$	¹ S	0	252 115.52
- (-)op	4	3	193 825.10	AP			
		4	195 674.50	4s ² 4p ³ (² P°)6s	¹ P°	1	252 460.02
^{4s²4p³(²D°)4d}	1D°	0	109 651 59	4024m3/2D9)5 d	¹ G°		959 950 96
	יע.	2	193 651.72	4s ² 4p ³ (² D°)5d	<u></u>	4	253 356.26
^{4s²4p³(²D°)5p}	'P	1	194 120.25	Kr IV (⁴ S _{3/2})	Limit		298 020

=36

s 1 isoelectronic sequence

round state $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^3 4S_{3/2}^{3}$

nization energy $423\,400 \pm 1600$ (52.5 $\pm 0.2 \,\text{eV}$)

With a Z-pinch light source Fawcett and Bromage 1980] observed 22 lines of the array $4s^24p^3 - 4s^24p^24d$, 6 nes of $4s^24p^3 - 4s^4p^4$, and 4 tentative identifications of $s^24p^3 - 4s^24p^{25s}$. The $4s^24p^{34}S^{\circ} - 4s^4p^{44}P$ multiplet was reviously reported by Boyce [1935].

The $4s^24p^3 - 4s^4p^4$ array was greatly extended by 'ersson and Pettersson [1984] with observations of a heta-pinch discharge. They classified 31 lines in the ange of 611 - 1171 Å, measured with an uncertainty of ± 0.01 Å for weak lines and ± 0.005 Å for the strong mes. We give their values for the $4s^24p^3$ and $4s^4p^4$ levls, and derive values for the $4s^24p^24d$ and $4s^24p^25s$ levels rom the classified lines of Fawcett and Bromage.

The value for the ionization energy was calculated by inkelnburg and Humbach [1955] by extrapolation of the ffective charge on the residual ion.

References

Boyce, J. C. [1935], Phys. Rev. 47, 718.
Fawcett, B. C., and Bromage, G. E. [1980], J. Phys. B 13, 2711.
Finkelnburg, W., and Humbach, W. [1955], Naturwiss. 42, 35.
Persson, W., and Pettersson, S. G. [1984], Phys. Scr. 29, 308.

Configuration	Term J		Level (cm ⁻¹)
$4s^24p^3$	⁴ S°	3/2	0.0
$4s^24p^3$	² D°	³ / ₂ ⁵ / ₂	17 036.8 18 699.9
$4s^24p^3$	²p°	¹ / ₂ ³ / ₂	31 055.2 33 404.9
4s 4p ⁴	4P		118 760.4 122 426.4 124 109.3

Kr IV - Continued

Configuration	Term	J	Level (cm ⁻¹)
4s 4p ⁴	² D	³ / ₂ ⁵ / ₂	145 771.4 146 644.1
4s4p ⁴	² P	³ / ₂ ¹ / ₂	163 443.5 166 159.7
4s 4p 4	² S	¹ /2	173 951.3
4s ² 4p ² (³ P)5s	⁴ P	¹ / ₂ ⁵ / ₂	200 381? 208 069?
4s²4p²(²P)4d	4P	⁵ /2 ³ /2 ¹ /2	201 426 202 372 204 733
4s ² 4p ² (³ P)4d	²P	$\frac{3}{2}{\frac{1}{2}}$	205 403 210 352
4s ² 4p ² (³ P)4d	² D	³ /2 ⁵ /2	207 604? 211 687
4s ² 4p ² (³ P)5s	² P	¹ / ₂ ³ / ₂	208 920? 213 571?
4s ² 4p ² (¹ D)4d	² D	⁵ /2 ³ /2	217 420 217 558
4s ² 3p ² (³ P)4d	² F	⁵ /2 7/2	219 994 221 186
4s ² 3p ² (¹ D)4d	²P	$\frac{1}{2}$ $\frac{3}{2}$	224 217 227 645
4s ² 4p ² (¹ S)4d	² D	⁵ /2 ³ /2	231 940 232 806
Kr v (³P₀)	Limit	• • • • • • • • • • • • • •	423 400

12

Kr v

Z=36

Ge 1 isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^2 {}^{3}P_0$

Tonization energy 521 800 \pm 1600 cm⁻¹ (64.7 \pm 0.2 eV)

Fawcett and Bromage [1980] classified 29 lines of this spectrum in the range of 463-810 Å, which they observed with a Z-pinch device. Their measurement uncertainty is ± 0.03 Å. All levels of the $4s^24p^2$ configuration except for ${}^{1}S_0$ were found. In $4s4p^3$ only the ${}^{5}S_2^{\circ}$ and ${}^{3}D_1^{\circ}$ are missing, and in 4p4d the ${}^{3}F^{\circ}$ and ${}^{1}P^{\circ}$ terms were not found.

The spectrum was reobserved by Trigueiros *et al.* [1989] with a theta-pinch light source in the range of 432-2000 Å with an uncertainty of ± 0.01 Å. We quote their improved values for the levels and include their two

new levels $4s^24p^2$ 1S_0 and $4s^24p4d$ $^1P_1^\circ$. We also give th calculated percentage compositions for the levels.

The value for the ionization energy was calculated Finkelnburg and Humbach [1955] by extrapolation of a effective charge on the residual ion.

References

Fawcett, B. C., and Bromage, G. E. [1980], J. Phys. B 13, 2711.
Finkelnburg, W., and Humbach, W. [1955], Naturwiss. 42, 35.
Trigueiros, A. G., Pagan, C. J. B., Pettersson, S. G., and Re Almandos, J. G. [1989], Phys. Rev. A 40, 3911.

	T		Kr V			
Configuration	Term	J	Level (cm ⁻¹)		Leading	percentages
$4s^24p^2$	³ P	, 0	0.0	98		
-		1	3 742.86	100		
		2	7 595.34	96		
$4s^24p^2$	¹ D	2	19 722.93	96		
$4s^24p^2$	¹ S	0	39 203.92	98		
4s 4p ³	³ D°	1	129 658.16	86	9	4s ² 4p4d ³ D°
		2	129 779.27	85	8	, , , , , , , , , , , , , , , , , , ,
		3	131 016.42	90	10	*
4s 4p ³	³ P°	0	147 925.28	90	10	4s ² 4p4d ³ P°
		1	148 286.78	86	6	"
		2	148 668.41	77	6	4s 4p ^{3 3} D°
4s 4p ³	¹ D°	2	163 387.17	50	31	4s ² 4p4d ¹ D°
$4s4p^3$	³ S°	1	185 063.54	64	36	4s 4p ³ ¹ P°
1s 4p ³	¹ P°	1	194 041.06	46	29	4s 4p ^{3 3} S°
$1s^2 4p 4d$	³ P°	2	211 336.57	58	9	4s 4p ^{3 3} D ²
		1	213 932.87	56	34	$4s^2 4p 4d {}^3D^\circ$
		0	216 420.28	90	10	4s4p ^{3 3} P°
$ls^2 4p 4d$	1D°	2	216 874.54	40	44	4s 4p ^{3 1} D°
$s^2 4p 4d$	³ D°	1	218 746.81	56	32	$4s^24p4d^3P^\circ$
		3	219 381.57	88	10	4s4p ^{3 3} D°
		2	219 823.27	66	14	4s ² 4p4d ¹ D°
$4s^24p4d$	¹ F°	3	234 120.87	100		
$4s^24p4d$	¹ P°	1	237 720.58	74	17	4s 4p ^{3 1} P°
 Kr vi (² P _{1/2})	Limit			•		

Kr v

Ga I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{10}4s^24p^2P_{1/2}^{\circ}$

Ionization energy $633\ 100 \pm 1600\ \text{cm}^{-1}$ (78.5 ± 0.2 eV)

Fawcett *et al.* [1961] have observed the arrays $4s^24p - 4s 4p^2$ and $4s^24p - 4s^24d$ by means of a Z-pinch device. They identified eight lines of this ion with an uncertainty of ± 0.03 Å. By means of beam-foil excitation Druetta and Buchet [1976] observed the same lines as well as three additional: the $4s^24p$ $^{2}P_{1/2, 3/2}^{\circ} - 4s 4p^{2} {}^{2}S_{1/2}$ and the $4s^24p$ $^{2}P_{3/2}^{\circ} - 4s 4p^{2} {}^{2}D_{3/2}$ line, with an uncertainty of ± 1 Å, estimated from their ground term interval compared with Fawcett *et al.* and their measurements of Kr VIII compared with those of Reader *et al.* [1991].

Livingston [1976] identified the $4s 4p^2 {}^{4}P - 4p^3 {}^{4}S^{\circ}$ multiplet in a beam-foil spectrum, but no connection to the doublet system of levels.

A new set of measurements of 15 lines in the wavelength range 450-956 Å with an uncertainty of ± 0.01 Å was reported by Trigueiros *et al.* (1988) from a theta pinch discharge. We use these results to derive the doublet levels of $4s^24p$, $4s4p^2$, $4s^24d$, and $4s^25p$, and quote their percentage compositions.

In a beam-foil experiment Tauheed *et al.* [1990] were able to observe the intersystem transitions $4s^24p$

 ${}^{2}P^{\circ}-4s4p^{2} {}^{4}P$ and $4s4p^{2} {}^{2,4}P-4p^{3} {}^{4}S^{\circ}$ as well as other new lines of this spectrum, 22 in all, with an uncertainty of ± 0.2 to ± 0.5 Å. We give their values for the $4s4p^{2} {}^{4}P$, $4p^{3} {}^{4}S^{\circ}$, ${}^{2}D^{\circ}$ and ${}^{2}P^{\circ}$, $4s^{2}5s {}^{2}S$ and $4s^{2}4f {}^{2}F^{\circ}$ levels.

The value for the ionization energy was calculated by Finkelnburg and Humbach [1955] by extrapolation of the effective charge on the residual ion.

References

Druetta, M., and Buchet, J. P. [1976], J. Opt. Soc. Am. 66, 433.

Fawcett, B. C., Jones, B. B., and Wilson, R. [1961], Proc. Phys. Soc., London 78, 1223.

Finkelnburg, W., and Humbach, W. [1955], Naturwiss. 42, 35.

- Livingston, A. E. [1976], J. Phys. B 9, L215.
- Reader, J., Acquista, N., and Kaufman, V. [1991], J. Opt. Soc. Am. B 8, 538.
- Tauheed, A., Pinnington, E. H., Ansbacher, W., and Kernahan, J. A. [1990], Phys. Scr. 42, 431.
- Trigueiros, A. G., Pagan, C. J. B., and Reyna Almandos, J. G. [1988], Phys. Rev. A 38, 166.

Configuration	Term	J	Level (cm ⁻¹)		Leadin	g percentages	
$4s^24p$	²p°	1/2	0				
	-	3/2	8 108				
4s 4p ²	⁴ P	1/2	107 830				
-		³ / ₂	111 180				
		5/2	115 470				
$4s4p^{2}$	² D	3/2	141 673	86	12	4s ² 4d ² D	
-		5/2	142 728	86	13	"	
$4s4p^2$	^{2}S	1/2	167 795	94	5	4s 4p ^{2 2} P	
$4s4p^2$	² P	1/2	180 337	94	5	$4s4p^{2}{}^{2}S$	
r		3/2	183 815	98		-	
$4s^24d$	² D	3/2	222 125	86	13	4s 4p ^{2 2} D	
		5/2	223 037	86	13	n	
4s ² 5s	² S	1/2	275 340				
$4p^{3}$	² D°	3/2	276 030	-			
-		5/2	278 060				

Kr vi

Z = 36

Configuration	Term	J	Level (cm ⁻¹)	Leading percentage
$4p^3$	⁴ S°	3/2	278 750	
4p ³	² P°	$\frac{1}{2}$ $\frac{3}{2}$	305 360	
$4s^25p$	² P°	$\frac{1}{2}$ $\frac{3}{2}$	326 724 328 965	
4s ² 4f	² F°	7/2 ⁵ /2	397 340 398 960	
Кr vii (¹ S₀)	Limit		633 100	

Kr vi – Continued

Zn I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 {}^{1}S_0$

Ionization energy $895\,300 \pm 2400 \,\mathrm{cm^{-1}}$ (111.0 $\pm 0.3 \,\mathrm{eV}$)

Fawcett *et al.* [1961] classified the resonance line $4s^2 {}^{1}S_0 - 4s 4p {}^{1}P_1^{\circ}$ at 585.37 ± 0.03 Å and the $4s 4p {}^{3}P_2^{\circ} - 4p^{2} {}^{3}P_2$ line at 618.67 ± 0.03 Å using a Z-pinch device. Druetta and Buchet [1976] classified nine additional lines belonging to the $4s 4p - 4p^2$ and 4s 4p - 4s 4d arrays from beam-foil spectra measured with an uncertainty of ± 0.4 Å.

Pinnington *et al.* [1984] reobserved the spectrum generated by beam foil and identified the intersystem transition $4s^2 {}^{1}S_0 - 4s 4p {}^{3}P_1^{\circ}$ at 832.8 ± 0.2 Å. This enabled them to derive the energy levels of 4s 4p, $4p^2$, and 4s 4d.

Trigueiros *et al.* [1986] observed the spectrum with a theta-pinch light source in the range of 430-1000 Å with a wavelength uncertainty of ± 0.01 Å. They measured 22 lines, 13 of which were new. With these data hey redetermined the energy levels, revising three of the mown levels and reducing the uncertainty in the values of all the levels to ± 3 cm⁻¹. They also give the percentuge composition of the levels.

In a crossed beam of Kr ions colliding with He or H₂, souchama *et al.* [1989] identified radiation of Kr VII, inluding 14 lines measured with an uncertainty of ± 0.5 Å. They tentatively identified them as n = 4-5ransitions and derived five levels of the 4s5s, 4s5p, and s5d configurations. Trigueiros *et al.* [1989] also reported = 4-5 transitions, observed in a theta pinch with an ncertainty of ± 0.01 Å, and derived levels of 4s5s and s5p. Several level values disagree with those of Bouchama *et al.*, namely the 4s5s ${}^{1}S_{0}$ and the 4s5p ${}^{1}P_{1}^{\circ}$ and ${}^{3}P_{0}^{\circ}$. Newly observed lines by Pinnington *et al.* [1991] support the levels of Bouchama. Pinnington *et al.* added levels of 4s5d and 4s4f.

We take the levels of 4s 4p, $4p^2$, and 4s 4d configurations from Trigueiros *et al.* [1986], those of 4s 5s and 4s 5pfrom Trigueiros *et al.* [1989], and the 4s 5d and 4s 4f levels from Pinnington *et al.* [1991]. The disputed 4s 5s ${}^{1}S_{0}$ and 4s 5p ${}^{1}P_{1}^{\circ}$ and ${}^{3}P_{0}^{\circ}$ levels are also from Pinnington *et al.* The percentage compositions are from Trigueiros *et al.* [1986].

The value for the ionization energy was calculated by Finkelnburg and Humbach [1955] by extrapolation of the effective charge on the residual ion.

References

Bouchama, T., Druetta, M., and Martin, S. [1989], J. Phys. B 22, 71.

- Druetta, M., and Buchet, J. P. [1976], J. Opt. Soc. Am. 66, 433.
- Fawcett, B. C., Jones, B. B., and Wilson, R. [1961], Proc. Phys. Soc., London 78, 1223.

Finkelnburg, W., and Humbach, W. [1955], Naturwiss. 42, 35.

- Pinnington, E. H., Ansbacher, W., and Kernahan, J. A. [1984], J. Opt. Soc. Am. B 1, 30.
- Pinnington, E. H., Tauheed, A., Ansbacher, W., and Kernahan, J. A. [1991], J. Opt. Soc. Am. B 8, 193.
- Trigueiros, A. G., Pettersson, S. G., and Reyna Almandos, J. G. [1986], Phys. Scr. 34, 164.
- Trigueiros, A. G., Pettersson, S. G., Reyna Almandos, J. G., and Gallardo, M. [1989], Phys. Lett. A 141, 135.

Configuration	Term	J	Level (cm ⁻¹)		Leadir	ng percentages	
4s ²	¹ S	0	0.0	98			
4s 4p	³ p•	0	117 389.6	100			
•	1	1	120 094.8	100			
		2	126 553.0	100			
4s 4p	¹ P°	1	170 835.0	100			
$4p^2$	³ P	0	274 931.7	98			
*		1	279 414.5	100			
		2	288 190.2	72	22	$4p^2$ ¹ D	
4p ²	¹ D	2	279 714.8	62	27	4p ² ³ P	
$4p^2$	¹ S	0	321 794				

Kr vii

Configuration	Term	J	Level (cm^{-1})		Lead	ing percentages
	³ D	1	349 973.1	100		
ş4d		2	350 416.8	100		
		3	351 116.2	100		
4d	¹ D	2	379 488.3	85	15	$4p^{2}$ ¹ D
s 5s	³ S	1	438 643.9			
s 5 <i>s</i>	¹ S	0	447 400			
50	³ P°	0	492 810			
s5p		1	493 250			
		2	495 578.4			
s5p	¹ P°	1	497 760			
s4f	³ F°	2	530 380			
TJ		3	530 550	1		
		4	530 820			
s5d	³ D	1	578 520			
		2	578 770	l		
		3	579 150			
s5d	¹ D	2	583 320			
r viii (²S _{1/2})	Limit		895 300			

Kr VII – Continued

88

Cu I isoelectronic sequence

Ground state 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²S_{1/2}

Ionization energy $1\,014\,665 \pm 25\,\mathrm{cm}^{-1}\,(125.802 \pm 0.003\,\mathrm{eV})$

The 4s - 4p resonance lines were first identified by Fawcett *et al.* [1961] in a Z-pinch discharge. Using a beam-foil light source Druetta and Buchet [1976] identified the three 4p - 4d lines, and with a similar device Livingston *et al.* [1980] observed 20 more lines of this spectrum, including the transitions 4d - 4f, 4f - 5g, 5g - 6h, and 6h - 7i. The very weak 4p - 5d lines were identified by McPherson *et al.* [1987] by multiphoton excitation of neutral krypton. In this unusual form of excitation these lines were very strong.

By means of a low-inductance vacuum spark Reader *et al.* [1991] observed the spectrum from 115 Å to 696 Å with a wavelength uncertainty of ± 0.008 Å. They identified and classified the inner-shell transition arrays $3d^{10}4s - 3d^94s 4p$ and $3d^{10}4p - 3d^94p^2$, and added to the known one-electron classifications. Combining their data with measurements in the range of 1059 Å to 1929 Å obtained by Gallardo *et al.* [1989] with an uncertainty of ± 0.02 Å, they redetermined the values of all the energy levels. Earlier identifications of the 4f - 5g lines by Livingston *et al.* and a 5p - 6s line by Gallardo *et al.* were revised. The energy level uncertainty for the one-electron levels varies from ± 2 to ± 60 cm⁻¹, and that of the inner-shell excited levels is ± 50 cm⁻¹. Reader *et al.*

derived the value for the ionization energy by averaging values obtained from one-electron Rydberg series and from polarizing series. We give their results.

The transition array $3d^{10}4s - 3d^94s 4p$ observed by Reader *et al.* contains only lines arising from upper levels with $J = \frac{1}{2}$ and $\frac{3}{2}$ because of the constraint of the lower level J value of $\frac{1}{2}$. For a similar reason levels of the $3d^94p^2$ are limited to J values of $\frac{1}{2}$ to $\frac{5}{2}$. Reader *et al.* have derived the percentage composition of these levels from a fitted calculation of the radial energy integrals.

References

Druetta, M., and Buchet, J. P. [1976], J. Opt. Soc. Am. 66, 433.

- Fawcett, B. C., Jones, B. B., and Wilson, R. [1961], Proc. Phys. Soc., London 78, 1223.
- Gallardo, M., Bredice, F., Raineri, M., Reyna Almandos, J., Pettersson, S. G., and Trigueiros, A. G. [1989], Appl. Optics 28, 5088.
- Livingston, A. E., Curtis, L. J., Schectman, R. M., and Berry, H. G. [1980], Phys. Rev. A 21, 771.
- McPherson, A., Gibson, G., Jara, H., Johann, U., Luk, T. S., McIntyre, I. A., Boyer, K., and Rhodes, C. K. [1987], J. Opt. Soc. Am. B 4, 595.

Reader, J., Acquista, N., and Kaufman, V. [1991], J. Opt. Soc. Am. B 8, 538.

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
4s	² S	¹ /2	0.0	
4 <i>p</i>	² p ∘	1/2	143 695.3	
		³ /2	153 476.1	
4d	² D	3/2	374 046.5	
		5/2	375 381.0	
อิร	² S	¹ /2	490 090.2	
5p	² P°	1/2	546 683.7	
-		3/2	550 448.0	
4 <i>f</i>	² F°	5/2	562 763.8	
		7/2	562 738.1	
5d	² D	3/2	641 075.6	
		5/2	641 623.1	
6 <i>s</i>	² S	1/2	692 482	

Kr viii

Configuration	Term	J	Level (cm^{-1})	Leading percentages			
6p	² P°	1/2	720 565				
-		³ /2	722 429				
5f	² F°	5/2	724 997.3				
ų,		7/2	725 010.6				
Fa	² G	7/2	733 086.4				
5g _		⁹ /2	733 104.8				
0.1	² D	³ /2	768 898				
6d	. 2	⁷² ⁵ / ₂	769 179				
$3d^{9}(^{2}\text{D})4s4p(^{3}\text{P}^{\circ})$	4P°	3/2	782 852	82	9	3d ⁹ (² D)4s4p(³ P°) ⁴ D	
3a ⁻ (⁻ D)434p(1)	•	$\frac{1}{1/2}$	789 316	91	5	50 (D)454p(1)D	
3d ⁹ (² D)4s4p(⁸ P°)	⁴F°	3/2	788 563	92	5	9 a 9(211) A a A a (3101) 4109	
3a°(-D)484p(1)				92	Ð	3d ⁹ (² D)4s 4p (³ P°) ⁴ P°	
7s	² S	¹ / ₂	796 490				
$3d^{9}(^{2}\text{D})4s4p(^{3}\text{P}^{\circ})$	² D°	3/2	797 213	52	24	3d ⁹ (² D)4s4p(³ P°) ² P°	
$3d^{9}(^{2}\text{D})4s4p(^{3}\text{P}^{\circ})$	² P°	3/2	801 134				
3a*(*D)484p(F)	Г	$\frac{1}{1/2}$	801 134 801 545	61 93	28 5	3d ⁹ (² D)4s4p(³ P°) ⁴ D ⁶ 3d ⁹ (² D)4s4p(³ P°) ⁴ P ⁶	
0.19/2020 4 4 (3002)	⁴ D°	1,	000 005				
3d ⁹ (² D)4s4p(³ P°)	·D-	$\frac{1/2}{3/2}$	803 335 807 161	93 49	4 38	3d ⁹ (² D)4s4p(³ P°) ⁴ P° 3d ⁹ (² D)4s4p(³ P°) ² D°	
_	270						
7p	² P°	$\frac{1/2}{3/2}$	812 506 813 577				
	0						
6h	² H°	⁹ / ₂ , ¹¹ / ₂	819 482.0				
3d ⁹ (² D)4s4p(¹ P°)	² P°	³ / ₂	837 191	94	3	3d ⁹ (² D)4s4p(³ P°) ² P°	
		1/2	846 181	98	1	3d ⁹ (² D)4s4p(³ P°) ⁴ D°	
7d	$^{2}\mathrm{D}$	3/2	840 501				
		5/2	840 686				
8s	^{2}S	1/2	857 086				
8p	² ₽°	3/	000 004				
	-	³ /2	867 694				
71	² I	$^{11}/_{2},^{13}/_{2}$	871 319.5				
^{3d} ⁹ (² D)4p ² (¹ D)	² S	¹ /2	951 580	61	16	3d ⁹ (² D)4p ² (¹ D) ² P	
3d ⁹ (² D)4p ² (¹ D)	² P		050 414				
••• (D)4p (D)	-P	$\frac{3}{2}$ $\frac{1}{2}$	953 414 962 734	66 61	12 9	3d ⁹ (² D)4p ² (³ P) ² P "	
^{3d⁹(²D)4p²(³P)}	4				· ·		
	⁴ F	3/2	964 107	70	24	3d ⁹ (² D)4p ² (³ P) ² D	
^{3d} ⁹ (² D)4p ² (³ P)	² D	³ /2	966 219	50	22	3d ⁹ (² D)4p ² (³ P) ⁴ F	
		⁵ /2	975 878	56	30	$3d^{9}(^{2}\text{D})4p^{2}(^{1}\text{D})^{2}\text{D}$	
$3d^{9}(^{2}\text{D})4p^{2}(^{1}\text{D})$	² D	3/2	970 784	49	19	3d ⁹ (² D)4p ² (³ P) ⁴ P	
^{3d⁹(²D)4p²(³P)}	4p	3/	076 560				
(-)(Г)	-P	$\frac{3}{2}$ $\frac{1}{2}$	976 569 979 794	58 77	16 20	$3d^{9}(^{2}\mathrm{D})4p^{2}(^{1}\mathrm{D})^{2}\mathrm{D}$ $3d^{9}(^{2}\mathrm{D})4p^{2}(^{3}\mathrm{P})^{2}\mathrm{P}$	

Kr VIII - Continued

88!

Kr VIII - Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages			
$3d^{9}(^{2}\text{D})4p^{2}(^{3}\text{P})$	² p	1/2	977 863	70	13	3d ⁹ (² D)4p ² (³ P) ⁴ P	
		3/2	980 229	77	8	n	
3d ⁹ (² D)4p ² (¹ S)	² D	5/2	1 005 591	91	3	3d ⁹ (² D)4p ² (¹ D) ² D	
		3/2	1 015 205	92	3	**	
	.			•			
Kr 1x (¹ S ₀)	Limit		1 014 665				

Nil isoelectronic sequence

Ground state 1s²2s²2p⁶3s²3p⁶3d¹⁰ ¹S₀

tonization energy $1\,862\,900 \pm 800 \,\mathrm{cm^{-1}}$ (230.85 ± 0.10 eV)

The three resonance lines from the $3d^94f$ configuration were reported by Fawcett and Gabriel [1964] with an uncertainty of ± 0.03 Å. Those arising from the $3d^94p$ configuration were measured by F. W. Paul and published by Moore [1952] with no uncertainty given. These six lines have been remeasured by Reader *et al.* [1991] with an uncertainty of ± 0.005 Å and are used to determine the energy levels. These authors also gave the percentage composition of the levels. We give their results.

The value for the ionization energy was calculated by Kim [1968] from observations of three $3d^{10}$ ${}^{1}S_0 - 3d^9nf$ lines at 77.9 Å, 67.0 Å, and 62.2 Å, presumably of the ${}^{1}P_{1}^{\circ}$ series. No estimate of the uncertainty is given.

Re	eren	ces
----	------	-----

Fawcett, B. C., and Gabriel, A. H. [1964], Proc. Phys. Soc., London 84, 1038.

Finkelnburg, W., and Humbach, W. [1955], Naturwiss. 42, 35.

Kim, H. H. [1968], J. Opt. Soc. Am. 58, 739.

- Moore, C. E. [1952], Atomic Energy Levels, Natl. Bur. Stand. (U. S.) Circ. 467, Vol. II (reissued in 1971 as Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. (U. S.) 35, Vol. II).
- Reader, J., Acquista, N., and Kaufman, V. [1991], J. Opt. Soc. Am. B 8, 538.

Configuration	Term	J	Level (cm ⁻¹)		Leading percentages			
3d ¹⁰	¹ S	0	0					
3d ⁹ 4p	3Po	1	849 553	93	6	3d ⁹ 4p ³ D°		
3d ⁹ 4p	¹ P°	1	864 020	76	24	3d ⁹ 4p ³ D°		
ld ⁹ 4p	³ D°	1	869 959	70	23	$3d^94p$ ¹ P°		
d ⁹ 4f	³ P°	1	1 302 270	92	8	3d ⁹ 4f ³ D°		
Bd°4f	³ D°	1	1 310 680	87	7	3d ⁹ 4f ⁹ P°		
8d ⁹ 4f	۱p۰	1	1 325 290	93	5	3d ⁹ 4f ³ D°		
Kr x (² D _{5/2})	Limit		1 862 900					

Kr IX

Co I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d^9 {}^2D_{5/2}$

Ionization energy $2163\ 000 \pm 22\ 000\ \text{cm}^{-1}$ (268.2 ± 3 eV)

Fawcett and Gabriel [1964], using a theta pinch device, identified five lines belonging to the transition array $3d^9-3d^84p$. The observations were greatly expanded with a low-inductance vacuum spark by Reader *et al.* [1985]. They measured 46 lines in the range of 91-104 Å with an uncertainty of ± 0.005 Å and classified them in the above array, as well as identifying the two principal lines of the multiplet $3p^63d^{92}D - 3p^53d^{102}P^\circ$. These authors have calculated eigenvectors for the mixture of these configurations and give percentage compositions in both *LS* and *J*₁*j*-coupling. We quote their results and give their *LS* designations.

The value for the ionization energy was calculated with the Cowan [1981] HFR code.

References

- Cowan, R. D. [1981], *The Theory of Atomic Structure and Spectra*, (Univ. California Press, Berkeley, CA).
- Fawcett, B. C., and Gabriel, A. H. [1964], Proc. Phys. Soc., London 84, 1038.

Reader, J., Ryabtsev, A. N., and Ramonas, A. A. [1985], J. Opt. Soc. Am. B 2, 417.

Configuration	Term	J	Level (cm ⁻¹)		Leading	perc	entages
3p ⁶ 3d ⁹	² D	⁵ /2 ³ /2	0 10 367				
3p ⁶ 3d ⁸ (³ F)4p	⁴ D°	³ /2	965 513	42		27	3p ⁵ 3d ^{10 2} P°
3p ⁶ 3d ⁸ (³ F)4p	⁴ G°	⁵ /2	966 252	75		8	3p ⁶ 3d ⁸ (³ F)4p ⁴ F°
$3p^{5}3d^{10}$	² P°	$^{3/_{2}}_{1/_{2}}$	968 510 1 044 605	54 68		31 16	3p ⁶ 3d ⁸ (³ F)4p ⁴ D° 3p ⁶ 3d ⁸ (¹ D)4p ² P°
3p ⁶ 3d ⁸ (³ F)4p		³ /2	971 691	25	3p ⁶ 3d ⁸ (³ F)4p ² D°	21	3p ⁶ 3d ⁸ (¹ D)4p ² D ^o
3p ⁶ 3d ⁸ (³ F)4p	² F ^o	⁷ /2	972 410	46		34	3p ⁶ 3d ⁸ (³ F)4p ⁴ F°
3p ⁶ 3d ⁸ (³ F)4p	² D°	⁵ /2	973 832	46		26	3p ⁶ 3d ⁸ (³ F)4p ⁴ F°
3p ⁶ 3d ⁸ (³ F)4p		⁵ /2	978 945	34	3p ⁶ 3d ⁸ (³ F)4p ⁴ F°	26	3p ⁶ 3d ⁸ (³ F)4p ² D°
3p ⁶ 3d ⁸ (³ F)4p	⁴F°	7/2 3/2	980 534 983 596	41 42		44 24	3p ⁶ 3d ⁸ (³ F)4p ² F° 3p ⁶ 3d ⁸ (³ P)4p ⁴ P°
3p ⁶ 3d ⁸ (³ F)4p	² G°	7/2	983 099	72		15	3p ⁶ 3d ⁸ (³ F)4p ⁴ G°
$3p^{6}3d^{8}4p$		⁵ /2	986 513	31	3p ⁶ 3d ⁸ (³ F)4p ² F°	21	3p ⁶ 3d ⁸ (³ F)4p ² D°
3p ⁶ 3d ⁸ (³ P)4p	4P°	³ /2	987 902	43		38	3p ⁶ 3d ⁸ (³ F)4p ² D°
3p ⁶ 3d ⁸ 4p		⁵ /2	988 265	32	$3p^{6}3d^{8}(^{3}\mathrm{F})4p^{-2}\mathrm{F}^{\circ}$	26	3p ⁶ 3d ⁸ (³ P)4p ⁴ P°
3p ⁶ 3d ⁸ (1D)4p	² F°	⁵ /2 ⁷ /2	993 739 999 248	49 49		39 24	3p ⁶ 3d ⁸ (³ P)4p ⁴ P° 3p ⁶ 3d ⁸ (¹ G)4p ² F°
3p ⁶ 3d ⁸ (¹ D)4p		³ /2	998 883	36	3p ⁶ 3d ⁸ (¹ D)4p ² D°	22	3p ⁶ 3d ⁸ (³ F)4 _f ² D°

Kr x

Configuration	Term	J	Level (cm ⁻¹)	ļ	Leading	perc	entages
60.18(1D)4n	² P°	¹ /2	999 829	55		23	3p ⁶ 3d ⁸ (³ P)4p ⁻² P°
3p ⁶ 3d ⁸ (¹ D)4p		3/2	1 007 768	43		24	$3p^{6}3d^{8}(^{1}D)4p^{2}D^{\circ}$
3p ⁶ 3d ⁸ (1D)4p	² D°	⁵ /2	1 001 691	50		25	3p ⁶ 3d ⁸ (³ P)4p ² D°
3p ⁶ 3d ⁸ (³ P)4p	⁴ D°	³ /2	1 003 790	51		12	3p ⁶ 3d ⁸ (³ F)4p ⁴ D°
<i>Sp 50 (-) - 1</i>		$^{1}/_{2}$	1 003 879	71		12	$3p^{6}3d^{8}(^{3}F)4p^{4}D^{\circ}$
		7/2	1 007 600	50		43	$3p^{6}3d^{8}({}^{1}G)4p^{2}F^{\circ}$
$3p^{6}3d^{8}4p$		⁵ /2	1 007 410	32	3p ⁶ 3d ⁸ (³ P)4p ⁴ D°	18	3p ⁶ 3d ⁸ (¹ D)4p ² D°
3p ⁶ 3d ⁸ (³ P)4p	² P°	¹ /2	1 013 897	53		20	3p ⁵ 3d ^{10 2} P°
		³ /2	1 015 092	54		24	3p ⁶ 3d ⁸ (³ P)4p ² D°
3p ⁶ 3d ⁸ (³ P)4p	² D°	⁵ /2	1 015 092	52		35	3p ⁶ 3d ⁸ (³ P)4p ⁴ D°
or the		³ / ₂	1 018 468	63		13	"
$3p^{6}3d^{8}4p$		⁷ /2	1 016 153	40	3p ⁶ 3d ⁸ (¹ D)4p ² F°	28	3p ⁶ 3d ⁸ (³ P)4p ⁴ D ^o
3p ⁶ 3d ⁸ (¹ G)4p	² F ^o	⁵ /2	1 020 095	73		10	3p ⁶ 3d ⁸ (1D)4p ² F°
3p ⁶ 3d ⁸ (³ P)4p	² S°	¹ / ₂	1 021 383	91		3	$3p^{5}3d^{10}{}^2\mathrm{P}^{\mathrm{o}}$
3p ⁶ 3d ⁸ (¹ G)4p	² G°	⁷ /2	1 030 797	92		8	3p ⁶ 3d ⁸ (¹ G)4p ² F°
3p ⁶ 3d ⁸ (¹ S)4p	² P°	³ /2	1 089 708	96		1	3p ⁶ 3d(¹ D)4p ² P°
 Kr xi (³ F4)	Limit	• • • • • • • • • • • •	2 163 000				

Kr x - Continued

Fe I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 {}^3F_4$

Ionization energy $2\,486\,000 \pm 25\,000 \,\mathrm{cm^{-1}}$ (308.2 $\pm 3\,\mathrm{eV}$)

No energy levels have been reported for this ion.

The value for the ionization energy was calculated with the Cowan [1981] HFR code.

Reference

Cowan, R. D. [1981], The Theory of Atomic Structure and Spectra, (Univ. California Press, Berkeley, CA).

Kr xıı

Z = 36

Mn 1 isoelectronic sequence

Ground state 1s²2s²2p⁶3s²3p⁶3d⁷ ⁴F_{9/2}

Ionization energy $2\,824\,000 \pm 28\,000 \,\mathrm{cm^{-1}}$ (350.1 ± 3 eV)

No energy levels have been reported for this ion. The value for the ionization energy was calculated with the Cowan [1981] HFR code.

Reference

Cowan, R. D. [1981], The Theory of Atomic Structure and Spectra, (Univ. California Press, Berkeley, CA).

Kr xIII

Z = 36

Cr I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^6{}^5D_4$

Ionization energy $3\,153\,000 \pm 32\,000 \,\mathrm{cm^{-1}}$ (390.9 ± 4 eV)

No energy levels have been reported for this ion. The value for the ionization energy was calculated

with the Cowan [1981] HFR code.

Reference

J. Phys. Chem. Ref. Data, Vol. 20, No. 5, 1991

Cowan, R. D. [1981], The Theory of Atomic Structure and Spectra, (Univ. California Press, Berkeley, CA).
Kr xıv

Z = 36

V I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^5 \, {}^6S_{5/2}$

Ionization energy $3\ 602\ 000\ \pm\ 36\ 000\ \mathrm{cm^{-1}}$ (446.6 $\pm\ 4\ \mathrm{eV}$)

No energy levels have been reported for this ion.

The value for the ionization energy was calculated with the Cowan [1981] HFR Code.

Reference

Cowan, R. D. [1981], The Theory of Atomic Structure and Spectra, (Univ. California Press, Berkeley, CA).

Kr xv

Z = 36

Ti I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d^4 {}^5D_0$

Ionization energy $3\,967\,000 \pm 40\,000 \,\mathrm{cm^{-1}}$ (491.8 ± 4 eV)

No energy levels have been reported for this ion. The value for the ionization energy was calculated with the Cowan [1981] HFR code.

Reference

Cowan, R. D. [1981], The Theory of Atomic Structure and Spectra, (Univ. California Press, Berkeley, CA).

Kr xvi

Z = 36

Sc I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 {}^4F_{3/2}$

Ionization energy $4\,361\,000 \pm 44\,000 \,\mathrm{cm}^{-1}$ (540.7 $\pm 5\,\mathrm{eV}$)

No energy levels have been reported for this ion.

The value for the ionization energy was calculated with the Cowan [1981] HFR code.

Reference

Cowan, R. D. [1981], The Theory of Atomic Structure and Spectra, (Univ. California Press, Berkeley, CA).

Ca 1 isoelectronic sequence

Ground state $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{2}{}^{3}F_{2}$

Ionization energy $4\,771\,000 \pm 48\,000 \,\mathrm{cm^{-1}}$ (591.5 ± 6 eV)

No energy levels have been reported for this ion. The value for the ionization energy was calculated with the Cowan [1981] HFR code.

Reference

Cowan, R. D. [1981], The Theory of Atomic Structure and Spectra, (Univ. California Press, Berkeley, CA).

Kr xviii

Z = 36

K I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 D_{3/2}$

Ionization energy $5\,169\,000\pm52\,000\,\mathrm{cm^{-1}}$ (640.9 ± 6 eV)

Wyart and the TFR Group [1985] observed the array $3p^{6}3d - 3p^{5}3d^2$ and derived the ground state splitting and four levels of the upper configuration. Wavelengths in the range of 91-94 Å were measured with an uncertainty of ± 0.015 Å. Kaufman *et al.* [1989] reported observations of the same array with a tokamak discharge and measured the wavelengths with an uncertainty of ± 0.005 Å. They obtained two additional levels of $3p^{5}3d^2$, the (³F)²F³_{3/2} and (¹G)²F³_{3/2} levels. Wyart *et al.* found the $3p^{6}3d - 3p^{6}4f$ doublet at 35 Å. We use the levels derived by Kaufman *et al.* for the ground term and the $3p^{5}3d^2$ configuration, with an uncertainty of 60 cm⁻¹, and the levels of Wyart *et al.* for the $3p^{6}4f$ term.

The value for the ionization energy was calculated with the Cowan [1981] HFR code.

References

Cowan, R. D. [1981], The Theory of Atomic Structure and Spectra, (Univ. California Press, Berkeley, CA).

Kaufman, V., Sugar, J., and Rowan, W. L. [1989], J. Opt. Soc. Am. B 6, 142.

Wyart, J. F., and TFR Group [1985], Phys. Scr. 31, 539.

Configuration	Term	J	Level (cm ⁻¹)
3p ⁶ 3d	² D	³ /2 ⁵ /2	0 15 694
3p ⁵ (² P°)3d ² (³ F)	² F°	⁶ /2	980 380
3p ⁵ (² P°)3d ² (¹ G)	² F°	⁷ /2	1 022 440
3p ⁵ (² P°)3d ² (³ P)	² P°	1/2 3/2	1 075 860 1 094 200
3p ⁵ (² P°)3d ² (³ F)	² D°	³ /2 ⁵ /2	1 084 470 1 086 940
3p ⁶ 4f	²F°	7/2 ⁵ /2	2 840 800 2 841 700
Kr XIX (¹ S ₀)	Limit	•••••	5 169 000

897

Kr xix

Z = 36

Ar I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^{6-1}S_0$

Ionization energy $6\,339\,000 \pm 63\,000 \,\mathrm{cm^{-1}}$ (785.9 ± 8 eV)

Wyart and the TFR Group [1985] reported observations of the two resonance lines $3p^{6} {}^{1}S_{0} - 3p^{5}3d {}^{1}P_{1}$, ${}^{3}D_{1}$ at 96.263 Å and 118.546 Å, respectively. The spectrum was reobserved with a tokamak discharge by Sugar *et al*. [1987] who gave wavelengths for these lines of 96.232 Å and 118.667 Å with an uncertainty of ± 0.010 Å. We use these improved values to derive energy levels with an uncertainty of ± 100 cm⁻¹.

The value for the ionization energy was calculated with the Cowan [1981] HFR code.

References

Cowan, R. D. [1981], The Theory of Atomic Structure and Spectra, (Univ. California Press, Berkeley, CA).

Sugar, J., Kaufman, V., and Rowan, W. L. [1987], J. Opt. Soc. Am. B 4, 1927.

Wyart, J. F., and TFR Group [1985], Phys. Scr. 31, 539.

Kr xıx

Configuration	Term	J	Level (cm ⁻¹)	
3s ² 3p ⁶	¹ S	0	0	
$3s^2 3p^5 3d$	³ D°	1	842 690	
$3s^2 3p^5 3d$	¹ P°	1	1 039 160	
Kr xx (² P _{3/2})	Limit		6 339 000	

Kr xx

Z = 36

Cl I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5 {}^{2}P_{3/2}^{\circ}$

Ionization energy $6719000 \pm 67000 \text{ cm}^{-1}$ (833.0 ± 8 eV)

Kaufman *et al.* [1989] have derived a value for the ²P° ground state splitting by fitting the known data along the isoelectronic sequence to a polynomial expression. They find the value $87287 \pm 50 \text{ cm}^{-1}$, which differs significantly from the M1 line reported by Roberts *et al.* [1987]. We quote the value by Kaufman *et al.*

The TFR Group and Wyart [1988] have classified four lines of the array $3s^23p^5 - 3s^23p^43d$ in the range of 99 - 104 Å, which they measured with an uncertainty of ± 0.02 Å. The same transitions were observed in a tokamak plasma by Kaufman *et al.* and measured with an uncertainty of ± 0.005 Å. We give the levels derived by the latter group with an uncertainty of ± 50 cm⁻¹.

The value for the ionization energy was calculated with the Cowan [1981] HFR code.

References

Cowan, R. D. [1981], The Theory of Atomic Structure and Spectra, (Univ. California Press, Berkeley, CA).

Kaufman, V., Sugar, J., and Rowan, W. L. [1989], J. Opt. Soc. Am. B 6,

Roberts, J. R., Pittman, T. L., Sugar, J., Kaufman, V., and Rowan, W. L. [1987], Phys. Rev. A 35, 2591.

TFR Group, and Wyart, J. F. [1988], Phys. Scr. 37, 66.

Kr xx

Configuration	Term	J	Level (cm ⁻¹)
3s²3p ⁵	² P°	³ / ₂ ¹ / ₂	0 [<i>87 2</i> 87]
3s ² 3p ⁴ (¹ D)3d	^{2}S	¹ /2	97 680
3s²3p⁴(²P)3d	² P	3/2	1 003 410
3s ² 3p ⁴ (³ P)3d	² D	⁵ /2 ³ /2	1 008 510 1 084 750
Kr xxi (³ P ₂)	Limit		6 719 000

S I isoelectronic sequence

Ground state $1s^{2}2s^{2}2p^{6}3s^{2}3p^{4}{}^{3}P_{2}$

Ionization energy 7 129 000 \pm 70 000 cm⁻¹ (883.9 \pm 9 eV)

Kaufman *et al.* [1990] give predicted values for the M1 transitions in the ground configuration, which they then used to determine the energy levels. The predictions were made by graphing corrections to calculated values along the S I isoelectronic sequence. Their uncertainty estimates vary from ± 20 to ± 100 cm⁻¹. The value given for the ³P₀ was obtained from a fitted calculation. We quote these predicted values for the levels of $3s^23p^4$.

Kaufman *et al.* [1990] have also classified six lines of the array $3s^23p^4 - 3s^23p^33d$ in the range of 104 - 108 Å. They estimate the wavelength uncertainty to be ± 0.007 Å. Taking into account the uncertainty of the predicted values for the levels of the ground configuration, the uncertainty of the levels of $3p^{3}3d$ is ± 140 cm⁻¹. They have calculated the percentage compositions of the levels, obtained with configuration interaction between $3s^{2}3p^{3}3d$ and $3s^{3}p^{5}$. We quote these results.

The value for the ionization energy was calculated with the Cowan [1981] HFR code.

References

Cowan, R. D. [1981], *The Theory of Atomic Structure and Spectra*, (Univ. California Press, Berkeley, CA).

Kaufman, V., Sugar, J., and Rowan, W. L. [1990], J. Opt. Soc. Am. B 7, 1169.

Configuration 3s ² 3p ⁴	Term	J	Level (cm ⁻¹)	Leading percentages				
	³Р	2 0 1	0 [46 900] [78 670]	84 65 100	16 35			
$3s^2 3p^4$	¹ D	2	[114 820]	84	16	3s ² 3p ⁴ ³ P		
$3s^23p^4$	¹ S	0	[225 100]	65	35	3s ² 3p ^{4 3} P		
3s ² 3p ³ (² P°)3d	³ P°	2	933 070	50	15	3s ² 3p ³ (² D°)3d ³ D ⁴		
3s ² 3p ³ (² D°)3d	³ P°	2	964 470	55	15	3s ² 3p ³ (² P°)3d ³ P°		
3s ² 3p ³ 3d		3	968 350	38 3s ² 3p ³ (² D)3d ³ I	° 30	∂s²∂p³(4S)9d ³D°		
$3s^2 3p^3 3d$		2	1 007 100	24 3s ² 3p ³ (² D°)3d ⁻¹	D° 21	3s ² 3p ³ (⁴ S°)3d ³ D°		
3s ² 3p ³ (² D°)3d	¹ F°	3	1 076 100	50	32	3s ² 3p ³ (² P°)3d ¹ F°		
3s ² 3p ³ (² P°)3d	¹ P°	1	1 143 760	68	11	3s ² 3p ³ (⁴ S°)3d ³ D°		
Kr XXII (⁴ S _{3/2})	Limit		7 129 000					

Kr xxii

Z = 36

P 1 isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3 {}^4S^{\circ}_{3/2}$

Ionization energy 7 555 000 \pm 75 000 cm⁻¹ (936.7 \pm 9 eV)

Sugar *et al.* [1990] give the only analysis of this spectrum in their study of the P I isoelectronic sequence. The ground configuration levels were derived from predicted M1 wavelengths obtained by graphing the corrections to theoretical values. The uncertainty of these energy levels is $\pm 50 \text{ cm}^{-1}$. We quote these predicted values for the levels of $3s^23p^3$.

Six lines of the array $3s^23p^3 - 3s^23p^23d$ were identified in the range of 108 - 114 Å by Sugar *et al.* [1990]. The wavelength uncertainty is ± 0.005 Å. Taking into account the uncertainty of the predicted level values of the ground configuration, the uncertainty of the levels of $3p^23d$ is ± 120 cm⁻¹. Percentage compositions for the levels of the ground configuration were given. We quote these results.

The value for the ionization energy was calculated with the Cowan [1981] HFR code.

References

Cowan, R. D. [1981], The Theory of Atomic Structure and Spectra (Univ. California Press, Berkeley, CA).

Sugar, J., Kaufman, V., and Rowan, W. L. [1991], J. Opt. Soc. Am. B 8 22.

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages			(cm ⁻¹) Leading percentages	ng percentages
$3s^2 3p^3$	⁴ S°	3/2	0	69	22	3s ² 3p ^{3 2} P°		
$3s^23p^3$	² D°	³ / ₂ ⁵ /2	[77 801] [106 960]	65 100	23	$3s^2 3p^3 {}^4\mathrm{S}^\circ$		
$3s^2 3p^3$	² P°	¹ /2 ³ /2	[153 025] [216 479]	100 66	26	3s ² 3p ^{3 2} D°		
3s ² 3p ² (³ P)3d	⁴ P	⁵ /2 ³ /2	895 500 908 570					
3s ² 3p ² (¹ D)3d	²D	³ /2 ⁵ /2	989 810 995 430					
3s ² 3p ² (³ P)3d	²F	7/2	1 029 790					
3s ² 3p ² (³ P)3d	² D	⁵ /2	1 093 630					
Кr ххш (³ Р ₀)	Limit		7 555 000					

Kr xxII

Si I isoelectronic sequence

Ground state $1s^{2}2s^{2}2p^{6}3s^{2}3p^{2}{}^{3}P_{0}$

Ionization energy $8\,047\,000 \pm 80\,000 \,\mathrm{cm^{-1}}$ (997.7 ± 10 eV)

The levels of the ground configuration $3s^23p^2$ are determined completely by measured and interpolated M1 lines. The following transitions have been measured:

${}^{3}P_{0} - {}^{3}P_{1}$	1462.65 ± 0.03 Å	Benjamin et al. [1987]
${}^{3}P_{1} - {}^{3}P_{2}$	3840.9 ± 0.3 Å	Roberts et al. [1987]
${}^{3}P_{1} - {}^{1}D_{2}$	853.8±1.0 Å	Roberts et al. [1987]

The following was predicted by plotting the observed minus calculated M1 wavelength along the isoelectronic sequence:

$$^{3}P_{1} - ^{1}S_{0}$$
 537.2 ± 0.3 Å Sugar *et al*. [1990]

The above values were used to derive the energy levels of the $3s^23p^2$ configuration.

The TFR Group and Wyart [1988] observed the spectra of Kr in a tokamak discharge and classified four lines in the transition array $3s^23p^2 - 3s^23p 3d$. The measurement uncertainty was given as ± 0.02 Å. Sugar *et al.* identified eleven lines of this array which they measured with an uncertainty of ± 0.005 Å. We give their values

and designations for the energy levels. The uncertainty in the levels of the ground configuration varies from $\pm 14 \text{ cm}^{-1}$ for the lowest interval to $\pm 100 \text{ cm}^{-1}$ for the ¹S₀. The uncertainty for the levels of the excited configuration is $\pm 120 \text{ cm}^{-1}$. The percentage compositions for the levels were calculated by Sugar *et al.* who included configuration interaction between $3s 3p^3$ and $3s^2 3p 3d$.

The value for the ionization energy was calculated with the Cowan [1981] HFR code.

References

- Benjamin, R. D., Terry, J. L., and Moos, H. W. [1987], Phys. Rev. A 36, 4504.
- Cowan, R. D. [1981], The Theory of Atomic Structure and Spectra, (Univ. California Press, Berkeley, CA).
- Roberts, J. R., Pittman, T. L., Sugar, J., Kaufman, V., and Rowan, W. L. [1987], Phys. Rev. A 35, 2591.
- Sugar, J., Kaufman, V., and Rowan, W. L. [1990], J. Opt. Soc. Am. B7, 152.

TFR Group and Wyart, J. F. [1988], Phys. Scr. 37, 66.

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages		
$3s^2 3p^2$	зр	0	0	86	14	$3s^23p^2$ ¹ S
		1	68 369	100		-
		2	94 397	59	41	$3s^2 3p^2 {}^1 D$
$3s^2 3p^2$	¹ D	2	185 490	59	41	3s ² 3p ^{2 3} P
$3s^2 3p^2$	¹ S	,0 ⁻²	[254 520]	86	14	3s ² 3p ^{2 3} P
$3s3p^3$	³ S°	1	785 644	54	37	3s 3p ³ ¹ P°
$3s^2 3p 3d$	³ P°	2	872 750	51	20	3s ² 3p 3d ³ D°
		0	945 520	92	8	$3s 3p^3 {}^3P^\circ$
		1	956 580	63	22	3s ² 3p3d ³ D°
$3s^2 3p 3d$	³ D°	1	888.210	48	22	3s 3p ³ ¹ P°
		3	950 580	78	8	
$3s^23p3d$		2	938 520	39 3s ² 3p 3d	l ³ D° 32	3s ² 3p 3d ¹ D°
$3s^23p3d$		2	968 860	40 $3s^2 3p 3d$	l ³ P° 28	$3s^2 3p 3d {}^3 D^{\circ}$
$3s^23p3d$	¹ F°	3	1 026 920	89	9	$3s^2 3p 3d {}^3D^\circ$
Kr xxiv (² P _{1/2})	Limit		8 047 000	1		

Kr XXIII

J. Phys. Chem. Ref. Data, Vol. 20, No. 5, 1991

Kr xxiv

Z = 36

Al I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2 P_{1/2}^{\circ}$

Ionization energy $8\,476\,000\pm80\,000\,\mathrm{cm^{-1}}$ (1050.9 ± 10 eV)

Wyart and the TFR Group [1985] identified five lines of the transition arrays $3s^23p - 3s^2p^2$ and $3s^23d$. These were augmented by five additional lines by the TFR Group and Wyart [1988], including a doubly classified line at 152.07 Å. The uncertainty of their measurements was ± 0.02 Å.

New observations of this spectrum were made by Sugar *et al.* [1988] with a tokamak plasma. They measured nine transitions between the doublets of the above arrays with an uncertainty of ± 0.01 Å, and resolved the blend of two close lines at 152.016 Å and 152.111 Å. Their results are quoted here. The level uncertainty is ± 80 cm⁻¹.

With a more powerful tokamak discharge Jupén *et al*. [1990] were able to observe the intersystem transitions $3s^23p \ ^2P^\circ - 3s \ 3p^2 \ ^4P$. The $\ ^2P_{1/2}^\circ - \ ^4P_{1/2}$ line, however, is blended with the Mg-like intersystem resonance line

 $3s^2 {}^{1}S_0 - 3s 3p {}^{3}P_1^{\circ}$ at 242.56 Å. Their wavelength unce tainty is ± 0.02 Å. We quote their ⁴P term.

We calculated the percentage composition of the ev levels with configuration interaction between $3s 3p^2$ a $3s^23d$.

The value for the ionization energy was calculat with the Cowan [1981] HFR code.

References

Cowan, R. D. [1981], The Theory of Atomic Structure and Spec (Univ. California Press, Berkeley, CA).

Jupén, C., Denne, B., and Martinson, I. [1990], Phys. Scr. 41, 669.Sugar, J., Kaufman, V., and Rowan, W. L. [1988], J. Opt. Soc. Am. 1 2183.

TFR Group and Wyart, J. F. [1988], Phys. Scr. 37, 66.

Wyart, J. F., and TFR Group [1985], Phys. Scr. 31, 539.

Configuration	Term	J Level (cm ⁻¹)		Leading percentages			
3s ² 3p	² P°	1/2	0				
		³ / ₂	97 312				
9s 9p ²	4P	¹ /2 ³ /2	412 270	92	7	3s 3p ^{2 2} S	
		$^{3}/_{2}$	464 230	98	1	$3s3p^{2}D$	
		⁵ /2	500 420	81	18	_ //	
$3s3p^{2}$	² D	3/2	579 808	82	12	3s ² 3d ² D	
		⁵ /2	611 662	70	19	$3s 3p^2 {}^4P$	
$3s 3p^2$	$^{2}\mathrm{P}$	1/2	657 825	61	33	$\Im s \Im p^{2} \Im$	
-		3/2	765 062	90	8	$3s^23d^2D$	
3s 3p ²	² S	1/2	754 727	60	38	3s3p ² ² P	
$3s^23d$	² D	3/2	843 013	80	15	3s 3p ² ² D	
		5/2	856 066	87	13	"	
Kr xxv (¹ S ₀)	Limit		8 476 000				

Kr xxiv

Mg I isoelectronic sequence

Ground state $1s^22s^22p^63s^2$ 1S_0

Ionization energy $9\,287\,000 \pm 90\,000 \,\mathrm{cm^{-1}}$ (1151.4 ± 11 eV)

The resonance line $3s^2 {}^{1}S_0 - 3s 3p {}^{1}P_1^{\circ}$ was first reported by Hinnov [1976] at 159.0 ± 0.5 Å in a tokamak discharge. An observation of the M1 transition $3s 3p {}^{3}P_1^{\circ} - {}^{3}P_2^{\circ}$ at 1277.1 ± 1.0 Å was made by Roberts *et al.* [1987] with a tokamak. Further tokamak observations were reported by Wyart and the TFR Group [1985] and the TFR Group and Wyart [1988]. In the first paper they give 12 lines included in the arrays $3s^2 - 3s 3p$, 4p, $3s 3p - 3p^2$, and 3s 3p - 3s 3d. In the second they reject the earlier classifications $3s 3p {}^{3}P_{1,2}^{\circ} - 3s 3d {}^{3}D_2$ at 129.895 Å and 144.665 Å, and identify the transition ${}^{3}P_1^{\circ} - {}^{3}D_2$ as 129.36 ± 0.03 Å. Stewart *et al.* [1987], using a *Z*-pinch device, observed four of these lines and the additional transition $3s 3p {}^{3}P_0^{\circ} - 3s 3d {}^{3}D_1$ at 126.96 ± 0.05 Å.

Sugar *et al.* [1989] reported new measurements from a tokamak plasma of five of the eleven lines reported by Wyart *et al.* plus the additional transition at 126.96 Å given by Stewart *et al.* The uncertainty of the measurements by Sugar *et al.* is ± 0.005 Å. With these new data they derived all the levels except $3s 3p \, {}^{3}P_{0,1}^{\circ}$, $3p^{2} \, {}^{3}P_{1}$, ${}^{1}D_{2}$ and $3s 3d \, {}^{3}D_{1}$. These are derived with the data of Jupén *et al.* [1990] obtained from a high energy tokamak discharge. They gave classifications for eight new lines measured with an uncertainty of ± 0.02 Å. The combined results of Sugar *et al.* and Jupén *et al.* provide our level values for the 3s 3p, $3p^{2}$, and 3s 3d configurations except for the $3p^{2} \, {}^{1}S_{0}$ level.

Churilov *et al.* [1989] investigated the isoelectronic behavior of levels of the 3p 3d and $3d^2$ configurations. By comparing their transition energies with theory they were able to derive levels in Kr xxv from the tentatively classified wavelengths of Stewart *et al.* [1987] obtained with a Z-pinch device. The uncertainty of these measurements was ± 0.03 Å, giving a level uncertainty of

 ± 200 cm⁻¹. Churilov et al. also identified the transition $3p^{2} {}^{1}S_{0} - 3p 3d {}^{1}P_{1}^{\circ}$, permitting the ${}^{1}S_{0}$ level to be found. We combined their classified lines with the more accurately known lower levels to derive levels of the 3p3d and $3d^2$ configurations. We calculated the percentage composition of the levels by fitting the radial energy integrals to the known levels. The calculation included configuration interaction among all the even and all the odd parity levels. The 3p 3d 1F3 level given by Churilov et al. and based only on the line at 181.90 Å, is low by 6000 cm^{-1} according to our calculation. Consequently the level $3d^{2}G_{4}$, based only on a transition from the 3p 3d ¹F^o₃ level, does not fit the calculation. Also we find that the level $3p 3d^{3}D_{3}^{\circ}$ given by Churilov et al. at 1756964 cm^{-1} should be 1765500 cm^{-1} . Wyart et al. identified the resonance line from the 3s4p ¹P₁^o level.

Cowan [1981] calculated the value for the ionization energy with an estimated uncertainty of 1%.

References

Churilov, S. S., Levashov, V. E., and Wyart, J. F. [1989], Phys. Scr. 40, 625.

Cowan, R. D. [1981], The Theory of Atomic Structure and Spectra, (Univ. California Press, Berkeley, CA).

Hinnov, E. [1976], Phys. Rev. A 14, 1533.

Jupén, C., Denne, B., and Martinson, I. [1990], Phys. Scr. 41, 669.

Roberts, J. R., Pittman, T. L., Sugar, J., Kaufman, V., and Rowan, W. L. [1987], Phys. Rev. A 35, 2591.

Stewart, R. E., Dietrich, D. D., Fortner, R. J., and Dukart, R. [1987], J. Opt. Soc. Am. B 4, 396.

Sugar, J., Kaufman, V., Indelicato, P., and Rowan, W. L. [1989], J. Opt. Soc. Am. B 6, 1437.

TFR Group and Wyart, J. F. [1988], Phys. Scr. 37, 66.

Wyart, J. F., and TFR Group [1985], Phys. Scr. 31, 539.

ENERGY LEVELS OF KRYPTON, Kr I THROUGH Kr XXXVI

Configuration	Term	J	Level (cm ⁻¹)		Leadir	ng percentages
3s ²	¹ S	0	0	98	2	$3p^2$ ¹ S
3s 3p	³ Po	0	389 580	100		
03 Op	-	1	412 290	95	5	3s 3p ¹ P°
		2	490 722	100	Ū	000p 1
3s 3p	¹ P°	1	632 187	94	5	3s 3p ³ P°
$3p^2$	³ P	0	930 645	86	13	$3p^{2}$ ¹ S
•		1	1 001 890	100		-
		2	1 092 830	73	17	3p ² ¹ D
$3p^2$	1D	2	996 610	60	26	3p ^{2 3} P
3s 3d	³ D	1	1 177 690	100		
	-	2	1 184 970	100		
		3	1 196 618	100		
3p ²	¹ S	0	1 206 900	84	14	<i>Зр</i> ^{2 з} Р
3s 3d	1D	2	1 319 434	76	22	$3p^2$ ¹ D
3p 3d	³ F°	3	1 645 700	90	8	3p 3d ³ D°
op on	_	4	1 715 000	100	•	
3p 3d	¹ D°	2	1 664 300	45	28	$3p3d{}^3\mathrm{P}^{\mathrm{o}}$
3p 3d	³ D°	1	1 689 400	72	20	$3p3d$ $^{3}P^{\circ}$
-		2	1 731 900	41	32	3p 3d ¹ D°
		3	1 765 500	87	9	3p3d ³ F ^o
3p 3d	³ P°	1	1 771 700	76	23	3p 3d ³ D°
		2	1.777 000	55	40	"
3p 3d	¹ F°	3	1 869 500?	93	6	$3p3d$ $^3\mathrm{D}^\circ$
3p 3d	¹ P°	1	1 891 300	90	5	3p3d ³ D°
3d ²	³ F	2	2 381 900	97	3	3d ² ¹ D
		3	2 396 500	100		
		4	2 410 000	98	2	$3d^2$ ¹ G
$3d^2$	¹ G	4	2 464 200?	98	2	$3d^{2}$ ³ F
3s 4p	¹ P°	1	4 579 000			
Kr xxvi (² S _{1/2})	Limit	•	9 287 000			

Na I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 S_{1/2}$

Ionization energy $9721300 \pm 2000 \text{ cm}^{-1}$ (1205.3 $\pm 0.3 \text{ eV}$)

Hinnov [1976] first identified the 3s - 3p doublet in a tokamak plasma. Improved values were given by Wyart *et al.* [1985] for this doublet as well as new measurements of 3p - 3d, 3s - 4p, 3p - 4s, 3p - 4d, 3d - 4f, and 4f - 5g from tokamak observations. The uncertainty of the n = 3 - 4 transitions is ± 0.015 Å.

Reader et al. [1987] fitted the differences between observed and calculated wavenumbers of the 3s-3p, 3p-3d, and 3d-4f doublets to simple formulas by least squares for all ions from Ar VIII to Xe XLIV. By this means they derived smoothed values for these transitions with an estimated uncertainty of ± 0.007 Å. The level uncertainties are ± 40 cm⁻¹ for n=3 and ± 2000 cm⁻¹ for n=4. Burkhalter et al. [1979] have observed the $2p^63s - 2p^53s^2$, $2p^63p - 2p^53s^3p$, and $2p^63d - 2p^53s^3d$ arrays in the range of 7.3 - 7.6 Å with a Z-pinch device. There is too much blending of lines to permit the derivation of reliable energy levels from these data.

We use the n = 3 - 3 wavelengths of Reader *et al.* plus their 3d - 4f value, and the wavelengths of Wyart *et al.* for the remaining n = 3 - 4 transitions to derive the energy levels.

We derived the limit from the 4f and 5g level positions by means of a polarization calculation.

References

Burkhalter, P. G., Shiloh, J., Fisher, A., and Cowan, R. D. [1979], J. Appl. Phys. 50, 4532.

Hinnov, E. [1976], Phys. Rev. A 14, 1533.

Reader, J., Kaufman, V., Sugar, J., Ekberg, J. O., Feldman, U., Brown, C. M., Seely, J. F., and Rowan, W. L. [1987], J. Opt. Soc. Am. B 4, 1821.

Wyart, J. F., and TFR Group [1985], Phys. Scr. 31, 539.

UI YYAI

Configuration	Term	J	Level (cm ⁻¹)
3s	² S	1/2	0
3 <i>p</i>	² P°	$\frac{1}{2}$ $\frac{3}{2}$	454 413 558 678
3d	² D	³ / ₂ ⁵ / ₂	1 164 182 1 183 991
15	^{2}S	1/2	4 492 700
4 <i>p</i>	² P°	$\frac{1}{2}$	4 679 700 4 720 300
4d	² D	³ /2 ⁵ /2	4 947 400 4 955 600
4 <i>f</i>	²F°	⁵ /2 7/2	5 067 200 5 070 800
5g	²G	7/2 9/2	6 751 400 6 752 600
Кг ххvіі (¹S₀)	Limit	•••••	9 721 300

Kr xxvii

Z = 36

Ne I isoelectronic sequence

Ground state $1s^2 2s^2 2p^{6} {}^1S_0$

Ionization energy 23 616 000 \pm 24 000 cm⁻¹ (2928 \pm 30 eV)

Using spectra obtained with a beam-foil device in the range of 140 to 270 Å, Buchet *et al.* [1988] established all the levels of the $2p^{5}3s$ and $2p^{5}3p$ configurations and 10 of the 12 levels of $2p^{5}3d$. No connection was found between levels based on the two $2p^{5}$ ${}^{2}P_{1/2}^{o}$ and ${}^{2}P_{3/2}^{o}$ core states. The two systems of levels are given relative to calculated values for the $2p^{5}3s$ (${}^{3}/{}_{2}$, ${}^{1}/{}_{2}$)°, and $2p^{5}3s$ (${}^{1}/{}_{2}$, ${}^{1}/{}_{2}$)°, levels at 13 326 500 cm⁻¹ and 13 758 000 cm⁻¹, respectively.

These systems were connected by the $2p^6 - 2p^53s$ resonance lines measured by Gordon et al. [1979] and Burkhalter et al. [1979] at 7 Å. These were observed by laser excitation and with a Z-pinch device, respectively, with wavelength uncertainties reported as ± 0.005 Å and ± 0.007 Å. Resonance lines $2p^6 - 2p^5 3d$ and $2s^2 2p^6 - d^2 p^5 3d$ 2s 2p⁶3p were also given. The uncertainty of the Gordon et al. measurements is $\pm 10\,000\,\mathrm{cm}^{-1}$, and they fall within 1000 cm⁻¹ of Buchet's calculated values. We use the values of Buchet to connect these systems to the ground level with an uncertainty of $\pm 10000 \,\mathrm{cm}^{-1}$. Within each system the level uncertainties are ± 500 cm⁻¹ for the 2p⁵3s and 3p levels and ± 1000 cm⁻¹ for the 3d levels. Stewart et al. [1987] observed some of these transitions in Z-pinch plasmas and the values were compared by Buchet et al. with their own measurements.

The value for the ionization energy was calculated by Cowan [1981] with an uncertainty of 1%.

References

- Buchet, J. P., Buchet-Poulizac, M. C., Denis, A., Desesquelles, J., Druetta, M., Martin, S., Lecler, D., Luc-Koenig, E., and Wyart, J. F. [1988], Nucl. Instrum. Methods Phys. Res. B 31, 177.
- Burkhalter, P. G., Shiloh, J., Fisher, A., and Cowan, R. D. [1979], J. Appl. Phys. 50, 4532.
- Cowan, R. D. [1981], The Theory of Atomic Structure and Spectra, (Univ. California Press, Berkeley, CA).
- Gordon, H., Hobby, M. G., Peacock, N. J., and Cowan, R. D. [1979], J. Phys. B 12, 881.
- Stewart, R. E., Dietrich, D. D., Fortner, R. J., and Dukart, R. [1987], J. Opt. Soc. Am. B 4, 396.

Configuration	Term	J	Level (cm ⁻¹
$2s^2 2p^6$	¹ S	0	c
2s ² 2p ⁵ (² P _{3/2})3s	(³ / ₂ , ¹ / ₂)°	2 1	13 300 50(13 326 50(
2s ² 2p ⁵ (² P _{3/2})3p	(3/2,1/2)	1 2	13 713 30(13 738 20(
2s ² 2p ⁵ (² P _{1/2})3s	(¹ / ₂ , ¹ / ₂)°	0 1	13 745 30(13 758 00(
2s ² 2p ⁵ (² P _{3/2})3p	(3/2,3/2)	3 1 2 0	13 831 30(13 835 90(13 870 20(14 004 20(
$2s^2 2p^5 (^2P_{1/2}^\circ) 3p$	(1/2,1/2)	1 0	14 172 30(14 344 30(
$2s^2 2p^5 (^2P_{1/2}^\circ) 3p$	(1/2,3/2)	1 2	14 282 901 14 293 601
2s ² 2p ⁵ (² P _{3/2})3d	(³ /2, ³ /2)°	0 1 3 2	14 342 001 14 369 401 14 394 501 14 424 301
2s ² 2p ⁵ (² P _{3/2})3d	(³ /2, ⁵ /2)°	4 2 3 1	14 399 70 14 401 10 14 448 20 14 533 00
$2s^2 2p^5(^2P_{1/2}^\circ)3d$	(¹ / ₂ , ³ / ₂)°	2 1	14 840 10 14 928 00
2s ² 2p ⁵ (² P _{1/2})3d	(¹ /2, ⁵ /2)°	2 3	14 857 30 14 869 70
2s2p ⁶ 3p	(¹ /2, ¹ /2)°	1	15 662 00
2s2p ⁶ 3p	(¹ / ₂ , ³ / ₂)°	1	15 783 00
Kr xxviii (²P _{3/2})	Limit		23 616 00

Kr xxvii

=36

' i isoelectronic sequence

Fround state $1s^2 2s^2 2p^5 {}^2P_{3/2}^{\circ}$

onization energy $24\,760\,000 \pm 250\,000 \,\mathrm{cm^{-1}}$ (3070 ± 30 eV)

Wyart *et al.* [1985] classified the two lines of the $s^22p^5 - 2s2p^6$ transition observed at 52 and 68 Å in a okamak plasma. They were also observed by Dietrich *et l.* [1986] in a Z-pinch, and by Denne *et al.* [1989] in a okamak. All are given with an uncertainty of ± 0.03 Å, vithin which the values are all in agreement. Denne *et l.* observed the M1 line at 223.995 ± 0.030 Å giving the P° ground term splitting with an uncertainty of ± 60 cm⁻¹. We give the value for the $2s2p^6$ 2S term rom an average of the $2s^22p^5 - 2s2p^6$ measurements.

With a Z-pinch device Burkhalter *et al.* [1979] observed spectra in the range of 6-8 Å, including the $2p^{5}-2p^{4}3s$, $2p^{5}-2p^{4}3d$, $2s^{2}2p^{5}-2s^{2}p^{5}3p$, and $2s^{2}2p^{6}-2p^{6}3p$ arrays. They estimate the uncertainty of heir measurements to be ± 0.007 Å, giving a level uncertainty of $\pm 14\ 000\ \text{cm}^{-1}$. They also give the leading

eigenvector percentage in LS and jj coupling, the latter giving the purer scheme for most levels. We have compiled all but the $2s2p^{5}3p$ levels, which do not reproduce the correct ground term interval.

Cowan [1981] calculated the value for the ionization energy with an estimated uncertainty of 1%.

References

- Burkhalter, P. G., Shiloh, J., Fisher, A., and Cowan, R. D. [1979], J. Appl. Phys. 50, 4532.
- Cowan, R. D. [1981], The Theory of Atomic Structure and Spectra, (Univ. California Press, Berkeley, CA).
- Denne, B., Hinnov, E., Ramette, J., and Saoutic, B. [1989], Phys. Rev. A 40, 1488.
- Dietrich, D. D., Stewart, R. E., Fortner, R. J., and Dukart, R. J. [1986], Phys. Rev. A 34, 1912.
- Wyart, J. F., and TFR Group [1985], Phys. Scr. 31, 539.

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
$2s^22p^5$	²p°	³ /2 ¹ /2	0 446 440	
2s2p*	² S	1/2	1 901 350	
2s ² 2p ⁴ (³ P ₂)3s	(2,1/2)	⁵ /2 ³ /2	13 872 000 13 902 000	78 75
2s ² 2p ⁴ (³ P ₀)3s	(0,1/2)	1/2	14 039 000	51
2s ² 2p ⁴ (³ P ₁)3s	(1,1/2)	$^{3/_{2}}_{1/_{2}}$	14 292 000 14 337 000	99 99
2s ² 2p ⁴ (¹ D ₂)3s	(2,1/2)	⁵ /2 ³ /2	14 407 000 14 409 000	78 75
$2s^22p^4(^{3}P_2)3d$	(2,³/2)	$\frac{1}{2}{3}_{2}$	14 892 000 15 062 000	61 41
2s ² 2p ⁴ (³ P ₂)3d	(2,5/2)	³ /2 ⁵ /2	14 977 000 15 008 000	57 68
$2s^2 2p^4 ({}^{3}\mathrm{P_0}) 3d$	(0,5/2)	5/2	15 092 000	47
2s ² 2p ⁴ (³ P ₀)3d	(0,3/2)	3/2	15 312 000	72
2s ² 2p ⁴ (³ P ₁)3d	(1,3/2)	5/2	15 340 000	66

Kr xxviii

J. Phys. Chem. Ref. Data, Vol. 20, No. 5, 1991

ENERGY LEVELS OF KRYPTON, Kr I THROUGH Kr XXXVI

Configuration	Term	J	Level (cm ⁻¹)	Leading	g percentages
$2s^22p^4(^{3}P_1)3d$	(1,5/2)	³ /2 ⁵ /2	15 374 000 15 380 000	60 81	
$2s^2 2p^4({}^1D_2)3d$	(2,³/2)	¹ / ₂ ⁵ / ₂	15 434 000 15 466 000	60 63	
$2s^2 2p^4 ({}^1D_2) 3d$		³ /2	15 460 000	37 $2p^4({}^1D_2)3d$	(2,³/2)
$2s^2 2p^4 ({}^1D_2) 3d$		⁵ /2	15 538 000	$30 2p^4({}^1D_2)3d$	(2, ⁵ / ₂)
$2s^2 2p^4({}^1D_2)3d$		³ /2	15 557 000	$30 2p^4({}^1\mathrm{D}_2)3d$	(2,5/2)
$2s^22p^4({}^1D_2)3d$	(2,5/2)	¹ /2	15 573 000	51	
$2s^2 2p^4({}^1S_0)3d$	(0,³/2)	³ /2	15 953 000	49	
2p ⁶ 3p	2po	¹ / ₂ ³ / ₂	18 069 000 18 175 000		
Kr xxix (³ P ₂)	Limit		24 760 000		

Kr xxviii – Continued

O I isoelectronic sequence

Ground state $1s^2 2s^2 2p^{4} {}^{3}P_2$

Ionization energy $26\,030\,000 \pm 250\,000 \,\mathrm{cm^{-1}}$ (3227 ± 30 eV)

Wyart *et al.* [1985] classified three lines of the $2s^22p^4 - 2s^2p^5$ array observed in a tokamak plasma. Observations with a Z-pinch by Dietrich *et al.* [1986] extended the number of classified lines to seven. New tokamak observations by Denne *et al.* [1989] provided seven lines of this array, two of which at 74.663 Å and 86.98 Å were newly identified. This group also reported two M1 transitions within the ground configuration: the ${}^{3}P_{2}-{}^{3}P_{1}$ at 235.95 ± 0.10 Å. Dietrich *et al.* reported two E1 lines that were not given by Denne *et al.* We have used the wavelengths of Denne *et al.* to determine the energy levels, and supplemented them with the two lines of Dietrich *et al.* The uncertainty of the levels varies from ± 100 to ± 1000 cm⁻¹.

Cowan [1981] calculated the value for the ionization energy with an estimated uncertainty of 1%.

References

- Cowan, R. D. [1981], The Theory of Atomic Structure and Spectra, (Univ. California Press, Berkeley, CA).
- Denne, B., Hinnov, E., Ramette, J., and Saoutic, B. [1989], Phys. Rev. A 40, 1488.
- Dietrich, D. D., Stewart, R. E., Fortner, R. J., and Dukart, R. J. [1986], Phys. Rev. A 34, 1912.

Wyart, J. F., and TFR Group [1985], Phys. Scr. 31, 539.

Kr	XXIX
----	------

Configuration	Term	J	Level (cm ⁻¹)
0.20.4	3р	0	
$2s^2 2p^4$	P		0
		0	160 700
		1	423 820
$2s^2 2p^4$	¹ D	2	524 890
$2s2p^{5}$	³ P°	2	1 674 650
•		1	1 864 320
		0	2 133 800
2s2p ⁵	¹ P°	1	2 377 700
Kr XXX (⁴ S _{3/2})	Limit		26 030 000

Kr xxx

Z = 36

N I isoelectronic sequence

Ground state $1s^22s^22p^3 {}^4S^{\circ}_{3/2}$

Ionization energy $27\ 270\ 000\ \pm\ 200\ 000\ \mathrm{cm}^{-1}$ (3381 ± 25 eV)

Denne *et al.* [1989] reported seven lines of the transition array $2s^22p^3 - 2s2p^4$ observed in the range of 54-110 Å in a tokamak plasma and measured with an uncertainty varying from ± 0.02 to 0.05 Å. They also identified three M1 transitions among the ground configuration levels: the ${}^{4}S_{3/2}^{\circ} - {}^{2}P_{1/2}^{\circ}$ at 160.90 ± 0.10 Å tentatively, the ${}^{4}S_{3/2}^{\circ} - {}^{2}D_{5/2}^{\circ}$ at 205.247 ± 0.025 Å, and the ${}^{4}S_{3/2}^{\circ} - {}^{2}D_{3/2}^{\circ}$ at 259.807 ± 0.020 Å. The uncertainty in the determination of the levels of the ground configuration is ± 50 cm⁻¹, and the average uncertainty for the levels of the $2s2p^4$ configuration is ± 1000 cm⁻¹. We quote these results.

Cowan [1981] calculated the value for the ionization energy with an estimated uncertainty of 1%.

References

Cowan, R. D. [1981], *The Theory of Atomic Structure and Spectra*, (Univ. California Press, Berkeley, CA).

Denne, B., Hinnov, E., Ramette, J., and Saoutic, B. [1989], Phys. Rev. A 40, 1488.

Configuration	Term	J	Level (cm ⁻¹)
$2s^2 2p^3$	⁴ S°	³ /2	0
$2s^22p^3$	² D°	³ / ₂ ⁵ / ₂	384 900 487 220
$2s^2 2p^3$	² P°	1/2	621 500
2s2p4	⁴P	⁵ /2 ³ /2 ¹ /2	1 391 300 1 646 580 1 657 500
$2s2p^{4}$	² D	³ /2	1 955 480
2s2p ⁴	$^{2}\mathrm{P}$	³ /2	2 318 860
Kr xxxi (³ P ₀)	Limit		27 270 000

Kr	VVV
	AAA

C 1 isoelectronic sequence

Ground state $1s^2 2s^2 2p^2 {}^{3}P_0$

onization energy $28\,990\,000 \pm 300\,000 \,\mathrm{cm^{-1}}$ (3594 ± 40 eV)

Denne *et al.* [1989] reported eight lines of the transiion array $2s^22p^2 - 2s^2p^3$ observed in the range of 6-95 Å in a tokamak plasma with uncertainties varying rom ± 0.02 to 0.05 Å. They also identified the M1 tranition $2s^22p^2$ (${}^{3}P_{0} - {}^{3}P_{1}$) at 252.001 ± 0.020 Å, giving an inerval of 396 820 ± 30 cm⁻¹. The average uncertainty of he levels of $2s^2p^3$ is ± 1000 cm⁻¹.

Martin *et al.* [1990] observed four lines of the $s^22p^2 - 2s^22p^3$ array with a beam-foil source and report a vavelength uncertainty of ± 0.05 Å. They identified the $s^22p^2 {}^3P_1 - 2s^2p^3 {}^3P_0^{\circ}$ transition, not given by Denne *et al.*

We quote the results of Denne *et al.* and include the $s2p^{3}$ ³P₀° value of Martin *et al.*

Cowan [1981] calculated the value for the ionization nergy with an estimated uncertainty of 1%.

References

owan, R. D. [1981], The Theory of Atomic Structure and Spectra, (Univ. California Press, Berkeley, CA).

enne, B., Hinnov, E., Ramette, J., and Saoutic, B. [1989], Phys. Rev. A 40, 1488.

artin, S., Denis, A., Buchet-Poulizac, M. C., Buchet, J. P., and Desesquelles, J. [1990], Phys. Rev. A 42, 6570.

Kr xxxi J Level (cm⁻¹) Configuration Term $2s^22p^2$ ³P 0 0 396 820 1 2 478 200 $2s2p^3$ ³D° 1 1 530 200 2 1 653 800 3 1 783 500 ³P° 0 1 955 900 $2s2p^3$ 1 999 100 1 2 2 002 900 ³S° $2s2p^3$ 1 2 151 900 28 990 000 Kr XXXII (2P°1/2) Limit

Kr xxxII

Z = 36

B I isoelectronic sequence

Ground state $1s^2 2s^2 2p^2 P_{1/2}^{\circ}$

Ionization energy $30\,330\,000 \pm 300\,000 \,\mathrm{cm^{-1}}$ (3760 ± 40 eV)

Denne *et al.* [1989] observed the line at 64.65 ± 0.10 Å in a tokamak plasma and tentatively classified it as a blend of $2s^22p$ ${}^{2}P_{3/2}^{\circ} - 2s 2p^2 {}^{2}P_{1/2,3/2}^{\circ}$. They also reported three other lines of this array: the ${}^{2}P_{1/2}^{\circ} - {}^{2}S_{1/2}^{\circ}$ at 66.538 ± 0.025 Å, the ${}^{2}P_{1/2}^{\circ} - {}^{2}D_{3/2}^{\circ}$ at 69.957 ± 0.020 Å, and the ${}^{2}P_{3/2}^{\circ} - {}^{2}D_{5/2}^{\circ}$ at 84.94 ± 0.10 Å which is weak and tentatively classified. In addition they observed the M1 transition $2s^{2}2p$ (${}^{2}P_{1/2}^{\circ} - {}^{2}P_{3/2}^{\circ}$) at 203.021 ± 0.020 Å, from which they determined the ground term interval.

The same transitions were measured in a beam-foil spectrum by Martin *et al.* [1990]. We average these two sets of data and obtain levels with an uncertainty of $\pm 2000 \text{ cm}^{-1}$. Martin *et al.* also identified two transitions from the $2p^3$ configuration that we use to derive the two doublet levels.

The ionization energy was calculated by Cowan [1981] with an uncertainty of about 1%.

References

Cowan, R. D. [1981], *The Theory of Atomic Structure and Spectra*, (Univ. California Press, Berkeley, CA).

Denne, B., Hinnov, E., Ramette, J., and Saoutic, B. [1989], Phys. Rev. A 40, 1488.

Martin, S., Denis, A., Buchet-Poulizac, M. C., Buchet, J. P., and Desesquelles, J. [1990], Phys. Rev. A 42, 6570.

Configuration	Term	J	Level (cm ⁻¹)
2s ² 2p	² P°	$\frac{1}{2}$ $\frac{3}{2}$	0 492 560
$2s2p^2$	²D	³ / ₂ ⁵ / ₂	1 430 000 1 671 000
$2s2p^2$	² S	1/2	1 503 000
$2s 2p^2$	² P	¹ / ₂ ³ / ₂	2 031 000 2 041 000
2p ³	² D°	5/2	2 738 000
2p ³	² P°	3/2	3 308 000
Kr xxxIII (¹ S ₀)	Limit		30 330 000

Kr xxxII

Be I isoelectronic sequence

Ground state $1s^2 2s^2 {}^1S_0$

Ionization energy $31\,990\,000 \pm 300\,000 \,\mathrm{cm^{-1}}$ (3966 ± 40 eV)

Dietrich *et al.* [1980] identified the resonance line $2s^{2} {}^{1}S_{0} - 2s 2p {}^{1}P_{1}^{\circ}$ at 169.9 ± 0.5 Å in a beam-foil device. Denne *et al.* [1989] observed both resonance lines $2s^{2} {}^{1}S_{0} - 2s 2p {}^{1,3}P_{1}^{\circ}$ at 72.756 ± 0.020 Å and 169.845 ± 0.025 Å in a tokamak plasma. They also observed the M1 transition $2s 2p ({}^{3}P_{1}^{\circ} - {}^{3}P_{2}^{\circ})$ at 235.48 ± 0.05 Å. We use the results of Denne *et al.* to derive the levels of 2s 2p, except for the ${}^{3}P_{0}^{\circ}$ level.

Further beam-foil observations by Martin *et al.* [1990] enabled them to identify the $2s 2p - 2p^2$ array. Their line identifications provided us with the ³P₀^o level of 2s 2p and the ³P, ¹D, and ¹S levels of $2p^2$ with an uncertainty of ± 1000 cm⁻¹.

The ionization energy was calculated by Cowan [1981] with a uncertainty of about 1%.

References

- Cowan, R. D. [1981], The Theory of Atomic Structure and Spectra, (Univ. California Press, Berkeley, CA).
- Denne, B., Hinnov, E., Ramette, J., and Saoutic, B. [1989], Phys. Rev. A 40, 1488.
- Dietrich, D. D., Leavitt, J. A., Gould, H., and Marrus, R. [1980], Phys. Rev. A 22, 1109.
- Martin, S., Denis, A., Buchet-Poulizac, M. C., Buchet, J. P., and Desesquelles, J. [1990], Phys. Rev. A 42, 6570.

Kr	XXXIII
----	--------

Configuration	Term	J	Level (cm ⁻¹)
2s ²	¹ S	0	0
2s2p	³ p°	0	505 500
r ,	_	1	588 770
		2	1 013 440
2s2p	¹ P°	.1	1 374 460
$2p^2$	³ P	0	1 438 100
-		1	1 827 200
		2	1 909 800
2p ²	1D	2	2 391 300
$2p^2$	¹ S	0	2 671 500
Kr xxxiv (² S _{1/2})	Limit		31 990 000

J. Phys. Chem. Ref. Data, Vol. 20, No. 5, 1991

Kr xxxiv

Z=36

Li I isoelectronic sequence

Ground state $1s^2 2s^2 S_{1/2}$

Ionization energy $33\ 137\ 590\ \pm\ 800\ \text{cm}^{-1}$ (4108.540 $\pm\ 0.1\ \text{eV}$)

The resonance 2s - 2p doublet has been measured by Denne *et al.* [1989] at 174.036±0.026 Å and 91.049±0.025 Å from tokamak observations. Using a beam-foil apparatus Martin *et al.* [1990] obtained the values 173.93±0.04 Å and 91.00±0.03 Å. We use weighted averages of these measurements to obtain the values 174.005±0.022 Å and 91.029±0.025 Å. The energy levels are deduced from these values with uncertainties of ±70 cm⁻¹ and ±80 cm⁻¹, respectively. These lines have been calculated by Indelicato [1989] with an MCDF code including radiative corrections. His values are 174.0025 Å and 91.0508 Å.

The value for the ionization energy was obtained from similar calculations by Indelicato [1986, 1989] of the binding energies of the ground states of He-like and Lilike krypton.

References

- Denne, B., Hinnov, E., Ramette, J., and Saoutic, B. [1989], Phys. Rev. A 40, 1488.
- Indelicato, P. [1989], private communication.
- Indelicato, P., Briand, J. P., Tavernier, M., and Liesen, D. [1986], Z. Phys. D 2, 249.
- Martin, S., Denis, A., Buchet-Poulizac, M. C., Buchet, J. P., and Desesquelles, J. [1990], Phys. Rev. A 42, 6570.

Configuration	Term	J	Level (cm ⁻
1s ² 2s	² S	1/2	
1s ² 2p	² P°	$\frac{1}{2}$	574 70 1 098 55
Kr xxxv (¹ S ₀)	Limit	•	33 137 59

Kr xxxiv

He I isoelectronic sequence

Ground state $1s^{2} S_{0}$

Ionization energy $139510800 \pm 5000 \text{ cm}^{-1}$ (17 297.14 $\pm 0.6 \text{ eV}$)

The following experimental data have been obtained by beam-foil excitation:

Transition	Energy (cm ⁻¹)	Authors
1s ² ¹ S ₀ - 1s2s ³ S ₁	104 920 000 ± 270 000	Gould and Marrus [1975]
$1s^2 {}^{1}S_0 - 1s 2p {}^{3}P_1^{\circ}$	105 068 200 ± 2000	Indelicato et al. [1986]
$1s^{2} S_{0} - 1s^{2}p P_{1}^{2}$	105 783 200 ± 2000	Indelicato et al. [1986]
$1s^{2} {}^{1}S_{0} - 1s2p {}^{3}P_{2}^{\circ}$	105588000 ± 12000	Briand et al. [1984]
1s2s 3S1 - 1s2p 3P2	900 030 ± 250	Martin et al. [1990]
1s2s ³ S ₁ - 1s2p ³ P ₀	357 380 ± 250	Martin et al. [1990]

We quote the positions of the 1s2p ¹P₁° and ³P₁° levels from Indelicato *et al.* [1986]. The 1s2p ³P₀° – ³P₁° interval and the position of the 1s2s ¹S₀ level are from multiconfiguration Dirac-Fock calculations with QED corrections by Indelicato [1990]. The 1s2p ³P₂° and the 1s2s ³S₁ levels were derived from the measurements by Martin *et al.* [1990]. The value for the ionization energy was calculated by Indelicato [1990]. His values for the 1s2p ³P₁° and ¹P₁° and the 1s2s ³S₁ are about 5000 cm⁻¹ lower than the observed values. We therefore increased his value for the ionization energy by this amount.

References

3riand, J. P., Indelicato, P., Tavernier, M., Gorceix, O., Liesen, D., Beyer, H. F., Liu, B., Warczak, A., and Desclaux, J. P. [1984], Z. Phys. A 318, 1.

- Gould, H., and Marrus, R. [1975], International Conference on Beam-Foil Spectroscopy, 4th, Gatlinburg, TN, Vol. 1, pp. 305-316, I. A. Sellin and D. J. Pegg, Editors (Plenum Press, New York 1976). Indelicato, P. [1990], private communication.
- Indelicato, P., Briand, J. P., Tavernier, M., and Liesen, D. [1986], Z. Phys. D 2, 249.
- Martin, S., Denis, A., Buchet-Poulizac, M. C., Buchet, J. P., and Desesquelles, J. [1990], Phys. Rev. A 42, 6570.

V.r.	VVVI
n	XXXV

Configuration	Term	J	Level (cm ⁻¹)
1s ²	1S	0	0
1s2s	³ S	1	104 689 700
1s2p	³ P°	0	[105 047 100]
	t	1	105 068 200
		2	105 589 700
1s2s	¹ S	· 0 ·	[105 070 100]
1s2p	¹ P°	1	105 783 200
Kr xxxvi (² S _{1/2})	Limit	• • • • • • • • • • •	139 510 800

Kr xxxvi

Z = 36

H I isoelectronic sequence

Ground state 1s ²S_{1/2}

Ionization energy 144 665 280 \pm 90 cm⁻¹ (17 936.21 \pm 0.01 eV)

A value for the $1s {}^{2}S_{1/2} - 2p {}^{2}P_{3/2}^{\circ}$ transition of 13 508.95 ± 0.5 eV or 108 957 000 ± 4000 cm⁻¹ has been measured by Tavernier *et al*. [1985] in a beam-foil experiment.

We give the theoretical values for the 1s, 2s, and 2p levels as well as the ionization energy calculated by Johnson and Soff [1985]. They estimate the uncertainty of these values relative to the ground state to be $\pm 90 \text{ cm}^{-1}$ and that of the 2p ²P° term splitting to be $\pm 5 \text{ cm}^{-1}$. The position of the 2p ²P°_{3/2} level agrees with the measured value within the uncertainty of the measurement.

For n = 3 to 5 the values of the energy levels were obtained by subtracting the binding energies calculated by Erickson [1977] from the Johnson and Soff value for the binding energy of the ground state. Assuming that the Lamb shift scales as n^{-3} , we estimate the error in Erickson's calculations for the *ns* levels as $8n^{-3}$ times his error of ± 880 cm⁻¹ for 2s. The resulting errors for 3s, 4s, and 5s are ± 260 cm⁻¹, ± 110 cm⁻¹, and ± 60 cm⁻¹, respectively. For the remaining levels with $n \ge 3$ and for 5s the limiting uncertainty is ± 90 cm⁻¹.

References

Erickson, G. W. [1977], J. Phys. Chem. Ref. Data 6, 831. Johnson, W. R., and Soff, G. [1985], At. Data Nucl. Data Tables 33, 405.

Tavernier, M., Briand, J. P., Indelicato, P., Liesen, D., Richard, P. [1985], J. Phys. B 18, L327.

KF XXXVI				
Configuration	Term	J	Level (cm ⁻¹	
1s	² S	1/2		
2 p	² P°	$\frac{1}{2}$ $\frac{3}{2}$	[108 314 47([108 956 895	
2s	² S	¹ / ₂	[108 328 400	
3p	² P°	$\frac{1}{2}$ $\frac{3}{2}$	[<i>128 581 18</i> ([<i>128 771 76</i> (
3 <i>s</i>	² S	¹ /2	[128 585 64(
3d	² D	³ / ₂ ⁵ / ₂	[128 771 408 [128 832 862	
4 <i>p</i>	² P°	$\frac{1}{2}$ $\frac{3}{2}$	[135 648 10) [135 728 37)	
4s	² S	¹ /2	[135 649 998	
4d	² D	³ / ₂ ⁵ / ₂	[135 728 224 [135 754 189	
4 <i>f</i>	² F°	⁵ / ₂ 7/2	[135 754 14- [135 767 02-	
5p	² P°	$\frac{1}{2}$	[138 907 84([138 948 87]	
5s	² S	¹ / ₂	[138 908 81(
5d	² D	³ /2 ⁵ /2	[138 948 79] [138 962 09(
5 <i>f</i>	² F°	⁵ / ₂ ⁷ / ₂	[<i>138 962 07</i> ; [<i>138 968 67</i> ;	
5g	²G	7/2 9/2	[138 968 664 [138 972 604	
•••••	Limit	••••••••	[144 665 28	

Kr xxxvi