Atomic Transition Probabilities of Sodium and Magnesium. A Critical Compilation

D. E. Kelleher^{a)} and L. I. Podobedova^{b)}

Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8422

(Received 10 January 2005; revised manuscript received 13 December 2005; accepted 16 December 2005; published online 3 March 2008)

This compilation is the first in a series of updates to a critical compilation published in 1969 [W. L. Wiese, M. W. Smith, and B. M. Miles, Atomic Transition Probabilities, Vol. II: Sodium through Calcium, NSRDS-NBS Vol. 2 (U.S. GPO, Washington, D.C., 1969)]. Atomic transition probabilities have been critically evaluated and compiled for about 11 400 spectral lines of sodium and magnesium (nuclear charge Z=11-12, respectively). The cited values and their estimated uncertainties are based on our consideration of all available theoretical and experimental literature sources. All ionization stages (except for hydrogenic) are covered, and the data are presented in separate tables for each atom and ion. Separate listings are given for "allowed" (electric dipole) transitions, on the one hand, and for "forbidden" (magnetic dipole plus electric and magnetic quadrupole) transitions, on the other. In each spectrum, lines are grouped into multiplets which are arranged in order of ascending lower and upper-level energies, respectively. For each line, the emission transition probability A_{ki} , the line strength S, and (for allowed lines) the absorption oscillator strength f_{ik} are given, together with the spectroscopic designation, the wavelength, the statistical weights, and the energy levels of the lower and upper states. The estimated relative uncertainties of the line strength are also indicated, as are the source citations. We introduce a statistical method that we use to estimate these uncertainties for most of the cited transition rates. We only include those lines whose transition rates are deemed sufficiently accurate to qualify as reference values. Short introductions precede the tables for each ion. The general introduction contains a discussion of the principal criteria for our judgments and our method of data selection and evaluation. © 2008 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved.. [DOI: 10.1063/1.2735328]

Key words: atomic spectra; energy levels; ions; line strengths; magnesium; oscillator strengths; sodium; transition probabilities; uncertainties.

CONTENTS

				3.7. Related Atomic Physics Data in Tables	275
1.	Introduction.	270	4.	Estimating Relative Uncertainties of Line Strengths.	275
2.	Data Assessment	271		4.1. Pooling of Relative Uncertainties of the	
	2.1. Main Criteria	271		Different Lines in a Spectrum	275
	2.2. The Critical Factors for the Determination			4.2. Restriction to Data from Certain Authors	278
	of Atomic Transition Probabilities	271		4.3. Evaluation Procedure	278
	2.2.1. Theoretical Methods	271	5.	Arrangement of the Tables	280
	2.2.2. Experimental Methods	272	6.	Acknowledgments and Future Plans	282
	2.3. Selection Procedure	272	7.	Appendix A: Classical Statistical	
3.	Brief Discussion of the Principal Data Sources.	272		Considerations.	282
	3.1. General Remarks	272	8.	Appendix B: Computing the Error Function	283
	3.2. The Opacity Project	273	9.	References for the Introductory Material—	
	3.3. Breit-Pauli MCHF	274		Sections 1–8.	284
	3.4. Configuration Interaction Methods	274	10.	Na	284
	3.5. Many-Body Perturbation Theory	274	10.	10.1. Na I	284
				10.1.1. Allowed Transitions for Na I	284
\ .	tronic mail: daniel.kelleher@nist.gov			10.1.2. References for Allowed Transitions	
	tronic mail: larissa.podobedova@nist.gov 8 by the U.S. Secretary of Commerce on behalf of the United	States		for Na I	285

All rights reserved..

10.1.3. Forbidden Transitions for Na I.....

3.6. Other Multiconfiguration Calculations.....

275

10.1.4. References for Forbidden			10.10.1.	Allowed Transitions for Na X	480
Transitions for Na I	299		10.10.2.	References for Allowed Transitions	
10.2. Na II	300			for Na x	480
10.2.1. Allowed Transitions for Na II	300	11.	Mg		500
10.2.2. References for Allowed Transitions			11.1. Mg I.		500
for Na II	301		11.1.1.	Allowed Transitions for Mg I	500
10.2.3. Forbidden Transitions for Na II	306		11.1.2.	References for Allowed Transitions	
10.2.4. References for Forbidden				for Mg I	501
Transitions for Na II	306		11.1.3.	Forbidden Transitions for Mg I	534
10.3. Na III	309		11.1.4.	References for Forbidden	
10.3.1. Allowed Transitions for Na III	309			Transitions for Mg I	534
10.3.2. References for Allowed Transitions			11.2. Mg II.		538
for Na III	309		11.2.1.	Allowed Transitions for Mg II	538
10.3.3. Forbidden Transitions for Na III	325		11.2.2.	References for Allowed Transitions	
10.3.4. References for Forbidden				for Mg II	538
Transitions for Na III	325		11.2.3.	Forbidden Transitions for Mg II	556
10.4. Na IV	327		11.2.4.	References for Forbidden	
10.4.1. Allowed Transitions for Na IV	327			Transitions for Mg II	556
10.4.2. References for Allowed Transitions			11.3. Mg III	[559
for Na IV	328			Allowed Transitions for Mg III	559
10.4.3. Forbidden Transitions for Na IV	348			References for Allowed Transitions	
10.4.4. References for Forbidden				for Mg III	559
Transitions for Na IV	348		11.3.3.	Forbidden Transitions for Mg III	565
10.5. Na v	355			References for Forbidden	
10.5.1. Allowed Transitions for Na V	355			Transitions for Mg III	565
10.5.2. References for Allowed Transitions			11.4. Mg IV	······································	567
for Na v	355		_	Allowed Transitions for Mg IV	567
10.5.3. Forbidden Transitions for Na V	371			References for Allowed Transitions	
10.5.4. References for Forbidden			111.1.2.	for Mg IV	567
Transitions for Na V	371		11 4 3	Forbidden Transitions for Mg IV	585
10.6. Na vi	375			References for Forbidden	500
10.6.1. Allowed Transitions for Na VI	375		11	Transitions for Mg IV	585
10.6.2. References for Allowed Transitions	0.0		11.5 Mg V		591
for Na VI.	375			Allowed Transitions for Mg V	591
10.6.3. Forbidden Transitions for Na VI	396			References for Allowed Transitions	
10.6.4. References for Forbidden	0,0		11.5.2.	for Mg v	591
Transitions for Na VI	396		11 5 3	Forbidden Transitions for Mg V	605
10.7. Na vii	401			References for Forbidden	000
10.7.1. Allowed Transitions for Na VII	401		11.5.1.	Transitions for Mg V	605
10.7.2. References for Allowed Transitions	.01		11.6 Mg vi	I	609
for Na VII.	401			Allowed Transitions for Mg VI	609
10.7.3. Forbidden Transitions for Na VII	455			References for Allowed Transitions	002
10.7.4. References for Forbidden	100		11.0.2.	for Mg VI	610
Transitions for Na VII.	455		11.63	Forbidden Transitions for Mg VI	633
10.8. Na VIII.	456			References for Forbidden	052
10.8.1. Allowed Transitions for Na VIII	456		11.0.4.	Transitions for Mg VI	633
10.8.2. References for Allowed Transitions	430		11.7 Mayı	II	638
for Na VIII.	456			Allowed Transitions for Mg VII	638
10.8.3. Forbidden Transitions for Na VIII	473			References for Allowed Transitions	030
10.8.4. References for Forbidden	473		11.7.2.	for Mg VII	638
Transitions			11 7 3	Forbidden Transitions for Mg VII	654
for Na VIII.	474			References for Forbidden	05-
10.9. Na IX	475		11./.4.	Transitions for Mg VII	654
10.9.1. Allowed Transitions for Na IX	475		11 Q Max	_	659
10.9.1. Allowed Transitions for Na IX 10.9.2. References for Allowed Transitions	713			Allowed Transitions for Mg VIII	659
for Na IX.	475			References for Allowed Transitions	055
	480		11.0.2.		659
10.10. Na x	400			for Mg VIII	UJS

	11.8.3. Forbidden Transitions for Mg VIII	673	19.	Wavelength finding list for allowed lines for	
	11.8.4. References for Forbidden			Na v	356
	Transitions for Mg VIII	673	20.	Transition probabilities of allowed lines for	
	11.9. Mg IX	675		Na v	358
	11.9.1. Allowed Transitions for Mg IX	675	21.	Wavelength finding list for forbidden lines for	
	11.9.2. References for Allowed Transitions			Na v	371
	for Mg IX	675	22.	Transition probabilities of forbidden lines for	
	11.9.3. Forbidden Transitions for Mg IX	687		Na v	372
	11.9.4. References for Forbidden		23.	Wavelengths finding list for allowed lines for	
	Transitions for Mg IX	687		Na vi	376
	11.10. Mg X	689	24.	Transition probabilities of allowed lines for	
	11.10.1. Allowed Transitions for Mg X	689		Na vi	380
	11.10.2. References for Allowed Transitions		25.	Wavelength finding list for forbidden lines for	
	for Mg X	689		Na vi	397
	11.11. Mg XI	697	26.	Transition probabilities of forbidden lines for	
	11.11.1. Allowed Transitions for Mg XI	697		Na vi	397
	11.11.2. References for Allowed Transitions		27.	Wavelength finding list for allowed lines for	
	for Mg XI	697		Na vii	402
12.	References	704	28.	Transition probabilities of allowed lines for	
				Na vii	411
	List of Tables		29.	Wavelength finding list for forbidden lines for	
				Na vii	455
1.	Correspondence between accuracy and		30.	Transition probabilities of forbidden lines for	
	estimated relative uncertainty	279		Na VII	455
2.	Conversion factors for transition rates	281	31.	Wavelength finding list for allowed lines for	
3.	Wavelength finding list for allowed lines for			Na VIII.	457
	Na I	285	32.	Transition probabilities of allowed lines for	
4.	Transition probabilities of allowed lines for		2.2	Na VIII.	460
	Na I	287	33.	Wavelength finding list for forbidden lines for	
5.	Wavelength finding list for forbidden lines for		2.4	Na VIII.	474
	Na I	299	34.	Transition probabilities of forbidden lines for	
6.	Transition probabilities of forbidden lines for		2.5	Na VIII.	474
	Na I	299	35.	Wavelength finding list for allowed lines for	175
7.	Wavelength finding list for allowed lines for		26	Na IX.	475
	Na II	301	36.	Transition probabilities of allowed lines for	476
8.	Transition probabilities of allowed lines for		27	Na IX.	4/0
	Na II	302	37.	Wavelength finding list for allowed lines for Na x	481
9.	Wavelength finding list for forbidden lines for		38.	Transition probabilities of allowed lines for	461
	Na II.	306	30.	Na X	484
10.	Transition probabilities of forbidden lines for	207	39.	Wavelength finding list for allowed lines for	404
1.1	Na II.	307	37.	Mg I	501
11.	Wavelength finding list for allowed lines for	210	40.	Transition probabilities of allowed lines for	501
10	Na III.	310	то.	Mg I	507
12.	Transition probabilities of allowed lines for	214	41.	Wavelength finding list for forbidden lines	507
12	Na III.	314	11.	Mg I	534
13.	Wavelength finding list for forbidden lines for	225	42.	Transition probabilities of forbidden lines for	551
1.4	Na III.	325	12.	Mg I	535
14.	Transition probabilities of forbidden lines for	226	43.	Wavelength finding list for allowed lines for	000
1.5	Na III	326	13.	Mg II.	538
15.	Wavelength finding list for allowed lines for	220	44.	Transition probabilities of allowed lines for	220
16	Na IV	328		Mg II	542
16.	Transition probabilities of allowed lines for	222	45.	Wavelength finding list for forbidden lines for	2.2
17	Na IV	332		Mg II.	557
17.	Wavelength finding list for forbidden lines for Na IV	348	46.	Transition probabilities of forbidden lines for	
18.	Transition probabilities of forbidden lines for	540		Mg II	558
10.	Na IV	350	47.	Wavelength finding list for allowed lines for	
	1141 1 V	550			

	Mg III
48.	Transition probabilities of allowed lines for Mg III.
49.	Wavelength finding list for forbidden lines for Mg III.
50.	Transition probabilities of forbidden lines for Mg III.
51.	Wavelength finding list for allowed lines for Mg IV.
52.	Transition probabilities of allowed lines for Mg IV.
53.	Wavelength finding list for forbidden lines for Mg IV.
54.	Transition probabilities of forbidden lines for Mg IV.
55.	Wavelength finding list for allowed lines for Mg V
56.	Transition probabilities of allowed lines for Mg V
57.	Wavelength finding list for forbidden lines for Mg V
58.	Transition probabilities of forbidden lines for Mg V
59.	Wavelength finding list for allowed lines for Mg VI.
50.	Transition probabilities of allowed lines for Mg VI.
51.	Wavelength finding list for forbidden lines for Mg VI.
52.	Transition probabilities of forbidden lines for Mg VI.
53.	Wavelength finding list for allowed lines for Mg VII.
54.	Transition probabilities of allowed lines for Mg VII.
65.	Wavelength finding list for forbidden lines for
66.	Mg VII
67.	Mg VII
68.	Transition probabilities of allowed lines for Mg VIII.
69.	Wavelength finding list for forbidden lines for
70.	Mg VIII. Transition probabilities of forbidden lines for
1.	Mg VIII
2.	Mg IX. Transitions probabilities of allowed lines for
73.	Mg IX
74.	Mg IX. Transition probabilities of forbidden lines for
75.	Mg IX
	Mg X

76.	Transition probabilities of allowed lines for
	Mg X
77.	Wavelength finding list for allowed lines for
	Mg XI
78.	Transition probabilities of allowed lines for
	Mg XI
	List of Figures
1.	Deletive standard deviation of the mann
1.	Relative standard deviation of the mean
	(RSDM) vs the line strength for the transitions in Na III for which the energy of the upper
	level is <i>less</i> than 415 000 cm ⁻¹
2.	Relative standard deviation of the mean
۷.	(RSDM) vs the line strength for the transitions
	in Na III for which the energy of the upper
	level is <i>greater</i> than 415 000 cm ⁻¹
3.	Relative standard deviation of the mean
3.	
	(RSDM) vs the line strength for the transitions
	in Na III for which the energy of the upper
	level is <i>greater</i> than 415 000 cm ⁻¹ . Opacity

1. Introduction

Project data is included.....

277

This is the first installment of an effort to update, revise and expand the reference data tables on atomic transition probabilities^c for all ionization stages of the elements sodium through calcium. The original compilation was published several decades ago by Wiese et al. 125 of the National Bureau of Standards. These data, with updated energies and wavelengths, are also available in the Atomic Spectra Database (ASD).⁶⁹ This new tabulation has been undertaken because a vast amount of new material, referenced in the Bibliographic Database on Atomic Transition Probabilities, 70 has become available in recent years, primarily from sophisticated atomic structure calculations. Because this material is so extensive, the new tables will be published in several parts. This first part contains all nonhydrogenic spectra of the elements sodium and magnesium (Z=11-12), respectively. Subsequent parts will cover Al to Ca (Z=13-20). The quality of much of the data has also increased, particularly for transitions between lower-lying levels.

A large-scale production of data was carried out by members of the Opacity $Project^{6,73,83}$ (OP), an international collaboration of about 20 atomic structure theoreticians under the leadership of Seaton during the late 1980's and early 1990's. This project has produced on the order of a million multiplet f values for the spectra of the elements sodium through calcium, excluding the odd-numbered elements phosphorus, chlorine, and potassium. These R-matrix calculations are well suited to mass production but do not, how-

^cThroughout these tables we often use the terms atomic transition probability, oscillator strength (*f* value), and line strength interchangeably, since they all refer to the same underlying physical phenomenon of radiative transitions. We also use the generic term "transition rate" to refer to any or all of the above.

ever, include any relativistic effects such as the spin-orbit interaction. Other important methods have recently yielded data at higher levels of accuracy, albeit for relatively low-lying transitions. These include the extensive calculations of Tachiev and Froese Fischer, ^{38,86,88,90,97} as well as Hibbert and co-workers. ^{44,45,57} The critical problem of electron correlation is addressed via a detailed multiconfiguration treatment. As discussed below, other sophisticated methods have also been used, including many-body perturbation theory (MBPT). ^{39,81} All of these non-OP calculations, while limited to transitions between lower-lying levels, are superior to those of the OP insofar as they include Breit-Pauli terms and thus directly furnish data for individual fine-structure lines.

Unfortunately, experimental data which are sufficiently accurate to sensitively test the best calculated results are usually scarce and are practically nonexistent for highly ionized species. Some emission measurements of relative transition probabilities exist, with uncertainties estimated to be in the range from 5% to 20%. There are also some lifetime measurements available, but for the data considered here the corresponding branching ratios are seldom known to useful accuracy. Our modest use of experimental lifetime data has been restricted primarily to certain low-lying resonance transitions and to certain forbidden transitions.

We describe in Sec. 4 a statistical method for estimating uncertainties when two or more independent sources are available for a significant number of transitions. This method "pools" the relative uncertainties of all the transitions in a spectrum for which data are available from two or more independent sources.

2. Data Assessment

The central issue of a critical data compilation is the uniform critical assessment of the data, since this provides the basis for the data selection and the estimation of relative uncertainties.

2.1. Main Criteria

All data have been reviewed by us with respect to the following four main criteria:

- (i) the degree of agreement among the most accurate published results for each transition,
- (ii) the authors' evaluation and numerical estimate of their own uncertainties.
- (iii) the authors' consideration of the critical factors affecting their results, and
- (iv) the degree of fit of the authors' results into established systematic trends and or the reasons for possible deviations.

The first factor has played the dominant role in the present compilation. The degree of agreement is checked for all lines for which more than one accurate independent source is available. This is discussed in detail Sec. 4 below.

2.2. The Critical Factors for the Determination of Atomic Transition Probabilities

The second and third points we have listed among our criteria are the authors' error estimation and consideration of the "critical factors" in the method used. We require that these critical factors are adequately taken into account before any paper is included in this compilation of reference data.

2.2.1. Theoretical Methods

Theoretical approaches have provided the large majority of the data for this compilation. It has been demonstrated many times that extensive treatments of configuration mixing due to electron correlation are necessary in order to obtain reliable results for most atomic systems compiled here. Such demonstrations have come from (a) comparisons with experimental results and with other independent calculations, (b) convergence studies in the calculations, i.e., by the inclusion of more and more interacting configurations, (c) the agreement, or lack thereof, of results in the dipole-length and dipole-velocity representations, and (d) the degree of agreement between the computed level energies (in ab initio calculations) and experimental energies. To obtain accurate results, the number of interacting configurations for configuration interaction (CI) calculations to be considered for the lower atomic states must be in the tens and occasionally even in the hundreds or thousands when the degree of cancellation is high. This is especially the case for neutral atoms. Of course, the number of required configurations depends on the accuracy of the basis states. We have utilized only calculations which are based on extensive multiconfigurations, whether CI or multiconfiguration Hartree-Fock (MCHF) or MBPT, to take electron correlations into account in a detailed manner. (CI-type methods are sometimes referred to as "superposition of configurations" methods to emphasize that physical configurations do not, in fact, interact—see, for example, Weiss ¹²¹). Only in the case of alkali-like spectra, which are relatively simpler, have we included semiempirical results (see, for example, Theodosiou and Federman¹⁰⁶).

Many spectra will contain some levels which are so strongly mixed that even current elaborate treatments may not be adequate. In Na III, for example, terms $2p^4(^3P)3p~(^2P^{\rm o}+^2S^{\rm o})$ and $2p^4(^3P)3d~(^2D+^2F,^4P)$ are highly mixed due to their proximity. Configuration interaction effects are so pronounced that even the most sophisticated calculations presently available exhibit strong disagreements for transitions starting or ending in levels having such terms.

For the determination of the strengths of individual lines, another critical factor for calculated data is the detailed consideration of relativistic effects, especially the term mixing of the angular portion of the wave functions. The importance of these effects increases horizontally across the Periodic Table. For example, so-called spin-orbit effects are small for alkalilike spectra, important for many *F*-like levels, and so large for all but the lowest Ne-like levels that these levels are usually not described in LS coupling. Generally speaking, LS coupling becomes less valid for the more highly excited levels. Also, because these are relativistic effects, they tend

to increase with increasing Z. Many theorists have calculated individual line strengths in intermediate coupling by inclusion of the so-called Breit-Pauli terms. These calculations are generally computer intensive and approximate to varying degrees. They sometimes yield greater deviations from LS coupling than emission experiments indicate. The OP (Refs. 6, 73, and 83) is restricted to nonrelativistic multiplet data; it is the only data source to which we have applied LS-coupling fractions to obtain individual line data, as described below in Sec. 3.

2.2.2. Experimental Methods

For accurate measurements of branching ratios with emission sources, two critical factors must be considered:

- (i) The lines must be emitted from an optically thin layer, i.e., self-absorption must be negligible. For approximately homogeneous plasma layers, small amounts of self-absorption are acceptable provided the optical depth of the observed layer can be sufficiently well determined that an accurate correction may be made.
- (ii) Radiometric calibrations of the line signals at various wavelengths must be performed with accurate standards such as tungsten strip lamps to take into account variations in sensitivity of the spectroscopic instrumentation with wavelength.

In emission measurements of relative oscillator strengths within a spectrum, the relative populations of ions or atoms in various excited states must be accurately determined (except when the upper level is the same for the different transitions). For emission sources (plasmas) in partial local thermodynamic equilibrium (LTE), the populations of excited states are distributed according to the Boltzmann population factors. According to well-established validity criteria, partial LTE is readily attained in moderate and high density plasmas, i.e., for electron densities above a certain minimum value. The density of free electrons thus must be determined. In addition, the plasma temperature enters into the Boltzmann factors and must be reliably measured.

In wall-stabilized arcs, the measured plasma conditions are usually such that the existence of partial LTE is readily fulfilled. Emission results for transition rates can be put on absolute scales when the requisite lifetime data are available. Emission data are available mainly for the spectra of neutral and singly ionized atoms.

We have not made extensive use of lifetime measurements on levels with strong decay branches because they are usually dominated by transitions that are well-known theoretically. Where available, we have used the highly accurate lifetime measurements of Träbert $et\ al.^{107}$ on levels of ionic species having only forbidden or weak intercombination decay branches. Also, in one case a lifetime was determined by precision measurement of the radiative linewidth of the resonance line of sodium. Precise lifetime determinations have also been made by spectroscopically measuring the C_3 coefficient of the atom's diatomic molecule. For example, two groups have measured the C_3 coefficient of the long-range

 O_g^- state of Na₂ to determine the lifetime of the $P_{3/2}$ state of Na₁ 48,120

2.3. Selection Procedure

For each transition we use only those data sources which we have evaluated to be the most accurate. For each spectrum we start with lists of literature sources assembled in our NIST data center from our comprehensive database ⁷⁰ and literature files. We then discard work based on those theoretical or experimental approaches that are superseded by more advanced ones, as discussed above. Further selection of data sources is accomplished by graphical comparison of line strengths for the different sources. We do not include works whose line strengths are consistently in poor agreement with other established work or whose values deviate in a nonrandom way from those of established works.

3. Brief Discussion of the Principal Data Sources

3.1. General Remarks

The sources selected for these tables are almost entirely different from those utilized in the earlier compilation. ^{125,126} It is therefore appropriate to briefly review the principal contributions and to provide citations to papers where they are more extensively described and reviewed. First some general remarks are in order on the theoretical approaches, which provide the large majority of the tabulated data.

As discussed above, it has long been recognized that in many-electron atoms and ions, the mutual interactions between the atomic electrons—known as electron correlation—is a critical factor for the accurate calculation of transition probabilities. Because of this interaction, the wave function of an atomic level cannot generally be accurately described by a single configuration. Thus, more modern atomic structure calculations have usually been carried out in a multiconfigurational framework.

Multiconfiguration calculations approximate the wave function of an atomic state by a linear combination of single-particle product wave functions of related states of the same total angular momentum and parity. For example, the ground term of a Be-like ion, nominally designated as $2s^2$ 1S , is better described as a_12s^2 $^1S + a_22p^2$ $^1S + a_32s3s$ 1S + other configurations of J=0 even parity which form an 1S state, with the a_i 's being the mixing coefficients, including relative phases. This multiconfiguration treatment has been successful in reproducing a great many accurate experimental level energies if a sufficiently large number of "interacting" configurations is included.

The quality of the calculations has been estimated by applying the four methods listed in Sec. 2.2. Good agreement between length and velocity forms and between *ab initio* and experimental energies are necessary but not sufficient conditions, and the velocity forms are commonly of lesser quality than the length forms. For tractability considerations mentioned above, because they are useful for intra- but not intersource comparisons and because velocity results are often

not reported, we have made relatively little use of energy and length-velocity comparisons in the present compilation. We report only length values.

Even though we have limited our tabulated data to calculations with extensive treatment of electron correlation, for some transitions, particularly halogenlike and noble-gas-like spectra, sizable differences between different extensive theoretical results remain for all but the strongest transition rates. More experimental comparison material, especially on transitions between higher levels, would be valuable in making more solid assessments of the theoretical data.

In many cases, cited transition rates may be more accurate than we were able to demonstrate by comparing with possibly less accurate results. Such circumstances can only be improved upon by new independent large-scale calculations of high quality.

3.2. The Opacity Project

OP (Refs. 6, 73, and 83) results have been used extensively for spin-allowed electric dipole (E1) transitions, primarily in cases where more extensive calculations were not available. This project was an international theoretical collaboration which was formed in 1984 under the leadership of M. J. Seaton and is now completed. It involved about 20 participating atomic structure theoreticians from research groups in the United Kingdom, France, Germany, the United States, and Venezuela.

This project has produced atomic data via ab initio atomic structure calculations for most of the elements H to Ca (hydrogen through calcium, with the exception of P, Cl, and K). In addition to atomic transition probabilities, energy levels and photoionization cross sections have also been calculated. OP calculations cover an extensive range of allowed transitions, essentially comprehensive up to n=10 and l=3,4. We downloaded the OP data from the Topbase database. Subsequently we identified the OP multiplet levels with individual fine structure lines in the NIST ASD database² and used the energies therefrom to calculate the wavelengths of the corresponding transitions. We only considered OP transitions for which both the upper and lower levels are found in this way. The OP includes some far-infrared transitions that we have not included. We note that the OP team has published a book⁷³ which contains their transition probability data plus selected results on photoionization cross sections, etc.

The Opacity approach differs from the normal CI-type atomic structure calculations insofar as it is based on an approximation that is usually applied to calculate electron-ion or electron-atom collision data—the close-coupling (CC) approximation. For the calculation of oscillator strengths of discrete transitions, this method has been extended to the case of electrons with negative energies, i.e., to captured electrons that undergo bound-bound transitions in the field of a target ion with n electrons.

The OP uses a CC expansion to represent the total wave function as a superposition of ionic core and valenceelectron wave functions. The ionic core (without the valence electron) is described by a CI method, using either CIV3 (Slater-type orbitals) or SUPERSTRUCTURE codes (effective-charge statistical model potentials). The R-matrix method is used to solve the core plus valence-electron problem in the inner region. It divides the problem into two regions of space, the "inner" and "outer" regions, and requires that the wave functions in these two regions and their radial derivatives match at an intermediate boundary. The outer-region wave function approaches a "Coulomb" solution asymptotically. It is usually evaluated by integrating the asymptotic solutions inward. The numerical approach used to solve the CC integrodifferential equations is based on an R-matrix method developed by some members of the OP team. 83

The ab initio CC expansion method is similar in spirit to, but more sophisticated than, such semiempirical methods as the Coulomb approximation, quantum defect theory, or corepolarization models. Even the latter, for example, must use a short-range cutoff of the potential to simulate the effect of exchange between the excited and core electrons. The CC approach is generally more efficient than variational methods for broad-sweep calculations of transitions involving more highly excited levels. In principle, at least, the assumptions of the CC model become increasingly valid for more highly excited states. (One caveat for obtaining accurate results in this regime is that the CC model must be built on an intermediate-coupled core if intermediate coupling is significant.) This advantage tends to offset the intrinsic fact that binding energies are smaller for more highly excited states. Thus, a fixed absolute error yields a larger relative error, as well as the fact that more basis states often need to be included to obtain the same level of absolute accuracy. Some authors argue therefore that the CC method becomes more accurate than variational methods for more highly excited states because it builds in the effect of highly excited states and the continuum. As a practical matter, it can prove difficult to expand the basis set sufficiently as n and l increase. The CC method, however, usually cannot practically build in as much correlation between the core and low-excited electron as can full-blown multiconfiguration variational methods. Thus the latter can be superior for calculating transitions involving the lowest-excited levels, for transitions whose strengths are sensitive to partial cancellations in the dipole matrix elements, and, of course, for calculating wave functions for the ion core used in CC calculations. As described below, OP calculations do not include intermediate coupling, which generally becomes more important for more highly excited levels.

It is important to note that in the OP calculations only multiplet data were obtained, and no attempt was made to produce data for individual spectral lines. No relativistic effects are included, including the spin-orbit interaction. LS coupling is a reasonable approximation when the spin-orbit interaction is negligible compared to the Coulomb and other interactions. Still, in using the OP data we have treated this as an approximation like any other and excluded only those transitions whose estimated uncertainties fall outside our limits for reference data. We have estimated the line strengths of the individual fine-structure lines by applying

the well-known LS-coupling line strength fractions to the OP multiplet values. We decompose the LS multiplet averages into their LSJ fine-structure components using the following LS-coupling rule: 18,85

$$S_{\text{LSJ-L'S'J'}} = S_{\text{LS-L'S'}} (2J+1)(2J'+1) \begin{cases} L & S & J \\ J' & 1 & L' \end{cases}^2, (1)$$

where $S_{\rm LSJ}$ is the line strength of the fine-structure line and the curly brackets indicate a 6-J symbol. This geometrical factor is a crude approximation, however, except in cases where the deviation from pure LS coupling is very small. In LS coupling, the multiplet line strength is the sum of the line strengths of the individual fine-structure lines:

$$S_{\mathrm{LS-L'S'}} = \sum_{\mathrm{J,J'}} S_{\mathrm{LSJ-L'S'J'}}$$

$$(|L - S| \le J \le L + S; J' - J = 0, \pm 1).$$

We take only line strengths from the OP, using experimental energies to derive wavelengths and to convert line strengths to oscillator strengths and transition probabilities. Only oscillator strengths are published, so we convert these into line strengths by using the same wavelengths as indicated in the original publication.

More recently the Iron Project has been developed (see, for example, Galavis *et al.*⁴¹). This is an expansion of the OP to include Breit-Pauli terms. To date, these calculations have only been performed for iron-group spectra, with the exception that oscillator strengths for selected transitions of Na III have also been calculated with this method.⁵

3.3. Breit-Pauli MCHF

In contrast to the OP calculations discussed in Sec. 3.2, multi-configuration Hartree-Fock (MCHF) methods are considerably more detailed in that relativistic effects are included. Not only multiplet but also the individual fine-structure lines are calculated. This has been accomplished by including Breit-Pauli terms in the Hamiltonian, in addition to the usual nonrelativistic electrostatic interactions. Thus the line data are produced in intermediate coupling, and intersystem line strengths are also obtained. The normally rather weak intersystem lines are more difficult to calculate, and the uncertainties are correspondingly higher. Also, in contrast to OP calculations, eigenstates are treated individually.

Hartree-Fock and related methods are variational. Extensive MCHF calculations have been performed in LS coupling followed by the configuration interaction of Breit-Pauli (BP) terms to order α^2 , including all terms except for the BP orbit-orbit interactions. Numerical radial functions are obtained. In 1999, Tachiev and Froese Fischer follows, began to publish extensive energy levels and transition probabilities for many spectra. As with the CIV3 method discussed below, these computations are generally applied to transitions where the upper level is no higher than n=3, l=2. Still, in this compilation, these data provide by far the largest source of accurate line strengths. A substantial number of

intercombination and forbidden lines are included. The authors have published both length and velocity forms. For this compilation we have only used the former. As of this writing, their web site includes data for the following spectra: Li-like for Li to O, Be-like for Be to Mg, B-like for B to Si, C-like for C to P, N-like for N to Cl, O-like for O to Ca, F-like for F to Ti, Ne-like for Ne to Cr, Na-like for Na to Fe, Mg-like for Mg to Zn plus 12 heavier elements, Al-like for Al to Zn, and Si-like for Si to Zn.

Except when substantial cancellation occurs in the dipole matrix element, we have generally found these computed values to be accurate.

For many of the spectra of lower stages of ionization, Tachiev and Froese Fischer have also published "energy-corrected" (against experimental energies) values for their computed results. We have used these values wherever available, even though the added problem of identification with published experimental levels can sometimes pose a problem, especially for certain neonlike and fluorinelike levels that are highly mixed in LS coupling.

3.4. Configuration Interaction Methods

CI methods use a large number of analytical radial basis functions, for example, Slater-type orbitals. The amplitudes and parametric factors for the basis functions are variationally optimized. Extensive CI calculations with the CIV3 code (CIV3 indicates CI code version 3) have been performed by Hibbert and co-workers^{44,45,57} for fairly large sets of transitions between lower-lying levels of many spectra. Applying this code, Aggarwal³ has also published data for some spectra. While these results generally include only transitions between lower-lying levels, they still typically comprise a few hundred lines per spectrum.

The "nonorthogonal spline" method is another example of the CI approach. We have used the results of the method of Zatsarinny and Froese Fischer 128 for Na-like spectra, which go up to n=10. In this method, a MCHF calculation is used to compute the "target ions" and "electron perturbers." These functions are then used in an R-matrix-like fashion, except that there is no R-matrix boundary. Instead, the computation of the Rydberg series entails the diagonalization of an interaction matrix. Account is made for the occurrence of nonorthogonal orbitals. The method is especially advantageous for transitions from high-lying levels.

Except when substantial cancellation occurs in the dipole matrix element, we have generally found these computations to be accurate.

3.5. Many-Body Perturbation Theory

MBPT involves the summation of many diagrammatic terms of increasing order. Each diagram represents a different physical interaction. The group of Vilkas, Gaigalas, Kaniauskas, Kisielius, Martinson, and Merkelis have performed second-order MBPT calculations (see, for example, Gaigalas *et al.*³⁹). We have also found these results to be of high quality, though they are only available for the lowest transi-

tions of certain ionic species. Safronova and Johnson have also been producing quality MBPT results for a significant number of lines (see, for example, Safronova *et al.*⁸¹).

We have generally found these computations to have comparable accuracy to those of higher quality MCHF and CI computations.

3.6. Other Multiconfiguration Calculations

Much more limited data sets resulting from other multiconfiguration calculations of approximately equal—or in some cases even greater—sophistication have also been used when available. These authors are cited in the introductory comments to the various spectra. We have also used calculations of this type for forbidden lines, i.e., for magnetic dipole (M1) and electric and magnetic quadrupole (E2 and M2) transitions.

3.7. Related Atomic Physics Data in Tables

In addition to the transition rates, with each transition we also list the lower and upper-level energies and statistical weights (g=2J+1). As a rule, we list the NIST atomic energy levels (AEL) values for the energies which in most cases are based on experimental determinations. We also take the terms and configurations from these sources. The listed vacuum wavelength is equal to the inverse of the difference between the upper and lower-level energies. Air wavelengths are derived from these by dividing the vacuum wavelength by the corresponding index of refraction. ⁷⁷ ASD (Ref. 69) is a searchable database that integrates the atomic spectra data compiled by NIST. Citations to the energy level compilations and the sources upon which they are based (e.g., Martin and Zalubas⁶¹ for Na and Martin and Zalubas⁶⁰ for Mg) are available in the ASD database. ASD also contains a detailed discussion of how the air index of refraction and the number of significant figures are derived for the wavelengths.

4. Estimating Relative Uncertainties of Line Strengths

4.1. Pooling of Relative Uncertainties of the Different Lines in a Spectrum

While similar in spirit, the method we have used to estimate uncertainties of line strengths differs from the method used in previous NIST compilations. An advantage of this new method is that it facilitates a standardized and quantitative approach that relies primarily on the existence of sufficient data. To perform a reasonably thorough analysis, we require in a given spectrum to have two or more independent determinations of transition rate for about ten or more transitions of comparable uncertainty.

Our uncertainty analysis for line strengths relies heavily on systematic comparisons of relative differences among the best available data sources within a given spectrum. The heuristic method described below does not require that the observed variables be random or that they follow any particular distribution. In any statistical comparison of values from different sources, either the different uncertainties should be comparable or, in the other extreme, one measures the uncertainty of the less accurate value(s) against the much more accurate value(s). In the case of assumed equal uncertainties, there is always the chance of overestimating the uncertainty of the more accurate value(s), if there is one.

Briefly, we compute the relative standard deviation of the mean (RSDM) for each transition, based on the data from the different sources available:

$$RSDM \equiv \frac{s}{\bar{x}\sqrt{N}},\tag{2}$$

where the sample variance for each transition, s^2 , is determined in the usual way:

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{N - 1},\tag{3a}$$

and the arithmetic mean for a sample size N (the number of independent determinations for each transition) is

$$\bar{x} = \frac{1}{N} \sum x_i. \tag{3b}$$

The *i* summations are over the different utilized data sources for a given transition.

The RSDM of a quantity is a measure of the relative uncertainty of its mean (strictly speaking, the quantity we shall derive is the upper confidence bound, at 90% confidence level, of the RSDM). In order to make quantitative estimates of relative uncertainty, one needs to estimate contributions from uncertainties in both the variance and the mean. Particularly when the number of independent data sources is small, uncertainty estimates of s for individual transitions can be large compared to that of the mean. The "classical" statistical considerations concerning this are discussed in more detail in Appendix A. The mathematical details concerning the RSDM and its pooling will be discussed in Kelleher.

For positive quantities such as transition rates, RSDM's are bounded by 0 and 1, independent of *N*. It is interesting to note that the RSDM for a sample size of 2 is simply

RSDM =
$$\frac{x_> - x_<}{x_> + x_<}$$
 (N = 2). (4)

That is, the RSDM of two values is equal to half the relative difference between them. Note that this is bounded by 0 and 1 when the sum of the two values is greater than zero.

Because the number of reliable independent sources for a given transition is generally small, usually 1 or 2, we have elected to pool the RSDM of the different transitions with $N \ge 2$. We choose a RSDM that exceeds 90% of those obtained for all of the transitions having two or more "selected" data sources. We use 90% because some spectra do not have a sufficient number of transitions with comparably accurate data from two or more independent sources to warrant a more restrictive confidence bound. In actual practice, we plot the RSDM's of the different transition line strengths as a function of their mean line strength. This accommodates the

general trend that relative uncertainties increase slowly as the average value of the transition rate decreases. The fitting function we use is

$$\Phi_0(S) = \frac{1}{2} \operatorname{erfc} \left[\beta^{-1} \log \left(\frac{S}{S_{1/2}} \right) \right]. \tag{5a}$$

In Eq. (5a), erfc = 1-erf and erf is the error function, an estimate for which is given in Appendix B. In our case, S represents the mean line strength for each transition. $S_{1/2}$ and β in Eq. (5a) are fitting parameters to be determined from the data and are the analogs to the "intercept" and "slope," respectively ($S_{1/2}$ is the value of S when the RSDM envelope curve equals 0.5). $\Phi_0(S)$ has the asymptotic values of 0 and 1. It has a weak monotonic dependence on S and is symmetrical about RSDM=0.5 when plotted against $\log(S/S_{1/2})$.

If systematic errors are present, there is no fundamental reason why the RSDM's must approach zero at asymptotically large values of the line strength *S*. Hence we add a background term that is only significant for such values:

$$\Phi(S) = \Phi_0(S) + \gamma \left\{ 1 - \exp\left[-\frac{\gamma}{\Phi_0(S)} \right] \right\}. \tag{5b}$$

The asymptotic background term γ in Eq. (5b) is unimportant except at large S [$\Phi_0(S) < \gamma$]. In contrast to $\Phi_0(S)$, $\Phi(S)$ is not symmetric about RSDM=0.5. In this limit the fit curve $\Phi(S)$ approaches γ , which can be nonzero due to differences in systematic errors that persist for arbitrarily large S. The three adjustable parameters are chosen so that a specified percentage (in our case 90%, excluding outliers) of the transition RSDM's fall below the curve defined by the function. Examples for Na III (lower and higher levels) are shown in Figs. 1–3. These demonstrate clearly that the relative uncertainties as reflected in the RSDM's can be distinctly different for different energy level regions of a spectrum. The same can hold for different data sources. For example, the general agreement is clearly much better between the MCHF and CIV3 calculations (Fig. 2) than between MCHF and OP (Fig. 3). The above function has worked well in fitting the RSDM data for a wide array of spectra. We emphasize, however, that there is nothing fundamental about the functional form of Eq. (5) used in curve fitting for this empirical distributionfree method.

For meaningful pooling of the RSDM's of the different transitions, the relative uncertainties must be reasonably comparable. This means that the different data sources should be comparably accurate (unless one wishes only to estimate uncertainties of the less accurate data source), and that the pooled RSDM's are compatible with the same fit parameters in Eq. (5). Fulfillment of this latter requirement can be checked *a posteriori*. For example, all the data in Fig. 1 appear to be comparably accurate, as do those in Fig. 2. However, the accuracy of the data in Fig. 1 is clearly superior to that of the data in Fig. 2. After making a preliminary fit to the RSDM data, we often find that the transitions from lower-lying energies are significantly more accurate than transitions from higher-lying levels, even after accounting

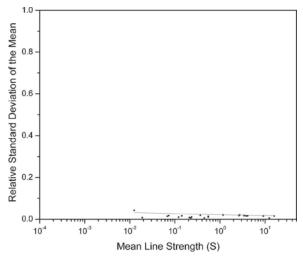


Fig. 1. Relative standard deviation of the mean (RSDM) vs the line strength for the transitions in Na III for which the energy of the upper level is *less* than 415 000 cm⁻¹ and which have values listed in both Refs. 90 (MCHF) and 57 (CI). Because there are two data sources, the RSDM for each transition is given by Eq. (4). The curve corresponds to fit values for the parameters in Eq. (5); 90% of the points lie under it. Using the method described in the text, the parameters were empirically found to be β =12 ("slope" of the curve) and $S_{1/2}$ =1 × 10⁻¹⁸ ("intercept"), and γ =0.01 (asymptotic background of the curve). In actual practice, for these data we would extend the ordinate of the graph only to 0.05, but here we extend it up to the maximum value of 1.0 to facilitate comparisons with Figs. 2 and 3. The quality of these data is much higher than in those higher energy level cases, which are plotted in Figs. 2 and 3. Below energies of 415 000 cm⁻¹, same J and parity energy levels are not closely spaced and level "mixing" is not generally important.

for the average dependence on line strength. This frequently requires us to divide the spin-allowed transitions of a spectrum into two or more subgroups of comparable relative uncertainty. When two such subgroups suffice, which is usually the case, a natural demarcation can usually be found where the energy separation between levels having the same parity and angular momentum is sufficiently close that configuration mixing and/or intermediate coupling becomes significant. An example of such a partition can be seen in Figs. 1 and 2 for the lower and higher transitions of Na III, respectively. Upon occasion we also separately pool the intercombination lines and the forbidden lines. Alkalilike and alkaline-earth-like spectra generally do not benefit from separation.

We define a quantity referred to here as the "logarithmic quality factor," $Q = -\log(S_{1/2})/\beta$. A typical value for higher quality data for lines from lower-lying upper levels is $Q \approx 1.3$ for the spin-allowed and forbidden lines. The value is higher for simpler spectra ($Q \approx 2.0$ for He-like), and smaller for more complex ions, $Q \approx 1$. OP values of Q ranged form 2.0 for Li-like up to 0.4 for F-like. We found that the values of Q along an isoelectronic sequence for different ions of Na, Mg, Al, and Si were usually quite similar. For a given spectrum, the value of Q is lower for lines from higher-lying upper levels, by a factor of about 1.25 on average for higher quality data and 1.35 for intercombination data; on average, quality factors for forbidden spectra were found to be comparable to the corresponding spin-allowed spectra (lower-

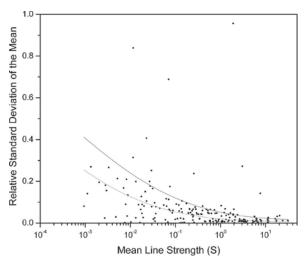


Fig. 2. Relative standard deviation of the mean (RSDM) vs the line strength for the transitions in Na III for which the energy of the upper level is *greater* than 415 000 cm⁻¹ and which have values listed in both Refs. 90 (MCHF) and 57 [configuration interaction (CI)]. Because there are two data sources, the RSDM for each transition is given by Eq. (4). The two curves correspond to different values of the $S_{1/2}$ and γ parameters in Eq. (5); 50% of the points in the figure lie under the lower curve, and 90% lie under the upper curve. For these curves, the parameters in Eq. (5) were empirically found to be β =3 (both curves) and $S_{1/2}$ =3 × 10⁻⁴, and γ =0.01 for the (upper) 90% envelope curve. Above energies of 415 000 cm⁻¹, same J and parity energy levels are more closely spaced and level "mixing" becomes increasingly significant. Still, the agreement of the MCHF data with the CI data is considerably better than it is with the OP, as seen in Fig. 3.

lying levels). We often use this quality factor to scale the pooling fit parameters from the lower-lying data to the higher-lying values in the many cases where these latter values are only available from a single accurate source.

Pooling RSDM's of different transitions can offer a significant advantage when the number of different sources for a given transition is small (almost always the case here), and the number of transitions with comparable relative uncertainty is significantly larger than this. Generally speaking, transition rates within a given spectrum are ideally suited to such a treatment because the number of determinations per transition is typically small, but the number of transitions with two or more determinations is usually comparatively large.

The large uncertainty in the SD associated with small sample sizes can be mitigated in favorable cases by pooling of RSDM's of different quantities with comparable relative uncertainties, thereby effectively increasing the number of degrees of freedom. A further advantage of pooling is related to the contributions of nonrandom or systematic errors. The approximations made in computations result in systematic errors. Fortunately, different theoretical approximations often result in qualitatively different errors for different transitions. In such cases, by considering different transitions together we better span the range of errors caused by the approximations. We do not rely on any particular distribution for random or other types of variables.

Also, our heuristic method exploits the fact that we consider here only quantities that are necessarily positive. This

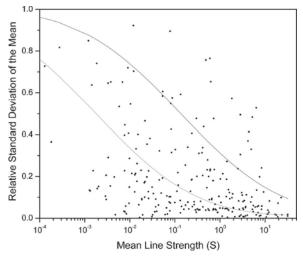


Fig. 3. Relative standard deviation of the mean (RSDM) vs the line strength for the transitions in Na III for which the energy of the upper level is *greater* than 415 000 cm $^{-1}$. Opacity Project data is included, and which have values listed in both Refs. 90 (MCHF) and 16 [Opacity Project (OP)]. Because there are two data sources, the RSDM for each transition is given by Eq. (4). The two curves correspond to different values of the $S_{1/2}$ and γ parameters in Eq. (5); 50% of the points in the figure lie under the lower curve, and 90% lie under the upper curve. For these curves, the parameters in Eq. (5) were empirically found to be β =2.5 (both curves) and $S_{1/2}$ =0.1, and γ =0.02 for the (upper) 90% envelope curve. The agreement of the OP data with the MCHF data is considerably poorer than is the configuration interaction data seen in Fig. 2.

constraint offers a particular advantage when estimating *relative* uncertainties, in which case the mean value appears in the denominator. Even when \bar{x} is positive, the proportion of negative random values in the corresponding random distribution can significantly skew the uncertainty estimate unless s/\bar{x} is small. The effect of this can be particularly important when N is small. Quantitative aspects of this are presented in the final portion of Appendix A. Our pooling method also provides a straightforward vehicle for interpolating the estimated relative uncertainty in the many cases where only a single value is available for a given transition rate (N=1). Our procedure for doing so is described in Sec. 4.3.

In our experience, plotting the RSDM's of the different transitions vs the value of the line strength usually appears to work quite well in modeling the global dependence of relative uncertainties within a spectrum (or part of it). On average, the relative uncertainty increases monotonically with decreasing line strength. However, this averaging is itself an approximation, for the uncertainties of individual transitions will deviate to varying extents from the average curve. Uncertainties tend to be larger when there is a significant degree of admixture of different basis states, particularly when this leads to substantial cancellation in the radial matrix element between the different components. This cancellation results in a smaller line strength, so that the greater uncertainty associated with it will be accounted for to some extent by modeling the general dependence on line strength. If the relative uncertainty associated with any given partial "cancellation" is substantially greater than the average line strength dependence represented by the pooled curve, this

should show up in a RSDM plot as an outlier. We assign lower accuracies to rates of transitions involving a highly mixed level. Such mixing is usually negligible for transitions associated with lower-lying levels; we usually place these transitions in a separate pooling category. Of course, there are many levels for which the mixing coefficients are unknown, especially for more highly ionized ions.

We note that our estimates of uncertainty will be least reliable when the true transition rate is significantly smaller than computed. In this case, the actual uncertainty will likely be higher than predicted by pooling when only one data source is available. For such cases, reasonable estimates of uncertainty can prove elusive for some theoretical measures as well. For example, in special cases in Be I, extremely large uncertainties in oscillator strength due to strong cancellation were not reflected in the length-velocity difference ¹²² (see the discussion of length vs velocity forms below).

In pooling, it is possible to overestimate the uncertainty of any given transition with a RSDM well below the 90% envelope curve. As described in Sec. 4.3 below, we try to minimize this by checking whether any such trend occurs systematically for similar transitions.

In this compilation we have only attempted to estimate the relative uncertainties of the line strengths. These do not depend explicitly on energy differences between the upper and lower levels, in contrast to the oscillator strength and transition probability, which depend on this difference to the first and third powers, respectively. We use experimental energies to convert line strength to the other two transition rates. Even for the line strength, however, there is an implicit dependence on energy, because of course an eigenfunction depends on its eigenvalue. Generally speaking, the relative uncertainty in the computed energy is far less than that for the line strength. Exceptions can occur, however, especially when "interacting" levels are closely spaced. For example, the percentage error in the energy separation of L₁S₁J and L₂S₂J is equal to the error in the wave function due to this mixing of terms. In our critical evaluation of the line strengths, we attempt to estimate the net uncertainty due to all sources of error, without considering these errors explicitly. This can only be accomplished successfully if the different data sources are independent. While MCHF and CI methods are quite different approaches, they are both variational. Therefore they may not be fully independent and may be particularly sensitive to how well the energy has been calculated. Our working assumption is that by comparing different methods for many different transitions in comparable parts of a spectrum, the net relative uncertainties can still be reasonably estimated.

4.2. Restriction to Data from Certain Authors

Only the data sources rated most highly in our evaluation procedure are used in obtaining the cited average for each transition probability. Assigned weights are either zero or one. It is "nonstandard" statistical methodology to utilize a subset of data for the reported mean (in this case for a specific transition rate) while a larger set is sometimes used for

the uncertainty estimate. This introduces a type of bias, but in our case we often wish to deliberately exert such a bias, based on our experience with a wide range of comparison of many transitions over many spectra. As a practical matter it is not often that we have the luxury of deciding which of several available sources we will average. For most reported transitions, particularly those involving more highly excited levels, we have only one data source, and we must estimate its uncertainty based on the relative uncertainties of those other transitions for which multiple authors are available.

If one approach, theoretical or experimental, appears to be clearly better than all others, we have reported only that value of the transition rate. However, to estimate uncertainties, if no other options were available, we have used isoelectronic scaling or compared these values with less accurate data sources. In such cases the cited uncertainties may be overly conservative, but improved accuracy estimates can only be fully justified if a second (or more) independent calculation of equal or superior quality is made available.

This compilation is intended to serve as a table of *reference* data. We have limited the multiplet entries to those that contain at least one transition with pooled RSDM less than 0.50. If any line of a multiplet satisfies this criterion, we keep all the lines of the multiplet. This is responsible for much of the variation in the number of transitions per spectrum. For example, comparatively few transitions of Ne-like spectra had sufficiently small estimated relative uncertainties to satisfy the above criterion.

4.3. Evaluation Procedure

Because the details of our evaluation procedure differ from those of Wiese *et al.*, 125,126 we describe them here in some detail. It entails six steps:

- For spin-allowed E1 lines, we use the OP data to generate a multiplet list that is comprehensive for our purposes. We apply LS-coupling rules given above [Eq. (1)] to estimate the transition rates of the individual lines making up each multiplet. We compute a line strength (not explicitly energy dependent) from the OP oscillator strengths and energies. From these line strengths we compute oscillator strengths and transition probabilities using NIST AEL (Refs. 60 and 61) energies (see discussion in Sec. 3.7). We replace the OP published energies with NIST AEL energies and derive wavelengths from the latter.
- (2) Collecting data from sources in the ATP bibliography on the NIST physics Web site, ⁷⁰ we generate tables containing data from all published sources which use advanced experimental or theoretical techniques. Each row consists of data for a given transition (or multiplet average) which includes the lower and upper statistical weights and energies (with their percentage compositions if available) from the NIST AEL tables. We also list the derived wavelength and the published transition rate (transition probability, oscillator strength, or line strength).

- (3) For all available lines, we plot the logarithms of the ratios of line strengths from each data source vs the mean value of these sources. Based on the scatter in this plot and our experience with other spectra, we choose those sources with the highest quality data to be included in further analysis. We assign "averaging" ratings to the chosen sources that will be used to obtain a reported value for the cited line strength. To arrive at the cited line strength, we average only those sources with the highest rating for that transition.
- (4) We take four steps to estimate the *relative uncertainty* of the transition rate for each transition (or, strictly speaking, the 90% upper confidence bound for the RSDM):
 - Using the sources selected in (3) above, we plot the relative standard deviation of the mean (RSDM) for each transition vs the mean line strength. Next we construct the envelope curve which will estimate pooled values of upper confidence bounds. The two parameters β and $S_{1/2}$ of the envelope function in Eq. (5) a correspond roughly to the slope and intercept (at RSDM=0.5) of the envelope curve, respectively. To derive the lower curve (see Fig. 2, for example), we choose a starting value for β and then iteratively derive the value of the $S_{1/2}$ parameter for the envelope function to construct a curve under which lie 50% of the RSDM's. We observe the resulting curve to see if it follows the sweep of the data on the plot. If it does not, we change the value of β and rederive the corresponding value of $S_{1/2}$; we continue this process until a satisfactory fit is obtained. To arrive at the 90% curve, we start with the same slope parameter β determined for the 50% curve. Using these values, we iteratively find the intercept $S_{1/2}$ that yields the envelope curve under which lie 90% of the RSDM's for the different transitions (see the upper curve in Fig. 2, for example). If the RSDM points show signs of flattening out at large S, we add the asymptotic value γ by applying Eq. (5b), which then requires some adjustment in $S_{1/2}$. The resulting curve represents the locus of values for the 90% upper confidence bound (UCB), as discussed in Appendix A.

As an *a posteriori* check, we order the transitions according to their "normalized" RSDM values, i.e., the individual transition RSDM divided by the pooled RSDM for its line strength. We check to see if any subset of these data has systematically lower or higher values than the other data. Except for the simpler spectra such as alkalilike or alkaline-earthlike, we generally find that there are two such subsets, with the more accurate data corresponding to those upper levels of the transition which have lower energies, as discussed above. In the case of carbonlike spectra, we found it worthwhile to divide the data into three upper energy groups. Also, we

- generally performed separate analyses with and without OP data, the latter being more extensive than some of the other more accurate data sources, and frequently the only data source for higher-lying transitions.
- (b) For the RSDM's that lie outside the 90% envelope curve, we assign this value of relative uncertainty, rather than the pooled value given by the curve. In cases where N=1, we use the fit-curve parameters to interpolate the pooled 90% RSDM based on the line strength for that transition. We multiply this UCB by $\sqrt{2}$, owing to the \sqrt{N} dependence of the RSDM and the fact that the large majority of pooled transitions (all of which has N > 1 independent determinations) have N=2. We also check that transitions with N >2 (more than two quality data sources) do not have systematically lower RSDM's than cases for N=2. Strictly speaking, only RSDM's corresponding to the same N should be pooled, but we seldom find a discernible N dependence in the data.
- For comparison, we make a second estimate of the relative uncertainty that does not involve pooling different transition rates. In this case we apply classical methods to each transition separately. If two or more A-category sources are used in averaging the reported value, the accuracy is estimated by calculating the 90% (α =0.1) upper confidence bound $(USB_{\overline{x}})$ for the sample mean [Eq. (A2) in Appendix A], which we then divide by the mean. (See the discussion in Appendix A; the latter part explains why we do not use the "normal" method for estimating relative uncertainties.) For B and C category lines [as discussed in step (4) above], we only use the calculated $USB_{\bar{r}}$ value when it is systematically lower than the pooled value within a multiplet. When N=2, we usually find that the uncertainty estimated by pooling is lower than the classical estimate (higher accuracy).
- (d) We assign a letter-grade "accuracy" for each transition rate. In Table 1 below we list our assigned correspondence between the estimated 90% RSDM [as determined by (a), (b), or (c) above] and the published letter indicating the accuracy (Acc):

TABLE 1. Correspondence between accuracy and estimated relative uncertainty

Acc	Relative uncertainty of mean line c strength at 90% confidence level ^a
AA	< ≤0.001
A+	≤0.01
A	≤0.03
B+	≤0.06
В	≤0.10
C+	≤0.15
C	≤0.25
D+	≤0.30

TABLE 1. Correspondence between accuracy and estimated relative uncertainty—Continued

Acc	Relative uncertainty of mean line strength at 90% confidence level ^a
	≤0.50 ^b ≤0.70 ≤1

^aThere is a 90% probability that the relative standard deviation of the mean *line strength* is equal to or better than the cited value. Uncertainties in oscillator strengths and transition probabilities may be somewhat higher when the uncertainty in the transition wavelength is significant; see Table 2 for the wavelength dependence of these quantities.

- (5) We order the multiplets, keeping only those in which at least one fine-structure transition has a 90% RSDM less than 0.5. The ordering is made according to the following priority list (first items listed have highest priority; the lowest value of each factor, such as configuration sequence, is listed first).
 - (a) Ordering of multiplets: configuration sequence of lower level, following the sequence in the NIST AEL listings; configuration sequence of the upper level, term sequence for these configurations, respectively; the multiplicity of the upper level.
 - (b) Ordering of lines within multiplets: the LS-coupling line strength factors (discussed next) and (operative only if these are the same) the AEL sequence number for the lower and upper levels, respectively. The two LS-coupling factors are determined by the following rules for LS multiplets. A: The transitions with the largest J's are the strongest. B: When $\Delta L = \pm 1$, the strongest lines have $\Delta J = 1$, weaker are $\Delta J = 0$, and $\Delta J = -1$ are quite weak; when $\Delta L = 0$, the $\Delta J = 0$ lines are stronger than the $\Delta J = \pm 1$.

For the allowed lines, we merge the different groups whose relative uncertainties have been evaluated separately, including the group of intercombination lines. Finally we assign sequential multiplet numbers and generate a wavelength finding list.

5. Arrangement of the Tables

In order to facilitate finding lines by wavelength in each spectrum, we first provide a finding-list table ordered by increasing wavelengths with their corresponding multiplet number.

We have maintained essentially the same setup of the earlier critical compilations of atomic transition probabilities, since a sampling of a large number of users indicated preference for this format. In addition to the spectroscopic information given for each spectral line, we list the transition probability for spontaneous emission A_{ki} and several equivalent expressions, the estimated accuracy and citations to the sources from which the transition rate was derived.

As described above in step (5) in Sec. 4.3, the main tables are grouped according to multiplets and ordered according to the published sequence of their energy levels. We first cite the multiplet "No," which is an arbitrary sequence number unique to the table. Provided at least one transition in a multiplet has an estimated accuracy of D or better, we list all individual lines within each multiplet unless the transition rate or energy level data were unavailable. We first list the principle configuration for the lower and upper levels, and then the terms in the most apt coupling scheme.

We present two wavelength columns. The first " λ " column lists air wavelengths for lines in the near ultraviolet, visible and near infrared spectra (2000 Å $< \lambda < 20000$ Å); the index of refraction was computed from the formula given in Peck and Reeder.⁷⁷ The second gives the vacuum wavelength. Wavelengths are derived from the most recent NIST AEL energy level data. A "cm-1" in this column indicates that a vacuum wavenumber (i.e., in cm⁻¹) rather than a wavelength is listed; this is done for infrared lines above 20000 Å. Square brackets around a wavelength indicate that the energy of either the upper or lower level used to deduce the wavelength is uncertain to an unknown degree because of the following: (a) The energy of one transition level has a value which is not well known with respect to the other level of the transition. For example, the absolute energy scale for excited ⁴P levels is sometimes not experimentally established with respect to the ${}^{2}P$ levels. In this case wavelengths of the associated intercombination lines will be in brackets. (b) The assignment of one or both of the transition levels is uncertain. (c) The energy of one or both of the levels was calculated ab initio and its accuracy is uncertain.

Next we list the lower and upper energies and statistical weights (g=2J+1), where J is the quantum number for the total orbital angular momentum). We have expressed the atomic transition rates in four different ways because different user communities have different preferences. Thus, in addition to the transition probability for spontaneous emission A_{ki} , we present the (absorption) oscillator strength f_{ik} as well as the line strength S and $\log g_i f_{ik}$. The conversion factors between the tabulated quantities A_{ki} , f_{ik} , and S are listed in Table 2 (which is derived from a table in Shore and Menzel²¹), applying the current values of the fundamental constants. For the numerical conversions between different transition rates, we have used the vacuum wavelengths listed in the tables, which are usually derived from experimental energies.

The material for each spectrum is subdivided into a main table for allowed (electric dipole or E1) transitions and a smaller separate table for forbidden lines. Electric dipole intercombination (intersystem) lines are forbidden only in pure LS coupling and are listed under allowed transitions. Forbidden lines include magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions. For these, the columns containing f and $\log gf$ are omitted since the oscillator strength is rarely utilized for forbidden lines. When both M1 and E2 transitions occur at the same wavelength, the total line strengths can be obtained by adding the mag-

^bTo be compiled; a multiplet must have at least one line with an accuracy of D or better.

netic dipole and electric quadrupole line strengths. Most authors who have carried out recent calculations for S and A_{ki} for E2 transitions follow a definition for S(E2) given by Cowan¹⁸ and others. Since this appears to now be the preferred definition, we follow this convention. This is reflected in the change of the conversion factor from that given in an earlier NIST compilation. 125,126

The accuracy in the "Acc" column has the following meaning (as stated above): There is a 90% probability that the RSDM line strength is equal to or better than the value cited. The basis for this is discussed in Sec. 4 above and in Appendix A. Roughly speaking, it is also indicative of the relative uncertainty of the mean. The cited "letter" accuracy can be put on an absolute scale via Table 1 above. Uncertainties for oscillator strengths and especially for transition probabilities can be higher due to uncertainties in the wavelength. Table 2 shows the wavelength dependence of these quantities, which increases for higher multipole transitions. Typically such uncertainties are significant only for wavelengths upwards of 10 000 Å.

"LS" in the "Source" column indicates that the line data have been approximated by applying LS-coupling fractions [using either Eq. (1) or the listed values in Allen¹] to a published multiplet value. LS is used in those special cases where one level in a transition is not designated in LS coupling, but it has a "unique J," such that there is no other level with the same J and configuration with which it can mix via relativistic interactions.

Multiplet averages are given only if all the E1 fine-structure members of the multiplet are listed. For the energy levels, the multiplet g value (lower and upper levels) is the sum of g's for the unique levels involved in the transition (i.e., each level is counted only once). The cited energy is the g-weighted average of each of the unique levels in the multiplet. The multiplet wavelength is determined from these energies. The multiplet line strength is the sum of the individual fine-structure line strengths. The oscillator strength and transition probability are derived from the line strength according to Table 2.

TABLE 2. Conversion factors for transition rates

	$g_i f_{ik} = (R_{\infty}/2\pi\alpha^3 c)(g$	$_{k}A_{ki}/\sigma^{2}$) = 1.499 193 $8 \times 10^{-16}g_{k}A_{ki}\lambda$	$^{2}; g_{i}f_{ik} = -g_{k}f_{ki}$	
Туре	$g_{i}f_{ik}$	$g_k\!A_{ki}$	Parity change?	Selection rules
E1	$\frac{1}{3\alpha} \left(\frac{\alpha \sigma}{R_{\infty}} \right) S_{\rm E}^{(1)}$ $303.755 68 S/\lambda$	$\frac{2}{3}\alpha\pi c\sigma\left(\frac{\alpha\sigma}{R_{\infty}}\right)^{2}S_{E}^{(1)}$ $2.026\ 126\ 9\times10^{18}\ S/\lambda^{3}$	Yes	ΔJ =0, \pm 1 (no 0 \leftrightarrow 0); ΔM =0, \pm 1 (no 0 \leftrightarrow 0 if ΔJ =0)
M1	$\frac{\alpha}{12} \left(\frac{\alpha \sigma}{R_{\infty}} \right) S_{\mathrm{M}}^{(1)}$ $4.043\ 850\ 4 \times 10^{-3}\ S/\lambda$	$\frac{1}{6}\alpha^3\pi c\sigma\left(\frac{\alpha\sigma}{R_{\infty}}\right)^2 S_{\rm M}^{(1)}$ $2.6973500\times10^{13} S/\lambda^3$	No	Same as E1
E2	$\frac{1}{240\alpha} \left(\frac{\alpha\sigma}{R_{\infty}}\right)^3 S_{\mathrm{E}}^{(2)}$ $167.902 \ 21 \ S/\lambda^3$	$\frac{1}{120}\alpha\pi c\sigma\left(\frac{\alpha\sigma}{R_{\infty}}\right)^{4}S_{E}^{(2)}$ $1.1199500\times10^{18}S/\lambda^{5}$	No	$\Delta J = 0, \pm 1, \pm 2$ $(\text{no } 0 \leftrightarrow 0, 0 \leftrightarrow 1, \text{ or } 1/2 \leftrightarrow 1/2);$ $\Delta M = 0, \pm 1, \pm 2$
M2	$\frac{\alpha}{960} \left(\frac{\alpha \sigma}{R_{\infty}}\right)^3 S_{\mathrm{M}}^{(2)}$ $2.235\ 255\ 0 \times 10^{-3}\ S/\lambda^3$	$\frac{1}{480}\alpha^{3}\pi c\sigma \left(\frac{\alpha\sigma}{R_{\infty}}\right)^{4} S_{\rm M}^{(2)}$ $1.4909714\times10^{13}S/\lambda^{5}$	Yes	Same as E2
E3	$\frac{1}{37800\alpha} \left(\frac{\alpha\sigma}{R_{\infty}}\right)^{5} S_{\rm E}^{(3)}$ $47.140897S/\lambda^{5}$	$\frac{1}{18900}\alpha\pi c\sigma\left(\frac{\alpha\sigma}{R_{\infty}}\right)^{6}S_{\mathrm{E}}^{(3)}$ $3.1444165\times10^{17}S/\lambda^{7}$	Yes	

 $^{{}^}aA_{ki}$ is the emission transition probability, f_{ik} is the absorption oscillator strength, and g is the statistical weight. R_{∞} is the Rydberg constant, α is the fine-structure constant, c is the speed of light, and σ is the energy difference between the upper (k) and lower (i) levels of the transition $(R_{\infty}$ and σ are in cm⁻¹; c is in cm/s). The line strength $S_{E,M}^k$ is the absolute square of the reduced matrix element of the k^{th} multipolar electric and magnetic operator, respectively. The numerical values are based on the 2002 CODATA recommended values of fundamental constants, with the line strength in a.u. and α the vacuum wavelength in Ångströms.

6. Acknowledgments and Future Plans

It is a pleasure to acknowledge the assistance and cooperation of many colleagues in this field. We would especially like to acknowledge the support and valuable suggestions of W. L. Wiese, as well as his critical reading of the manuscripts. We thank Y. Ralchenko for checking the manuscript and for his extensive help with the ASCII-to-LATEX conversion code, and Donald Morton of the Herzberg Institute of Astrophysics for many valuable suggestions and corrections. Also, in some cases different authors have provided us with the results of their calculations prior to publication, as indicated in the references. Our colleagues from the NIST Atomic Energy Levels Data Center, W. C. Martin and A. Musgrove, have generously furnished us new data and advice on energy levels and wavelengths. Partial support for this work was provided by the NASA Office of Space Sciences, Grant No. W-10,215. We plan to continue this critical compilation work with analogous tables for the elements aluminum through calcium.

7. Appendix A: Classical Statistical Considerations

Uncertainty in the mean. The probability density of random variables follows a normal distribution with mean μ and variance σ^2 . The population standard deviation σ is the 1/e half-width of the distribution, and as such gives a measure of the spread of possible values of a random variable about the mean. The standard normal distribution represents the probability density as a function of $z=(x-\mu)/\sigma$, i.e., the deviation of an individual observation x from the mean in units of σ . The probability $\Pr(a \le z \le b)$ is the area under the probability density curve between a and b. The standard normal distribution, $\Pr(z_{\alpha} < z < \infty)$, has a "tail" of area α corresponding to a $100(1-\alpha)$ percentile. This defines the "critical value" z_{α} . The "one-sided" UCB for the mean value of N normally distributed determinations of a variable is given by the following expression:

$$UCB_{\mu} = \frac{\sigma z_{\alpha, N-1}}{\sqrt{N}}.$$
 (A1)

The "confidence interval" for the mean is given by $(\mu - \sigma z_{\alpha/2,N-1}/\sqrt{N})$, $\mu + \sigma z_{\alpha/2,N-1}/\sqrt{N})$. For example, integrating from between critical values $z=\pm 1.96$ yields 95% of the area under the normal density function (or 0.025 of each wing, $\alpha/2$). The value 1.96 is often rounded to 2, and this is the origin of the often-used expression "2-sigma" corresponding to a 95% confidence interval. We can be 95% confident that the mean value of N determinations will fall within the interval $\pm 2\sigma/\sqrt{N}$.

Unfortunately, we do not generally know the values of the mean and variance (μ and σ^2 , respectively) of the population. For a finite sample size N of random variables, we can imagine that each determination represents a "sample" from the true distribution. In this way, both μ and σ are estimated by the sample mean \bar{x} and sample standard deviation s, re-

spectively. This introduces the added uncertainty of how well the mean and variance of the sample approximate that of the total population. For small sample sizes, the net uncertainties can be much larger than when the parameters of the population distribution are known. For random variables, \bar{x} and s are statistically independent, so their joint probability density is just the product of both.

Integrating over all values of s/σ yields the Student's distribution, also known as the t distribution. It is a function of z, s, and N; it is broader than the corresponding normal distribution of $(\sigma=s)$, except for $N=\infty$, in which case the two distributions are identical. The UCB for the mean of a random variable with a t distribution is

$$UCB_{\bar{x}} = \frac{st_{\alpha, N-1}}{\sqrt{N}}.$$
 (A2)

For the t distribution, which is symmetric about μ =0, the lower confidence bound has the same value with a negative sign. We can be $100(1-\alpha)\%$ confident that the mean of N observations will fall within the interval $(\bar{x}-st_{\alpha/2,N-1}/\sqrt{N},\bar{x}+st_{\alpha/2,N-1}/\sqrt{N})$. As mentioned in the general text, for a 95% confidence interval with N=2, $t_{97.5\%,N-1}$ =12.7, vs 1.96 when N= ∞ . This strong N dependence occurs only for the smallest values of N; for example, when N=4, $t_{97.5\%,N-1}$ =2.78, relatively close to the N= ∞ value. Critical values for different "percentiles" of the t distribution are tabulated in most textbooks on statistics (see, for example, Devore²⁰).

If systematic errors (nonrandom bias errors specific to a given determination) are significant, as is often the case, the appropriate statistical analysis can be less straightforward. For the theoretical data we are evaluating, the variation between computed values using different methods/ approximations/models are due entirely to systematic errors. Assuming that the systematic errors are unknown, one approach is to treat the results of different independent methods as if they constitute a sample of randomly distributed systematic errors. When N is large (say, 30 or more) this treatment has a solid foundation, thanks to the central limit theorem. When systematic errors dominate, the effective sample size N is the number of independent determinations under consideration. Unfortunately, this number of independent determinations is often small. On the other hand, the t distribution is notoriously robust to deviations from nonrandom variations. Thus, even in the absence of true randomness, one could still estimate confidence intervals by using the critical value for the appropriate t distribution. However, as discussed above, a high penalty is incurred for small N, especially when N=2 or 3. In the case of ATP data, N is 1 or 2 for most transitions. For this reason we usually pool the RSDM's of different transitions which have comparable relative uncertainty, as described in Sec. 4 of the main text. When $N \ge 2$ for a given transition, we also compare the pooled result with the relative uncertainty estimate obtained using classical methods. This latter method is summarized in the following paragraphs, which considers a more specialized topic than we have thus far: The coefficient of variation. Uncertainty in the relative standard deviation (coefficient of variation). A natural measure of relative uncertainty intrinsic to a given population is the "coefficient of variation,"

$$K = \frac{s}{\bar{x}}. (A3)$$

 K^{-1} follows the "noncentral t distribution" with noncentrality parameter RSDM⁻¹ (i.e., \sqrt{N}/K). Such distributions are asymmetric and thus the magnitudes of critical values of the 0.95 vs 0.05 confidence levels are different, and both are positive. In our case, we are interested in the upper bound to the uncertainty in the mean of the relative SD, not to the uncertainty in its coefficient of variation. Therefore we consider the UCB at 0.90 rather than the confidence interval between 0.05 and 0.95 for the coefficient of variation. The critical value depends nonlinearly on the value of the coefficient of variation. A simple analytical approximation for the confidence intervals of the coefficient of variation has been published. The promotion of the RSDM as

$$UCB_K = \frac{KK_{N-1,\alpha,\kappa}^U}{\sqrt{N}},\tag{A4}$$

where

$$K_{N-1,\alpha,\kappa}^{U} = \left[\frac{\chi_{N-1,1-\alpha}^{2}}{N-1} + K^{2} \left(\frac{\chi_{N-1,1-\alpha}^{2} + 2}{N} - 1 \right) \right]^{-1/2}, \quad (A5)$$

 $100(1-\alpha)$ is the specified percentile (confidence level) (e.g., $(\alpha=0.10 \text{ for a } 90\% \text{ UCB})$ and $\chi^2_{N-1,1-\alpha}$ is the critical value of the corresponding χ^2 distribution (tables of which are published in many textbooks on statistics (see, for example, Devore²⁰). In our notation we have accounted for the fact that Vangel's¹¹⁵ definition of α is the complement, $1-\alpha$, of that used above and in the tables we have cited.³⁵ The first term in the above expansion is just the standard bound one would obtain due to random variation in the sample SD alone. The above versatile approximation is least accurate for small N and large K, but in most cases (except N=1,2) it is entirely adequate. Precise results can be obtained via Verrill.¹¹⁷ As with the t distribution, UCB's are large for very small N. For the coefficient of variation, they can be prohibitively large, as discussed below.

As mentioned in the main text, when $N \ge 2$ we make the classical estimate of the upper bound for the RSDM and compare this value with the pooled estimate. In actual practice, we make this estimate by using the first term in Eq. (A2) (and subsequently dividing this result by the mean), rather than the full expression discussed in the previous paragraph. This first term is just the random-variable one-sided UCB for population SD, and the corresponding UCB to the population RSDM is

$$UCB_{RSDM} = RSDM \sqrt{\frac{N-1}{\chi_{N-1,1-\alpha}^2}},$$
 (A6)

where the RSDM is the relative SD of the sample mean, as given by Eq. (2). In our case we use α =0.10. Roughly speak-

ing, if two or more members of a multiplet (except for singlets) have UCB's which are lower than the pooled RSDM, then we use the UCB as the estimated 90% confidence bound in those cases.

For random variables, the method of noncentral t distributions is generally appropriate for relative uncertainties. Here, however, we limit the discussion to physical quantities that can only be positive. Even when the mean is positive, random distributions allow a finite probability of negative values, increasingly so as σ/μ increases. Because the coefficient of variation involves division by the mean, UCB's can be skewed compared to a population of positive values. This is particularly the case when the confidence interval for the mean μ spans the value zero. For larger K and smaller N, this can be a large effect. If the RSDM $>(t_{\alpha,N-1})^{-1}$, the UCB diverges. For example, when N=2, the normal UCB diverges for RSDM>0.0784 for the 97.5% confidence level (α =0.025); for other confidence levels it is inversely proportional to α to a close approximation. This problem highlights another advantage of using a distribution-free method to estimate relative uncertainties for small sample sizes. Finally we note that while Bayesian statistical methods (as opposed to the above classical methods) can readily accommodate constraints such as restriction to positive values, applying such methods to the extremely small N problem is generally impracticable.

As described in Sec. 4 of the main text above, we obtain the large majority of our estimates of relative uncertainties by graphically pooling the RSDM's of different quantities. This heuristic method does not rely on distributions.

8. Appendix B: Computing the Error Function

The error function is defined as

$$\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt.$$

An efficient numerical recipe for it, accurate to 1.5×10^{-7} , is given by Hastings:⁴³

$$\operatorname{erf}(z) = 1 - p \exp(-z^2),$$

where

$$p = f(0.254 829 592 + f\{-0.284 496 736 + f[1.421 413 742 + f(-1.453 152 027 + f1.061 405 429)]\})$$

and

$$f = \frac{1}{1 + 0.3275911|z|}.$$

Also, if z < 0, erf(z) = -erf(z).

9. References for the Introductory Material—Sections 1–8

- ¹C. W. Allen, *Allen's Astrophysical Quantities*, 4th ed. (Springer, New York, 2000).
- ³K. M. Aggarwal, Astrophys. J. Suppl. Ser. **118**, 589 (1998). ⁵K. Berrington, J. Phys. B **34**, 1443 (2001).
- ⁶K. A. Berrington, P. G. Burke, U. Butler, M. J. Seaton, P. J. Storey, K. T. Taylor, and Y. Yan, J. Phys. B **20**, 6379 (1987).
- ¹⁶K. Butler and C. J. Zeippen, http://legacy.gsfc.nasa.gov/topbase.
- ¹⁸R. D. Cowan, *The Theory of Atomic Structure and Spectra* (University of California Press, Berkeley, CA, 1981).
- ²⁰J. L. Devore, *Probability and Statistics for Engineering* and the Sciences (Duxbury, Pacific Grove, CA, 2000), Tables A.5 (critical values for the t distribution) and A.7 (critical values for the χ^2 distribution).
- ³⁸C. Froese Fischer, T. Brage, and P. Jönsson, *Computational Atomic Structure—An MCHF Approach* (IOP, Bristol, 1997).
- ³⁹G. Gaigalas, J. Kaniauskas, R. Kisielius, G. Merkelis, and M. J. Vilkas, Phys. Scr. 49, 135 (1994).
- ⁴¹M. E. Galavis, C. Mendoza, and C. J. Zeippen, Astron. Astrophys., Suppl. Ser. **131**, 499 (1998).
- ⁴³C. Hastings, *Approximations for Digital Computers* (Princeton University Press, Princeton, NJ, 1955).
- ⁴⁴A. Hibbert, Rep. Prog. Phys. **38**, 1217 (1975).
- ⁴⁵A. Hibbert, M. Le Dourneuf, and M. Mohan, At. Data Nucl. Data Tables **53**, 24 (1993).
- ⁴⁸K. M. Jones, P. S. Julienne, P. D. Lett, W. D. Phillips, E. Tiesinga, and C. J. Williams, Europhys. Lett. **35**, 85 (1996).
- ⁴⁹D. E. Kelleher (unpublished).
- ⁵⁷D. McPeake and A. Hibbert, J. Phys. B **33**, 2809 (2000).
- ⁶⁰W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data **9**, 1 (1980).
- ⁶¹W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data **10**, 153 (1981).
- ⁶⁷P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. **77**, 1 (2005), http://physics.nist.gov/constants
- ⁶⁹Yu. Ralchenko, F.-C. Jou, D. E. Kelleher, A. E. Kramida, A. Musgrove, J. Reader, W. L. Wiese, and K. Olsen (2007). NIST Atomic Spectra Database (version 3.1.3), http:// physics.nist.gov/asd3, National Institute of Standards and Technology, Gaithersburg, MD.
- ⁷⁰J. R. Fuhr, A. E. Kramida, H. R. Felrice, K. Olsen, and S. Kotochigova (2006). NIST Atomic Transition Probability Bibliographic Database (version 8.1), http://physics.nist.gov/Fvalbib, National Institute of Standards and Technology, Gaithersburg, MD.
- ⁷²C. W. Oates, K. R. Vogel, and J. L. Hall, Phys. Rev. Lett. **76**, 2866 (1996).
- ⁷³The Opacity Team, The Opacity Project (IOP, Bristol, England, 1994), Vol. I, http://legacy.gsfc.nasa.gov/topbase
- ⁷⁷E. R. Peck and K. Reeder, J. Opt. Soc. Am. **62**, 958 (1972).
- ⁸¹U. I. Safronova, W. R. Johnson, and A. E. Livingston, Phys. Rev. A **60**, 996 (1999).
- ⁸³M. J. Seaton, J. Phys. B **20**, 6363 (1987).

- ⁸⁵B. W. Shore and D. H. Menzel, *Principles of Atomic Spectra* (Wiley, New York, 1968).
- ⁸⁶G. Tachiev and C. Froese Fischer, J. Phys. B **32**, 5805 (1999).
- ⁸⁷G. Tachiev and C. Froese Fischer, J. Phys. B **33**, 2419 (2000).
- ⁸⁸G. Tachiev and C. Froese Fischer, Can. J. Phys. **79**, 955 (2001).
- ⁹⁰G. Tachiev and C. Froese Fischer, complete and current results can be found at http://www.vuse.vanderbilt.edu/ ~cff/mchf collection/
- ¹⁰⁶C. E. Theodosiou and S. R. Federman, Astrophys. J. **527**, 470 (1999).
- ¹⁰⁷E. Träbert, Phys. Scr. **53**, 167 (1996).
- ¹¹⁵M. G. Vangel, Am. Stat. **15**, 21 (1996).
- 117S. Verrill, Exact confidence bounds for a normal distribution coefficient of variation, http://www1.fpl.fs.fed.us/ covnorm.html
- ¹²⁰U. Volz, M. Majerus, H. Liebel, A. Schmitt, and H. Schmoranzer, Phys. Rev. Lett. 76, 2862 (1996).
- ¹²¹A. W. Weiss, Phys. Rev. **162**, 71 (1967).
- ¹²²A. W. Weiss, Phys. Rev. A **51**, 1067 (1995).
- ¹²⁴W. L. Wiese, in *Progress in Atomic Spectroscopy*, edited by B. Bederson and W. Fite (Academic, New York, 1968), Vol. 7B, p. 307.
- ¹²⁵W. L. Wiese, M. W. Smith, and B. M. Miles, *Atomic Transition Probabilities*, *Vol. II: Sodium through Calcium*, NSRDS-NBS Vol. 22 (U.S. GPO, Washington, D.C., 1969). An earlier updated compilation of transition probabilities has been published [Wiese *et al.* (Ref. 126)].
- ¹²⁶W. L. Wiese, J. R. Fuhr, and T. M. Deters, Atomic Transition Probabilities of Carbon, Nitrogen, and Oxygen, Monograph 7 (AIP, New York, 1996).
- ¹²⁸O. Zatsarinny and C. Froese Fischer, J. Phys. B **35**, 4669 (2002).

10. Na

10.1. Na ı

Ground state: $1s^2 2s^2 2p^6 3s^2 S_{1/2}$

Ionization energy: $5.139\,07\,\text{ eV} = 41\,449.4\,\text{cm}^{-1}$

10.1.1. Allowed Transitions for Na I

We have included extensive results from OP,¹⁰⁴ which we found to be accurate for Na-like spectra because spin-orbit interactions are generally unimportant for low-Z alkalilike spectra. Froese Fischer³⁴ has generated many of the other compiled transition rates, which are the product of nonorthogonal spline CI computations.

The 3s-3p resonance lines of Na I, also known as the sodium D lines, have received special experimental attention. Two very precise determinations 48,120 of the lifetime have been made via molecular spectroscopy of the Na₂ C_3 coefficient of the long-range O_g^- state. A third precise determination by Oates *et al.* 72 was made from the broadening associ-

ated with the radiative decay of the $P_{3/2}$ state of the transition. These values are in excellent agreement.

Filippov and Prokof'ev²⁸ measured relative multiplet oscillator strengths using the anomalous dispersion method. Morton⁶⁸ normalized these values using precisely known lifetimes of the D lines, split according to LS coupling. We use his values to normalize the oscillator strengths in Filippov and Prokof'ev.²⁸ An "n" in the reference list of the following table indicates relative values that have been independently normalized.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in two or more references, 28,34,48,68,72,104,120 as described in the general introduction. For this purpose we divided the data into groups with and without OP results. We also used the results of Siegel *et al.* ⁸⁴ for comparison purposes; these authors employed a single configuration Dirac-Fock method with a core-polarization model. Good agreement was generally found among the different sources including OP (<10% RSDM for S>0.01).

The results of Froese Fischer³⁴ are considerably more ex-

tensive than the values in Froese Fischer,³³ and thus we have chosen to use them in the averaging for transition rates.

10.1.2. References for Allowed Transitions for Na I

²⁸A. Filippov and V. K. Prokof'ev, Z. Phys. **56**, 458 (1929).
³³C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, *ab initio*, downloaded on May 6, 2002).

³⁴C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (nonorthogonal B-spline CI, downloaded on May 6, 2002).

⁴⁸K. M. Jones, P. S. Julienne, P. D. Lett, W. D. Phillips, E. Tiesinga, and C. J. Williams, Europhys. Lett. **35**, 85 (1996).

⁶⁸D. C. Morton, Astrophys. J., Suppl. Ser. **149**, 205 (2003).

⁸⁴W. Siegel, J. Migdalek, and Y.-K. Kim, At. Data Nucl. Data Tables **68**, 303 (1998).

⁷²C. W. Oates, K. R. Vogel, and J. L. Hall, Phys. Rev. Lett. **76**, 2866 (1996).

¹⁰⁴K. T. Taylor, http://legacy.gsfc.nasa.gov/topbase, down-loaded on Aug. 8, 1995 (Opacity Project).

¹²⁰U. Volz, M. Majerus, H. Liebel, A. Schmitt, and H. Schmoranzer, Phys. Rev. Lett. **76**, 2862 (1996).

TABLE 3. Wavelength finding list for allowed lines for Na I

Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mul No.
2490.713	8	4978.541	14	9 872.91	36	12 679.14	31
2490.727	8	4982.808	14	9 873.39	36	12 679.22	31
2512.134	7	4982.813	14	9 961.26	35	12 907.94	43
2512.155	7	5148.838	13	9 961.31	35	12 917.26	43
2543.841	6	5153.402	13	10 289.18	49	14 767.48	42
2543.872	6	5682.633	12	10 295.11	49	14 779.69	42
2593.869	5	5688.193	12	10 566.02	48	14 779.73	42
2593.919	5	5688.205	12	10 572.27	48	15 160.848	54
2680.341	4	5889.950	1	10 671.61	34	15 161.607	54
2680.433	4	5895.924	1	10 671.67	34	16 373.85	41
2852.811	3	6154.225	11	10 672.52	34	16 388.86	41
2853.012	3	6160.747	11	10 740.67	47	16 393.90	53
3302.369	2	7113.036	27	10 746.44	23	16 395.21	53
3302.978	2	7113.203	27	10 747.12	47	17 031.09	30
4341.489	21	7373.23	26	10 749.29	23	17 031.24	30
4344.734	21	7373.49	26	10 834.85	33	17 038.41	30
4390.023	20	7809.78	25	10 834.91	33	18 465.3	29
4393.340	20	7810.24	25	11 190.21	46	18 465.5	29
4419.884	19	8183.255	10	11 197.21	46	18 720.6	52
4423.247	19	8194.790	10	11 381.454	9	18 723.2	52
4494.180	18	8194.824	10	11 403.779	9	19 056.65	63
4497.657	18	8649.93	24	11 489.10	45	19 056.78	63
4541.633	17	8650.89	24	11 496.49	45	19 057.98	63
4545.184	17	9411.866	38	12 304.67	32	19 279.5	62
4664.811	16	9411.911	38	12 304.75	32	19 279.7	62
4668.557	16	9412.203	38	12 306.70	32	19 443.2	67
4668.559	16	9465.92	37	12 311.48	44		
4747.941	15	9465.96	37	12 319.96	44		
4751.822	15	9872.86	36	12 319.98	44		

Table 3. Wavelength finding list for allowed lines for Na I—Continued

Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mul No
(CIII)	140.	(cm)	140.	(CIII)	110.	(cm)	111
4 942.89	76	2 792.70	100	1 407.553	108	593.55	12
4 940.42	76	2 758.056	87	1 407.54	108	562.19	13
4 750.11	61	2 758.036	87	1 407.21	108	561.96	13
4 750.07	61	2 757.706	87	1 363.04	82	554.35	13
4 749.58	61	2 748.88	57	1 363.02	82	554.02	13
4 688.32	75	2 748.84	57	1 346.90	107	533.23	12
4 685.85	75	2 747.55	57	1 346.89	107	528.89	10
4 660.25	60	2 697.41	86	1 332.24	68	528.14	10
4 660.21	60	2 697.39	86	1 329.77	68	519.72	12
4 614.01	66	2 686.95	99	1 329.62	90	494.12	5
4 534.47	74	2 685.66	99	1 329.61	90	494.08	5
4 532.59	22	2 671.05	92	1 328.91	112	491.61	5
4 532.00	74	2 508.92	56	1 286.8	102	476.90	13
4 527.00	22	2 508.88	56	1 286.31	102	476.57	13
4 281.78	40	2 449.85	64	1 188.52	116	430.35	12
4 276.19	40	2 449.83	64	1 187.77	116	429.86	12
4 276.15	40	2 432.38	98	1 150.84	123	428.33	12
4 160.55	73	2 431.09	98	1 099.74	28	427.58	11
4 158.08	73	2 278.53	97	1 099.69	28	365.49	13
4 096.93	51	2 277.24	97	1 094.10	28	356.15	13
4 095.64	51	2 262.09	85	1 090.95	94	330.33	11
3 992.20	59	2 262.07	85	1 089.66	94	329.84	11
3 992.16	59	2 261.58	85	1 089.65	94	295.83	13
3 991.41	59	2 172.23	84	1 034.67	115	295.50	13
3 928.13	72	2 172.21	84	1 033.92	115	276.50	12
3 925.66	72	2 168.31	78	924.99	77	276.01	12
3 851.06	58	2 167.56	78	923.70	77	261.46	13
3 851.02	58	2 143.28	91	911.58	106	260.86	8
3 800.35	65	1 996.39	69	911.57	106	260.84	8
3 800.34	65	1 993.92	69	911.08	106	259.55	8
3 422.19	80	1 993.90	69	893.26	122	254.64	14
3 421.86	80	1 964.51	110	826.30	119	219.96	12
3 346.89	71	1 964.50	110	825.97	119	219.63	12
3 344.42	71	1 904.61	96	821.72	105	212.03	14
3 344.41	71	1 903.32	96	821.71	105	211.79	14
3 315.02	89	1 842.17	50	801.14	111	188.79	13
3 315.00	89	1 839.70	50	791.96	128	188.46	13
3 057.44	88	1 782.766	103	791.47	128	153.77	13
3 057.42	88	1 782.436	103	715.72	93	153.67	10
2 971.66	70	1 706.93	109	714.43	93	153.66	10
2 969.19	70	1 672.19	95	984.92	127	153.54	13
2 933.69	39	1 670.90	95	684.43	127	152.91	10
2 928.10	39	1 504.18	83	660.75	114	134.57	14
2 926.22	79	1 503.41	83	660.00	114	134.34	14
2 925.73	79	1 443.009	117	623.07	132		
2 793.99	100	1 443.34	117	597.88	121		

Table 4. Transition probabilities of allowed lines for Na I (references for this table are as follows: 1=Taylor, 104 2=Froese Fischer, 34 $3=\text{Jones } et \ al.$, 48 $4=\text{Oates } et \ al.$, 72 $5=\text{Volz } et \ al.$, 120 6=Filippov and Prokof'ev^{28})

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{vac}~(\mathring{A})$ or $\sigma~(cm^{-1})^a$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
1	3s-3p	$^{2}S-^{2}P^{\circ}$	5 891.94	5 893.57	0.000–16 967.64	2–6	6.15-01	9.61-01	3.73+01	0.284	AA	3,4,5
			5 889.950	5 891.583	0.000-16 973.368	2-4	6.16-01	6.41-01	2.49+01	0.108	AA	3,4,5
			5 895.924	5 897.558	0.000-16 956.172	2–2	6.14-01	3.20-01	1.24+01	-0.194	AA	3,5
2	3s-4p	$^{2}S-^{2}P^{\circ}$	3 302.57	3 303.52	0.000–30 270.7	2-6	2.74-02	1.35-02	2.93-01	-1.569	A	2,6n
			3302.369	3 303.319	0.000-30 272.58	2-4	2.75 - 02	9.00-03	1.96-01	-1.745	A	2,6n
			3 302.978	3 303.929	0.000–30 266.99	2–2	2.73-02	4.46-03	9.71-02	-2.050	B+	2,6n
3	3s-5p	$^{2}S-^{2}P^{\circ}$	2 852.88	2 853.72	0.000–35 042.0	2–6	5.36-03	1.96-03	3.69-02	-2.407	B+	2,6n
			2 852.811	2 853.649	0.000-35 042.85	2-4	5.38-03	1.31 - 03	2.47 - 02			2,6n
			2 853.012	2 853.850	0.000–35 040.38	2–2	5.31-03	6.48-04	1.22-02	-2.887	B+	2,6n
4	3s-6p	$^{2}S-^{2}P^{\circ}$	2 680.37	2 681.17	0.000–37 297.2	2-6	1.83-03	5.93-04	1.05 - 02	-2.926	B+	2,6n
			2 680.341	2 681.137	0.000-37 297.61	2-4	1.84 - 03	3.98-04	7.02-03			2,6n
			2 680.433	2 681.230	0.000–37 296.32	2–2	1.81 - 03	1.96-04	3.45 - 03	-3.407	В	2,6n
5	3s-7p	$^2S-^2P^{\circ}$	2 593.89	2 594.66	0.000–38 540.7	2-6	8.07 - 04	2.44 - 04	4.18-03	-3.312	C+	2,6n
			2 593.869	2 594.644	0.000-38 540.93	2-4	8.13-04	1.64-04	2.80-03	-3.484	В	2,6n
			2 593.919	2 594.695	0.000-38 540.18	2–2	7.96-04	8.03-05	1.37-03	-3.794	C+	2,6n
6	3s-8p	$^{2}S-^{2}P^{\circ}$	2 543.85	2 544.61	0.000–39 298.7	2-6	4.42-04	1.29-04	2.16-03	-3.588	C+	2,6n
			2 543.841	2 544.604	0.000-39 298.84	2-4	4.46-04	8.65-05	1.45-03	-3.762	C+	2,6n
			2 543.872	2 544.636	0.000–39 298.35	2–2	4.35-04	4.22-05	7.08 - 04	-4.074	C+	2,6n
7	3s-9p	$^2S-^2P^{\circ}$	2 512.14	2 512.90	0.000– <i>39 794.70</i>	2-6	3.16-04	8.98-05	1.49-03	-3.746	C	2,6n
			2 512.134	2 512.891	0.000-39 794.810	2-4	3.20-04	6.05 - 05	1.00-03	-3.917	D+	2,6n
			2 512.155	2 512.911	0.000–39 794.480	2–2	3.10-04	2.93-05	4.86-04	-4.232	C	2,6n
8	3s-10p	$^2S-^2P^{\circ}$	2 490.72	2 491.47	0.000–40 136.96	2-6	1.89-04	5.28-05	8.66-04	-3.976	D+	6n
			2 490.713	2 491.464	0.000-40 137.039	2-4	1.89-04	3.52-05	5.77-04	-4.152	D+	6n
			2 490.727	2 491.479	0.000-40 136.805	2–2	1.89-04	1.76-05	2.89-04	-4.453	D+	6n
9	3p-4s	$^{2}P^{\circ}-^{2}S$	11 396.33	11 399.45	<i>16 967.64</i> –25 739.991	6–2	2.64-01	1.71-01	3.86-01	0.011	A	2
			11 403.779	11 406.901	16 973.368–25 739.991	4–2	1.76-01	1.71-01	2.58-01	-0.165	A	2
			11 381.454	11 384.570	16 956.172–25 739.991	2–2	8.80-02	1.71 - 01	1.28-01	-0.466	A	2
10	3p-3d	$^{2}P^{\circ}-^{2}D$	8 190.96	8 193.22	16 967.64–29 172.86	6–10	5.14-01	8.63-01	1.40+02	0.714	A+	2
			8 194.824	8 197.077	16 973.368–29 172.839	4-6	5.14-01	7.77-01	8.39+01	0.492	A+	2
			8 183.255	8 185.505	16 956.172–29 172.889	2–4	4.29-01	8.62-01	4.65+01	0.237		2
		2 0 2	8 194.790	8 197.043	16 973.368–29 172.889	4–4	8.57-02	8.63-02	9.32+00			2
11	3p-5s	$^{2}P^{\circ}-^{2}S$	6 158.57	6 160.28	16 967.64–33 200.675	6–2	7.47-02	1.42-02	1.72+00	-1.070	A	2
			6 160.747	6 162.452	16 973.368–33 200.675	4–2	4.98-02	1.42-02	1.15+00			2
			6 154.225	6 155.929	16 956.172–33 200.675	2–2	2.50-02	1.42-02	5.75+01	-1.547	А	2
12	3 <i>p</i> -4 <i>d</i>	$^{2}P^{\circ}-^{2}D$	5 686.35	5 687.92	16 967.64–34 548.75	6–10	1.21-01	9.82-02	1.10-01	-0.230	A	2
			5 688.205	5 689.783	16 973.368–34 548.731	4–6	1.21-01	8.83-02	6.62+00			2
			5 682.633 5 688.193	5 684.210 5 689.772	16 956.172–34 548.766 16 973.368–34 548.766	2–4 4–4	1.01-01 $2.02-02$	9.83-02 9.82-03	3.68+00 $7.35-01$			2
13	3p - 6s	$^{2}P^{\circ}-^{2}S$	5 151.88	5 153.32	16 967.64–36 372.620	6–2	3.40-02	4.52-03	4.60-01			2
13	3p-08	1 - 3										
			5 153.402	5 154.838	16 973.368–36 372.620	4–2	2.27 - 02	4.52-03	3.06-01	-1.743	B+	2

Table 4. Transition probabilities of allowed lines for Na I (references for this table are as follows: 1=Taylor, 104 2=Froese Fischer, 34 $3=\text{Jones } et \ al.$, 48 $4=\text{Oates } et \ al.$, 72 $5=\text{Volz } et \ al.$, 120 6=Filippov and Prokof'ev^{28})—Continued

No.	Transition array	Mult.	$\lambda_{air} \ (\mathring{A})$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	E_i – E_k (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
			5 148.838	5 150.273	16 956.172–36 372.620	2–2	1.14-02	4.52-03	1.53-01	-2.044	B+	2
14	3 <i>p</i> – 5 <i>d</i>	$^{2}P^{\circ}-^{2}D$	4 981.39	4 982.78	16 967.64–37 036.76	6–10	4.89-02	3.04-02	2.99+00	-0.739	A	2
			4 982.813	4 984.204	16 973.368–37 036.754	4-6	4.88-02	2.73-02	1.79+00	-0.962	A	2
			4 978.541	4 979.930	16 956.172-37 036.774	2-4	4.09 - 02	3.04-02	9.98-01	-1.216	Α	2
			4 982.808	4 984.199	16 973.368–37 036.774	4-4	8.15-03	3.03-03	1.99-01			2
15	3p - 7s	$^{2}P^{\circ}-^{2}S$	4 750.53	4 751.86	<i>16 967.64</i> –38 012.044	6–2	1.85-02	2.09-03	1.96-01	-1.902	В	2
			4 751.822	4 753.151	16 973.368–38 012.044	4–2	1.23-02	2.09-03	1.31-01	-2.078	В	2
			4 747.941	4 749.269	16 956.172–38 012.044	2–2	6.19-03	2.09-03	6.55-02			2
16	3 <i>p</i> -6 <i>d</i>	$^{2}P^{\circ}-^{2}D$	4 667.31	4 668.62	16 967.64–38 387.26	6–10	2.49-02	1.36-02	1.25+00	-1.088	B+	2
			4 668.559	4 669.866	16 973.368–38 387.257	4–6	2.49-02	1.22-02	7.50-01	-1.312	A	2
			4 664.811	4 666.117	16 956.172–38 387.270	2-4	2.08-02	1.36-02	4.18-01			2
			4 668.557	4 669.864	16 973.368–38 387.270	4-4	4.14-03	1.36-03	8.33-02			2
17	3p - 8s	$^{2}P^{\circ}-^{2}S$	4 544.00	4 545.27	<i>16 967.64</i> –38 968.51	6–2	1.13-02	1.16-03	1.04-01	-2 157	R	2
17	<i>3ρ</i> 0 <i>s</i>	1 5										
			4 545.184	4 546.458	16 973.368–38 968.51	4–2	7.50-03	1.16-03	6.95-02			2
			4 541.633	4 542.907	16 956.172–38 968.51	2–2	3.76-03	1.16-03	3.48-02	-2.635	В	2
18	3p-7d	$^{2}P^{\circ}-^{2}D$	4 496.50	4 497.77	16 967.64–39 200.9	6–10	1.47 - 02	7.42-03	6.59-01	-1.351	B+	2
			4 497.657	4 498.919	16 973.368-39 200.93	4–6	1.46-02	6.67-03	3.95-01	-1.574	B+	2
			4 494.180	4 495.441	16 956.172–39 200.93	2-4	1.23-02	7.44-03	2.20-01			2
			4 497.657	4 498.919	16 973.368–39 200.93	4-4	2.44-03	7.41-04	4.39-02			2
19	3p - 9s	$^{2}P^{\circ}-^{2}S$	4 422.13	4 423.37	<i>16 967.64</i> –39 574.85	6–2	8.43-03	8.24-04	7.20-02			2
1)	3p-2s	1 – 5										
			4 423.247	4 424.489	16 973.368–39 574.85	4–2	5.61-03	8.24-04	4.80-02			2
			4 419.884	4 421.125	16 956.172–39 574.85	2–2	2.82-03	8.25-04	2.40-02	-2.783	C+	2
20	3p-8d	$^{2}P^{\circ}-^{2}D$	4 392.23	4 393.47	16 967.64–39 728.7	6–10	1.18-02	5.67-03	4.92-01	-1.468	B+	2
			4 393.340	4 394.574	16 973.368-39 728.70	4–6	1.17-02	5.09-03	2.95-01	-1.691	B+	2
			4 390.023	4 391.256	16 956.172-39 728.70	2-4	9.83-03	5.69-03	1.64-01	-1.944	B+	2
			4 393.340	4 394.574	16 973.368–39 728.70	4-4	1.95-03	5.66-04	3.28-02			2
21	3p - 10s	$^{2}P^{\circ}-^{2}S$	4 343.65	4 344.87	16 967.64–39 983.27	6–2	9.76-03	9.20-04	7.90-02			2
41	5p-10s	P - 3				0-2		9.20-04	7.90-02	-2.236	C+	2
			4 344.734	4 345.955	16 973.368–39 983.27	4–2	6.50 - 03	9.20 - 04	5.26 - 02	-2.434	C+	2
			4 341.489	4 342.710	16 956.172–39 983.27	2–2	3.26-03	9.22-04	2.63 - 02	-2.734	C+	2
22	4s-4p	$^{2}S-^{2}P^{\circ}$		4 530.7 cm ⁻¹	25 739.991– <i>30 270.7</i>	2-6	6.64-02	1.45+00	2.11-02	0.462	A+	2
				4 532.59 cm ⁻¹	25 739.991–30 272.58	2-4	6.64-02	9.69-01	1.41 - 02	0.287	A +	2
				4 527.00 cm ⁻¹	25 739.991–30 266.99	2–2	6.62-02	4.85-01	7.05-01			2
23	4s-5p	$^2S-^2P^{\circ}$	10 747.4	10 750.4	25 739.991– <i>35 042.0</i>	2-6	7.29-03	3.79-02	2.68+00	-1.120	A	2
			10 746.44	10 749.38	25 739.991–35 042.85	2-4	7.32-03	2.54-02	1.79+00	-1.294	Α	2
			10 749.29	10 752.24	25 739.991–35 040.38	2-2	7.24-03	1.25-02	8.88 - 01			2
24	4s-6p	$^{2}S-^{2}P^{\circ}$	8 650.2	8 652.6	25 739.991– <i>37</i> 297.2	2-6	2.23-03	7.52-03	4.29-01	-1.823	$\mathrm{B}+$	2
			8 649.93	8 652.30	25 739.991–37 297.61	2–4	2.25-03	5.04-03	2.87-01	_1 007	R+	2
			8 650.89	8 653.27	25 739.991–37 296.32	2–2	2.21-03	2.48-03	1.41-01	-2.303	ъ⊤	2
25	4s-7p	$^{2}S-^{2}P^{\circ}$	7 809.9	7 812.1	25 739.991 <i>–38 540.7</i>	2–6	9.84-04	2.70-03	1.39-01	-2.268	В	2
			7 809.78	7 811.93	25 739.991–38 540.93	2-4	9.91-04	1.81 - 03	9.32-02	-2.441	В	2
			7 810.24	7 812.38	25 739.991–38 540.18	2-2	9.72-04	8.89-04	4.57-02			2
						_						

TABLE 4. Transition probabilities of allowed lines for Na I (references for this table are as follows: 1=Taylor, ¹⁰⁴ 2=Froese Fischer, ³⁴ 3=Jones *et al.*, ⁴⁸ 4 =Oates *et al.*, ⁷² 5=Volz *et al.*, ¹²⁰ 6=Filippov and Prokof'ev²⁸)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
26	4s-8p	$^{2}S-^{2}P^{\circ}$	7 373.3	7 375.3	25 739.991–39 298.7	2–6	5.38-04	1.32-03	6.39-02	-2.578	В	2
			7 373.23	7 375.26	25 739.991–39 298.84	2-4	5.42-04	8.83-04	4.29-02	-2.753	В	2
			7 373.49	7 375.52	25 739.991–39 298.35	2–2	5.30-04	4.32-04	2.10-02	-3.063	В	2
27	4s-9p	$^{2}S-^{2}P^{\circ}$	7 113.09	7 115.05	25 739.991–39 794.70	2-6	4.39-04	1.00-03	4.69-02	-2.699	C+	2
			7 113.036	7 114.997	25 739.991–39 794.810	2-4	4.43-04	6.72-04	3.15-02	-2.872	C+	2
			7 113.203	7 115.164	25 739.991–39 794.480	2-2	4.32 - 04	3.28 - 04	1.54-02	-3.183	C+	2
28	3d-4p	$^{2}D-^{2}P^{\circ}$		1 097.8 cm ⁻¹	29 172.86–30 270.7	10-6	1.58-03	1.18-01	3.54-02	0.072	A+	2
				1 099.74 cm ⁻¹	29 172.839–30 272.58	6-4	1.43-03	1.18-01	2.12-02	-0.150	A+	2
				1 094.10 cm ⁻¹	29 172.889-30 266.99	4-2	1.57 - 03	9.81 - 02	1.18 - 02	-0.406	A+	2
				1 099.69 cm ⁻¹	29 172.889–30 272.58	4–4	1.59-04	1.97 - 02	2.36-01	-1.103	A	2
29	3d-4f	$^{2}D-^{2}F^{\circ}$	18 465	18 470	29 172.86–34 586.9	10–14	1.40-01	1.00+00	6.11-02	1.000	A	2
			18 465.3	18 470.4	29 172.839–34 586.92	6-8	1.40-01	9.57-01	3.49-02	0.759	A	2
			18 465.5	18 470.5	29 172.889-34 586.92	4-6	1.31-01	1.00+00	2.44 - 02	0.602	A	2
			18 465.3	18 470.4	29 172.839–34 586.92	6-6	9.35-03	4.78 - 02	1.74-01	-0.542	A	2
30	3 <i>d</i> -5 <i>p</i>	$^{2}D-^{2}P^{\circ}$	17 033.5	17 038.3	29 172.86–35 042.0	10-6	5.37-05	1.40-04	7.86-02	-2.854	$\mathrm{B}+$	2
			17 031.09	17 035.74	29 172.839–35 042.85	6-4	4.70-05	1.36-04	4.59-02	-3.088	$\mathrm{B}+$	2
			17 038.41	17 043.06	29 172.889-35 040.38	4-2	5.65-05	1.23 - 04	2.76 - 02	-3.308	B+	2
			17 031.24	17 035.89	29 172.889–35 042.85	4-4	5.22-06	2.27 - 05	5.10-03	-4.042	B +	2
31	3 <i>d</i> -5 <i>f</i>	$^{2}D-^{2}F^{\circ}$	12 679.2	12 682.6	29 172.86–37 057.7	10–14	4.70-02	1.59-01	6.62-01	0.201	A	2
			12 679.14	12 682.61	29 172.839–37 057.65	6-8	4.70-02	1.51-01	3.78-01	-0.043	Α	2
			12 679.22	12 682.69	29 172.889-37 057.65	4-6	4.38-02	1.59-01	2.65 - 01	-0.197	A	2
			12 679.14	12 682.61	29 172.839–37 057.65	6-6	3.13-03	7.55-03	1.89+00	-1.344	A	2
32	3 <i>d</i> -6 <i>p</i>	$^{2}D-^{2}P^{\circ}$	12 305.4	12 308.7	29 172.86–37 297.2	10-6	1.82-05	2.48-05	1.01-02	-3.606	В	2
			12 304.67	12 308.04	29 172.839–37 297.61	6–4	1.59-05	2.41-05	5.85-03	-3.840	В	2
			12 306.70	12 310.07	29 172.889-37 296.32	4-2	1.93-05	2.20-05	3.56-03	-4.056	В	2
			12 304.75	12 308.11	29 172.889–37 297.61	4-4	1.77-06	4.01 - 06	6.50 - 04	-4.795	C+	2
33	3 <i>d</i> -6 <i>f</i>	$^{2}D-^{2}F^{\circ}$	10 834.9	10 837.8	29 172.86–38 399.8	10–14	2.23-02	5.50-02	1.96-01	-0.260	A	2
			10 834.85	10 837.82	29 172.839–38 399.79	6–8	2.23-02	5.24-02	1.12-01	-0.503	Α	2
			10 834.91	10 837.88	29 172.889-38 399.79	4–6	2.08 - 02	5.50-02	7.85 + 00			2
			10 834.85	10 837.82	29172.839–38399.79	6-6	1.49-03	2.62-03	5.61-01	-1.804	A	2
34	3 <i>d</i> -7 <i>p</i>	$^{2}D-^{2}P^{\circ}$	10 671.9	10 674.8	29 172.86–38 540.7	10-6	6.97-06	7.14-06	2.51-03	-4.146	C	2
			10 671.61	10 674.53	29 172.839–38 540.93	6–4	6.04-06	6.88-06	1.45-03	-4.384	С	2
			10 672.52	10 675.45	29 172.889-38 540.18	4-2	7.48 - 06	6.39-06	8.98-04	-4.592	C	2
			10 671.67	10 674.59	29 172.889–38 540.93	4-4	6.72 - 07	1.15-06	1.61 - 04	-5.337	C	2
35	3 <i>d</i> -7 <i>f</i>	$^{2}D-^{2}F^{\circ}$	9 961.3	9 964.0	29 172.86–39 209.0	10–14	1.27-02	2.64-02	8.66+00	-0.578	B+	2
			9 961.26	9 963.99	29 172.839–39 208.98	6-8	1.27-02	2.52-02	4.95+00	-0.820	A	2
			9 961.31	9 964.04	29 172.889–39 208.98	4–6	1.18-02	2.64-02	3.47+00			2
			9 961.26	9 963.99	29 172.839–39 208.98	6–6	8.45-04	1.26-03	2.48-01			2
36	3 <i>d</i> -8 <i>p</i>	$^{2}D-^{2}P^{\circ}$	9 873.0	9 875.7	29 172.86–39 298.7	10-6	3.26-02	2.86-06	9.30-04	-4.544	C	2
			9 872.86	9 875.57	29 172.839–39 298.84	6–4	2.81-06	2.74-06	5.35-04	-4.784	С	2
							3.54-06	2.59-06	3.36-04			2
			9 873.39	9 876.09	29 172.889–39 298.35	4–2	3.34-00	2.33-00	3.30-04	-4.505		_

Table 4. Transition probabilities of allowed lines for Na I (references for this table are as follows: 1=Taylor, 104 2=Froese Fischer, 34 $3=\text{Jones } et \ al.$, 48 $4=\text{Oates } et \ al.$, 72 $5=\text{Volz } et \ al.$, 120 6=Filippov and Prokof'ev^{28})—Continued

	Transition		λ_{air}	λ _{vac} (Å)	$E_i - E_k$		A_{ki}		S			
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	$\log gf$	Acc.	Source
37	3 <i>d</i> -8 <i>f</i>	$^{2}D-^{2}F^{\circ}$	9 465.9	9 468.5	29 172.86–39 734.2	10–14	9.56-03	1.80-02	5.61+00	-0.745	B+	2
			9 465.92	9 468.51	29 172.839–39 734.16	6-8	9.57 - 03	1.71 - 02	3.21+00			2
			9 465.96	9 468.56	29 172.889–39 734.16	4-6	8.93 - 03	1.80 - 02	2.24+00	-1.143	B+	2
			9 465.92	9 468.51	29 172.839–39 734.16	6–6	6.38-04	8.57-04	1.60-01	-2.289	B+	2
38	3 <i>d</i> -9 <i>p</i>	$^{2}D-^{2}P^{\circ}$	9 411.98	9 414.56	29 172.86–39 794.70	10-6	2.26-06	1.80-06	5.59-04	-4.745	D+	2
			9 411.866	9 414.449	29 172.839–39 794.810	6-4	1.94 - 06	1.72 - 06	3.19-04	-4.986	D+	2
			9 412.203	9 414.785	29 172.889–39 794.480	4-2	2.48 - 06	1.65 - 06	2.04 - 04	-5.180	D+	2
			9 411.911	9 414.493	29 172.889–39 794.810	4–4	2.15-07	2.86-07	3.55-05	-5.942	D	2
9	4p-5s	$^{2}P^{\circ}-^{2}S$		$2~930.0~cm^{-1}$	<i>30 270.7</i> –33 200.675	6–2	5.40-02	3.14-01	2.12-02	0.275	A+	2
				2 928.10 cm ⁻¹	30 272.58-33 200.675	4-2	3.60-02	3.14-01	1.41-02	0.099	A+	2
				2 933.69 cm ⁻¹	30 266.99–33 200.675	2-2	1.80 - 02	3.14-01	7.04 - 01	-0.202	A+	2
10	4p-4d	$^{2}P^{\circ}-^{2}D$		4 278.0 cm ⁻¹	30 270.7–34 548.75	6-10	7.01-02	9.57-01	4.42-02	0.759	A+	2
				4 276.15 cm ⁻¹	30 272.58–34 548.731	4–6	7.01-02	8.62-01	2.65-02	0.538	A +	2
				4 281.78 cm ⁻¹	30 266.99–34 548.766	2–4	5.84-02	9.55-01	1.47-02	0.281		2
				4 276.19 cm ⁻¹	30 272.58–34 548.766	4-4	1.17-02	9.58-02	2.95-01			2
-1	4p-6s	$^{2}P^{\circ}-^{2}S$	16 383.9	16 388.3	<i>30 270.7</i> –36 372.620	6–2	1.75-02	2.35-02	7.61+00	-0.851	A	2
			16 200 06	16 202 24	20 272 59 26 272 620	1.2	1.17-02	2.25 02	5.07 + 00	1 027	Δ.	2
			16 388.86 16 373.85	16 393.34 16 378.33	30 272.58–36 372.620 30 266.99–36 372.620	4–2 2–2	5.85-02	2.35-02 2.35-02	5.07+00 $2.54+00$			2 2
2	4p-5d	$^{2}P^{\circ}-^{2}D$	14 775.6	14 779.7	30 270.7–37 036.76	6–10	2.61-02	1.43-01	4.16-01			2
-2	4 <i>p</i> – 3 <i>a</i>	r – D										
			14 779.73	14 783.77	30 272.58–37 036.754	4–6	2.61-02	1.28-01	2.50-01			2
			14 767.48	14 771.52	30 266.99–37 036.774	2–4 4–4	2.18-02 4.35-05	1.43-01	1.39-01			2 2
13	4p - 7s	$^{2}P^{\circ}-^{2}S$	14 779.69 12 914.1	14 783.73 12 917.7	30 272.58–37 036.774 30 270.7–38 012.044	6–2	8.90-03	1.42-02 7.42-03	2.77+00 1.89+00			2
13	4 <i>p</i> - 7 <i>s</i>	r – 3										
			12 917.26	12 920.79	30 272.58–38 012.044	4–2	5.92-03	7.41-03	1.26+00			2
			12 907.94	12 911.47	30 266.99–38 012.044	2–2	2.97-03	7.43-03	6.32-01	-1.828	B+	2
14	4p-6d	$^{2}P^{\circ}-^{2}D$	12 317.1	12 320.5	30 270.7–38 387.26	6–10	1.30-02	4.91-02	1.20-01	-0.531	A	2
			12 319.98	12 323.35	30 272.58-38 387.257	4-6	1.29 - 02	4.42 - 02	7.17 + 00	-0.753	A	2
			12 311.48	12 314.85	30 266.99-38 387.270	2-4	1.08 - 02	4.92 - 02	3.99+00	-1.007	A	2
			12 319.96	12 323.33	30 272.58–38 387.270	4–4	2.16-03	4.91 - 03	7.97-01	-1.707	A	2
15	4p - 8s	$^{2}P^{\circ}-^{2}S$	11 494.0	11 497.1	30 270.7–38 968.51	6–2	5.25-03	3.47-03	7.88-01	-1.682	$\mathrm{B} +$	2
			11 496.49	11 499.63	30 272.58-38 968.51	4-2	3.50-03	3.47-03	5.25-01	-1.858	B+	2
			11 489.10	11 492.25	30 266.99–38 968.51	2–2	1.76-03	3.48-03	2.63-01			2
6	4p - 7d	$^{2}P^{\circ}-^{2}D$	11 194.9	11 198.0	30 270.7–39 200.9	6–10	7.53-03	2.36-02	5.22+00	-0.849	B+	2
			11 197.21	11 200.28	30 272.58–39 200.93	4-6	7.52-03	2.12-02	3.13+00	-1.072	B+	2
			11 190.211	11 93.27	30 266.99-39 200.93	2-4	6.29-03	2.36-02	1.74+00	-1.326	B+	2
			11 197.21	11 200.28	30 272.58–39 200.93	4–4	1.25-03	2.36-03	3.48-01			2
17	4p-9s	$^{2}P^{\circ}-^{2}S$	10 745.0	10 747.9	30 270.7–39 574.85	6–2	3.86-03	2.23-03	4.73-01	-1.874	В	2
			10 747.12	10 750.06	30 272.58–39 574.85	4–2	2.57-03	2.22-03	3.15-01	-2 052	В	2
			10 747.12	10 730.00	30 266.99–39 574.85	2-2	1.29-03	2.22-03	1.58-01			2
10	4 0.1	2p° 2p										
48	4p-8d	²P −²D	10 570.2	10 573.1	30 270.7–39 728.7	6–10	5.93-03	1.66-02	3.46+00	-1.002	R+	2
			10 572.27	10 575.16	30 272.58-39 728.70	4–6	5.92 - 03	1.49 - 02	2.08+00	-1.225	$\mathrm{B} +$	2

J. Phys. Chem. Ref. Data, Vol. 37, No. 1, 2008

TABLE 4. Transition probabilities of allowed lines for Na I (references for this table are as follows: 1=Taylor, ¹⁰⁴ 2=Froese Fischer, ³⁴ 3=Jones *et al.*, ⁴⁸ 4 =Oates *et al.*, ⁷² 5=Volz *et al.*, ¹²⁰ 6=Filippov and Prokof'ev²⁸)—Continued

	Transition		λ_{air}	λ_{vac} (Å)	$E_i - E_k$		A_{ki}	_	S			_
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	log gf	Acc.	Source
			10 572.27	10 575.16	30 272.58–39 728.70	4–4	9.88-04	1.66-03	2.31-01	-2.178	B+	2
49	4p - 10s	$^{2}P^{\circ}-^{2}S$	10 293.1	10 295.9	<i>30 270.7</i> –39 983.27	6–2	4.26-03	2.25-03	4.59-01	-1.870	В	2
			10 295.11	10 297.93	30 272.58-39 983.27	4–2	2.83-03	2.25-03	3.05-01	-2.046	В	2
			10 289.18	10 292.00	30 266.99–39 983.27	2-2	1.42-03	2.26-03	1.53-01			2
50	5s-5p	$^{2}S-^{2}P^{\circ}$		1 841.3 cm ⁻¹	33 200.675–35 042.0	2-6	1.43-02	1.89+00	6.77+02	0.577	A+	2
				1 842.17 cm ⁻¹	33 200.675–35 042.85	2–4	1.43-02	1.26+00	4.51+02	0.401	Α+	2
				1 839.70 cm ⁻¹	33 200.675–35 040.38	2–2	1.42-02	6.31-01	2.26+02	0.101		2
51	5s-6p	$^{2}S-^{2}P^{\circ}$		4 096.5 cm ⁻¹	33 200.675– <i>37</i> 297.2	2–6	2.30-03	6.15-02	9.89+00	-0.910	A	2
-	_F	-										
				4 096.93 cm ⁻¹	33 200.675–37 297.61	2–4	2.30-03	4.11-02	6.61+00			2
				4 095.64 cm ⁻¹	33 200.675–37 296.32	2–2	2.28-03	2.04-02	3.27+00	-1.389	Α	2
52	5s-7p	$^2S-^2P^{\circ}$	18 721	18 727	33 200.675–38 540.7	2–6	8.61-04	1.36-02	1.67 + 00	-1.565	B+	2
			18 720.6	18 725.7	33 200.675–38 540.93	2-4	8.65-04	9.09 - 03	1.12+00	-1.740	$\mathrm{B}+$	2
			18 723.2	18 728.3	33 200.675–38 540.18	2–2	8.53 - 04	4.48 - 03	5.53-01	-2.048	$\mathrm{B} +$	2
53	5s-8p	$^2S-^2P^{\circ}$	16 394.3	16 398.8	33 200.675–39 298.7	2-6	4.38-04	5.30-03	5.72-01	-1.975	B+	2
			16 393.90	16 398.38	33 200.675–39 298.84	2–4	4.40-04	3.55-03	3.83-01	-2.149	B+	2
			16 395.21	16 399.69	33 200.675–39 298.35	2–2	4.33-04	1.75-03	1.89-01			2
54	5s-9p	$^2S-^2P^{\circ}$	15 161.10	15 165.24	33 200.675–39 794.70	2-6	3.36-04	3.48-03	3.47-01	-2.157	В	2
			15 160.848	15 164.991	33 200.675–39 794.810	2–4	3.38-04	2.33-03	2.33-01	-2.332	В	2
			15 161.607		33 200.675–39 794.480	2–2	3.32-04	1.14-03	1.14-01	-2.642	В	2
55	4 <i>d</i> -5 <i>p</i>	$^{2}D-^{2}P^{\circ}$		493.3 cm ⁻¹	34 548.75–35 042.0	10-6	6.22-04	2.30-01	1.53+03	0.362	A+	2
				494.12 cm ⁻¹	34 548.731–35 042.85	6–4	5.62-04	2.30-01	9.20+02	0.140	Δ +	2
				491.61 cm ⁻¹	34 548.766–35 040.38	4–2	6.16-04	1.91-01	5.12+02			2
				494.08 cm ⁻¹	34 548.766–35 042.85	4-4	6.24-05	3.83-02	1.02+02			2
56	4 <i>d</i> -5 <i>f</i>	$^{2}D-^{2}F^{\circ}$		2 508.9 cm ⁻¹	34 548.75 <i>–37 057.7</i>	10–14	2.59-02	8.65-01	1.13+03	0.937	A+	2
				2.500.021	34 548.731–37 057.65	6-8	2.59-02	8.23-01	(49 : 02	0.694	A 1	2
				2 508.92 cm ⁻¹ 2 508.88 cm ⁻¹	34 548.766–37 057.65	0–8 4–6	2.42-02	8.65-01	6.48+02 $4.54+02$	0.539		2
				2 508.92 cm ⁻¹	34 548.731–37 057.65	6–6	1.73-03	4.12-02	3.24+01			2
57	4 <i>d</i> -6 <i>p</i>	$^{2}D-^{2}P^{\circ}$		2 748.4 cm ⁻¹	34 548.75–37 297.2		6.55-05	7.80-04	9.34-01			2
				2 748.88 cm ⁻¹ 2 747.55 cm ⁻¹	34 548.731–37 297.61 34 548.766–37 296.32	6–4	5.79-05 6.78-05	7.66-04	5.50-01 3.23-01			2
				2 747.33 cm ⁻¹	34 548.766–37 297.61	4–2 4–4	6.43-06	6.73-04 1.28-04	6.11-02			2 2
8	4 <i>d</i> -6 <i>f</i>	$^{2}D-^{2}F^{\circ}$		3 851.1 cm ⁻¹	34 548.75–38 399.8	10–14	1.31-02	1.86-01	1.59+02	0.270		2
,,,	+ <i>a</i> −0 <i>j</i>	D- 1										
				3 851.06 cm ⁻¹ 3 851.02 cm ⁻¹	34 548.731–38 399.79	6–8	1.31-02	1.77-01	9.07+01	0.026		2
				3 851.02 cm ⁻¹	34 548.766–38 399.79 34 548.731–38 399.79	4–6 6–6	1.22-02 8.74-04	1.86-01 8.84-03	6.35+01 $4.53+00$			2 2
59	4 <i>d</i> -7 <i>p</i>	$^{2}D-^{2}P^{\circ}$		3 991.9 cm ⁻¹	34 548.75–38 540.7	10–6	3.40-05	1.92-04	1.58-01			2
- /	, p	<i>-</i> 1										
				3 992.20 cm ⁻¹	34 548.731–38 540.93	6–4	3.00-05	1.88-04	9.32-02			2
				3 991.41 cm ⁻¹	34 548.766–38 540.18	4–2	3.52-05	1.65-04	5.46-02			2
	4.5	2- 2-0		3 992.16 cm ⁻¹	34 548.766–38 540.93	4–4	3.34-06	3.14-05	1.04-02			2
50	4 <i>d</i> -7 <i>f</i>	$^{2}D-^{2}F^{\circ}$		4 660.3 cm ⁻¹	34 548.75–39 209.0	10–14	7.58-03	7.32-02	5.17+01	-0.135	A	2
				4 660.25 cm ⁻¹	34 548.731–39 208.98	6-8	7.57-03	6.97-02	2.96+01	-0.379	A	2

Table 4. Transition probabilities of allowed lines for Na I (references for this table are as follows: 1=Taylor, 104 2=Froese Fischer, 34 $3=\text{Jones } et \ al.$, 48 $4=\text{Oates } et \ al.$, 72 $5=\text{Volz } et \ al.$, 120 6=Filippov and Prokof'ev^{28})—Continued

NT-	Transition	M14	λ _{air}	$\lambda_{\text{vac}} (\text{Å})$ or $\sigma (\text{cm}^{-1})^{\text{a}}$	$E_i - E_k$ (cm ⁻¹)		A_{ki} (10 ⁸ s ⁻¹)	C	S	1	A	C
No.	array	Mult.	(Å)	or σ (cm -)	(cm ⁻)	$g_i - g_k$	(10° 8°)	f_{ik}	(a.u.)	log gj	Acc.	Source
				4 660.21 cm ⁻¹	34 548.766–39 208.98	4–6	7.07-03	7.32-02	2.07 + 01			2
				4 660.25 cm ⁻¹	34 548.731–39 208.98	6–6	5.05-04	3.49-03	1.48+00	-1.679	B+	2
61	4d-8p	$^{2}D-^{2}P^{\circ}$		4 749.9 cm ⁻¹	34 548.75–39 298.7	10-6	1.82-05	7.25-05	5.03-02	-3.140	В	2
				$4750.11~{\rm cm^{-1}}$	34 548.731–39 298.84	6-4	1.61 - 05	7.12-05	2.96-02	-3.369	В	2
				4 749.58 cm ⁻¹	34 548.766–39 298.35	4-2	1.89 - 05	6.27 - 05	1.74 - 02	-3.601	В	2
				4 750.07 cm ⁻¹	34 548.766–39 298.84	4–4	1.79-06	1.19-05	3.29-03	-4.322	C+	2
62	4 <i>d</i> -8 <i>f</i>	$^2D-^2F^{\circ}$	19 280	19 285	34 548.75–39 734.2	10–14	5.70-03	4.45-02	2.83+01	-0.352	A	2
			19 279.5	19 284.8	34 548.731–39 734.16	6-8	5.70-03	4.24-02	1.61+01	-0.594	A	2
			19 279.7	19 284.9	34 548.766-39 734.16	4-6	5.32-03	4.45 - 02	1.13+01	-0.750	A	2
			19 279.5	19 284.8	34 548.731–39 734.16	6-6	3.80-04	2.12-03	8.07-01	-1.896	$\mathrm{B}+$	2
63	4 <i>d</i> -9 <i>p</i>	$^{2}D-^{2}P^{\circ}$	19 057.1	19 062.3	34 548.75–39 794.70	10-6	1.38-05	4.52-05	2.84-02	-3.345	C	2
			19 056.65	19 061.86	34 548.731–39 794.810	6-4	1.22-05	4.43-05	1.67-02	-3.575	C+	2
			19 057.98	19 063.18	34 548.766-39 794.480	4-2	1.44 - 05	3.92 - 05	9.83-03	-3.805	C	2
			19 056.78	19 061.98	34 548.766–39 794.810	4-4	1.36-06	7.38-06	1.85 - 03	-4.530	C	2
64	4 <i>f</i> -5 <i>d</i>	$^2F^{\circ}-^2D$		2 449.9 cm ⁻¹	34 586.9–37 036.76	14-10	5.75-04	1.03-02	1.93+01	-0.841	A	2
				2 449.83 cm ⁻¹	34 586.92–37 036.754	8–6	5.48-04	1.03-02	1.10+01	-1.084	A	2
				2 449.85 cm ⁻¹	34 586.92-37 036.774	6-4	5.75-04	9.58-03	7.72 + 00	-1.240	Α	2
				2 449.83 cm ⁻¹	34 586.92–37 036.754	6–6	2.74-05	6.84-04	5.52-01			2
55	4 <i>f</i> -6 <i>d</i>	$^{2}F^{\circ}-^{2}D$		3 800.4 cm ⁻¹	34 586.9–38 387.26	14-10	2.46-04	1.82-03	2.21+00	-1.594	A	2
				3 800.34 cm ⁻¹	34 586.92–38 387.257	8–6	2.34-04	1.82-03	1.26+00	-1.837	Α	2
				3 800.35 cm ⁻¹	34 586.92–38 387.270	6–4	2.46-04	1.70-03	8.83-01			2
				3 800.34 cm ⁻¹	34 586.92–38 387.257	6–6	1.17-05	1.21-04	6.31-02			2
66	4 <i>f</i> -7 <i>d</i>	$^2F^{\circ}-^2D$		4 614.0 cm ⁻¹	34 586.9–39 200.9	14-10	1.30-04	6.56-04	6.55-01	-2.037	B+	2
				4 614.01 cm ⁻¹	34 586.92–39 200.93	8–6	1.24-04	6.56-04	3.75-01	-2.280	B+	2
				4 614.01 cm ⁻¹	34 586.92-39 200.93	6-4	1.30-04	6.12-04	2.62-01			2
				4 614.01 cm ⁻¹	34 586.92–39 200.93	6–6	6.21-06	4.37-05	1.87-02			2
67	4 <i>f</i> -8 <i>d</i>	$^2F^{\circ}-^2D$	19 443	19 448	34 586.9–39 728.7	14-10	9.55-05	3.87-04	3.47-01	-2.266	B+	2
			19 443.2	19 448.5	34 586.92–39 728.70	8–6	9.10-05	3.87-04	1.98-01	-2.509	B+	2
			19 443.2	19 448.5	34 586.92-39 728.70	6-4	9.55-05	3.61 - 04	1.39-01	-2.664	В	2
			19 443.2	19 448.5	34 586.92–39 728.70	6-6	4.55-06	2.58-05	9.91-03			2
68	5p-6s	$^{2}P^{\circ}-^{2}S$		1 330.6 cm ⁻¹	35 042.0–36 372.620	6–2	1.61-02	4.53-01	6.73+02	0.434	A	2
				1 329.77 cm ⁻¹	35 042.85–36 372.620	4–2	1.07-02	4.54-01	4.49+02	0.259	Α	2
				1 332.24 cm ⁻¹	35 040.38–36 372.620	2–2	5.36-03	4.53-01	2.24+02			2
69	5 <i>p</i> – 5 <i>d</i>	$^{2}P^{\circ}-^{2}D$		1 994.8 cm ⁻¹	35 042.0–37 036.76	6–10	1.69+06	1.06+00	1.05+03	0.803	A+	2
				1 993.90 cm ⁻¹	35 042.85–37 036.754	4–6	1.69-02	9.58-01	6.33+02	0.583	A +	2
				1 996.39 cm ⁻¹	35 040.38–37 036.774	2–4	1.41-02	1.06+00	3.50+02	0.326		2
				1 993.92 cm ⁻¹	35 042.85–37 036.774	4-4	2.82-03	1.07-01	7.03+01			2
70	5 <i>p</i> -7 <i>s</i>	$^{2}P^{\circ}-^{2}S$		2 970.0 cm ⁻¹	<i>35 042.0</i> –38 012.044	6–2	5.66-03	3.20-02	2.13+01	-0.717	A	2
				2 969.19 cm ⁻¹	35 042.85–38 012.044	4-2	3.77-03	3.20-02	1.42+01	-0.803	Δ	2
				2 971.66 cm ⁻¹	35 040.38–38 012.044	2–2	1.89-03	3.20-02	7.11+00			2
71	5 <i>p</i> -6 <i>d</i>	$^{2}P^{\circ}-^{2}D$		3 345.3 cm ⁻¹	35 042.0–38 387.26	6–10	7.74-03	1.73-01	1.02+02	0.016	A	2
				3 344.41 cm ⁻¹	35 042.85–38 387.257							2
				5 544.41 CIII	55 U42.05-30 301.231	4–6	7.74-03	1.56-01	6.13+01	-0.203	Α	<i>L</i>

TABLE 4. Transition probabilities of allowed lines for Na I (references for this table are as follows: 1=Taylor, ¹⁰⁴ 2=Froese Fischer, ³⁴ 3=Jones *et al.*, ⁴⁸ 4 =Oates *et al.*, ⁷² 5=Volz *et al.*, ¹²⁰ 6=Filippov and Prokof'ev²⁸)—Continued

	Transition		λ_{air}	λ_{vac} (Å)	$E_i - E_k$		A_{ki}		S			
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	log gf	Acc.	Source
				3 346.89 cm ⁻¹	35 040.38–38 387.270	2-4	6.46-03	1.73-01	3.40+01	-0.461	A	2
				$3\ 344.42\ cm^{-1}$	35 042.85–38 387.270	4-4	1.29 - 03	1.73-02	6.81 + 00	-1.160	A	2
72	5p - 8s	$^{2}P^{\circ}-^{2}S$		3 926.5 cm ⁻¹	<i>35 042.0</i> –38 968.51	6–2	3.09-03	1.00-02	5.04+00	-1.222	B+	2
	- F											
				3 925.66 cm ⁻¹	35 042.85–38 968.51	4–2	2.06-03	1.00-02	3.36+00 1.69+00			2
				3 928.13 cm ⁻¹	35 040.38–38 968.51	2–2	1.03-03	1.01-02	1.09+00	-1.093	ЬΤ	2
73	5p-7d	$^{2}\text{P}^{\circ}-^{2}\text{D}$		4 158.9 cm ⁻¹	35 042.0–39 200.9	6–10	4.37 - 03	6.31 - 02	3.00+01	-0.422	A	2
				4 158.08 cm ⁻¹	35 042.85–39 200.93	4–6	4.37-03	5.68-02	1.80+01	-0.644	Α	2
				4 160.55 cm ⁻¹	35 040.38-39 200.93	2-4	3.65 - 03	6.32-02	1.00+01	-0.898	A	2
				$4\ 158.08\ cm^{-1}$	35 042.85–39 200.93	4-4	7.28 - 04	6.31-03	2.00+00	-1.598	$\mathrm{B} + $	2
74	5 <i>p</i> – 9 <i>s</i>	$^{2}P^{\circ}-^{2}S$		4 532.8 cm ⁻¹	<i>35 042.0</i> –39 574.85	6–2	2.18-03	5.30-03	2.31+00	-1.498	B+	2
				4 532.00 cm ⁻¹	35 042.85–39 574.85	4–2	1.45-03	5.29-03	1.54+00			2
				4 534.47 cm ⁻¹	35 040.38–39 574.85	2–2	7.29-04	5.31-03	7.72-01	-1.974	В	2
75	5p-8d	$^{2}P^{\circ}-^{2}D$		$4686.7~cm^{-1}$	35 042.0–39 728.7	6-10	3.34-03	3.80-02	1.60+01	-0.642	A	2
				4 685.85 cm ⁻¹	35 042.85–39 728.70	4–6	3.34-03	3.42-02	9.61+00	-0.864	Α	2
				4 688.32 cm ⁻¹	35 040.38-39 728.70	2-4	2.79-03	3.80-02	5.34+00			2
				4 685.85 cm ⁻¹	35 042.85–39 728.70	4-4	5.56-04	3.80 - 03	1.07 + 00			2
76	5p-10s	$^{2}P^{\circ}-^{2}S$		4 941.3 cm ⁻¹	<i>35 042.0</i> –39 983.27	6–2	2.22-03	4.55-03	1.82+00	-1.564	В	2
				4 940.42 cm ⁻¹	35 042.85–39 983.27	4–2	1.48-03	4.54-03	1.21+00	_1 7/11	R +	2
				4 942.89 cm ⁻¹	35 040.38–39 983.27 35 040.38–39 983.27	2-2	7.43-04	4.56-03	6.07-01			2
		2 2 - 9										
77	6s-6p	$^{2}S-^{2}P^{\circ}$		924.6 cm ⁻¹	36 372.620– <i>37</i> 297.2	2–6	4.41-03	2.32+00	1.65+03	0.667	A	2
				924.99 cm ⁻¹	36 372.620-37 297.61	2-4	4.41 - 03	1.55 + 00	1.10+03	0.491	A	2
				923.70 cm ⁻¹	36 372.620–37 296.32	2–2	4.40 - 03	7.73-01	5.51 + 02	0.189	A	2
78	6s-7p	2 S $-^2$ P $^{\circ}$		2 168.1 cm ⁻¹	36 372.620–38 540.7	2-6	8.80-04	8.42-02	2.56+01	-0.774	A	2
				2 168.31 cm ⁻¹	36 372.620–38 540.93	2–4	8.83-04	5.63-02	1.71+01	-0.948	Α	2
				2 167.56 cm ⁻¹	36 372.620–38 540.18	2–2	8.75-04	2.79-02	8.48+00			2
79	6s-8p	$^{2}S-^{2}P^{\circ}$		2 926.1 cm ⁻¹	36 372.620–39 298.7	2-6	3.81-04	2.00-02	4.50+00	-1.398	B+	2
				2 926.22 cm ⁻¹	36 372.620–39 298.84	2–4	3.83-04	1.34-02	3.01+00	1 572	Д⊥	2
				2 925.73 cm ⁻¹	36 372.620–39 298.35	2-2	3.78-04	6.62-03	1.49+00			2
0.0		2a 25°										
80	6 <i>s</i> – 9 <i>p</i>	$^{2}S-^{2}P^{\circ}$		3 422.08 cm ⁻¹	36 372.620–39 794.70	2–6	2.61-04	1.00-02	1.93+00	-1.699	B+	2
				3 422.190 cm ⁻¹	36 372.620–39 794.810	2-4	2.62 - 04	6.72 - 03	1.29+00	-1.872	$\mathrm{B} +$	2
				3 421.860 cm ⁻¹	36 372.620–39 794.480	2–2	2.59 - 04	3.31-03	6.37 - 01	-2.179	В	2
81	5 <i>d</i> -6 <i>p</i>	$^{2}D-^{2}P^{\circ}$		260.4 cm ⁻¹	37 036.76–37 297.2	10-6	2.53-04	3.35-01	4.23+03	0.525	A	2
				260.86 cm ⁻¹	37 036.754-37 297.61	6-4	2.28-04	3.35-01	2.54+03	0.303	A	2
				259.55 cm ⁻¹	37 036.774-37 296.32	4-2	2.50 - 04	2.78 - 01	1.41 + 03	0.046	A	2
				$260.84~\text{cm}^{-1}$	37 036.774–37 297.61	4-4	2.54 - 05	5.59-02	2.82+02	-0.651	A	2
82	5 <i>d</i> -6 <i>f</i>	$^{2}D-^{2}F^{\circ}$		1 363.0 cm ⁻¹	37 036.76–38 399.8	10–14	7.16-03	8.09-01	1.95+03	0.908	A	2
				1 363.04 cm ⁻¹	37 036.754–38 399.79	6-8	7.16-03	7.70-01	1.12+03	0.665	A	2
				1 363.02 cm ⁻¹	37 036.774–38 399.79	4–6	6.68-03	8.09-01	7.81+02	0.510		2
				1 363.04 cm ⁻¹	37 036.754–38 399.79	6–6	4.77-04	3.85-02	5.58+01			2
83	5 <i>d</i> -7 <i>p</i>	$^{2}D-^{2}P^{\circ}$		1 503.9 cm ⁻¹	37 036.76–38 540.7	10-6	4.88-05	1.94-03	4.25+00	-1.712	B+	2
				1 504 18 am ⁻¹	37 036 754 39 540 02	6.4	4.33-05	1.01_02	2.51 + 00	_1 0/1	₽⊥	2
				1 504.18 cm ⁻¹	37 036.754–38 540.93	6–4	4.55-05	1.91 - 03	2.51+00	-1.941	\mathbf{p}_{+}	2

Table 4. Transition probabilities of allowed lines for Na I (references for this table are as follows: 1=Taylor, 104 2=Froese Fischer, 34 $3=\text{Jones } et \ al.$, 48 $4=\text{Oates } et \ al.$, 72 $5=\text{Volz } et \ al.$, 120 6=Filippov and Prokof'ev^{28})—Continued

No.	Transition array	Mult.	λ _{air} (Å)	$\lambda_{\text{vac}} (\text{Å})$ or $\sigma (\text{cm}^{-1})^{\text{a}}$	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
			()									
				1 503.41 cm ⁻¹ 1 504.16 cm ⁻¹	37 036.774–38 540.18 37 036.774–38 540.93	4–2 4–4	5.01-05 4.81-06	1.66-03 3.19-04	1.46+00 $2.79-01$			2 2
				1 304.10 CIII	37 030.774-36 340.93	4-4	4.81-00	3.19-04	2.79-01	-2.094	Б	2
84	5d-7f	$^{2}D-^{2}F^{\circ}$		$2\ 172.2\ cm^{-1}$	37 036.76–39 209.0	10–14	4.38 - 03	1.95-01	2.96+02	0.290	A	2
				2 172.23 cm ⁻¹	37 036.754–39 208.98	6-8	4.38-03	1.86-01	1.69+02	0.048	A	2
				2 172.21 cm ⁻¹	37 036.774-39 208.98	4-6	4.09 - 03	1.95-01	1.18 + 02	-0.108	A	2
				2 172.23 cm ⁻¹	37 036.754-39 208.98	6-6	2.92-04	9.29-03	8.45 + 00	-1.254	A	2
85	5 <i>d</i> -8 <i>p</i>	$^{2}D-^{2}P^{\circ}$		2 261.9 cm ⁻¹	37 036.76–39 298.7	10-6	3.10-05	5.44-04	7.92-01	-2.264	B+	2
				2 262.09 cm ⁻¹	37 036.754-39 298.84	6-4	2.75-05	5.37-04	4.69-01	-2.492	$\mathrm{B}+$	2
				2 261.58 cm ⁻¹	37 036.774-39 298.35	4-2	3.17 - 05	4.65 - 04	2.71 - 01	-2.730	B+	2
				$2\ 262.07\ cm^{-1}$	37 036.774–39 298.84	4–4	3.06-06	8.95-05	5.21 - 02	-3.446	В	2
86	5 <i>d</i> -8 <i>f</i>	$^{2}D-^{2}F^{\circ}$		2 697.4 cm ⁻¹	37 036.76–39 734.2	10–14	3.29-03	9.50-02	1.16+02	-0.022	A	2
				2 697.41 cm ⁻¹	37 036.754-39 734.16	6-8	3.29-03	9.05 - 02	6.62+01	-0.265	A	2
				2 697.39 cm ⁻¹	37 036.774-39 734.16	4-6	3.07 - 03	9.50-02	4.64 + 01	-0.420	A	2
				2 697.41 cm ⁻¹	37 036.754–39 734.16	6-6	2.20-04	4.52-03	3.31+00	-1.567	B +	2
87	5 <i>d</i> -9 <i>p</i>	$^{2}D-^{2}P^{\circ}$		2 757.94 cm ⁻¹	37 036.76–39 794.70	10-6	2.33-05	2.75-04	3.28-01	-2.561	В	2
				2 758.056 cm ⁻¹	37 036.754–39 794.810	6-4	2.07-05	2.72-04	1.95-01	-2.787	В	2
				2 757.706 cm ⁻¹	37 036.774-39 794.480	4-2	2.39 - 05	2.35 - 04	1.12 - 01	-3.027	В	2
				$2.758.036~\text{cm}^{-1}$	37 036.774–39 794.810	4-4	2.30-06	4.52-05	2.16-02	-3.743	C+	2
88	5 <i>d</i> -9 <i>f</i>	$^{2}D-^{2}F^{\circ}$		3 057.4 cm ⁻¹	37 036.76–40 094.2	10–14	1.89-03	4.25-02	4.58+01	-0.372	D	1
				3 057.44 cm ⁻¹	37 036.754-40 094.19	6-8	1.89-03	4.05 - 02	2.62+01	-0.614	D	LS
				$3057.42~{\rm cm^{-1}}$	37 036.774-40 094.19	4-6	1.77-03	4.25 - 02	1.83 + 01	-0.770	D	LS
				$3\ 057.44\ cm^{-1}$	37 036.754-40 094.19	6-6	1.27 - 04	2.03-03	1.31+00	-1.914	E	LS
89	5 <i>d</i> -10 <i>f</i>	$^{2}D-^{2}F^{\circ}$		3 315.0 cm ⁻¹	37 036.76–40 351.8	10–14	1.35-03	2.57-02	2.55+01	-0.590	E+	1
				3 315.02 cm ⁻¹	37 036.754-40 351.77	6-8	1.35-03	2.45 - 02	1.46+01	-0.833	D	LS
				3 315.00 cm ⁻¹	37 036.774-40 351.77	4-6	1.26-03	2.57 - 02	1.02+01	-0.988	E+	LS
				$3\ 315.02\ cm^{-1}$	37 036.754-40 351.77	6-6	8.94 - 05	1.22-03	7.27 - 01	-2.135	E	LS
90	5 <i>f</i> -6 <i>d</i>	$^{2}F^{\circ}-^{2}D$		1 329.6 cm ⁻¹	37 057.7–38 387.26	14-10	4.43-04	2.68-02	9.30+01	-0.426	A	2
				1 329.61 cm ⁻¹	37 057.65–38 387.257	8-6	4.22-04	2.68-02	5.31+01	-0.669	A	2
				1 329.62 cm ⁻¹	37 057.65-38 387.270	6-4	4.43-04	2.50 - 02	3.72+01	-0.824	A	2
				1 329.61 cm ⁻¹	37 057.65–38 387.257	6-6	2.11-05	1.79-03	2.66+00	-1.969	A	2
91	5 <i>f</i> -7 <i>d</i>	$^{2}F^{\circ}-^{2}D$		2 143.2 cm ⁻¹	37 057.7–39 200.9	14–10	2.19-04	5.11-03	1.10+01	-1.145	A	2
				2 143.28 cm ⁻¹	37 057.65-39 200.93	8-6	2.09-04	5.11-03	6.27 + 00	-1.388	A	2
				2 143.28 cm ⁻¹	37 057.65-39 200.93	6-4	2.19-04	4.77-03	4.39 + 00	-1.543	A	2
				2 143.28 cm ⁻¹	37 057.65–39 200.93	6-6	1.04 - 05	3.40 - 04	3.14-01	-2.690	B +	2
92	5 <i>f</i> -8 <i>d</i>	$^{2}F^{\circ}-^{2}D$		2 671.0 cm ⁻¹	37 057.7–39 728.7	14-10	1.49-04	2.24-03	3.86+00	-1.504	B+	2
				2 671.05 cm ⁻¹	37 057.65–39 728.70	8-6	1.42-04	2.24-03	2.20+00	-1.747	$\mathrm{B}+$	2
				2 671.05 cm ⁻¹	37 057.65-39 728.70	6-4	1.49-04	2.09-03	1.54+00			2
				$2671.05~{\rm cm^{-1}}$	37 057.65–39 728.70	6-6	7.09-06	1.49-04	1.10-01	-3.049	В	2
93	6 <i>p</i> – 7 <i>s</i>	$^{2}P^{\circ}-^{2}S$		714.8 cm ⁻¹	37 297.2–38 012.044	6–2	6.05-03	5.92-01	1.63+03	0.550	A	2
				714.43 cm ⁻¹	37 297.61–38 012.044	4–2	4.03-03	5.92-01	1.09+03	0.374	Α	2
				715.72 cm ⁻¹	37 296.32–38 012.044	2–2	2.02-03	5.91-01	5.44+02	0.073		2
94	6 <i>p</i> – 6 <i>d</i>	$^{2}P^{\circ}-^{2}D$		1 090.1 cm ⁻¹	37 297.2–38 387.26	6–10	5.60-03	1.18+00	2.14+03	0.850		2

TABLE 4. Transition probabilities of allowed lines for Na I (references for this table are as follows: 1=Taylor, ¹⁰⁴ 2=Froese Fischer, ³⁴ 3=Jones *et al.*, ⁴⁸ 4 =Oates *et al.*, ⁷² 5=Volz *et al.*, ¹²⁰ 6=Filippov and Prokof'ev²⁸)—Continued

NT	Transition	3.6.1	λ_{air}	λ_{vac} (Å)	$E_i - E_k$		A_{ki}	C	S	1		C
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	log gf	Acc.	Source
				1 089.65 cm ⁻¹	37 297.61–38 387.257	4–6	5.61 - 03	1.06+00	1.28+03	0.627		2
				1 090.95 cm ⁻¹	37 296.32–38 387.270	2–4	4.67 - 03	1.18+00	7.10+02	0.373		2
				1 089.66 cm ⁻¹	37 297.61–38 387.270	4–4	9.34-04	1.18-01	1.43 + 02	-0.326	A	2
95	6 <i>p</i> – 8 <i>s</i>	$^{2}P^{\circ}-^{2}S$		1 671.3 cm ⁻¹	37 297.2–38 968.51	6–2	2.25-03	4.03-02	4.76+01	-0.617	A	2
				1 670.90 cm ⁻¹	37 297.61-38 968.51	4-2	1.50-03	4.02-02	3.17+01	-0.794	A	2
				1 672.19 cm ⁻¹	37 296.32–38 968.51	2–2	7.52 - 04	4.03 - 02	1.59+01	-1.094	A	2
96	6 <i>p</i> -7 <i>d</i>	$^{2}P^{\circ}-^{2}D$		1 903.7 cm ⁻¹	37 297.2–39 200.9	6–10	2.91-03	2.01-01	2.08+02	0.081	A	2
				1 903.32 cm ⁻¹	37 297.61–39 200.93	4-6	2.91-03	1.81 - 01	1.25 + 02	-0.140	A	2
				1 904.61 cm ⁻¹	37 296.32-39 200.93	2-4	2.43 - 03	2.01-01	6.94 + 01	-0.396	A	2
				1 903.32 cm ⁻¹	37 297.61-39 200.93	4-4	4.85 - 04	2.01-02	1.39+01	-1.095	A	2
97	6p-9s	$^{2}P^{\circ}-^{2}S$		$2\ 277.7\ cm^{-1}$	37 297.2–39 574.85	6–2	1.43-03	1.38-02	1.20+01	-1.082	$\mathrm{B} +$	2
				2 277.24 cm ⁻¹	37 297.61–39 574.85	4–2	9.54-04	1.38-02	7.98+00	-1.258	B+	2
				2 278.53 cm ⁻¹	37 296.32–39 574.85	2–2	4.80 - 04	1.39-02	4.00+00	-1.556	$\mathrm{B} +$	2
98	6 <i>p</i> -8 <i>d</i>	$^{2}P^{\circ}-^{2}D$		2 431.5 cm ⁻¹	37 297.2–39 728.7	6–10	2.10-03	8.87-02	7.21+01	-0.274	A	2
				2 431.09 cm ⁻¹	37 297.61–39 728.70	4–6	2.10-03	7.98-02	4.33+01	-0.496	Α	2
				2 432.38 cm ⁻¹	37 296.32–39 728.70	2–4	1.75-03	8.88-02	2.40+01			2
				2 431.09 cm ⁻¹	37 297.61–39 728.70	4-4	3.50-04	8.87-03	4.81+00			2
99	6p-10s	$^{2}P^{\circ}-^{2}S$		2 686.1 cm ⁻¹	37 297.2–39 983.27	6–2	1.28-03	8.84-03	6.50+00	-1.275	B+	2
				2 685.66 cm ⁻¹	27 207 61 20 002 27	4–2	8.49-04	0 02 02	4 22 + 00	1 450	D I	2
				2 686.95 cm ⁻¹	37 297.61–39 983.27 37 296.32–39 983.27	2-2	4.27-04	8.82-03 8.86-03	4.33+00 2.17+00			2
				2 080.93 CIII	31 290.32-39 903.21	2-2	4.27-04	8.80-03	2.17 +00	-1.732	ы	2
100	6 <i>p</i> -9 <i>d</i>	$^{2}P^{\circ}-^{2}D$		2 793.1 cm ⁻¹	37 297.2–40 090.3	6–10	1.14-03	3.66-02	2.59+01			1
				2 792.70 cm ⁻¹	37 297.61–40 090.31	4–6	1.14 - 03	3.29-02	1.55 + 01			LS
				2 793.99 cm ⁻¹	37 296.32–40 090.31	2–4	9.53 - 04	3.66 - 02	8.63 + 00			LS
				2 792.70 cm ⁻¹	37 297.61–40 090.31	4–4	1.90-04	3.66-03	1.73 + 00	-1.834	Е	LS
101	7s-7p	$^2S-^2P^{\circ}$		$528.7~cm^{-1}$	38 012.044- <i>38 540.7</i>	2–6	1.70-03	2.74+00	3.41+03	0.739	A	2
				528.89 cm ⁻¹	38 012.044-38 540.93	2-4	1.70 - 03	1.83+00	2.27 + 03	0.563	A	2
				528.14 cm^{-1}	38 012.044-38 540.18	2–2	1.70 - 03	9.13-01	1.14+03	0.262	A	2
102	7s-8p	2 S $-^2$ P $^{\circ}$		1 286.7 cm ⁻¹	38 012.044-39 298.7	2-6	3.96-04	1.08-01	5.51+01	-0.666	A	2
				1 286.80 cm ⁻¹	38 012.044-39 298.84	2-4	3.97-04	7.20-02	3.68+01	-0.842	A	2
				1 286.31 cm ⁻¹	38 012.044-39 298.35	2-2	3.94-04	3.57 - 02	1.83 + 01	-1.146	A	2
103	7 <i>s</i> -9 <i>p</i>	2 S $-^2$ P $^{\circ}$		1 782.66 cm ⁻¹	38 012.044- <i>39 794.70</i>	2-6	2.16-04	3.05-02	1.13+01	-1.215	В	2
				1 782.766 cm ⁻¹	38 012.044-39 794.810	2–4	2.17-04	2.04-02	7.55 + 00	_1 389	В	2
				1 782.436 cm ⁻¹	38 012.044–39 794.480	2–2	2.14-04	1.01-02	3.73+00			2
104	6 <i>d</i> -7 <i>p</i>	$^2D-^2P^{\circ}$		153.4 cm ⁻¹	38 387.26–38 540.7	10-6	1.14-04	4.36-01	9.36+03	0.639	A	2
				153.67 cm ⁻¹	38 387.257–38 540.93	6-4	1.03-04	4.37-01	5.61+03	0.419	A	2
				152.91 cm ⁻¹	38 387.270-38 540.18	4-2	1.13-04	3.62-01	3.12+03	0.161	A	2
				153.66 cm^{-1}	38 387.270–38 540.93	4-4	1.15-05	7.28 - 02	6.24 + 02	-0.536	A	2
105	6 <i>d</i> -7 <i>f</i>	$^2D-^2F^{\circ}$		821.7 cm ⁻¹	38 387.26–39209.0	10–14	2.55-03	7.94-01	3.18+03	0.900	A	2
				821.72 cm ⁻¹	38 387.257–39 208.98	6–8	2.55-03	7.56-01	1.82+03	0.657	A	2
				821.71 cm ⁻¹	38 387.270–39 208.98	4–6	2.38-03	7.94-01	1.27+03	0.502		2
				821.72 cm ⁻¹	38 387.257–39 208.98	6–6	1.70-04	3.78-02	9.08+01			2
106	6 <i>d</i> -8 <i>p</i>	$^{2}D-^{2}P^{\circ}$		911.4 cm ⁻¹	38 387.26–39 298.7	10–6	3.42-05	3.70-03	1.34+01			2
100	0a-8p	D- P		911.4 cm '	30 30/.20-39 298./	10-0	3.42-03	5.70-03	1.34+01	-1.432	A	۷

Table 4. Transition probabilities of allowed lines for Na I (references for this table are as follows: 1=Taylor, 104 2=Froese Fischer, 34 $3=\text{Jones } et \ al.$, 48 $4=\text{Oates } et \ al.$, 72 $5=\text{Volz } et \ al.$, 120 6=Filippov and Prokof'ev^{28})—Continued

_												
No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	$\lambda_{\rm vac}~({ m \AA}) \ { m or}~\sigma~({ m cm}^{-1})^{ m a}$	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				911.58 cm ⁻¹	38 387.257–39 298.84	6–4	3.04-05	3.66-03	7.93+00	-1.658	A	2
				911.08 cm ⁻¹	38 387.270-39 298.35	4-2	3.50-05	3.16-03	4.57 + 00	-1.898	A	2
				911.57 cm ⁻¹	38 387.270–39 298.84	4-4	3.38-06	6.10-04	8.81 - 01	-2.613	$\mathrm{B} + $	2
107	6 <i>d</i> -8 <i>f</i>	$^{2}D-^{2}F^{\circ}$		1 346.9 cm ⁻¹	38 387.26–39 734.2	10–14	1.95-03	2.26-01	5.51+02	0.354	A	2
				1 346.90 cm ⁻¹	38 387.257–39 734.16	6-8	1.95-03	2.15-01	3.15+02	0.111	A	2
				1 346.89 cm ⁻¹	38 387.270-39 734.16	4-6	1.82 - 03	2.26 - 01	2.21 + 02	-0.044	A	2
				$1~346.90~{\rm cm}^{-1}$	38 387.257–39 734.16	6-6	1.30-04	1.07 - 02	1.58+01	-1.192	A	2
108	6 <i>d</i> -9 <i>p</i>	$^{2}D-^{2}P^{\circ}$		$1\ 407.44\ cm^{-1}$	38 387.26–39 794.70	10-6	2.75-05	1.25-03	2.92+00	-1.903	$\mathrm{B}+$	2
				1 407.553 cm ⁻¹	38 387.257–39 794.810	6-4	2.45 - 05	1.24-03	1.74+00	-2.128	$\mathrm{B}+$	2
				1 407.210 cm ⁻¹	38 387.270-39 794.480	4-2	2.81 - 05	1.06 - 03	9.95 - 01	-2.373	B+	2
				1 407.540 cm ⁻¹	38 387.270–39 794.810	4–4	2.72-06	2.06-04	1.93-01	-3.084	В	2
109	6 <i>d</i> -9 <i>f</i>	$^{2}D-^{2}F^{\circ}$		1 706.9 cm ⁻¹	38 387.26–40 094.2	10–14	1.18-03	8.53-02	1.64+02	-0.069	D+	1
				1 706.93 cm ⁻¹	38 387.257-40 094.19	6-8	1.18-03	8.12-02	9.40+01	-0.312	D+	LS
				1 706.92 cm ⁻¹	38 387.270-40 094.19	4-6	1.11 - 03	8.53-02	6.58+01	-0.467	D+	LS
				1 706.93 cm ⁻¹	38 387.257-40 094.19	6-6	7.89-05	4.06-03	4.70+00	-1.613	E+	LS
110	6 <i>d</i> -10 <i>f</i>	$^{2}D-^{2}F^{\circ}$		1 964.5 cm ⁻¹	38 387.26–40 351.8	10–14	8.44-04	4.59-02	7.69+01	-0.338	D	1
				1 964.51 cm ⁻¹	38 387.257-40 351.77	6-8	8.44-04	4.37-02	4.39+01	-0.581	D+	LS
				1 964.50 cm ⁻¹	38 387.270-40 351.77	4-6	7.88 - 04	4.59 - 02	3.08+01	-0.736	D	LS
				1 964.51 cm ⁻¹	38 387.257–40 351.77	6-6	5.64-05	2.19-03	2.20+00	-1.881	E	LS
111	6 <i>f</i> -7 <i>d</i>	$^{2}F^{\circ}-^{2}D$		$801.1~{\rm cm^{-1}}$	38 399.8–39 200.9	14-10	2.85-04	4.75-02	2.74+02	-0.177	A	2
				801.14 cm ⁻¹	38 399.79–39 200.93	8-6	2.71 - 04	4.75-02	1.56+02	-0.420	A	2
				801.14 cm^{-1}	38 399.79-39 200.93	6-4	2.85 - 04	4.44 - 02	1.09 + 02	-0.574	A	2
				801.14 cm ⁻¹	38 399.79–39 200.93	6-6	1.36-05	3.17-03	7.81 + 00	-1.721	A	2
112	6 <i>f</i> -8 <i>d</i>	$^{2}F^{\circ}-^{2}D$		1 328.9 cm ⁻¹	38 399.8–39 728.7	14-10	1.72-04	1.05-02	3.63+01	-0.833	A	2
				1 328.91 cm ⁻¹	38 399.79–39 728.70	8-6	1.64-04	1.05 - 02	2.07 + 01	-1.076	A	2
				1 328.91 cm ⁻¹	38 399.79-39 728.70	6-4	1.72 - 04	9.76 - 03	1.45 + 01	-1.232	A	2
				1 328.91 cm ⁻¹	38 399.79–39 728.70	6-6	8.21-06	6.97-04	1.04+00	-2.379	B+	2
113	7 <i>p</i> – 8 <i>s</i>	$^{2}P^{\circ}-^{2}S$		427.8 cm ⁻¹	<i>38 540.7</i> –38 968.51	6–2	2.67-03	7.29-01	3.37+03	0.641	A	2
				427.58 cm ⁻¹	38 540.93-38 968.51	4-2	1.78-03	7.30-01	2.25+03	0.465	A	2
				428.33 cm^{-1}	38 540.18–38 968.51	2-2	8.92-04	7.29-01	1.12+03	0.164	A	2
114	7 <i>p</i> -7 <i>d</i>	$^{2}P^{\circ}-^{2}D$		$660.2~cm^{-1}$	38 540.7–39 200.9	6–10	2.27-03	1.30+00	3.88+03	0.892	A	2
				660.00 cm^{-1}	38 540.93-39 200.93	4-6	2.27-03	1.17 + 00	2.33+03	0.670	A	2
				660.75 cm ⁻¹	38 540.18-39 200.93	2-4	1.89 - 03	1.30+00	1.29 + 03	0.415	A	2
				$660.00~{\rm cm^{-1}}$	38 540.93–39 200.93	4-4	3.78 - 04	1.30-01	2.59 + 02	-0.284	A	2
115	7 <i>p</i> – 9 <i>s</i>	$^{2}P^{\circ}-^{2}S$		1 034.2 cm ⁻¹	<i>38 540.7</i> –39 574.85	6–2	1.09-03	5.09-02	9.72+01	-0.515	B+	2
				1 033.92 cm ⁻¹	38 540.93–39 574.85	4-2	7.25-04	5.08-02	6.48+01	-0.692	B+	2
				1 034.67 cm ⁻¹	38 540.18–39 574.85	2-2	3.64-04	5.10-02	3.25+01	-0.991	B+	2
116	7 <i>p</i> -8 <i>d</i>	$^{2}P^{\circ}-^{2}D$		1 188.0 cm ⁻¹	38 540.7–39 728.7	6–10	1.41-03	2.50-01	4.16+02	0.176	A	2
				1 187.77 cm ⁻¹	38 540.93–39 728.70	4-6	1.41-03	2.25-01	2.50+02	-0.046	A	2
				1 188.52 cm ⁻¹	38 540.18-39 728.70	2-4	1.18-03	2.50-01	1.39+02			2
				1 187.77 cm ⁻¹	38 540.93–39 728.70	4-4	2.36-04	2.50-02	2.78+01			2
117	7p-10s	$^{2}P^{\circ}-^{2}S$		1 442.6 cm ⁻¹	38 540.7–39 983.27	6–2	7.57-04	1.82-02	2.49+01	-0.962	B+	2

TABLE 4. Transition probabilities of allowed lines for Na I (references for this table are as follows: 1=Taylor, ¹⁰⁴ 2=Froese Fischer, ³⁴ 3=Jones *et al.*, ⁴⁸ 4 =Oates *et al.*, ⁷² 5=Volz *et al.*, ¹²⁰ 6=Filippov and Prokof'ev²⁸)—Continued

	Transition		λ_{air}	$\lambda_{\rm vac}$ (Å)	$E_i - E_k$		A_{ki}		S			
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	$\log gf$	Acc.	Source
				1 442.34 cm ⁻¹	38 540.93–39 983.27	4–2	5.03 - 04	1.81 - 02	1.66+01			2
				1 443.09 cm ⁻¹	38 540.18–39 983.27	2–2	2.53 - 04	1.82-02	8.32+00	-1.439	B+	2
118	8s-8p	$^{2}S-^{2}P^{\circ}$		$330.2~cm^{-1}$	38 968.51–39 298.7	2-6	7.63-04	3.15+00	6.28+03	0.799	A	2
				330.33 cm ⁻¹	38 968.51–39 298.84	2–4	7.64-04	2.10+00	4.19+03	0.623	Δ	2
				329.84 cm ⁻¹	38 968.51–39 298.35	2–2	7.62-04	1.05+00	2.10+03	0.322		2
110	0 0	2g 2p°		926 10 -1	20.060.51. 20.704.70	2.6	1.02.04	1.21 .01	0.61 - 01	0.616	D.	2
119	8 <i>s</i> -9 <i>p</i>	$^{2}\mathrm{S}-^{2}\mathrm{P}^{\circ}$		826.19 cm ⁻¹	38 968.51–39 794.70	2–6	1.83-04	1.21-01	9.61+01	-0.616	B+	2
				826.30 cm^{-1}	38 968.51–39 794.810	2–4	1.84 - 04	8.06 - 02	6.42 + 01			2
				825.97 cm ⁻¹	38 968.51–39 794.480	2–2	1.82 - 04	4.00-02	3.19+01	-1.097	B+	2
120	7 <i>d</i> -8 <i>f</i>	$^{2}D-^{2}F^{\circ}$		533.3 cm ⁻¹	39 200.9–39 734.2	10-14	1.14-03	8.44-01	5.21+03	0.926	A	2
				533.23 cm ⁻¹	39 200.93–39 734.16	6-8	1.14-03	8.03-01	2.98+03	0.683	Α	2
				533.23 cm ⁻¹	39 200.93-39 734.16	4–6	1.07 - 03	8.43-01	2.08 + 03	0.528		2
				533.23 cm ⁻¹	39 200.93–39 734.16	6-6	7.62-05	4.02 - 02	1.49 + 02	-0.618	A	2
121	7 <i>d</i> -9 <i>p</i>	$^{2}D-^{2}P^{\circ}$		593.8 cm ⁻¹	39 200.9–39 794.70	10–6	3.21-05	8.19-03	4.54+01	-1.087	B+	2
	•			593.88 cm ⁻¹	20 200 02 20 704 810	6–4	2.86-05	8.11-03	2.70+01	1 212	D +	2
				593.55 cm ⁻¹	39 200.93–39 794.810 39 200.93–39 794.480	4-2	3.26-05	6.94-03	1.54+01			2
				593.88 cm ⁻¹	39 200.93–39 794.480 39 200.93–39 794.810	4-2	3.18-06	1.35-03	3.00+00			2
		2 2 8										
122	7 <i>d</i> -9 <i>f</i>	$^{2}D-^{2}F^{\circ}$		893.3 cm ⁻¹	39 200.9–40 094.2	10–14	7.75-04	2.04-01	7.51+02	0.310	D+	1
				893.26 cm ⁻¹	39 200.93-40 094.19	6-8	7.74 - 04	1.94 - 01	4.29 + 02	0.066	D+	LS
				893.26 cm ⁻¹	39 200.93-40 094.19	4-6	7.24 - 04	2.04 - 01	3.01 + 02	-0.088	D	LS
				893.26 cm ⁻¹	39 200.93–40 094.19	6–6	5.17-05	9.72-03	2.15+01	-1.234	E	LS
123	7 <i>d</i> -10 <i>f</i>	$^{2}D-^{2}F^{\circ}$		1 150.9 cm ⁻¹	39 200.9–40 351.8	10-14	5.61-04	8.89-02	2.54+02	-0.051	D	1
				1 150.84 cm ⁻¹	39 200.93-40 351.77	6-8	5.61 - 04	8.46 - 02	1.45 + 02	-0.294	D	LS
				1 150.84 cm ⁻¹	39 200.93-40 351.77	4-6	5.24 - 04	8.89 - 02	1.02 + 02	-0.449	E+	LS
				1 150.84 cm ⁻¹	39 200.93–40 351.77	6–6	3.74 - 05	4.23-03	7.26+00	-1.596	E	LS
124	7f - 8d	$^2F^{\circ}-^2D$		$519.7~cm^{-1}$	39 209.0–39 728.7	14-10	1.89-04	7.49-02	6.64+02	0.021	A	2
				519.72 cm ⁻¹	39 208.98–39 728.70	8-6	1.80-04	7.49-02	3.80+02	-0.222	Α	2
				519.72 cm ⁻¹	39 208.98-39 728.70	6-4	1.89-04	6.99-02	2.66+02	-0.377	A	2
				$519.72~{\rm cm}^{-1}$	39 208.98–39 728.70	6-6	8.99-06	4.99-03	1.90+01	-1.524	A	2
125	8 <i>p</i> – 9 <i>s</i>	$^{2}P^{\circ}-^{2}S$		276.2 cm ⁻¹	39 298.7–39 574.85	6–2	1.28-03	8.38-01	5.99+03	0.701	$\mathrm{B}+$	2
				2 76.01 cm ⁻¹	39 298.84–39 574.85	4–2	8.52-04	8.38-01	4.00+03	0.525	R+	2
				2 76.50 cm ⁻¹	39 298.35–39 574.85	2–2	4.27-04	8.37-01	1.99+03	0.224		2
126	8 <i>p</i> -8 <i>d</i>	$^{2}P^{\circ}-^{2}D$		430.0 cm ⁻¹	39 298.7–39 728.7	6–10	1.06-03	1.43+00	6.56+03	0.933		2
	•			429.86 cm ⁻¹	39 298.84–39 728.70	4–6	1.06-03	1.29+00	3.94+03	0.713	Α.	2
				430.35 cm ⁻¹	39 298.35–39 728.70 39 298.35–39 728.70	2-4	8.81-04	1.43+00	2.18+03	0.713		2
				429.86 cm ⁻¹	39 298.84–39 728.70	4-4	1.76-04	1.43+00	4.38+02			2
127	9 m 10 m	$^{2}P^{\circ}-^{2}S$										
12/	8p-10s	r - S		684.6 cm ⁻¹	39 298.7–39 983.27	6–2	3.46-04	3.69-02	1.06+02			2
				684.43 cm ⁻¹	39 298.84–39 983.27	4–2	2.30-04	3.68-02	7.08 + 01			2
				684.92 cm ⁻¹	39 298.35–39 983.27	2–2	1.16-04	3.70-02	3.56+01	-1.131	B+	2
128	8p-9d	$^{2}P^{\circ}-^{2}D$		791.6 cm ⁻¹	39 298.7–40 090.3	6–10	6.24-04	2.49-01	6.21+02	0.174	D	1
				791.47 cm ⁻¹	39 298.84-40 090.31	4–6	6.24-04	2.24-01	3.73 + 02	-0.048	D+	LS
						-						
				791.96 cm ⁻¹	39 298.35-40 090.31	2-4	5.21 - 04	2.49 - 01	2.07 + 02	-0.303	D	LS

Table 4. Transition probabilities of allowed lines for Na I (references for this table are as follows: 1=Taylor, 104 2=Froese Fischer, 34 $3=\text{Jones } et \ al.$, 48 $4=\text{Oates } et \ al.$, 72 $5=\text{Volz } et \ al.$, 120 6=Filippov and Prokof'ev^{28})—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{\mathrm{vac}} \ (\mathrm{\mathring{A}})$ or $\sigma \ (\mathrm{cm}^{-1})^{\mathrm{a}}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
129	9 <i>s</i> -9 <i>p</i>	$^{2}S-^{2}P^{\circ}$		219.85 cm ⁻¹	39 574.85–39 794.70	2–6	3.29-04	3.07+00	9.18+03	0.788	A	2
				2 19.96 cm ⁻¹	39 574.85–39 794.810	2-4	3.30-04	2.04+00	6.12+03	0.611	A	2
				2 19.63 cm ⁻¹	39 574.85–39 794.480	2–2	3.29-04	1.02+00	3.06+03	0.310	A	2
130	9s-10p	$^{2}S-^{2}P^{\circ}$		562.11 cm ⁻¹	39 574.85–40 136.96	2–6	1.06-04	1.51-01	1.77+02	-0.520	D+	1
				562.19 cm ⁻¹	39 574.85–40 137.039	2-4	1.06-04	1.01 - 01	1.18+02	-0.695	C	LS
				561.96 cm ⁻¹	39 574.85–40 136.805	2–2	1.06-04	5.02-02	5.88 + 01	-0.998	D+	LS
131	8 <i>d</i> -9 <i>f</i>	$^{2}D-^{2}F^{\circ}$		365.5 cm ⁻¹	39 728.7–40 094.2	10–14	5.11-04	8.03-01	7.23+03	0.905	C	1
				$365.49~\rm{cm}^{-1}$	39 728.70-40 094.19	6-8	5.11-04	7.64 - 01	4.13+03	0.661	C	LS
				365.49 cm ⁻¹	39 728.70–40 094.19	4–6	4.77 - 04	8.03 - 01	2.89 + 03	0.507	C	LS
				365.49 cm ⁻¹	39 728.70–40 094.19	6–6	3.40-05	3.82-02	2.06+02	-0.640	D	LS
132	8 <i>d</i> -10 <i>f</i>	$^{2}D-^{2}F^{\circ}$		623.1 cm ⁻¹	39 728.7–40 351.8	10–14	3.87-04	2.09-01	1.10+03	0.320	D+	1
				623.07 cm ⁻¹	39 728.70–40 351.77	6-8	3.86-04	1.99-01	6.31+02	0.077	D+	LS
				$623.07~{\rm cm}^{-1}$	39 728.70-40 351.77	4-6	3.61 - 04	2.09 - 01	4.42 + 02	-0.078	D +	LS
				623.07 cm ⁻¹	39 728.70–40 351.77	6–6	2.58 - 05	9.96-03	3.16+01	-1.224	E	LS
133	8 <i>f</i> -9 <i>d</i>	$^{2}F^{\circ}-^{2}D$		356.1 cm ⁻¹	39 734.2–40 090.3	14-10	1.13-04	9.57-02	1.24+03	0.127	D+	1
				356.15 cm ⁻¹	39 734.16-40 090.31	8-6	1.08-04	9.57-02	7.08+02	-0.116	D+	LS
				$356.15~{\rm cm}^{-1}$	39 734.16-40 090.31	6-4	1.13 - 04	8.93 - 02	4.95 + 02	-0.271	D+	LS
				356.15 cm ⁻¹	39 734.16–40 090.31	6–6	5.40-06	6.38-03	3.54+01	-1.417	E	LS
134	4 9p-10s	$^{2}P^{\circ}-^{2}S$		$188.57~cm^{-1}$	39 794.70–39 983.27	6–2	4.81-04	6.76-01	7.09+03	0.608	A	2
				188.46 cm ⁻¹	39 794.810–39 983.27	4-2	3.21-04	6.77-01	4.73+03	0.433	A	2
				188.79 cm ⁻¹	39 794.480–39 983.27	2–2	1.61-04	6.76-01	2.36+03	0.131	A	2
35	9 <i>p</i> -9 <i>d</i>	$^{2}P^{\circ}-^{2}D$		295.6 cm ⁻¹	39 794.70–40 090.3	6–10	5.63-04	1.61+00	1.08+04	0.985	В	1
				295.50 cm ⁻¹	39 794.810-40 090.31	4-6	5.63-04	1.45 + 00	6.46+03	0.763	В	LS
				295.83 cm ⁻¹	39 794.480-40 090.31	2-4	4.70 - 04	1.61 + 00	3.58+03	0.508	В	LS
				295.50 cm ⁻¹	39 794.810–40 090.31	4–4	9.38-05	1.61-01	7.17 + 02	-0.191	C+	LS
136	9p - 11s	$^{2}P^{\circ}-^{2}S$		476.68 cm ⁻¹	<i>39 794.70</i> –40 271.38	6–2	2.89-04	6.36-02	2.64+02	-0.418	C	1
				476.57 cm ⁻¹	39 794.810–40 271.38	4-2	1.93-04	6.36-02	1.76+02	-0.594	C	LS
				$476.90~\text{cm}^{-1}$	39 794.480–40 271.38	2–2	9.65-05	6.36-02	8.78 + 01	-0.896	D+	LS
137	9p-10d	$^{2}P^{\circ}-^{2}D$		554.1 cm ⁻¹	39 794.70–40 348.8	6–10	3.35-04	2.72-01	9.71+02	0.213	C	1
				554.02 cm ⁻¹	39 794.810–40 348.83	4-6	3.34-04	2.45-01	5.82+02	-0.009	C+	LS
				554.35 cm ⁻¹	39 794.480-40 348.83	2-4	2.80 - 04	2.73 - 01	3.24+02	-0.263	C	LS
				554.02 cm ⁻¹	39 794.810–40 348.83	4–4	5.57-05	2.72-02	6.47 + 01	-0.963	D+	LS
138	10s-10p	$^{2}S-^{2}P^{\circ}$		153.69 cm ⁻¹	39 983.27–40 136.96	2-6	2.10-04	4.00+00	1.71+04	0.903	В	1
				153.77 cm ⁻¹	39 983.27-40 137.039	2-4	2.11-04	2.67 + 00	1.14+04	0.728	В	LS
				$153.54~\rm{cm}^{-1}$	39 983.27–40 136.805	2-2	2.09 - 04	1.33+00	5.70+03	0.425	В	LS
139	9 <i>d</i> -10 <i>f</i>	$^{2}D-^{2}F^{\circ}$		261.5 cm ⁻¹	40 090.3–40 351.8	10–14	2.67-04	8.21-01	1.03+04	0.914	В	1
				2 61.46 cm ⁻¹	40 090.31–40 351.77	6–8	2.67-04	7.82-01	5.91+03	0.671	В	LS
				261.46 cm ⁻¹	40 090.31–40 351.77	4–6	2.50-04	8.21-01	4.13+03	0.516		LS
				261.46 cm ⁻¹	40 090.31–40 351.77	6–6	1.78-05	3.91-02	2.95+02			LS
140	9f-10d	$^{2}F^{\circ}-^{2}D$		254.6 cm ⁻¹	40 094.2–40 348.8	14-10	7.45-05	1.23-01	2.23+03	0.236	C+	1
				254.64 cm ⁻¹	40 094.19-40 348.83	8–6	7.09-05	1.23-01	1.27+03	-0.007	C+	LS
				254.64 cm ⁻¹	40 094.19–40 348.83	6–4	7.46-05	1.15-01	8.92+02			LS
								01				

TABLE 4. Transition probabilities of allowed lines for Na I (references for this table are as follows: 1=Taylor, ¹⁰⁴ 2=Froese Fischer, ³⁴ 3=Jones *et al.*, ⁴⁸ 4 =Oates *et al.*, ⁷² 5=Volz *et al.*, ¹²⁰ 6=Filippov and Prokof'ev²⁸)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				254.64 cm ⁻¹	40 094.19–40 348.83	6-6	3.54-06	8.19-03	6.35+01	-1.309	D+	LS
141	10p - 11s	$^{2}P^{\circ}-^{2}S$		134.42 cm ⁻¹	40 136.96–40 271.38	6–2	4.16-04	1.15+00	1.69+04	0.839	В	1
				134.34 cm ⁻¹ 134.57 cm ⁻¹	40 137.039–40 271.38 40 136.805–40 271.38	4-2 2-2	2.77-04 1.39-04	1.15+00 1.15+00	1.13+04 5.63+03	0.663 0.362	_	LS LS
142	10 <i>p</i> – 10 <i>d</i>	$^{2}P^{\circ}-^{2}D$				6–10						1
				211.79 cm ⁻¹ 212.03 cm ⁻¹	40 137.039–40 348.83 40 136.805–40 348.83	4–6 2–4	3.13-04 2.62-04	1.57+00 1.75+00	9.76+03 5.43+03	0.798 0.544	_	LS LS

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

10.1.3. Forbidden Transitions for Na I

Transitions from energy levels up to the 4d have been published by Froese Fischer³⁵ using the MCHF approach. A number of 3s-nd, n=3-10, transitions have been published in Kundu and Mackerjee,⁵² Godefroid et al.,⁴² and Tull et al.;¹¹⁰ however, these were reported as multiplet averages and are not listed here.

No transitions from Froese Fischer³⁵ were reported in Kundu and Mackerjee,⁵² Godefroid *et al.*,⁴² and Tull *et al.*¹¹⁰ Therefore, to estimate the accuracy of the forbidden lines from allowed lines, we isoelectronically averaged the logarithmic quality factors (described in Sec. 4.1) observed for lines from the lower-lying levels of Na-like ions of Na, Mg, Al, and Si and applied the result to forbidden lines of Na I, as

described in the introduction. Thus the listed accuracies are less well established than for the allowed lines.

10.1.4. References for Forbidden Transitions for Na I

⁴²M. Godefroid, C. E. Magnusson, P. O. Zetterberg, and I. Joelsson, Phys. Scr. **32**, 125 (1985).

³⁵C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, *ab initio*, downloaded on Aug. 6, 2002).

⁵²B. Kundu and P. K. Mackerjee, Phys. Rev. A **35**, 980 (1987).

¹¹⁰C. E. Tull, M. Jackson, R. P. McEachran, and M. Cohen, Can. J. Phys. **50**, 1169 (1972).

Table 5. Wavelength finding list for forbidden lines for Na I

Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult No.
3 302.369	3	5 688.205	8	7 520.33	7	11 403.779	5
3 883.905	2	5 889.950	1	8 183.255	6	18 596.37	11
5 682.633	8	7 507.47	7	8 183.289	6	18 596.49	11
5 682.645	8	7 510.62	7	8 194.790	6	18 596.54	11
5 688.193	8	7 517.17	7	8 194.824	6	18 596.66	11
Wavenumber	Mult.	Wavenumber	Mult.	Wavenumber	Mult.	Wavenumber	Mult
(cm ⁻¹)	No.	(cm^{-1})	No.	(cm^{-1})	No.	(cm ⁻¹)	No.
4 532.59	9	4 276.19	12	1 099.69	10	17.196	4
4 281.78	12	4 276.15	12	1 094.15	10		
4 281.74	12	1 099.74	10	1 094.10	10		

Table 6. Transition probabilities of forbidden lines for Na I (references for this table are as follows: 1=Froese Fischer³⁵)

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	E_i – E_k (cm ⁻¹)	$g_i - g_k$	Туре	$A_{ki} $ (s ⁻¹)	S (a.u.)	Acc.	Source
1	3s-3p	$^{2}S-^{2}P^{\circ}$									
			5 889.950	5 891.583	0.000-16 973.368	2–4	M2	1.99-04	3.79+02	A	1
2	3s-4s	${}^{2}S - {}^{2}S$									
			3 883.905	3 885.005	0.000-25 739.991	2–2	M1	6.95-04	3.02-06	C	1
3	3s-4p	2 S $-^2$ P $^{\circ}$									

Table 6. Transition probabilities of forbidden lines for Na I (references for this table are as follows: 1=Froese Fischer³⁵)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm $^{-1}$) $^{\mathrm{a}}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	A_{ki} (s ⁻¹)	S (a.u.)	Acc.	Source
			3 302.369	3 303.319	0.000-30 272.58	2-4	M2	2.88-05	3.03+00	B+	1
4	3p - 3p	$^{2}\text{P}^{\circ}-^{2}\text{P}^{\circ}$									
	1 1			17.196 cm ⁻¹	16 956.172-16 973.368	2-4	M1	4.57-08	1.33+00	Α	1
				17.196 cm ⁻¹	16 956.172-16 973.368	2-4	E2	5.26-14	1.25 + 03	A	1
5	3p-4s	$^{2}P^{\circ}-^{2}S$									
	3p-4s	1 – 3	11 403.779	11 406.901	16 973.368-25 739.991	4-2	M2	1.45-05	3.75 + 02	Α	1
		2_0 2_									
6	3p-3d	$^{2}P^{\circ}-^{2}D$	0 102 200	0 105 520	16.056.172.20.172.920	2.6	142	1.07.05	2.01 - 02		1
			8 183.289	8 185.539	16 956.172–29 172.839	2–6	M2	1.97-05	2.91+02	A	1
			8 194.824	8 197.077	16 973.368–29 172.839	4-6	M2	1.07-04	1.59+03	A	1
			8 183.255 8 194.790	8 185.505 8 197.043	16 956.172–29 172.889 16 973.368–29 172.889	2–4	M2 M2	2.76-06 6.09-14	2.72+01 6.04-07	A E+	1
			8 194.790	8 197.043	10 975.506-29 172.669	4–4	IVI Z	0.09-14	0.04-07	Ε±	1
7	3p-4p	$^{2}\text{P}^{\circ}-^{2}\text{P}^{\circ}$									
			7 517.17	7 519.24	16 973.368-30 272.58	4-4	M1	4.28 - 05	2.70 - 06	C	1
			7 517.17	7 519.24	16 973.368-30 272.58	4–4	E2	8.88+00	7.63 + 02	A	1
			7 510.62	7 512.69	16 956.172–30 266.99	4–2	M1	1.15 - 06	3.62 - 08	D	1
			7 520.33	7 522.40	16 973.368-30 266.99	4–2	M1	8.84 - 06	2.79 - 07	D+	1
			7 520.33	7 522.40	16 973.368–30 266.99	4–2	E2	1.78 + 01	7.65 + 02	A	1
			7 507.47	7 509.53	16 956.172–30 272.58	2–4	M1	6.24 - 06	3.92 - 07	D+	1
			7 507.47	7 509.53	16 956.172–30 272.58	2–4	E2	8.93+00	7.62 + 02	A	1
8	3p-4d	$^{2}P^{\circ}-^{2}D$									
	- r		5 682.645	5 684.221	16 956.172-34 548.731	2-6	M2	1.01 - 05	2.41 + 01	Α	1
			5 688.205	5 689.783	16 973.368-34 548.731	4-6	M2	5.49-05	1.32 + 02	A	1
			5 682.633	5 684.210	16 956.172-34 548.766	2-4	M2	1.42 - 06	2.26+00	B+	1
			5 688.193	5 689.772	16 973.368-34 548.766	4-4	M2	2.12 - 13	3.40 - 07	E+	1
9	4s-4p	$^{2}S-^{2}P^{\circ}$									
7	43 – 4 <i>p</i>	5-1		4 532.59 cm ⁻¹	25 739.991–30 272.58	2-4	M2	1.50-06	2.10+03	A	1
				1 332.37 CIII	23 737.771 30 272.30	2 .	1112	1.50 00	2.10 1 03	11	•
10	3d-4p	$^{2}D-^{2}P^{\circ}$									
				1 094.15 cm ⁻¹	29 172.839–30 266.99	6–2	M2	8.91 - 10	7.62 + 02	A	1
				1 099.74 cm ⁻¹	29 172.839–30 272.58	6–4	M2	2.50 - 09	4.16+03	A	1
				1 094.10 cm ⁻¹	29 172.889–30 266.99	4–2	M2	8.35-11	7.14+01	A	1
				1 099.69 cm ⁻¹	29 172.889–30 272.58	4–4	M2	1.10-19	1.84-07	Е	1
11	3d - 4d	$^{2}D-^{2}D$	18 596.49	18 601.56	29 172.839-34 548.731	6-6	M1	4.14-08	5.93-08	D	1
			18 596.49	18 601.56	29 172.839-34 548.731	6-6	E2	9.64-01	1.15 + 04	A+	1
			18 596.54	18 601.62	29 172.889-34 548.766	4-4	M1	1.05 - 08	1.00 - 08	D	1
			18 596.54	18 601.62	29 172.889-34 548.766	4-4	E2	8.44 - 01	6.71 + 03	A+	1
			18 596.37	18 601.44	29 172.839-34 548.766	6-4	M1	3.24 - 09	3.09 - 09	E+	1
			18 596.37	18 601.44	29 172.839-34 548.766	6-4	E2	3.62 - 01	2.88 + 03	A+	1
			18 596.66	18 601.74	29 172.889-34 548.731	4-6	M1	9.99 - 10	1.43 - 09	E+	1
			18 596.66	18 601.74	29 172.889–34 548.731	4-6	E2	2.41 - 01	2.88+03	A+	1
	4p-4d	$^{2}P^{\circ}-^{2}D$									
12	ip Tu			4 281.74 cm ⁻¹	30 266.99–34 548.731	2-6	M2	3.25-07	9.09+02	A	1
12											-
12						4-6	M2				1
12				4 276.15 cm ⁻¹ 4 281.78 cm ⁻¹	30 272.58–34 548.731 30 266.99–34 548.766	4–6 2–4	M2 M2	1.77-06 4.57-08	4.97+03 8.52+01	A A	1 1

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

10.2. Na II

Neon isoelectronic sequence Ground state: $1s^22s^22p^6$ 1S_0

Ionization energy: 47.286 35 eV=381 390.2 cm⁻¹

10.2.1. Allowed Transitions for Na II

The sources we used in the compilation 45,93,98,107 are far from comprehensive, resulting in the relatively small number of lines presented below. These are limited to transitions with upper levels through to the 4s. Wherever available we have

J. Phys. Chem. Ref. Data, Vol. 37, No. 1, 2008

used the data of Tachiev and Froese Fischer, ⁹⁸ which result from extensive MCHF calculations with Breit-Pauli corrections to order α^2 . The calculations extend only to transitions from energy levels up to the $2p^54s$. Hibbert *et al.* ⁴⁵ applied the CIV3 code. No OP data were used for this Ne-like spectrum, in which spin-orbit effects play a critical role.

In the NIST energy level tables, 61 only levels with $2p^6$, $2p^53s$, and $2p^53p$ configurations are designated with LS-coupled terms. All higher-lying levels, those above $310\,000\,\mathrm{cm}^{-1}$, with configurations $2p^53d$ and higher, are designated with terms in jK (or pair) coupling. Many of these levels have a highly mixed composition in any coupling scheme, some to the extent that they cannot be assigned an unambiguous term. Most of the transitions involving these higher levels have estimated accuracies too low to be included in this compilation.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in two or more of the references cited below, as described in the general introduction. For this purpose the spin-allowed and intercombination data were treated separately and each of these was in turn divided into two upper-level energy groups below and above 310 000 cm⁻¹. To estimate the accuracy of lines from higherlying levels, we isoelectronically averaged the logarithmic quality factors (see Sec. 4.1 of the Introduction) observed for lines from the lower-lying levels of Ne-like ions of Na, Mg, Al, and Si and scaled them for lines from high-lying levels, as described in the introduction. Thus the listed accuracies for these higher-lying transitions are less well established than for those from lower levels.

10.2.2. References for Allowed Transitions for Na II

¹⁰⁷E. Träbert, Phys. Scr. **53**, 167 (1996).

TABLE 7. Wavelength finding list for allowed lines for Na II

Wavelength (vac) (Å)	Mult. No.
300.153	4
300.203	5
301.436	3
372.075	2
376.379	1

TABLE 7. Wavelength finding list for allowed lines for Na II—Continued

Wavelength	Mult.
(air) (Å)	No.
2 315.648	11
2 493.148	17
2 506.302	53
2 515.457	53
2 525.649	52
2 531.540	47
2 594.959	20
2 600.324	21
2 660.997	20
2 671.829	19
2 678.085	19
2 799.217	55
2 808.705	54
2 809.520	10
2 811.843	54
2 818.285	55 ~ ~
2 829.867	55
2 839.564	54
2 841.721	10
2 842.772	54
2 859.486	9
2 861.021	55
2 871.277	10
2 872.957	55
2 881.149 2 886.259	10 54
2 893.954 2 901.143	48 28
2 901.145 2 904.709	28
2 904.709	10
2 917.521	8
2 917.321	42
2 920.944	10
2 923.484	9
2 930.881	24
2 934.078	28
2 937.726	28
2 942.655	49
2 945.699	26
2 947.445	57
2 951.235	25
2 952.396	42
2 960.115	57
2 970.727	56
2 974.238	56
2 974.990	9
2 977.128	24
2 979.660	26
2 980.624	24
2 984.174	8
2 984.191	28
2 999.329	42
3 004.151	50
3 007.446	7
3 009.143	59
3 015.400	24

⁴⁵A. Hibbert, M. LeDourneuf, and M. Mohan, At. Data Nucl. Data Tables **53**, 23 (1993).

⁶¹W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 10, 153 (1981).

⁹³G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on May 5, 2002).

⁹⁸G. Tachiev and C. Froese Fischer, http:// www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, energy adjusted, downloaded on December 3, 2003).

TABLE 7. Wavelength finding list for allowed lines for Na II—Continued

TABLE 7. Wavelength finding list for allowed lines for Na II—Continued

Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.
3 022.350	59	3 162.526	44
3 029.070	61	3 162.526	30
3 029.316	23	3 167.484	40
3 037.075	58	3 179.055	29
3 042.453	61	3 184.544	45
3 045.597	50	3 188.134	38
3 053.665	60	3 189.790	16
3 055.354	61	3 200.309	38
3 056.160	7	3 212.191	15
3 057.375	60	3 216.286	39
3 058.715	43	3 225.978	45
3 064.374	24	3 234.927	34
3 066.534	61	3 250.949	33
3 070.823	30	3 257.968	38
3 078.320	7	3 260.215	33
3 078.338	32	3 274.220	37
3 078.747	23	3 285.608	14
3 080.251	61	3 301.348	38
3 087.057	23	3 304.951	37
3 092.731	7	3 318.036	37
3 094.449	43	3 327.689	37
3 095.546	60	3 400.098	13
3 104.400	51	3 462.494	13
3 124.413	31	3 533.057	6
3 125.212	44	3 631.272	6
3 129.376	7	3 711.074	6
3 135.478	7	4 087.593	12
3 137.853	34	4 123.069	62
3 145.700	35	4 344.124	46
3 149.275	16	4 368.588	41
3 159.528	38		
3 161.154	16		

Table 8. Transition probabilities of allowed lines for Na II (references for this table are as follows: 1=Tachiev and Froese Fischer, 98 2=Tachiev and Froese Fischer, 98 3=Hibbert et~al., 45 and 4=Träbert 107)

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\begin{array}{c} \lambda_{vac} \; (\mathring{A}) \\ \text{or} \; \sigma \; (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	g_i-g_k	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
1	$2p^6 - 2p^5 3s$	$^{1}S - ^{3}P^{\circ}$		376.379	0.0–265 689.62	1–3	1.70+00	1.08-02	1.34-02	-1.967	С	4
2		$^{1}S-^{1}P^{\circ}$		372.075	0.0–268 762.96	1–3	3.13+01	1.95-01	2.39-01	-0.710	B+	4
3	$2p^6 - 2p^5(^2\mathbf{P}_{3/2}^{\circ})3d$	$^{1}S-^{2}[3/2]^{\circ}$		301.436	0.0–331 745.06	1–3	3.33+01	1.36-01	1.35-01	-0.866	D+	3
4	$2p^6 - 2p^5(^2P_{1/2}^{\circ})4s$	$^{1}S-^{2}[1/2]^{\circ}$		300.153	0.0–333 162.94	1–3	1.18+01	4.77-02	4.71-02	-1.321	D	1
5	$2p^6 - 2p^5(^2\mathbf{P}_{1/2}^{\circ})3d$	$^{1}S-^{2}[3/2]^{\circ}$		300.203	0.0–333 107.74	1–3	1.17+01	4.76-02	4.70-02	-1.322	D	3
6	$2p^53s - 2p^53p$	$^{3}P^{\circ}-^{3}S$	3 584.48	3 585.50	265 330.2–293 220.33	9–3	1.34+00	8.64-02	9.17+00	-0.109	A	1
			3 533.057 3 631.272 3 711.074	3 534.067 3 632.307 3 712.130	264 924.32–293 220.33 265 689.62–293 220.33 266 281.62–293 220.33	5–3 3–3 1–3		7.36-02	5.76+00 2.64+00 7.73-01	-0.656	A	1 1 1

Table 8. Transition probabilities of allowed lines for Na II (references for this table are as follows: 1=Tachiev and Froese Fischer, 98 2=Tachiev and Froese Fischer, 98 3=Hibbert et~al., 45 and 4=Träbert 107)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
7		$^{3}P^{\circ}-^{3}D$	3 101.72	3 102.61	265 330.2–297 561.1	9–15	2.06+00			0.649		1
			2 002 721	2.002.620	264 024 22 207 249 92	<i>5</i> 7	2.00 - 00	4.21 01	2.14 - 01	0.222		1
			3 092.731	3 093.629	264 924.32–297 248.82	5–7		4.21-01		0.323		1
			3 129.376	3 130.283	265 689.62–297 635.61	3–5			9.72+00			1
			3 135.478	3 136.387	266 281.62–298 165.44	1–3			3.39+00			1
			3 056.160	3 057.048	264 924.32–297 635.61	5–5			5.26+00			1
			3 078.320	3 079.214	265 689.62–298 165.44	3–3			5.05+00			1
8		$^{3}P^{\circ}-^{1}D$	3 007.446	3 008.322	264 924.32–298 165.44	5–3	1.68-01	1.37-02	6.77-01	-1.164	B+	1
			2 984.174	2 985.044	265 689.62–299 189.96	3–5	1.74 01	2 97 02	1.14+00	0.025	D	1
			2 917.521	2 983.044	264 924.32–299 189.96	5–5 5–5			4.86+00			1
			2 917.321	2 918.373	204 924.32-299 189.90	3–3	7.92-01	1.01-01	4.80+00	-0.297	ЬΤ	1
9		${}^{3}P^{\circ} - {}^{1}P$										
			2 923.484	2 924.340	265 689.62-299 885.37	3-3	1.41 - 01	1.80 - 02	5.21-01	-1.268	В	1
			2 859.486	2 860.326	264 924.32-299 885.37	5-3	2.19-01	1.61-02	7.60-01	-1.094	В	1
			2 974.990	2 975.858	266 281.62–299 885.37	1–3	6.47-01	2.58-01	2.53+00	-0.588	$\mathrm{B}+$	1
10		$^{3}P^{\circ}-^{3}P$	2 861.24	2 862.07	265 330.2–300 269.9	9_9		2.10-01		0.276		1
·U		г – г	2 001.24			9-9						1
			2 841.721	2 842.556	264 924.32–300 103.92	5–5			5.05+00			1
			2 871.277	2 872.120	265 689.62–300 507.11	3–3	2.75 - 01	3.40 - 02	9.66 - 01	-0.991	B+	1
			2 809.520	2 810.347	264 924.32–300 507.11	5–3	5.95 - 01	4.23 - 02	1.96+00	-0.675	A	1
			2 881.149	2 881.994	265 689.62–300 387.82	3-1	2.50+00	1.04 - 01	2.96+00	-0.506	A	1
			2 904.918	2 905.769	265 689.62-300 103.92	3–5	7.30 - 01	1.54 - 01	4.42+00	-0.335	A	1
			2 920.944	2 921.799	266 281.62–300 507.11	1–3	6.66-01	2.56-01	2.46+00	-0.592	A	1
1		$^{3}\text{P}^{\circ}$ – ^{1}S										
		1 0 2	2 315.648	2 316.360	265 689.62–308 860.80	3–1	1.05 - 01	2.82 - 03	6.45 - 02	-2.073	C+	2,3
12		$^{1}P^{\circ}-^{3}S$	4 087.593	4 088.747	268 762.96–293 220.33	3–3	3.81_03	9.56_04	3.86-02	_2 542	C	1
_		1_0 3_	4 007.575	+ 000.7+7	200 702.90 293 220.33	3 3	5.01 05	7.50 04	3.00 02	2.342	C	1
13		$^{1}P^{\circ}-^{3}D$										
			3 462.494	3 463.485	268 762.96–297 635.61	3–5			3.70-01			1
			3 400.098	3 401.074	268 762.96–298 165.44	3–2	1.24-02	2.16-03	7.25 - 02	-2.188	C+	1
14		$^{1}P^{\circ}-^{1}D$	3 285.608	3 286.555	268 762.96–299 189.96	3–5	1.10+00	2.98-01	9.66+00	-0.049	A	1
15		$^{1}\text{P}^{\circ}-^{1}\text{P}$	3 212.191	3 213.119	268 762.96–299 885.37	3–3	1.12+00	1.74-01	5.52+00	-0.282	A	1
16		$^{1}P^{\circ}-^{3}P$										
. •			3 149.275	3 150.187	268 762.96-300 507.11	3_3	8.24-01	1.23-01	3.81+00	-0.433	B+	1
			3 161.154	3 162.069	268 762.96–300 387.82	3–1			6.81-02			1
			3 189.790	3 190.713	268 762.96–300 103.92				5.85+00			1
7		$^{1}P^{\circ}-^{1}S$	2 493.148	2 493.900	268 762.96–308 860.80				3.18+00			2,3
		ı – 3	∠ ¬/J.1+0	<i>□</i> → <i>JJ.</i> 700	200 102.70-300 000.00	<i>J</i> —1	T.13 T UU	1.27-01	J.10700	U.T1Z	. 1	۷,5
8 ^b												
19	$2p^53p-2p^5(^2P_{3/2}^{\circ})3d$	$^{3}S-^{2}[1/2]^{\circ}$										
			2 671.829	2 672.623	293 220.33–330 636.75	3–3	2.64+00	2.82-01	7.45 + 00	-0.073	B+	3
20		$^{3}S-^{2}[3/2]^{\circ}$										
			2 660.997	2 661.789	293 220.33-330 789.05	3–5	1.65 + 00	2.92-01	7.69 + 00	-0.057	B+	3
			2 594.959	2 595.735	293 220.33-331 745.06				9.60-01			1
		2 2- 5										
21		$^{3}S-^{2}[5/2]^{\circ}$										
			2 600.324	2 601.101	293 220.33–331 665.59	3–5	4.93-03	8.33-04	2.14-02	-2.602	D	3
2 ^b												
23		$^{3}D-^{2}[1/2]^{\circ}$										
23		D- [1/2]										

Table 8. Transition probabilities of allowed lines for Na II (references for this table are as follows: 1=Tachiev and Froese Fischer, 98 2=Tachiev and Froese Fischer, 93 3=Hibbert et~al., 45 and 4=Träbert 107)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	$\lambda_{\text{vac}} (\mathring{A})$ or $\sigma (\text{cm}^{-1})^{\text{a}}$	$E_i - E_k$ (cm ⁻¹)	a - a	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	log af	Acc	Source
	array	With.				$g_i - g_k$						
			3 078.747 3 029.316	3 079.642 3 030.198	298 165.44–330 636.75 297 635.61–330 636.75	3–3 5–3			1.55-01 $2.60-01$			3
			3 087.057	3 087.953	298 165.44–330 549.35	3–1			2.41-01			3
24		3D 2F2 /27°										
24		$^{3}D-^{2}[3/2]^{\circ}$	3 064.374	3 065.265	298 165.44–330 789.05	3–5	7.62_02	1 79_02	5.42-01	_1 270	C	3
			3 015.400	3 016.278	297 635.61–330 789.05	5–5			1.02+00			3
			2 977.128	2 977.997	298 165.44-331 745.06	3–3	1.05 - 01	1.39-02	4.10-01	-1.380	C+	1
			2 980.624	2 981.494	297 248.82–330 789.05	7–5			2.16-02			3
			2 930.881	2 931.739	297 635.61–331 745.06	5–3	9.83-01	7.60-02	3.67+00	-0.420	B+	1
25		$^{3}D-^{2}[7/2]^{\circ}$										
			2 951.235	2 952.097	297 248.82–331 123.04	7–9	4.33+00	7.27 - 01	4.94+01	0.707	A	1
26		$^{3}D-^{2}[7/2]^{\circ}$										
		_ [,,_]	2 979.660	2 980.529	297 635.61–331 186.70	5–7	1.96+00	3.65-01	1.79+01	0.261	$\mathrm{B}+$	3
			2 945.699	2 946.560	297 248.82–331 186.70	7–7	2.50-02	3.26-03	2.21-01	-1.642	C	3
27	$2p^53p-2p^5(^2P_{1/2}^{\circ})3d$	$^{3}D-^{2}[3/2]^{\circ}$										
_,	-p op -p (1 _{1/2})ou	5 [5/2]	2 861.021	2 861.861	298 165.44-333 107.74	3–3	6.43-01	7.90-02	2.23+00	-0.625	В	3
20	$2p^53p-2p^5(^2P_{3/2}^{\circ})3d$	3D 2F (27°										
28	$2p^{3}3p-2p^{3}(P_{3/2})3a$	D- [3/2]	2 934.078	2 934.936	297 635.61–331 707.90	5–7	3 17+00	5.72-01	2.76±01	0.456	R+	1
			2 984.191	2 985.061	298 165.44–331 665.59	3–5		5.26-01		0.198		3
			2 901.143	2 901.993	297 248.82–331 707.90	7–7	2.89-01	3.64-02	2.44+00	-0.594	В	1
			2 937.726	2 938.585	297 635.61–331 665.59	5–5			8.04+00			3
			2 904.709	2 905.560	297 248.82–331 665.59	7–5	1.04 + 04	9.36-03	6.27 - 01	-1.184	C	3
29		$^{1}D-^{2}[1/2]^{\circ}$										
			3 179.055	3 179.975	299 189.96–330 636.75	5–3	3.94-01	3.58 - 02	1.88+00	-0.747	В	1
30		$^{1}D-^{2}[3/2]^{\circ}$										
50		D [3/2]	3 163.732	3 164.648	299 189.96–330 789.05	5–5	1.05+00	1.58-01	8.22+00	-0.102	$\mathrm{B}+$	1
			3 070.823	3 071.715	299 189.96–331 745.06	5-3	8.70-02	7.38-03	3.73 - 01	-1.433	C	3
31		$^{1}D-^{2}[7/2]^{\circ}$										
		2 [//2]	3 124.413	3 125.318	299 189.96–331 186.70	5–7	2.56+00	5.24-01	2.70+01	0.418	A	1
22		1p. 2fg/23°										
32		$^{1}D-^{2}[5/2]^{\circ}$	3 078.338	3 079.232	299 189.96–331 665.59	5_5	1.11-02	1 58 - 03	8.00-02	-2 102	C	1
			3 070.330	3 017.232	277 107.70 331 003.37	3 3	1.11 02	1.50 05	0.00 02	2.102	C	1
33		$^{1}P-^{2}[1/2]^{\circ}$	2.250.040	2.251.007	200 005 27 220 (2) 75	2.2	0.65.00	1.52 .00	4.01 .01	1 220	C .	
			3 250.949 3 260.215	3 251.887 3 261.155	299 885.37–330 636.75 299 885.37–330 549.35		9.65-02 $4.65-01$					1
		1 20	3 200.213	3 201.133	277 003.37 330 317.33	5 1	1.05 01	2.17 02	7.55 01	1.130		1
34		$^{1}P-^{2}[3/2]^{\circ}$	2 224 027	2 225 961	200 005 27 220 700 05	2.5	1.02.01	4.70 .00	1.52 . 00	0.042	D	
			3 234.927 3 137.853	3 235.861 3 138.762	299 885.37–330 789.05 299 885.37–331 745.06		1.83-01 $1.41+00$					1 3
			3 137.033	3 136.702	299 863.37–331 743.00	3–3	1.41+00	2.00-01	0.44+00	-0.203	ы	3
35		${}^{1}P-{}^{1}[5/2]^{\circ}$									_	
			3 145.700	3 146.611	299 885.37–331 665.59	3–5	7.23-03	1.79-03	5.56-02	-2.270	D+	1
36		$^{3}P-^{2}[1/2]^{\circ}$										1
			3 327.689	3 328.647	300 507.11–330 549.35	3–1	9.42-01	5.21 - 02	1.71 + 00	-0.806	B+	1
37		$^{3}P-^{2}[1/2]^{\circ}$										
			3 304.951	3 305.902	300 387.82–330 636.75	1-3	3.60-01	1.77-01	1.93+00	-0.752	В	3
			3 318.036	3 318.991	300 507.11–330 636.75	3–3			2.24+00			3
			3 274.220	3 275.163	300 103.92–330 636.75	5–3			2.23+00			3
			3 327.689	3 328.647	300 507.11–330 549.35	3–1	9.45-01	5.23-02	1.72+00	-0.804	В	3
38		$^{3}P-^{2}[3/2]^{\circ}$										

Table 8. Transition probabilities of allowed lines for Na II (references for this table are as follows: 1=Tachiev and Froese Fischer, 98 2=Tachiev and Froese Fischer, 98 3=Hibbert et~al., 45 and 4=Träbert 107)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{\rm vac}~({\rm \AA}) \ { m or}~\sigma~({ m cm}^{-1})^a$	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
			3 301.348	3 302.298	300 507.11–330 789.05	3–5	4.54-02	1.24-02	4.03-01	-1.429	С	3
			3 188.134	3 189.056	300 387.82–331 745.06	1–3	6.66-01	3.05 - 01	3.20+00	-0.516	B+	1
			3 257.968	3 258.907	300 103.92–330 789.05	5–5			8.78+00			3
			3 200.309	3 201.234	300 507.11–331 745.06	3–3			1.86-05 $6.44-03$			1
			3 159.528	3 160.442	300 103.92–331 745.06	5–3	1.36-03	1.24-04	0.44-03	-3.208	D	1
39		$^{3}P-^{2}[7/2]^{\circ}$										
			3 216.286	3 217.215	300 103.92–331 186.70	5–7	1.45 - 01	3.14-02	1.66+00	-0.804	В	3
40		$^{3}P-^{2}[5/2]^{\circ}$										
			3 163.243	3 164.158	300 103.92–331 707.90	5–7	1.24-01	2.60-02	1.35 + 00	-0.886	В	1
			3 167.484	3 168.400	300 103.92–331 665.59	5–5	9.26-02	1.39-02	7.27 - 01	-1.158	C+	3
41		$^{1}S-^{2}[3/2]^{\circ}$										
41		3- [3/2]	4 368.588	4 369.816	308 860.80–331 745.06	1–3	3 59-01	3.08-01	4.43+00	-0.511	В	3
		2 20		. 505.010	200 000100 221 / 12100	1 0	0.00	2.00 01		0.011	2	
42	$2p^53p-2p^5(^2P_{3/2}^{\circ})4s$	$^{3}D-^{2}[3/2]^{*}$	2 000 220	2 000 201	200 465 44 224 406 54		225 00	- 0- 04	1.50 01	0.400	ъ.	
			2 999.329 2 952.396	3 000.204 2 953.259	298 165.44–331 496.51 297 635.61–331 496.51	3–5 5–5		5.05-01	8.22+00	0.180		1 1
			2 932.390	2 933.239	297 248.82–331 496.51	3–3 7–5			4.88-01			1
			2 717.050	2 717.703	277 210.02 331 170.31	, 5	7.51 02	7.25 05	1.00 01	1.275	0 1	1
43		$^{1}D-^{2}[3/2]^{\circ}$										
			3 094.449	3 095.348	299 189.96–331 496.51	5–5			1.40-02			1
			3 058.715	3 059.604	299 189.96–331 873.93	5–3	2.18-01	1.84-02	9.26-01	-1.036	C+	1
44		$^{1}P-^{2}[3/2]^{\circ}$										
			3 162.526	3 163.442	299 885.37–331 496.51	3–5	4.41 - 01	1.10-01	3.44+00	-0.481	В	1
			3 125.212	3 126.118	299 885.37–331 873.93	3–3	9.72 - 02	1.42 - 02	4.40 - 01	-1.371	C	1
45		$^{3}P-^{2}[3/2]^{\circ}$										
		L	3 225.978	3 226.910	300 507.11–331 496.51	3–5	4.23-05	1.10-05	3.51-04	-4.481	Е	1
			3 184.544	3 185.465	300 103.92–331 496.51	5-5	8.26-02	1.26-02	6.59-01	-1.201	C+	1
46		$^{1}S-^{2}[3/2]^{\circ}$										
40		3-[3/2]	4 344.124	4 345.345	308 860.80–331 873.93	1–3	4 32 - 01	3 67-01	5.24+00	-0.435	R+	1
			1311.121	1 3 13.3 13	300 000.00 331 073.73	1 5	1.52 01	5.07 01	3.21100	0.155	ъ.	1
47	$2p^53p-2p^5(^2P_{1/2}^{\circ})4s$	$^{3}S-^{2}[1/2]^{\circ}$										
			2 531.540	2 532.301	293 220.33–332 710.11	3–1	8.44-01	2.70-02	6.76-01	-1.092	C+	1
48		$^{3}D-^{2}[1/2]^{\circ}$										
			2 893.954	2 894.803	298 165.44-332 710.11	3-1	1.48+00	6.18 - 02	1.77 + 00	-0.732	В	1
49		$^{1}D-^{2}[1/2]^{\circ}$										
47		D- [1/2]	2 942.655	2 943.516	299 189.96–333 162.94	5–3	1.04-01	8.08-03	3.92-01	-1.394	C	1
		1 20	2 / 12.000	27.0.010	2,, 10,,,0 555 102.,		1.0. 01	0.00	0.02 01	1.07.		•
50		$^{1}P-^{2}[1/2]^{\circ}$	2004474	2.007.027		2.2	0.44.00	4.00.00	2.50 04			
			3 004.151	3 005.027 3 046.483	299 885.37–333 162.94		9.44-02 6.92-01					1
			3 045.597	3 040.463	299 885.37–332 710.11	3-1	0.92-01	5.21-02	9.00-01	-1.016	C+	1
51		$^{3}P-^{2}[1/2]^{\circ}$										
			3 104.400	3 105.301	300 507.11–332 710.11	3–1	5.63 - 01	2.71 - 02	8.33-01	-1.090	C+	1
52	$2p^53p-2p^5(^2P_{1/2}^{\circ})3d$	$^{3}S-^{2}[5/2]^{\circ}$										
	F - F (1/2)	. [.]	2 525.649	2 526.409	293 220.33-332 802.21	3-5	2.78-03	4.43-04	1.11-02	-2.876	D	1
50		3g 2F2 (27°										
53		$^{3}S-^{2}[3/2]^{\circ}$	2 515.457	2 516.214	293 220.33–332 962.57	2 5	2.25-01	3 57 - 02	8 86 L D1	_0.070	C^{\perp}	3
			2 506.302	2 507.057	293 220.33–332 902.37 293 220.33–333 107.74		2.73-01					
			2 300.302	2 301.037	2,0 220.00 000 107.74	5 5	2.75 01	2.57 02	5.57 01	1.113	C 1	
54		$^{3}D-^{2}[5/2]^{\circ}$									_	
			2 839.564	2 840.399	297 635.61–332 841.93		1.11+00					
			2 886.259	2 887.105	298 165.44–332 802.21	5-5	1.07+00	2.24-01	0.38+00	-0.173	R+	1

TABLE 8. Transition probabilities of allowed lines for Na II (references for this table are as follows: 1=Tachiev and Froese Fischer, 98 2=Tachiev and Froese Fischer, 33=Hibbert *et al.*, 45 and 4=Träbert 107)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
			2 808.705	2 809.533	297 248.82–332 841.93	7–7	1.93-02	2.29-03	1.48-01	-1.795	D+	3
			2 842.772	2 843.607	297 635.61-332 802.21	5–5	5.23-03	6.34-04	2.97-02	-2.499	D	1
			2 811.843	2 812.671	297 248.82–332 802.21	7–5	1.01 - 02	8.56-04	5.55 - 02	-2.222	D+	1
55		$^{3}D-^{2}[3/2]^{\circ}$										
			2 872.957	2 873.800	298 165.44-332 962.57	3-5	2.63-01	5.43-02	1.54+00	-0.788	C+	3
			2 829.867	2 830.699	297 635.61-332 962.57	5-5	3.36-01	4.04 - 02	1.88+00	-0.695	В	3
			2 861.021	2 861.861	298 165.44-333 107.74	3-3	8.00 - 02	9.82-03	2.78 - 01	-1.531	C	1
			2 799.217	2 800.042	297 248.82-332 962.57	7–5	2.64 - 02	2.21-03	1.43 - 01	-1.811	D+	3
			2 818.285	2 819.115	297 635.61–333 107.74	5–3	1.24-01	8.86-03	4.11-01	-1.354	C+	1
56		$^{1}D-^{2}[5/2]^{\circ}$										
			2 970.727	2 971.594	299 189.96-332 841.93	5-7	1.03 - 01	1.92 - 02	9.37 - 01	-1.018	В	1
			2 974.238	2 975.106	299 189.96–332 802.21	5–5	2.02-01	2.68-02	1.31+00	-0.873	C+	3
57		$^{1}D-^{2}[3/2]^{\circ}$										
			2 960.115	2 960.979	299 189.96-332 962.57	5-5	5.60 - 01	7.36 - 02	3.59+00	-0.434	$\mathrm{B} +$	1
			2 947.445	2 948.306	299 189.96–333 107.74	5–3	4.27 - 02	3.34-03	1.62 - 01	-1.777	D+	3
58		$^{1}P-^{2}[5/2]^{\circ}$										
			3 037.075	3 037.959	299 885.37–332 802.21	3–5	2.55+00	5.88 - 01	1.76+01	0.246	B+	3
59		$^{1}P-^{2}[3/2]^{\circ}$										
			3 022.350	3 023.231	299 885.37–332 962.57	3-5	6.91 - 03	1.58 - 03	4.71 - 02	-2.324	D+	1
			3 009.143	3 010.020	299 885.37–333 107.74	3–3	1.73 - 01	2.35 - 02	7.00-01	-1.152	C+	3
60		$^{3}P-^{2}[5/2]^{\circ}$										
			3 053.665	3 054.553	300 103.92–332 841.93	5-7	2.99+00	5.85 - 01	2.94+01	0.466	B+	3
			3 095.546	3 096.445	300 507.11-332 802.21	3-5	3.97 - 03	9.51 - 04	2.91 - 02	-2.545	D+	1
			3 057.375	3 058.264	300 103.92–332 802.21	5–5	4.51 - 01	6.32-02	3.18+00	-0.500	B+	1
61		$^{3}P-^{2}[3/2]^{\circ}$										
			3 080.251	3 081.146	300 507.11–332 962.57	3–5	2.81 + 00	6.67 - 01	2.03+01	0.301	B+	3
			3 055.354	3 056.242	300 387.82-333 107.74	1-3	8.80 - 02	3.70 - 02	3.72 - 01	-1.432	C+	1
			3 042.453	3 043.339	300 103.92-332 962.57	5-5	7.49 - 03	1.04 - 03	5.21 - 02	-2.284	D	3
			3 066.534	3 067.425	300 507.11–333 107.74	3–3	3.74 - 01	5.27 - 02	1.60+00	-0.801	В	1
			3 029.070	3 029.952	300 103.92–333 107.74	5–3	9.86-01	8.14-02	4.06+00	-0.390	B+	1
62		$^{1}S-^{2}[3/2]^{\circ}$										
			4 123.069	4 124.232	308 860.80–333 107.74	1–3	3.71 - 01	2.84-01	3.86+00	-0.547	В	3

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

10.2.3. Forbidden Transitions for Na II

The extensive MCHF results of Tachiev and Froese Fischer⁹⁸ overlap with only one of the two transitions for the results of Landman.⁵³ Agreement was good, but we still estimated the accuracies by scaling the pooling parameters (as discussed in Sec. 4.1 of the Introduction) for the lower-lying spin-allowed lines. As a result the cited accuracies are only rough estimates.

10.2.4. References for Forbidden Transitions for Na II

TABLE 9. Wavelength finding list for forbidden lines for Na II

Wavelength	Mult.
(vac) (Å)	No.
333.218	4
334.236	3
335.981	2
377.466	1
Wavelength	Mult.
(air) (Å)	No.
2 809.520	11
2 818.971	11
2 841.721	11

^bLine deleted in proof.

⁵³D. A. Landman, J. Quant. Spectrosc. Radiat. Transf. **34**, 365 (1985).

⁸G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, energy adjusted, downloaded on Dec. 3, 2003).

TABLE 9. Wavelength finding list for forbidden lines for Na II—Continued

TABLE 9. Wavelength finding list for forbidden lines for Na II—Continued

Wavelength (air) (Å)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.	
2 859.486	10	3 838.64	6	
2 871.277	11	3 073.34	6	
2 904.918	11	2 871.50	22	
2 917.521	9	2 855.10	22	
2 923.484	10	2 481.34	6	
2 955.766	11	2 468.31	22	
2 984.174	9	2 341.67	22	
3 007.446	8	2 249.76	21	
3 037.859	9	2 222.38	22	
3 056.160	8	1 941.14	20	
3 078.320	8	1 938.48	22	
3 092.731	8	1 719.93	21	
3 129.376	8	1 554.35	20	
3 149.275	16	1 357.30	5	
3 167.731	8	1 317.15	24	
3 188.465	8	1 024.52	20	
3 189.790	16	913.96	24	
3 212.191	15	765.30	5	
3 285.608	14	695.41	23	
3 400.098	13	621.74	25	
3 462.494	13	592.00	5	
3 509.510	13	529.83	19	
3 533.057	7	502.45	25	
3 631.272	7	403.19	26	
4 087.593	12	386.79	19	
13 719.73	18	218.55	25	
13 948.07	18	119.29	26	
14 523.33	18			

TABLE 10. Transition probabilities of forbidden lines for Na II (references for this table are as follows: 1=Tachiev and Froese Fischer⁹⁸ and 2=Landman⁵³)

No.	Transition array	Mult.	$\begin{array}{ccc} \lambda_{air} & \lambda_{vac} \ (\mathring{A}) \\ (\mathring{A}) & \text{or} \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	Туре	A_{ki} (s ⁻¹)	S (a.u.)	Acc.	Source
1	$2p^6 - 2p^5 3s$	$^{1}S-^{3}P^{\circ}$								
			377.466	0.0-264 924.32	1–5	M2	1.21+00	3.12+00	C+	1,2
2	$2p^6 - 2p^5 3p$	${}^{1}S - {}^{3}D$								
	- _F - _F - _F		335.981	0.0-297 635.61	1-5	E2	6.40+03	1.22-01	C+	1
3		${}^{1}S - {}^{1}D$								
3		5- D	334.236	0.0-299 189.96	1–5	E2	4.50+04	8.38-01	B+	1
4		$^{1}S-^{3}P$								
4		3- P	333.218	0.0-300 103.92	1–5	E2	1.60+04	2.93-01	В	1
_		3_0 3_0							_	
5	$2p^53s - 2p^53s$	$^{3}P^{\circ}-^{3}P^{\circ}$	1 257 20 -1	264 024 22 266 201 62	5 1	F2	1.00 .07	1.04.01	0.1	2
			1 357.30 cm ⁻¹	264 924.32–266 281.62	5–1	E2	1.00-07	1.94-01		2
			765.30 cm ⁻¹	264 924.32–265 689.62	5–3	M1	9.64 - 03	2.39+00	Α	1
			592.00 cm ⁻¹	265 689.62–266 281.62	3–1	M1	1.07 - 02	1.91+00	A	1,2
6		$^{3}\text{P}^{\circ}-^{1}\text{P}^{\circ}$								
			3 073.34 cm ⁻¹	265 689.62-268 762.96	3-3	M1	1.63 - 02	6.23 - 02	C	1
			3 838.64 cm ⁻¹	264 924.32-268 762.96	5–3	M1	5.52-02	1.09-01	C+	1
			2 481.34 cm ⁻¹	266 281.62–268 762.96	1–3	M1	1.19-02	8.68-02	C	1
7	$2p^53s - 2p^53p$	$^{3}P^{\circ}-^{3}S$								

Table 10. Transition probabilities of forbidden lines for Na II (references for this table are as follows: 1=Tachiev and Froese Fischer and $2=Landman^{53}$)—Continued

NI o	Transition	λ _{aii}		$E_i - E_k$		т	A_{ki} (s ⁻¹)	S	A = -	C
No.	array	Mult. (Å)	or σ (cm ⁻¹)	(cm ⁻¹)	$g_i - g_k$	Type	(s ')	(a.u.)	Acc.	Source
		3 533.05		264 924.32–293 220.33	5–3	M2	5.17-04	5.74+01	A	1
		3 631.27	2 3 632.307	265 689.62–293 220.33	3–3	M2	3.90-05	4.96+00	B+	1
8		$^{3}P^{\circ}-^{3}D$								
		3 167.73	1 3 168.648	265 689.62–297 248.82	3–7	M2	7.35 - 04	1.10+02	A	1
		3 188.46		266 281.62–297 635.61	1-5	M2	1.61 - 04	1.79 + 01	A	1
		3 092.73		264 924.32–297 248.82	5–7	M2	1.02 - 03	1.36+02	A	1
		3 129.37		265 689.62–297 635.61	3–5	M2	9.52 - 05	9.60+00	A	1
		3 056.16		264 924.32–297 635.61	5–5	M2	9.64-06	8.63 - 01	C+	1
		3 078.32		265 689.62–298 165.44	3–3	M2	1.84 - 04	1.02+01	A	1
		3 007.44	6 3 008.322	264 924.32–298 165.44	5–3	M2	5.07 - 04	2.51+01	A	1
9		$^{3}P^{\circ}-^{1}D$								
		3 037.85	9 3 038.743	266 281.62-299 189.96	1-5	M2	1.67 - 04	1.45 + 01	A	1
		2 984.17	4 2 985.044	265 689.62-299 189.96	3-5	M2	1.01 - 03	7.99 + 01	A	1
		2 917.52	2 918.375	264 924.32–299 189.96	5–5	M2	1.93 - 03	1.37 + 02	A	1
10		${}^{3}P^{\circ} - {}^{1}P$								
- 0		2 923.48	4 2 924.340	265 689.62–299 885.37	3–3	M2	5.02-07	2.16-02	E+	1
		2 859.48		264 924.32-299 885.37	5–3	M2	8.97-04	3.45+01	A	1
		3n° 3n								
11		$^{3}P^{\circ} - ^{3}P$	1 2.942.556	264 024 22 200 102 02		142	2.00 .04	2.42 . 01		1
		2 841.72		264 924.32–300 103.92	5–5	M2	3.90-04	2.43+01	A	1
		2 871.27		265 689.62–300 507.11	3–3	M2	1.50-03	5.88+01	A	1
		2 818.97 2 809.52		264 924.32–300 387.82 264 924.32–300 507.11	5–1 5–2	M2 M2	1.56-03 4.57-04	1.86+01 1.61+01	A A	1
					5–3 3–5				A A	1
		2 904.91 2 955.76		265 689.62–300 103.92 266 281.62–300 103.92	3–3 1–5	M2 M2	2.36-04 8.44-04	1.64+01 6.39+01	A A	1 1
			0 2 930.029	200 281.02-300 103.92	1-3	1012	0.44-04	0.39+01	А	1
12		$^{1}P^{\circ}-^{3}S$								
		4 087.59	3 4 088.747	268 762.96–293 220.33	3–3	M2	1.50 - 04	3.45+01	A	1
13		$^{1}P^{\circ}-^{3}D$								
		3 509.51	0 3 510.514	268 762.96-297 248.82	3–7	M2	3.87 - 04	9.68+01	A	1
		3 462.49	4 3 463.485	268 762.96-297 635.61	3-5	M2	1.09 - 04	1.82 + 01	A	1
		3 400.09	8 3 401.074	268 762.96–298 165.44	3–3	M2	1.07 - 05	9.82 - 01	В	1
14		$^{1}P^{\circ}-^{1}D$								
14		3 285.60	8 3 286.555	268 762.96–299 189.96	3–5	M2	2.75-05	3.53+00	B+	1
		3 263.00	16 3 200.333	208 /02.90-299 189.90	3–3	1012	2.73-03	3.33+00	Б⊤	1
15		${}^{1}P^{\circ} - {}^{1}P$								
		3 212.19	1 3 213.119	268 762.96–299 885.37	3–3	M2	1.46 - 04	1.01 + 01	A	1
16		${}^{1}P^{\circ} - {}^{3}P$								
		3 149.27	5 3 150.187	268 762.96–300 507.11	3–3	M2	6.44-04	4.02+01	A	1
		3 189.79		268 762.96–300 103.92	3–5	M2	8.33-04	9.24+01	A	1
17	$2p^53p - 2p^53p$	$^{3}S - ^{1}D$	16751.46	202 220 22 200 100 07	2.5	3.61	4.04.02	4.22 02	Б	
		16 746.88	16 751.46	293 220.33–299 189.96	3–5	M1	4.84-03	4.22-03	D	1
18		${}^{3}S - {}^{3}P$								
		14 523.33	14 527.30	293 220.33-300 103.92	3-5	M1	1.70 - 02	9.67-03	D+	1
		13 719.73	13 723.48	293 220.33-300 507.11	3–3	M1	6.91 - 02	1.99 - 02	D+	1
		13 948.07	13 951.89	293 220.33–300 387.82	3-1	M1	1.12-01	1.13-02	D+	1
19		$^{3}D-^{3}D$								
17		ט – ט	386.79 cm ⁻¹	297 248.82–297 635.61	7–5	M1	1.29-03	4.13+00	Δ	1
			529.83 cm ⁻¹	297 635.61–298 165.44	5–3	M1	5.05-03	3.77+00		1
			527.03 CIII	277 055.01-270 105.44	5–5	1411	5.05-05	5.11400	2 %	1
20		$^{3}D - ^{1}D$								
			1 554.35 cm ⁻¹							

TABLE 10. Transition probabilities of forbidden lines for Na II (references for this table are as follows: 1=Tachiev and Froese Fischer⁹⁸ and 2=Landman⁵³)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	Туре	A_{ki} (s ⁻¹)	S (a.u.)	Acc.	Source
				1 941.14 cm ⁻¹	297 248.82–299 189.96	7–5	M1	6.90-03	1.75-01	C+	1
				1 024.52 cm ⁻¹	298 165.44–299 189.96	3–5	M1	1.73 - 03	2.97-01	В	1
21		$^{3}D-^{1}P$									
				2 249.76 cm ⁻¹	297 635.61-299 885.37	5-3	M1	2.36-02	2.30-01	В	1
				1 719.93 cm ⁻¹	298 165.44–299 885.37	3–3	M1	9.80 - 03	2.14-01	C+	1
22		$^{3}D - ^{3}P$									
				2 855.10 cm ⁻¹	297 248.82-300 103.92	7–5	M1	4.57-02	3.64-01	В	1
				2 871.50 cm ⁻¹	297 635.61-300 507.11	5–3	M1	4.29-03	2.01 - 02	+	1
				2 222.38 cm ⁻¹	298 165.44-300 387.82	3-1	M1	1.89 - 02	6.39 - 02	C	1
				2 468.31 cm ⁻¹	297 635.61-300 103.92	5–5	M1	3.60 - 04	4.44-03	D	1
				2 341.67 cm ⁻¹	298 165.44-300 507.11	3–3	M1	4.72 - 03	4.09 - 02	C	1
				1 938.48 cm ⁻¹	298 165.44-300 103.92	3–5	M1	4.31 - 03	1.10-01	C+	1
23		${}^{1}D - {}^{1}P$									
				695.41 cm ⁻¹	299 189.96–299 885.37	5–3	M1	3.29-04	1.09-01	B+	1
24		$^{1}D - ^{3}P$									
				1 317.15 cm ⁻¹	299 189.96–300 507.11	5–3	M1	1.01-02	4.92-01	В	1
				913.96 cm ⁻¹	299 189.96–300 103.92	5–5	M1	5.75-03	1.40+00	B+	1
25		$^{1}P - ^{3}P$									
				621.74 cm ⁻¹	299 885.37-300 507.11	3–3	M1	6.03 - 04	2.79-01	В	1
				502.45 cm ⁻¹	299 885.37-300 387.82	3-1	M1	1.90-03	5.54-01	В	1
				218.55 cm^{-1}	299 885.37–300 103.92	3–5	M1	4.24 - 05	7.53 - 01	B+	1
26		$^{3}P - ^{3}P$									
				403.19 cm ⁻¹	300 103.92-300 507.11	5–3	M1	7.07 - 04	1.20+00	B+	1
				119.29 cm ⁻¹	300 387.82-300 507.11	1–3	M1	2.08 - 05	1.36+00	D+	1

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

10.3. Na III

Fluorine isoelectronic sequence Ground State: $1s^22s^22p^5 {}^2P_{3/2}^o$

Ionization energy: 71.6200 eV=577 654 cm⁻¹

10.3.1. Allowed Transitions for Na III

Only OP (Ref. 15) results were available for transitions from energy levels above the 3d. Wherever available, we have used the data of Tachiev and Froese Fischer, 97 and McPeake and Hibbert 57 The former result from extensive MCHF calculations with Breit-Pauli corrections to order α^2 and the latter by using the CIV3 code.

This spectrum appears to present considerable difficulties for accurate computing for all but transitions from the lowest-lying levels. Particularly at smaller line strengths, the agreement between Tachiev and Froese Fischer⁹⁷ and Mc-Peake and Hibbert⁵⁷ was significantly better than between either of these and three studies—Butler and Zeippen,¹⁵ Blackford and Hibbert,⁸ and Berrington.⁵ To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in two or more of the references cited below, as described in the general introduction. For this purpose, the spin-allowed

(non-OP) and intercombination data were treated separately and each of these was in turn divided into two upper-level energy groups below and above 415 000 cm $^{-1}$. Estimated accuracies were substantially better for the lower energy groups. RSDM plots for these data are presented in the general introduction. OP lines constituted a fifth group and have been used only when more accurate sources were not available, because spin-orbit effects are often significant for this spectrum. Energy levels labeled $2p^4(^3P)3p$ ($^2P^0$ and $^2S^0$) and $2p^4(^3P)3d$ (2D , 2F , and 4P) are highly mixed in LS coupling, and therefore transitions from them were assigned lower accuracies.

10.3.2. References for Allowed Transitions for Na III

⁵K. Berrington, J. Phys. B **34**, 1443 (2001).

⁸H. M. S. Blackford and A. Hibbert, At. Data and Nucl. Data Tables **58**, 101 (1994).

 ¹⁵K. Butler and C. J. Zeippen, http://legacy.gsfc.nasa.gov/topbase, downloaded on Aug. 8, 1995 (Opacity Project).
 ⁵⁷D. McPeake and A. Hibbert, J. Phys. B 33, 2809 (2000).

⁹⁷G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, energy adjusted, downloaded on Dec. 3, 2002).

TABLE 11. Wavelength finding list for allowed lines for Na III

TABLE 11. Wavelength finding list for allowed lines for Na III—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
(vac) (ri)	110.	(vac) (ri)	110.
188.858	14	677.981	15
188.871	14	900.250	75
189.347	14	900.543	75
202.148	13	901.379	75
202.146	13	950.103	28
202.491	12	950.474	28
202.708	13	959.655	28
202.719	11	960.033	28
202.719	11	1 129.210	98
203.053	12	1 129.670	98
203.282	11	1 131.145	98
203.324	11	1 194.741	99
214.230	10	1 195.256	99
214.587	10	1 195.822	99
214.859	10	1 196.338	99
215.046	8	1 220.260	100
215.079	9	1 220.797	100
215.218	10	1 228.646	100
215.224	9	1 232.235	70
215.326	9	1 232.318	70
215.336	8	1 243.719	69
215.481	7	1 245.006	69
215.660	7	1 245.990	70
215.679	8	1 254.558	33
215.859	9	1 254.677	33
215.961	9	1 255.324	33
216.118	7	1 257.647	69
217.039	6	1 258.963	69
217.111	6	1 267.263	68
217.198	6	1 280.054	68
217.684	6	1 281.726	68
217.757	6	1 309.163	71
229.870	5	1 310.912	71
230.594	5	1 311.160	74
250.512	4	1 312.590	74
250.517	4	1 313.554	74
251.372	4	1 325.702	73
266.894	3	1 328.150	73
267.643	3	1 335.533	72
267.871	3	1 336.755	63
268.625	3	1 337.353	72
272.072	2	1 338.017	72
272.449	2	1 339.845	72
273.087	2	1 340.679	63
273.109	2	1 342.398	63
273.467	2	1 342.733	27
378.136	1	1 347.190	63
380.100	1	1 352.894	27
466.355	18	1 352.922	63
466.444	18	1 355.286	63
544.507	17	1 361.889	27
546.171	17	1 361.939	63
648.923	16	1 372.344	27
649.509	16	1 384.258	26
676.890	15	1 385.709	26
2,0,0,0		- 555.757	20

TABLE 11. Wavelength finding list for allowed lines for Na III—Continued

TABLE 11. Wavelength finding list for allowed lines for Na III—Continued

1406.121	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
1418.558 95				
1418.568 95				
1 420,886 95 1 849,792 45 144780 64 1 880,379 35 144 193 64 1 880,379 35 144 145,730 64 1 852,935 44 149,309 64 1 855,912 35 1449,309 64 1 856,697 35 145,794 64 1 856,697 35 145,794 64 1 860,615 87 1461,156 64 1 861,209 35 1465,926 65 1 863,398 87 1467,990 65 1 863,398 87 1470,079 64 1 889,807 43 143,743 65 1 863,398 87 1470,079 64 1 889,807 43 145,235,548 96 1 872,344 44 15,232,548 96 1 872,344 44 1,132,548 96 1 872,344 44 1,132,548 96 1 873,340 44 1,132,548 96 1 873,340 44 1,132,548 96 1 873,340 44 1,132,548 96 1 883,320 44 1,132,548 96 1 883,320 44 1,132,548 96 1 883,320 44 1,132,548 96 1 883,320 44 1,132,548 96 1 883,320 44 1,132,548 96 1 883,320 44 1,132,548 96 1 883,320 44 1,132,548 96 1 883,320 44 1,132,548 96 1 883,320 44 1,132,548 96 1 883,320 44 1,132,548 96 1 883,320 44 1,132,548 96 1 883,320 44 1,132,548 97 1 880,007 42 1,132,548 96 1 883,320 44 1,132,548 96 1 883,320 44 1,132,548 96 1 883,320 44 1,132,548 96 1 883,320 44 1,132,548 97 1 889,301 44 1,132,548 97 1 889,301 44 1,132,548 97 1 889,301 44 1,132,548 97 1 889,301 44 1,132,548 97 1 889,301 44 1,132,548 97 1 889,301 44 1,137,504 97 1 889,301 44 1,137,				
1 440/780				
1 444,193	1 420.886		1 849.792	
1 445,730 64 185,5912 35 1452,909 64 185,697 35 1452,909 64 185,7961 45 1457,944 64 185,615 87 1461,156 64 185,966 65 1863,498 87 1465,906 65 1863,498 87 1467,909 65 1863,498 87 1467,909 65 1863,498 87 1467,909 64 1869,807 43 187,843 65 1872,195 43 1532,536 96 1872,344 44 1525,295 96 1883,420 44 1525,295 96 1883,440 44 1525,295 96 1883,440 44 1525,295 96 1887,007 42 1539,147 67 1887,007 42 1539,147 67 1887,007 42 1539,147 67 1887,007 42 1535,488 67 1887,472 103 1562,874 67 1887,007 42 155,600 96 187,007 42 155,600 96 1887,007 42 155,600 96 1887,007 42 155,600 96 1887,007 42 155,600 96 1887,007 42 155,600 96 1887,007 42 155,600 96 1887,007 42 155,600 96 1887,007 42 155,600 97 1886,905 41 1560,275 45 1500,200 97 1896,905 41 1560,200 40 40 40 40 40 40 40 40 40 40 40 40 4	1 440.780		1 850.379	
1 449.309	1 444.193	64	1 852.935	
1 452,909	1 445.730	64	1 855.912	
1 457.944 64 1.860.615 87 1 461.156 64 1.861.209 35 1 465.926 65 1.863.498 87 1 467.990 65 1.867.516 87 1 470.079 64 1.869.807 43 1 487.433 65 1.872.195 43 1 523.536 96 1.872.344 44 1 1.523.548 96 1.883.420 44 1 1.523.548 96 1.883.420 44 1 1.525.295 96 1.884.444 43 1 1.525.306 96 1.887.007 42 1 1.539.147 67 1.887.021 44 1 1.522.448 67 1.882.012 43 1 1.562.874 67 1.882.012 43 1 1.563.607 66 1.892.922 43 1 1.565.280 97 1.896.995 41 1 1.565.280 97 1.896.995 41 1 1.565.292 97 1.896.995 41 1 1.565.292 97 1.896.995 41 1 1.565.292 97 1.896.995 41 1 1.565.292 97 1.896.995 41 1 1.565.293 99 1.907.000 43 1 1.598.175 66 1.906.875 44 1 1.598.175 45 1.906.875 44 1 1.598.175 45 1.906.875 45 1 1.598.175 45 1.906.875 45 1 1.598.175 45 1.906.875 45 1 1.598.175 45 1.906.875 45 1 1.598.175 45 1.906.875 45 1 1.598.175 45 1	1 449.309	64	1 856.697	35
1 461.156	1 452.909	64	1 857.961	45
1 465 926 65 1863.498 87 1470.999 65 1867.516 887 1470.079 64 1869.807 43 1470.079 64 1869.807 43 1487.433 65 1872.195 43 1487.433 65 1872.195 43 1525.536 96 1872.344 44 1525.536 96 1883.420 44 1525.595 96 1883.420 44 1525.595 96 1887.007 42 1539.147 67 1887.021 44 1525.506 96 1887.007 42 1539.147 67 1887.021 44 1525.506 96 1887.007 42 1539.147 67 1887.021 44 1526.874 67 1887.021 44 1526.874 67 1887.021 44 1566.874 67 1892.012 43 1565.280 97 1896.995 41 1565.280 97 1896.995 41 1565.292 43 1565.292 43 1565.292 97 1896.292 43 1565.292 14 1566.277 67 1903.284 41 1577.904 66 1904.538 51 1579.118 97 1906.208 44 1598.175 66 1906.875 44 160.098 39 1907.000 43 1668.811 39 1907.140 42 1668.811 39 1907.140 42 1668.811 39 1913.186 41 1681.767 39 1914.884 44 160.099 39 1917.343 41 1690.709 39 1917.343 41 1690.709 39 1917.343 41 1701.976 38 1926.299 41 171.348 41 1701.976 38 1926.299 41 171.348 41 1701.976 38 1926.299 41 171.348 41 1701.976 38 1926.299 41 171.348 41 1701.976 38 1932.736 41 171.348 38 1932.736 41 171.248 38 1932.736 41 171.248 38 1932.736 41 171.248 38 1932.736 41 171.248 38 1932.736 41 171.248 38 1932.736 41 171.248 38 1932.736 41 171.248 38 1932.736 51 1719.610 37 1938.64 104 1711.712.83 38 1932.736 41 1711.248 38 1932.736 51 1719.610 37 1938.64 104 1711.712.83 38 1932.736 41 1711.712.83 38 1932.736 41 1711.712.83 38 1932.736 51 1719.610 37 1938.64 104 1711.712.83 38 1932.736 41 1711.712.83 38 1932.736 41 1711.712.83 38 1932.736 51 1719.610 37 1938.64 104 1771.712.83 38 1932.736 41 1711.712.83 38 1932.736 41 1711.712.83 38 1932.736 41 1711.712.83 38 1932.736 41 1711.712.83 38 1932.736 41 1711.712.83 38 1932.736 41 1711.712.83 38 1932.736 41 1711.713.715 38 1932.736 51 1719.610 37 1938.64 104 1771.714 38 1932.736 51 1719.610 37 1938.64 104 104 1071.714 38 1932.736 51 1719.610 37 1938.64 104 1071.714 38 1932.736 51 1719.610 37 1938.64 104 1071.714 38 1932.736 109 1333.855 109 1333.855 109 1333.855 109 1333.855 109 1333.855 109 1333.855 109 1333.855 109 1333.855 109 1333.857 109 1333.857 109 1333.857 109 1333	1 457.944	64	1 860.615	87
1 467,990 65 1 867,516 87 43 1 470,079 64 1 869,807 43 1 487,433 65 1 872,195 43 1 1 523,536 96 1 872,244 44 1 1 525,235 96 1 883,420 44 1 1 525,295 96 1 884,444 43 1 525,295 96 1 887,007 42 1 539,147 67 1 887,021 44 1 1 542,448 67 1 887,021 44 1 1 542,448 67 1 887,021 43 1 553,307 66 1 887,021 44 1 1 556,287 66 1 887,021 44 1 1 556,287 66 1 887,021 43 1 556,287 66 1 89,2922 43 1 556,287 66 1 89,2922 43 1 556,287 66 1 89,2922 43 1 556,287 66 1 89,2922 43 1 556,289 97 1 898,271 44 1 1 566,277 67 1 905,284 41 1 556,292 97 1 898,271 44 1 1 566,277 67 1 905,284 41 1 579,118 97 1 906,208 44 1 1 588,175 66 1 906,875 44 1 1 588,175 66 1 906,875 44 1 1 588,175 66 1 906,875 44 1 1 588,175 66 1 906,875 44 1 1 588,175 66 1 906,875 44 1 1 588,175 67 39 1 907,140 42 1 1 681,767 39 1 914,884 44 1 1 681,767 39 1 914,884 44 1 1 690,099 39 1 917,343 41 1 699,880 37 1 917,343 41 1 1 698,880 37 1 917,343 41 1 1 698,880 37 1 918,451 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 461.156	64	1 861.209	35
1 470,079	1 465.926	65	1 863.498	87
1 487,433 65 1 872,195 43 1 523,536 96 1 883,420 44 1 523,548 96 1 884,444 43 1 525,295 96 1 884,007 42 1 539,147 67 1 887,021 44 1 539,147 67 1 887,021 44 1 542,448 67 1 887,021 43 1 562,874 67 1 882,012 43 1 563,607 66 1 892,922 43 1 565,280 97 1 898,271 44 1 565,292 97 1 898,271 44 1 566,277 67 1 903,284 41 1 579,118 97 1 906,208 44 1 579,118 97 1 906,208 44 1 598,175 66 1 906,875 44 1 680,223 39 1 907,000 43 1 660,098 39 1 907,000 43 1 660,811 39 1 91,31,86 41 1 699,880 37 1 918,851 44 1 699,880	1 467.990	65	1 867.516	87
1523.536 96	1 470.079	64	1 869.807	43
1523-548 96	1 487.433	65	1 872.195	43
1 525 295 96 1 884.444 43 1 525.306 96 1 887.007 42 1 539,147 67 1 887.021 44 1 542.448 67 1 887.472 103 1 562.874 67 1 892.012 43 1 563.607 66 1 892.922 43 1 565.280 97 1 896.995 41 1 565.292 97 1 898.271 44 1 566.277 67 1 903.284 41 1 579.118 97 1 905.288 51 1 579.118 97 1 906.208 44 1 598.175 66 1 904.538 51 1 579.118 97 1 906.208 44 1 598.175 66 1 906.875 44 1 600.098 39 1 907.000 43 1 600.098 39 1 907.000 43 1 608.811 39 1 914.884 44 1 697.707 39 1 914.884 44 1 699.880 37 1 918.451 41 1 701.976	1 523.536	96	1 872.344	44
1 525,306 96 1 887,007 42 1 539,147 67 1 887,021 44 1 542,448 67 1 887,472 103 1 562,874 67 1 892,912 43 1 563,607 66 1 892,922 43 1 565,280 97 1 896,995 41 1 566,292 97 1 898,271 44 1 566,292 97 1 903,284 41 1 579,044 66 1 904,538 51 1 579,118 97 1 906,208 44 1 598,175 66 1 906,875 44 1 680,223 39 1 907,000 43 1 606,008 39 1 907,140 42 1 688,811 39 1 913,186 41 1 681,767 39 1 914,884 44 1 690,709 39 1 917,343 41 1 701,976 38 1 92,259 41 1 710,361 37 1 918,451 41 1 712,483 38 1 932,336 41 1 712,433	1 523.548	96	1 883.420	44
1 525,306 96 1 887,007 42 1 539,147 67 1 887,021 44 1 542,448 67 1 887,472 103 1 562,874 67 1 892,912 43 1 563,607 66 1 892,922 43 1 565,280 97 1 896,995 41 1 566,292 97 1 898,271 44 1 566,292 97 1 903,284 41 1 579,044 66 1 904,538 51 1 579,118 97 1 906,208 44 1 598,175 66 1 906,875 44 1 680,223 39 1 907,000 43 1 606,008 39 1 907,140 42 1 688,811 39 1 913,186 41 1 681,767 39 1 914,884 44 1 690,709 39 1 917,343 41 1 701,976 38 1 92,259 41 1 710,361 37 1 918,451 41 1 712,483 38 1 932,336 41 1 712,433	1 525.295	96	1 884.444	43
1 539,147 67 1 887,021 44 1 542,448 67 1 887,472 103 1 562,874 67 1 892,012 43 1 563,607 66 1 892,922 43 1 565,280 97 1 896,995 41 1 566,297 67 1 903,284 44 1 577,904 66 1 904,538 51 1 579,118 97 1 906,208 44 1 598,175 66 1 906,875 44 1 600,023 39 1 907,000 43 1 668,811 39 1 913,186 41 1 681,767 39 1 914,884 44 1 690,709 39 1 917,343 41 1 690,880 37 1 918,481 41 1 701,976 38 1 92,239 41 1 711,123 38 1 92,239 41 1 711,123 38 1 92,239 41 1 711,123 38 1 93,385 41 1 712,443 38 1 93,385 41 1 712,44				
1 542,448 67 1 887,472 103 1 562,874 67 1 892,012 43 1 565,607 66 1 892,922 43 1 565,280 97 1 896,995 41 1 565,292 97 1 898,271 44 1 566,277 67 1 903,284 41 1 577,904 66 1 904,538 51 1 598,175 66 1 906,875 44 1 650,223 39 1 907,000 43 1 660,098 39 1 907,40 42 1 668,811 39 1 907,40 42 1 668,811 39 1 907,000 43 1 660,098 39 1 907,40 42 1 668,811 39 1 913,186 41 1 690,709 39 1 914,884 44 1 690,709 39 1 914,845 44 1 701,976 38 1 926,259 41 1 711,123 38 1 932,736 41 1 718,212 37 1 93,385 41 1 718,212 <t< td=""><td>1 539.147</td><td></td><td></td><td></td></t<>	1 539.147			
1 562.874 67 1 892.012 43 1 565.070 66 1 892.922 43 1 565.280 97 1 896.995 41 1 565.292 97 1 898.271 44 1 566.277 67 1 903.284 41 1 577.904 66 1 904.538 51 1 579.118 97 1 906.208 44 1 598.175 66 1 906.875 44 1 660.098 39 1 907.000 43 1 660.098 39 1 907.000 43 1 681.767 39 1 914.884 44 1 690.709 39 1 917.343 41 1 690.709 39 1 917.343 41 1 701.976 38 1 926.259 41 1 710.361 37 1 918.451 41 1 710.361 37 1 937.393 51 1 718.212 37 1 937.393 51 1 719.610 37 1 938.64 104 1 722.744 38 1 946.92 104 1 728.271				
1 563.607 66 1 892.922 43 1 565.280 97 1 896.995 41 1 565.292 97 1 898.271 44 1 566.277 67 1 903.284 41 1 577.904 66 1 904.538 51 1 579.118 97 1 906.208 44 4 1 598.175 66 1 906.875 44 1 660.223 39 1 907.000 43 1 660.811 39 1 907.000 43 1 668.811 39 1 913.186 41 1 681.767 39 1 914.884 44 1 699.709 39 1 914.884 44 1 699.800 37 1 918.451 41 1 701.976 38 1 926.259 41 1 711.23 38 1 927.239 41 1 711.2483 38 1 932.736 41 1 712.483 38 1 933.885 41 1 779.610 37 1 938.64 10 1 728.271 38 1 946.426 86 1 731.117				
1 565.280 97 1 896.995 41 1 566.277 67 1 903.284 41 1 577.904 66 1 904.538 51 1 579.118 97 1 906.208 44 1 598.175 66 1 906.755 44 1 650.223 39 1 907.000 43 1 660.098 39 1 907.140 42 1 688.811 39 1 913.186 41 1 681.767 39 1 914.884 44 1 690.709 39 1 917.343 41 1 709.976 38 1 926.259 41 1 710.361 37 1 918.451 41 1 711.123 38 1 932.736 41 1 712.483 38 1 932.736 41 1 712.483 38 1 932.736 41 1 712.484 38 1 934.426 86 1 728.271 38 1 937.393 51 1 719.610 37 1 938.64 104 1 728.271 38 1 946.26 86 1 737.75 <				
1 565.292 97 1 898.271 44 1 566.277 67 1 903.284 41 1 577.904 66 1 904.538 51 1 579.118 97 1 906.208 44 1 598.175 66 1 906.875 44 1 650.223 39 1 907.000 43 1 660.098 39 1 907.140 42 1 668.811 39 1 913.186 41 1 690.709 39 1 914.884 44 1 690.709 39 1 917.343 41 1 699.880 37 1 918.451 41 1 701.976 38 1 926.259 41 1 710.361 37 1 918.451 41 1 711.483 38 1 932.736 41 1 711.483 38 1 932.736 41 1 711.444 38 1 93.7393 51 1 79.610 37 1 938.64 104 1 722.744 38 1 946.92 104 1 728.271 38 1 946.92 104 1 730.680				
1 566.277 67 1 903.284 41 1 577.904 66 1 904.538 51 1 579.118 97 1 906.208 44 1 598.175 66 1 906.875 44 1 650.223 39 1 907.000 43 1 660.098 39 1 907.140 42 1 688.811 39 1 913.186 41 1 681.767 39 1 914.884 44 1 690.709 39 1 917.343 41 1 701.976 38 1 926.259 41 1 710.361 37 1 927.239 41 1 711.123 38 1 932.736 41 1 711.243 38 1 932.736 41 1 711.243 38 1 933.885 41 1 712.444 38 1 938.64 104 1 722.721 38 1 946.92 104 1 728.271 38 1 946.92 104 1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 737.15				
1 577,904 66 1 904,538 51 1 579,118 97 1 906,208 44 1 598,175 66 1 906,875 44 1 650,223 39 1 907,000 43 1 660,098 39 1 907,140 42 1 668,811 39 1 913,186 41 1 691,767 39 1 914,884 44 1 690,709 39 1 917,343 41 1 699,880 37 1 918,451 41 1 701,976 38 1 926,259 41 1 710,361 37 1 927,239 41 1 711,123 38 1 932,736 41 1 712,483 38 1 932,885 41 1 718,212 37 1 937,393 51 1 719,610 37 1 938,64 104 1 721,744 38 1 946,426 86 1 728,271 38 1 946,92 104 1 728,221 37 1 950,811 86 1 730,680 36 1 950,906 86 1 731,117				
1 579.118 97 1 906.208 44 1 598.175 66 1 906.875 44 1 650.223 39 1 907.000 43 1 660.098 39 1 907.140 42 1 668.811 39 1 913.186 41 1 681.767 39 1 914.884 44 1 690.709 39 1 917.343 41 1 699.880 37 1 918.451 41 1 701.976 38 1 926.259 41 1 711.123 38 1 932.736 41 1 711.1243 38 1 932.736 41 1 712.483 38 1 933.885 41 1 718.212 37 1 937.393 51 1 719.610 37 1 938.64 104 1 721.744 38 1 946.92 104 1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 731.117 38 1 966.969 51 1 809.901 45 1 970.988 49 1 835.51				
1 598.175 66 1 906.875 44 1 650.223 39 1 907.000 43 1 660.098 39 1 907.140 42 1 668.811 39 1 913.186 41 1 681.767 39 1 914.884 44 1 690.709 39 1 917.343 41 1 699.880 37 1 918.451 41 1 701.976 38 1 926.259 41 1 710.361 37 1 927.239 41 1 711.123 38 1 932.736 41 1 712.483 38 1 933.885 41 1 718.212 37 1 937.393 51 1 719.610 37 1 938.64 104 1 721.744 38 1 946.92 104 1 728.271 38 1 946.92 104 1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 731.117 38 1 950.906 86 1 737.715 38 1 970.988 49 1 823.611				
1 650.223 39 1 907.000 43 1 660.098 39 1 907.140 42 1 668.811 39 1 913.186 41 1 681.767 39 1 914.884 44 1 690.709 39 1 917.343 41 1 699.880 37 1 918.451 41 1 701.976 38 1 926.259 41 1 710.361 37 1 927.239 41 1 711.123 38 1 932.736 41 1 712.483 38 1 937.393 51 1 719.610 37 1 938.84 10 1 719.610 37 1 938.64 104 1 721.744 38 1 946.92 104 1 728.271 38 1 946.92 104 1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 731.117 38 1 950.906 86 1 737.715 38 1 950.906 86 1 835.011 45 1 970.988 49 1 823.611				
1 660.098 39 1 907.140 42 1 668.811 39 1 913.186 41 1 681.767 39 1 914.884 44 1 690.709 39 1 917.343 41 1 699.880 37 1 918.451 41 1 701.976 38 1 926.259 41 1 710.361 37 1 927.239 41 1 711.123 38 1 932.736 41 1 712.483 38 1 933.885 41 1 718.212 37 1 937.393 51 1 719.610 37 1 938.64 104 1 721.744 38 1 946.426 86 1 728.271 38 1 946.92 104 1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 731.117 38 1 950.906 86 1 737.715 38 1 950.906 86 1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 835.214				
1 668.811 39 1 913.186 41 1 681.767 39 1 914.884 44 1 690.709 39 1 917.343 41 1 699.880 37 1 918.451 41 1 701.976 38 1 926.259 41 1 710.361 37 1 927.239 41 1 711.123 38 1 932.736 41 1 712.483 38 1 933.885 41 1 718.212 37 1 937.393 51 1 719.610 37 1 938.64 104 1 721.744 38 1 946.426 86 1 728.271 38 1 946.92 104 1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 731.117 38 1 951.236 21 1 737.715 38 1 966.969 51 1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.031				
1 681.767 39 1 914.884 44 1 690.709 39 1 917.343 41 1 699.880 37 1 918.451 41 1 701.976 38 1 926.259 41 1 710.361 37 1 927.239 41 1 711.123 38 1 932.736 41 1 712.483 38 1 933.885 41 1 718.212 37 1 937.393 51 1 719.610 37 1 938.64 104 1 721.744 38 1 946.92 104 1 728.271 38 1 946.92 104 1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 731.117 38 1 950.906 86 1 737.715 38 1 96.969 51 1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.214 88 1 975.752 109 1 838.118				
1 690.709 39 1 917.343 41 1 699.880 37 1 918.451 41 1 701.976 38 1 926.259 41 1 710.361 37 1 927.239 41 1 711.123 38 1 932.736 41 1 712.483 38 1 933.885 41 1 718.212 37 1 937.393 51 1 719.610 37 1 938.64 104 1 721.744 38 1 946.426 86 1 728.271 38 1 946.92 104 1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 731.117 38 1 951.236 21 1 737.715 38 1 966.969 51 1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.031 88 1 977.752 109 1 835.031 88 1 977.161 109 1 838.118				
1 699.880 37 1 918.451 41 1 701.976 38 1 926.259 41 1 710.361 37 1 927.239 41 1 711.123 38 1 932.736 41 1 712.483 38 1 933.885 41 1 718.212 37 1 937.393 51 1 719.610 37 1 938.64 104 1 721.744 38 1 946.426 86 1 728.271 38 1 946.92 104 1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 731.117 38 1 951.236 21 1 737.715 38 1 966.969 51 1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.031 88 1 977.761 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1701.976 38 1 926.259 41 1710.361 37 1 927.239 41 1711.123 38 1 932.736 41 1712.483 38 1 933.885 41 1 718.212 37 1 937.393 51 1 79.610 37 1 938.64 104 1 721.744 38 1 946.426 86 1 728.271 38 1 946.92 104 1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 731.117 38 1 951.236 21 1 737.715 38 1 966.969 51 1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.214 88 1 975.752 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1 710.361 37 1 927.239 41 1 711.123 38 1 932.736 41 1 712.483 38 1 933.885 41 1 718.212 37 1 937.393 51 1 719.610 37 1 938.64 104 1 721.744 38 1 946.426 86 1 728.271 38 1 946.92 104 1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 731.117 38 1 951.236 21 1 737.715 38 1 966.969 51 1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.031 88 1 975.752 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1 711.123 38 1 932.736 41 1 712.483 38 1 933.885 41 1 718.212 37 1 937.393 51 1 719.610 37 1 938.64 104 1 721.744 38 1 946.426 86 1 728.271 38 1 946.92 104 1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 731.117 38 1 951.236 21 1 737.715 38 1 966.969 51 1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.031 88 1 975.752 109 1 835.214 88 1 977.161 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1 712.483 38 1 933.885 41 1 718.212 37 1 937.393 51 1 719.610 37 1 938.64 104 1 721.744 38 1 946.426 86 1 728.271 38 1 946.92 104 1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 731.117 38 1 951.236 21 1 737.715 38 1 966.969 51 1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.031 88 1 975.752 109 1 835.214 88 1 977.161 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1718.212 37 1 937.393 51 1719.610 37 1 938.64 104 1721.744 38 1 946.426 86 1728.271 38 1 946.92 104 1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 731.117 38 1 951.236 21 1 737.715 38 1 966.969 51 1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.031 88 1 975.752 109 1 835.214 88 1 977.161 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1 719.610 37 1 938.64 104 1 721.744 38 1 946.426 86 1 728.271 38 1 946.92 104 1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 731.117 38 1 951.236 21 1 737.715 38 1 966.969 51 1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.031 88 1 975.752 109 1 835.214 88 1 977.161 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1 721.744 38 1 946.426 86 1 728.271 38 1 946.92 104 1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 731.117 38 1 951.236 21 1 737.715 38 1 966.969 51 1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.031 88 1 975.752 109 1 835.214 88 1 977.161 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1 728.271 38 1 946.92 104 1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 731.117 38 1 951.236 21 1 737.715 38 1 966.969 51 1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.031 88 1 975.752 109 1 835.214 88 1 977.161 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1 728.921 37 1 950.811 86 1 730.680 36 1 950.906 86 1 731.117 38 1 951.236 21 1 737.715 38 1 966.969 51 1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.031 88 1 975.752 109 1 835.214 88 1 977.161 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1 730.680 36 1 950.906 86 1 731.117 38 1 951.236 21 1 737.715 38 1 966.969 51 1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.031 88 1 975.752 109 1 835.214 88 1 977.161 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1 731.117 38 1 951.236 21 1 737.715 38 1 966.969 51 1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.031 88 1 975.752 109 1 835.214 88 1 977.161 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1 737.715 38 1 966.969 51 1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.031 88 1 975.752 109 1 835.214 88 1 977.161 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1 809.901 45 1 970.988 49 1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.031 88 1 975.752 109 1 835.214 88 1 977.161 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1 823.611 45 1 973.807 50 1 831.550 45 1 974.150 109 1 835.031 88 1 975.752 109 1 835.214 88 1 977.161 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1 831.550 45 1 974.150 109 1 835.031 88 1 975.752 109 1 835.214 88 1 977.161 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1 835.031 88 1 975.752 109 1 835.214 88 1 977.161 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1 835.214 88 1 977.161 109 1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1 838.118 35 1 985.572 21 1 838.927 88 1 986.119 50				
1 838.927 88 1 986.119 50				
1 839.112 88 1 995.677 49				
	1 839.112	88	1 995.677	49

TABLE 11. Wavelength finding list for allowed lines for Na III—Continued

TABLE 11. Wavelength finding list for allowed lines for Na III—Continued

Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.	
2 004.214	54	2 145.232	60	
2 005.216	21	2 146.235	94	
2 005.548	49	2 148.573	61	
2 007.572	47	2 151.653	60	
2 008.468	50	2 158.600	46	
2 011.865	48	2 159.089	93	
2 014.169	91	2 163.177	61	
2 017.024	91	2 167.208	46	
2 017.246	91	2 169.706	61	
2 021.225	50	2 173.494	61	
2 022.298	40	2 174.397	46	
2 023.228	47	2 174.524	60	
2 024.293	57	2 180.086	61	
2 028.557	40	2 182.848	20	
2 030.230	50	2 185.299	92	
2 031.128	49	2 185.494	93	
2 035.898	54	2 189.432	59	
2 037.780	40	2 190.179	92	
2 041.665	47	2 193.514	46	
2 043.289	32	2 196.121	59	
2 044.130	47	2 200.921	46	
2 044.821	90	2 202.831	20	
2 045.450	40	2 208.065	59	
2 047.992	90	2 209.870	46	
2 048.305	90	2 212.353	92	
2 048.725	40	2 214.208	20	
2 051.486	90	2 217.354	92	
2 051.853	40	2 225.279	25	
2 055.185	40	2 225.928	20	
2 056.619	57	2 230.328	20	
2 058.755	40	2 232.188	25	
2 060.363	47	2 239.484	20	
2 062.987	40	2 246.710	20	
2 065.278	40	2 251.473	20	
2 066.598	32	2 278.414	25	
2 066.714	62	2 279.482	77	
2 066.923	32	2 280.439	52	
2 072.673	62	2 281.620	77	
2 094.805	53	2 285.658	25	
2 099.563	55	2 288.446	52	
2 100.420	62	2 309.986	24	
2 102.763	56	2 361.698	58	
2 104.479	53	2 367.295	24	
2 104.753	89	2 369.481	58	
2 106.575	62	2 370.286	58	
2 109.279	89	2 378.127	58	
2 112.653	89	2 380.668	58	
2 116.749	56	2 386.992	30	
2 120.765	94	2 393.592	30	
2 124.512	94	2 394.028	30	
2 126.627	56	2 406.588	110	
2 127.613	55	2 459.309	110	
2 140.722	31	2 468.855	110	
2 141.071	31	2 474.731	19	
2 144.197	31	2 497.015	19	
2 144.547	31	2 510.264	19	

TABLE 11. Wavelength finding list for allowed lines for Na III—Continued

TABLE 11. Wavelength finding list for allowed lines for Na III—Continued

Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)
2 530.246	19	6 937.75
2 542.799	19	6 967.17
2 553.546	19	6 987.17
2 563.304	19	7 209.77
2 592.778	23	7 231.20
2 608.861	23	7 643.56
2 637.454	23	7 766.57
2 665.195	23	7 791.43
2 682.192	23	7 985.05
2 740.3	108	8 264.90
2 763.6	108	8 293.06
2 766.7	108	
2 789.310	85	
2 833.534	85	
2 868.249	85	
2 915.033	85	
3 008.200	22	
3 036.939	22	
3 070.566	22	
3 106.117	22	
3 136.767	22	
4 762.726	80	
4 779.960	80	
4 945.591	80	
5 160.058	29	
5 195.305	29	
5 196.039	84	
5 197.358	29	
5 201.381	79	
5 221.943	79	
5 351.624	84	
5 376.974	79	
5 398.951	79	
5 414.454	84	
5 524.023	78	
5 583.607	84	
5 722.55	82	
5 746.39	83	
5 852.04	83	
5 911.84	82	
5 928.16	83	
5 935.82	82	
6 018.62	34	
6 048.22	81	
6 050.14	83	
6 069.43	34	
6 131.53	83	
6 192.56	81	
6 260.07	81	
6 310.24	107	
6 326.65	107	
6 360.11	107	
6 662.05	106	
6 680.34	106	
6 897.55	101	

Table 12. Transition probabilities of allowed lines for Na III (references for this table are as follows: 1=Butler and Zeippen, 15 2=Tachiev and Froese Fischer, 97 and 3=McPeake and Hibbert 57)

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{\mathrm{vac}} \ (\mathring{\mathrm{A}})$ or $\sigma \ (\mathrm{cm}^{-1})^{\mathrm{a}}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
1	$2s^22p^5 - 2s2p^6$	$^{2}P^{\circ}-^{2}S$		378.79	455–264 455.0	6–2	1.26+02	9.00-02	6.73-01	-0.268	B+	2,3
				378.136	0.0-264 455.0	4-2	8.42+01	9.03-02	4.50-01	-0.442	$\mathrm{B} +$	2,3
				380.100	1 366.3–264 455.0	2–2	4.13+01	8.95-02	2.24-01	-0.747	$\mathrm{B} +$	2,3
2	$2p^5 - 2p^4(^3P)3s$	$^{2}P^{\circ}-^{4}P$										
	-r -r (-)			272.449	0.0-367 040.66	4-4	3.37-01	3.75-04	1.34-03	-2.824	C	2,3
				273.087	1 366.3–367 550.17	2-2	1.46-01	1.63 - 04	2.93 - 04	-3.487	D+	2,3
				272.072	0.0-367 550.17	4-2	1.27 - 02	7.05 - 06	2.53 - 05	-4.550	D	2,3
				273.109	0.0-366 154.41	4–6			1.23 - 04			2,3
				273.467	1 366.3–367 040.66	2–4	3.46-02	7.75 - 05	1.40-04	-3.810	D+	2,3
3		$^{2}P^{\circ}-^{2}P$		267.72	455–373 981.5	6–6	1.14+02	1.23-01	6.50-01	-0.132	B+	2,3
				267.643	0.0-373 632.32	4-4	9.67+01	1.04-01	3.66-01	-0.381	$\mathrm{B}+$	2,3
				267.871	1 366.3–374 679.91	2-2	7.56+01	8.13 - 02	1.43 - 01	-0.789	$\mathrm{B} +$	2,3
				266.894	0.0-374 679.91	4–2			7.33 - 02			2,3
				268.625	1 366.3–373 632.32	2–4	1.77 + 01	3.84-02	6.78 - 02	-1.115	B+	2,3
4	$2p^5 - 2p^4(^1D)3s$	$^{2}P^{\circ}-^{2}D$		250.80	455–399 177.8	6–10	4.48+01	7.05 - 02	3.49-01	-0.374	B+	2,3
				250.517	0.0-399 174.71	4-6	4.49+01	6.33-02	2.09-01	-0.597	B+	2,3
				251.372	1 366.3-399 182.31	2-4	3.87 + 01	7.33 - 02	1.21 - 01	-0.834	B +	2,3
				250.512	0.0–399 182.31	4–4	6.10+00	5.74-03	1.89 - 02	-1.639	$\mathrm{B} +$	2,3
5	$2p^5 - 2p^4(^1S)3s$	$^{2}P^{\circ}-^{2}S$		230.11	<i>455</i> –435 028.00	6–2	4.50+01	1.19-02	5.41-02	-1.146	C	2,3
				229.870	0.0-435 028.00	4–2	2.91+01	1.15-02	3.49-02	-1.337	C	2,3
				230.594	1 366.3–435 028.00	2-2	1.59+01	1.27 - 02	1.92-02	-1.595	C	2,3
6	$2p^5 - 2p^4(^3P)3d$	$^{2}P^{\circ}-^{4}D$										
	1 1 7			217.198	0.0-460 409.70	4-6	6.79-02	7.20-05	2.06-04	-3.541	C	2,3
				217.757	1 366.3-460 593.62	2-4	4.92-02	7.00 - 05	1.00 - 04	-3.854	D	2,3
				217.111	0.0-460 593.62	4-4	2.44 - 01	1.72 - 04	4.92 - 04	-3.162	C+	2,3
				217.684	1 366.3–460 746.98	2–2	2.55 - 01	1.81 - 04	2.60 - 04	-3.441	C	2,3
				217.039	0.0–460 746.98	4–2	1.23-01	4.33 - 05	1.24-04	-3.761	C	2,3
7		$^{2}P^{\circ}-^{4}F$										
				215.660	0.0-463 691.90	4-6	2.21+01	2.32 - 02	6.58 - 02	-1.032	C	2,3
				216.118	1 366.3–464 077.16	2-4	1.57 + 01	2.20 - 02	3.13 - 02	-1.357	D+	2,3
				215.481	0.0–464 077.16	4–4	6.98+00	4.86-03	1.38 - 02	-1.711	D+	2,3
8		$^{2}P^{\circ}-^{2}D$		215.43	455–464 641.2	6–10	8.89+01	1.03-01	4.39-01	-0.209	C+	2,3
				215.336	0.0-464 390.17	4-6	5.31+01	5.54-02	1.57-01	-0.654	C+	2,3
				215.679	1 366.3–465 017.83	2-4	9.78 + 01	1.36-01	1.94 - 01	-0.565	C+	2,3
				215.046	0.0–465 017.83	4-4	4.49+01	3.11-02	8.82-02	-0.905	C	2,3
9		$^{2}P^{\circ}-^{4}P$										
				215.224	0.0-464 631.29	4-4	1.65+01	1.14-02	3.24-02	-1.341	D+	2,3
				215.961	1 366.3–464 411.94	2-2	3.03 - 01	2.12 - 04	3.01 - 04	-3.373	E+	2,3
				215.326	0.0-464 411.94	4–2			6.27 - 04			2,3
				215.079	0.0-464 945.37	4–6			1.78 - 01			2,3
				215.859	1 366.3–464 631.29	2–4	1.72+01	2.41 - 02	3.42-02	-1.317	D+	2,3
10		$^{2}P^{\circ}-^{2}P$		214.56	455–466 529.3	6–6	1.04+02	7.15-02	3.03-01	-0.368	C+	2,3
				214.230	0.0-466 788.03	4-4	5.16+01	3.55-02	1.00-01	-0.848	C+	2,3
				215.218	1 366.3–466 011.91	2-2	6.08+01	4.22-02	5.99-02	-1.074	C+	2,3
				214.587	0.0-466 011.91	4–2	3.33+01	1.15 - 02	3.25 - 02	-1.337	C+	2,3
				214.859	1 366.3–466 788.03	2–4	5.65 + 01	7.83 - 02	1.11-01	-0.805	C	2,3

Table 12. Transition probabilities of allowed lines for Na III (references for this table are as follows: 1=Butler and Zeippen, 15 2=Tachiev and Froese Fischer, 97 and 3=McPeake and Hibbert 57)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{vac}~(\mathring{A})$ or $\sigma~(cm^{-1})^a$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
11	$2p^5 - 2p^4(^1D)3d$	$^{2}P^{\circ}-^{2}P$		202.93	455–493 226.0	6–6	1.55+02	9.59-02	3.85-01	-0.240	С	2,3
				202.761	0.0-493 192.06	4-4	1.26+02	7.77-02	2.07-01	-0.508	C+	2,3
				203.282	1 366.3-493 293.98	2-2	9.24+01	5.73 - 02	7.67 - 02	-0.941	C	2,3
				202.719	0.0-493 293.98	4-2	6.72 + 01	2.07 - 02	5.53-02	-1.082	C	2,3
				203.324	1 366.3–493 192.06	2-4	2.73+01	3.38-02	4.52-02	-1.170	C	2,3
12		$^{2}P^{\circ}-^{2}S$		202.68	<i>455</i> –493 849.24	6–2	2.62+02	5.38-02	2.16-01	-0.491	C	2,3
				202.491	0.0-493 849.24	4-2	1.59+02	4.89 - 02	1.30-01	-0.709	C+	2,3
				203.053	1 366.3–493 849.24	2–2	1.03+02	6.38-02	8.53-02	-0.894	C	2,3
13		$^{2}P^{\circ}-^{2}D$		202.36	455–494 636.0	6-10	7.45+01	7.62-02	3.05-01	-0.340	C+	2,3
				202.182	0.0-494 602.73	4-6	7.21+01	6.63-02	1.76-01	-0.576	C+	2,3
				202.708	1 366.3-494 685.86	2-4	6.40+01	7.89 - 02	1.05 - 01	-0.802	C	2,3
				202.148	0.0–494 685.86	4-4	1.40+01	8.59-03	2.29-02	-1.464	C	2,3
14	$2p^5 - 2p^4(^1S)3d$	$^{2}P^{\circ}-^{2}D$		189.03	455–529 476.1	6–10	3.45+01	3.08-02	1.15-01	-0.733	D+	3
				188.871	0.0-529 461.64	4-6	3.34+01	2.68-02	6.67-02	-0.970	D+	3
				189.347	1 366.3-529 497.70	2-4	3.07+01	3.30-02	4.11-02	-1.180	D+	3
				188.858	0.0-529 497.70	4-4	5.42+00	2.90-03	7.21 - 03	-1.936	D	3
15	$2s2p^6 - 2s^22p^4(^3P)3p$	$^2S-^4D^{\circ}$										
				677.981	264 455.0-411 951.78	2-4	1.86-04	2 56-06	1.14-05	-5 291	D	2,3
				676.890	264 455.0–412 189.46	2–2			1.26-05			2,3
16		$^{2}S-^{2}P^{\circ}$		649.31	264 455.0–418 463.8	2-6	5.04-02	9.55-04	4.08-03	-2.719	D	2,3
				649.509	264 455.0–418 417.50	2–4	5.47-02	6.92-04	2.96-03	-2.859	D	2,3
				648.923	264 455.0–418 556.54	2–2			1.12-03			2,3
17	$2s2p^6 - 2s^22p^4(^1D)3p$	$^{2}S-^{2}P^{\circ}$		545.62	264 455.0–447 734.4	2-6	4.80-01	6.43-03	2.31-02	-1.891	D+	2,3
				546.171	264 455.0–447 547.96	2-4	4 73_01	4 23 _ 03	1.52-02	_2 073	D+	2,3
				544.507	264 455.0–448 107.31	2-2			7.90-03			2,3
18	$2s2p^6 - 2s^2 2p^4 (^1S)3p$	$^{2}S-^{2}P^{\circ}$		466.38	264 455.0–478 870.4	2-6			4.02-02			2,3
10	232p -23 2p (3)3p	3-1										
				466.355	264 455.0–478 884.07	2–4			2.69-02			2,3
				466.444	264 455.0–478 842.99	2–2	1.33+00	4.34-03	1.33-02	-2.061	D+	2,3
19	$2p^4(^3P)3s - 2p^4(^3P)3p$	$^{4}P - ^{4}P^{\circ}$	2 515.58	2 516.34	366 682.5–406 422.8	12–12	2.53+00	2.40-01	2.38+01	0.459	A	2,3
			2 497.015	2 497.768	366 154.41–406 190.15	6-6	1.99+00	1.86 - 01	9.19+00	0.048	A	2,3
			2 530.246	2 531.007	367 040.66–406 550.63	4-4	3.65 - 01	3.51 - 02	1.17+00	-0.853	B+	2,3
			2 542.799	2 543.562	367 550.17-406 865.11	2-2	3.39 - 01	3.28 - 02	5.50 - 01	-1.183	B+	2,3
			2 474.731	2 475.479	366 154.41–406 550.63	6-4	1.38+00	8.46 - 02	4.14+00	-0.294	A	2,3
			2 510.264	2 511.020	367 040.66-406 865.11	4-2	2.19+00	1.03 - 01	3.42+00	-0.385	A	2,3
			2 553.546	2 554.312	367 040.66-406 190.15	4-6	5.52 - 01	8.10-02	2.73 + 00	-0.489	A	2,3
			2 563.304	2 564.072	367 550.17–406 550.63	2-4	7.92-01	1.56-01	2.64+00	-0.506	A	2,3
20		$^4P-^4D^{\circ}$	2 232.52	2 233.21	366 682.5–411 461.0	12-20	3.61+00	4.50-01	3.97+01	0.732	A	2,3
			2 230.328	2 231.021	366 154.41–410 976.94	6-8	3.64+00	3.62-01	1.59+01	0.337	A	2,3
			2 246.710	2 247.407	367 040.66-411 536.38	4-6			9.14+00	0.092		2,3
			2 251.473	2 252.171	367 550.17–411 951.78	2–4			3.74+00			2,3
			2 202.831	2 203.518	366 154.41–411 536.38	6–6			2.70+00			2,3
			2 225.928	2 226.620	367 040.66–411 951.78	4-4			3.97+00			2,3
			2 239.484	2 240.179	367 550.17–412 189.46	2–2			3.43+00			2,3
			2 182.848	2 183.531	366 154.41–411 951.78	6–4			2.35-01			2,3
			2 102.070	2 103.331	500 154.41 -4 11 /51./0	U- 1	1.1-7-01	5.75-05	2.55-01	1.703	יע	2,3

TABLE 12. Transition probabilities of allowed lines for Na III (references for this table are as follows: 1=Butler and Zeippen, 15=2=Tachiev and Froese Fischer, 15=2=Tachiev and 15=3=Tachiev and

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\begin{array}{c} \lambda_{vac} \; (\mathring{A}) \\ \text{or} \; \sigma \; (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			2 214.208	2 214.898	367 040.66–412 189.46	4–2	5.14-01	1.89-02	5.51-01	-1.121	B+	2,3
21		$^4P-^4S^{\circ}$		1 971.55	366 682.5-417 403.98	12-4	5.15+00	1.00-01	7.79+00	0.079	B+	2,3
				1 951.236	366 154.41–417 403.98	6-4	2.38+00	9.06-02	3.49+00	-0.265	$\mathrm{B} +$	2,3
				1 985.572	367 040.66-417 403.98	4-4	1.78+00	1.05 - 01	2.76+00	-0.377	$\mathrm{B} +$	2,3
			2 005.216	2 005.865	367 550.17–417 403.98	2–4	9.67-01	1.17-01	1.54+00	-0.631	В	2,3
22		$^{2}P-^{4}P^{\circ}$										
			3 036.939	3 037.823	373 632.32–406 550.63	4–4			2.50 - 04			2,3
			3 106.117	3 107.018	374 679.91–406 865.11	2–2			7.34-04			2,3
			3 008.200	3 009.076	373 632.32–406 865.11	4–2			8.90-04			2,3
			3 070.566	3 071.458	373 632.32–406 190.15	4–6			4.61 - 04			2,3
			3 136.767	3 137.676	374 679.91–406 550.63	2–4	3.37-06	9.95-07	2.06-05	-5.701	D	2,3
23		$^{2}P-^{4}D^{\circ}$										
			2 637.454	2 638.240	373 632.32–411 536.38	4–6			1.17-01			2,3
			2 682.192	2 682.989	374 679.91–411 951.78	2–4			2.57-02			2,3
			2 608.861	2 609.640	373 632.32–411 951.78	4–4			2.44-03			2,3
			2 665.195	2 665.988	374 679.91–412 189.46	2–2			5.81-04			2,3
			2 592.778	2 593.553	373 632.32–412 189.46	4–2	4.70-05	2.37-06	8.09-05	-5.023	E+	2,3
24		$^{2}P-^{2}S^{\circ}$	2 328.78	2 329.49	<i>373 981.5</i> –416 909.31	6–2	3.18+00	8.62-02	3.97 + 00	-0.286	$\mathrm{B} +$	2,3
			2 309.986	2 310.697	373 632.32–416 909.31	4-2	3.08+00	1.23-01	3.75 + 00	-0.308	B+	2,3
			2 367.295	2 368.018	374 679.91–416 909.31	2-2	1.65-01	1.39-02	2.17-01	-1.556	C+	2,3
25		$^{2}P-^{2}P^{\circ}$	2 247.39	2 248.09	373 981.5–418 463.8	6-6	3.14+00	2.38-01	1.06+01	0.155	B+	2,3
			2 232.188	2 232.882	373 632.32–418 417.50	4-4	2.34+00	1.75-01	5.15+00	-0.155	$\mathrm{B} +$	2,3
			2 278.414	2 279.118	374 679.91-418 556.54	2-2	2.98+00	2.32-01	3.48+00	-0.333	$\mathrm{B} +$	2,3
			2 225.279	2 225.971	373 632.32 -418 556.54	4-2	1.09-01	4.05 - 03	1.19-01	-1.790	C	2,3
			2 285.658	2 286.363	374 679.91–418 417.50	2–4	7.73-01	1.21-01	1.83+00	-0.616	B+	2,3
26	$2p^4(^3P)3s - 2p^4(^1D)3p$	$^{2}P-^{2}D^{\circ}$		1 391.57	373 981.5–445 842.9	6–10	3.85-02	1.86-03	5.11-02	-1.952	C	2,3
				1 384.258	373 632.32–445 873.20	4-6	2.18-02	9.39-04	1.71-02	-2.425	D+	2,3
				1 406.121	374 679.91–445 797.52	2-4	4.94-03	2.93-04	2.71-03	-3.232	D	2,3
				1 385.709	373 632.32–445 797.52	4-4	5.96-02	1.72-03	3.13 - 02	-2.162	C	2,3
27		$^{2}P-^{2}P^{\circ}$		1 355.88	373 981.5–447 734.4	6-6	3.31+00	9.12-02	2.44+00	-0.262	В	2,3
				1 352.894	373 632.32–447 547.96	4-4	2.73+00	7.50-02	1.34+00	-0.523	В	2,3
				1 361.889	374 679.91–448 107.31	2–2	2.24+00	6.23 - 02	5.59 - 01	-0.904	В	2,3
				1 342.733	373 632.32–448 107.31	4–2	1.06+00	1.43 - 02	2.52 - 01	-1.243	C+	2,3
				1 372.344	374 679.91–447 547.96	2–4	5.81-01	3.28-02	2.97-01	-1.183	C+	2,3
28	$2p^4(^3P)3s - 2p^4(^1S)3p$	$^{2}P-^{2}P^{\circ}$		953.39	373 981.8–478 870.4	6–6	2.64-01	3.60-03	6.78-02	-1.666	C+	2,3
				950.103	373 632.32–478 884.07	4-4			3.53-02			2,3
				960.033	374 679.91–478 842.99	2–2	1.88 - 01	2.60 - 03	1.64 - 02	-2.284	B+	2,3
				950.474	373 632.32–478 842.99	4–2	1.00 - 01	6.77 - 04	8.48 - 03	-2.567	D+	2,3
				959.655	374 679.91–478 884.07	2–4	4.34-02	1.20-03	7.57-03	-2.620	D+	2,3
29	$2p^4(^1D)3s - 2p^4(^3P)3p$	$^{2}D-^{2}P^{\circ}$	5 183.64	5 185.11	399 177.8–418 463.8	10-6	4.85-02	1.17-02	2.00+00	-0.932	В	2,3
			5 195.305	5 196.752	399 174.71–418 417.50	6-4	4.58-02	1.24-02	1.27 + 00	-1.128	В	2,3
			5 160.058	5 161.495	399 182.31–418 556.54	4-2	4.42-02	8.83-03	6.00-01	-1.452	В	2,3
			5 197.358	5 198.805	399 182.31–418 417.50	4–4	4.85 - 03	1.97-03	1.35-01	-2.103	C+	2,3
30	$2p^4(^1D)3s-2p^4(^1D)3p$	$^{2}D-^{2}F^{\circ}$	2 389.99	2 390.72	399 177.8–441 006.2	10–14	3.04+00	3.64-01	2.87+01	0.561	A	2,3
			2 386.992	2 387.720	399 174.71–441 055.67	6-8	205 00	3.48-01	1 (1 01	0.320		2,3

TABLE 12. Transition probabilities of allowed lines for Na III (references for this table are as follows: 1=Butler and Zeippen, 15 2=Tachiev and Froese Fischer, 97 and 3=McPeake and Hibbert 57)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\begin{array}{c} \lambda_{vac} \; (\mathring{A}) \\ \text{or} \; \sigma \; (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
			2 394.028	2 394.757	399 182.31–440 940.20	4–6	2.80+00	3.61-01	1.14+01	0.160	Α	2,3
			2 393.592	2 394.321	399 174.71–440 940.20	6-6			9.21-01			2,3
		25 25°	2.1.0.25	2.1.12.00	200 155 0 445 042 0	10.10	4.00		1 00 01	0.450	ъ.	
31		² D- ² D	2 142.25	2 142.93	399 177.8–445 842.9	10–10	4.09+00	2.82-01	1.99+01	0.450	B+	2,3
			2 140.722	2 141.397	399 174.71–445 873.20	6-6	3.80+00	2.61-01	1.10+01	0.195	A	2,3
			2 144.547	2 145.223	399 182.31–445 797.52	4-4	3.88+00	2.67 - 01	7.55 + 00	0.029	B+	2,3
			2 144.197	2 144.873	399 174.71–445 797.52	6-4	1.98 - 01	9.08-03	3.85-01	-1.264	C+	2,3
			2 141.071	2 141.745	399 182.31–445 873.20	4-6	3.11-01	3.20-02	9.03 - 01	-0.893	В	2,3
32		$^{2}D-^{2}P^{\circ}$	2 058.79	2 059.45	399 177.8–447 734.4	10-6	3.92+00	1.50-01	1.02+01	0.176	B+	2,3
			2 066.598	2 067.258	399 174.71–447 547.96	6–4	3.72+00	1.59-01	6.48+00	-0.020	B+	2,3
			2 043.289	2 043.945	399 182.31–448 107.31	4–2			3.39+00			2,3
			2 066.923	2 067.583	399 182.31–447 547.96	4-4			2.74-01			2,3
					.,,							-,-
33	$2p^4(^1D)3s - 2p^4(^1S)3p$	$^{2}D-^{2}P^{\circ}$		1 254.82	399 177.8–478 870.4	10–6			2.75-02			2,3
				1 254.558	399 174.71–478 884.07	6–4			1.76-02			2,3
				1 255.324	399 182.31–478 842.99	4–2			7.08 - 03			2,3
		2 0 2		1 254.677	399 182.31–478 884.07	4–4			2.80 - 03			2,3
34	$2p^4(^3P)3p - 2p^4(^1S)3s$	$^{2}P^{\circ}-^{2}S$	6 035.5	6 037.1	418 463.8–435 028.00	6–2	4.64 - 03	8.46-04	1.01 - 01	-2.294	C	2,3
			6 018.62	6 020.29	418 417.50–435 028.00	4–2	3 31-03	8 98-04	7.12-02	-2 445	C	2,3
			6 069.43	6 071.11	418 556.54–435 028.00	2–2			2.97-02			2,3
												_,-
35	$2p^4(^3P)3p-2p^4(^3P)3d$	$^{4}P^{\circ}-^{4}D$		1 851.97	406 422.8–460 419.2	12-20	7.13+00	6.11 - 01	4.47 + 01	0.865	B +	2,3
				1 849.555	406 190.15-460 257.21	6-8	6.87 + 00	4.70 - 01	1.72 + 01	0.450	A	2,3
				1 856.697	406 550.63-460 409.70	4-6	4.22+00	3.27 - 01	7.99 + 00	0.117	B +	2,3
				1 861.209	406 865.11–460 593.62	2-4	2.34+00	2.43 - 01	2.98+00	-0.313	B +	2,3
				1 844.353	406 190.15-460 409.70	6-6	3.00+00	1.53 - 01	5.58+00	-0.037	B +	2,3
				1 850.379	406 550.63-460 593.62	4-4	4.37 + 00	2.24 - 01	5.47 + 00	-0.048	B +	2,3
				1 855.912	406 865.11-460 746.98	2-2	5.77 + 00	2.98 - 01	3.64+00	-0.225	B +	2,3
				1 838.118	406 190.15-460 593.62	6-4	6.77 - 01	2.29-02	8.31-01	-0.862	$\mathrm{B} +$	2,3
				1 845.143	406 550.63-460 746.98	4-2	1.69+00	4.31 - 02	1.05 + 00	-0.763	$\mathrm{B} +$	2,3
2.6		$^{4}P^{\circ}-^{2}F$										
36		'P - 'F		1 720 690	407 100 15 472 070 02	(0	2.47 02	1 40 02	5.05-02	2.052	D.	2.2
37		$^{4}P^{\circ}-^{2}D$		1 730.680	406 190.15–463 970.92	6–8	2.47-02	1.48-03	5.05-02	-2.032	D+	2,3
				1 728.921	406 550.63-464 390.17	4–6	8.00-02	5 38-03	1.22-01	-1 667	C	2,3
				1 719.610	406 865.11–465 017.83	2–4			5.64-01			2,3
				1 718.212	406 190.15–464 390.17	6–6			1.03-01			2,3
				1 710.212	406 550.63–465 017.83	4-4			7.06-02			2,3
				1 699.880	406 190.15–465 017.83	6–4			3.82-01			2,3
		4- 9 4-										
38		$^{4}P^{\circ}-^{4}P$		1 714.41	406 422.8–464 751.8	12–12			9.73+00	0.238		2,3
				1 701.976	406 190.15–464 945.37	6–6			1.98 + 00			2,3
				1 721.744	406 550.63–464 631.29	4–4			3.29 - 01			2,3
				1 737.715	406 865.11–464 411.94	2–2			5.87 - 01			2,3
				1 711.123	406 190.15–464 631.29	6–4			1.51 + 00			2,3
				1 728.271	406 550.63–464 411.94	4–2			2.09+00			2,3
				1 712.483	406 550.63–464 945.37	4–6			1.33+00			2,3
				1 731.117	406 865.11–464 631.29	2–4	1.87 + 00	1.68-01	1.91+00	-0.474	B+	2,3
39		$^{4}P^{\circ}-^{2}P$										
				1 660.098	406 550.63–466 788.03	4-4	2.56-04	1.06-05	2.31 - 04	-4.373	E+	2,3
				1 690.709	406 865.11-466 011.91	2–2	2.89 - 02	1.24 - 03	1.38 - 02	-2.606	D+	2,3
				1 650.223	406 190.15-466 788.03	6-4	2.72 - 03	7.39 - 05	2.41 - 03	-3.353	D	2,3
				1 650.223 1 681.767	406 190.15–466 788.03 406 550.63–466 011.91	6–4 4–2			2.41-03 3.99-03			2,3 2,3

TABLE 12. Transition probabilities of allowed lines for Na III (references for this table are as follows: 1=Butler and Zeippen, ¹⁵ 2=Tachiev and Froese Fischer, ⁹⁷ and 3=McPeake and Hibbert ⁵⁷)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\begin{array}{c} \lambda_{vac} \; (\mathring{A}) \\ \text{or} \; \sigma \; (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
40		$^{4}D^{\circ}-^{4}D$	2 041.90	2 042.56	411 461.0–460 419.2	20–20	1.80+00	1.13-01	1.52+01	0.354	B+	2,3
			2 028.557	2 029.210	410 976.94-460 257.21	8-8	1.93+00	1.19-01	6.36+00	-0.021	B+	2,3
			2 045.450	2 046.106	411 536.38-460 409.70	6-6	1.05+00	6.59-02	2.66+00	-0.403	B+	2,3
			2 055.185	2 055.843	411 951.78-460 593.62	4-4	6.39-01	4.05 - 02	1.10+00	-0.790	В	2,3
			2 058.755	2 059.413	412 189.46–460 746.98	2-2	6.95-01	4.42 - 02	6.00 - 01	-1.054	В	2,3
			2 022.298	2 022.950	410 976.94-460 409.70	8-6	4.62 - 01	2.13 - 02	1.13+00	-0.769	В	2,3
			2 037.780	2 038.435	411 536.38–460 593.62	6–4			1.12+00			2,3
			2 048.725	2 049.382	411 951.78–460 746.98	4–2			6.89 - 01			2,3
			2 051.853	2 052.510	411 536.38–460 257.21	6–8			4.67 - 01			2,3
			2 062.987	2 063.646	411 951.78–460 409.70	4–6			5.76-01			2,3
			2 065.278	2 065.938	412 189.46–460 593.62	2–4	2.58-01	3.30-02	4.49-01	-1.180	В	2,3
41		$^{4}D^{\circ}-^{4}F$		1 927.81	411 461.0–463 333.4	20–28	7.86+00	6.13-01	7.78+01	1.088	A	2,3
				1 926.259	410 976.94-462 891.04	8-10		6.21 - 01		0.696		2,3
				1 933.885	411 536.38–463 245.76	6–8		4.73 - 01		0.453		2,3
				1 932.736	411 951.78–463 691.90	4–6		4.51 - 01		0.256		2,3
				1 927.239	412 189.46–464 077.16	2–4			7.99 + 00	0.100		2,3
				1 913.186	410 976.94–463 245.76	8–8			1.91+00			2,3
				1 917.343	411 536.38–463 691.90	6–6			3.44+00			2,3
				1 918.451	411 951.78–464 077.16	4–4			3.20+00			2,3
				1 896.995	410 976.94–463 691.90	8–6			3.71-02			2,3
				1 903.284	411 536.38–464 077.16	6–4	9.39-02	3.40-03	1.28-01	-1.690	C+	2,3
42		$^{4}\text{D}^{\circ} - ^{2}\text{F}$		1 007 140	411 527 20 472 050 02	6.0	1.60.00	1.22 .01	4.6000	0.125	ъ	2.2
				1 907.140	411 536.38–463 970.92	6–8			4.60+00			2,3
		4 9 2		1 887.007	410 976.94–463 970.92	8–8	2.31-01	1.23-02	6.12-01	-1.007	C+	2,3
43		$^{4}D^{\circ}-^{2}D$										
				1 892.012	411 536.38-464 390.17	6–6	2.21 - 01	1.19 - 02	4.43 - 01	-1.146	C+	2,3
				1 884.444	411 951.78–465 017.83	4-4	2.58 - 01	1.38 - 02	3.41 - 01	-1.258	C+	2,3
				1 872.195	410 976.94-464 390.17	8-6	4.18 - 02	1.65 - 03	8.11-02	-1.879	C	2,3
				1 869.807	411 536.38–465 017.83	6–4			1.21 - 02			2,3
				1 907.000	411 951.78–464 390.17	4–6			3.49 + 00			2,3
				1 892.922	412 189.46–465 017.83	2–4	1.75-01	1.88-02	2.34-01	-1.425	С	2,3
44		$^{4}D^{\circ}-^{4}P$		1 876.50	411 461.0–464 751.8	20–12	5.06-01	1.60-02	1.98+00	-0.495	C+	2,3
				1 852.935	410 976.94-464 945.37	8-6	1.30-01	5.03-03	2.45-01	-1.395	C+	2,3
				1 883.420	411 536.38–464 631.29	6–4	1.07 - 01	3.79 - 03	1.41 - 01	-1.643	C+	2,3
				1 906.208	411 951.78-464 411.94	4–2			3.68 - 02			2,3
				1 872.344	411 536.38–464 945.37	6–6			2.57 - 01			2,3
				1 898.271	411 951.78–464 631.29	4–4			8.27 - 03			2,3
				1 914.884	412 189.46–464 411.94	2–2			1.52 - 01			2,3
				1 887.021	411 951.78–464 945.37	4–6			7.07 - 02			2,3
				1 906.875	412 189.46–464 631.29	2–4	7.82-01	8.52-02	1.07+00	-0.769	В	2,3
45		$^{4}D^{\circ}-^{2}P$										
				1 809.901	411 536.38–466 788.03	6–4			4.90-03			2,3
				1 849.792	411 951.78–466 011.91	4–2			3.18-04			2,3
				1 823.611	411 951.78–466 788.03	4–4			2.45-03			2,3
				1 857.961	412 189.46–466 011.91	2–2			2.59-03			2,3
				1 831.550	412 189.46–466 788.03	2–4	8.74-03	8.79-04	1.06-02	-2.755	D	2,3
46		$^{2}D^{\circ}-^{4}D$			44.404.05 ::2 ::2 ::2 ::		-		2.10			2.5
			2 167.208	2 167.888	414 281.85–460 409.70	6–6			2.19-02			2,3
			2 200.921	2 201.608	415 172.28–460 593.62	4–4			9.75-04			2,3
			2 158.600	2 159.278	414 281.85–460 593.62	6–4	3.67-03	1./1-04	7.29 - 03	-2.989	D	2,3

TABLE 12. Transition probabilities of allowed lines for Na III (references for this table are as follows: 1=Butler and Zeippen, 15 2=Tachiev and Froese Fischer, 97 and 3=McPeake and Hibbert 57)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			2 193.514	2 194.200	415 172.28–460 746.98	4–2	1.06-03	3.82-05	1.10-03	-3.816	E±	2,3
			2 174.397	2 175.078	414 281.85–460 257.21	6–8			1.90-02			2,3
			2 209.870	2 210.559	415 172.28-460 409.70	4-6	1.48-06	1.63-07	4.74-06	-6.186	E	2,3
47		$^{2}\text{D}^{\circ}-{}^{4}\text{F}$										
47		D - F	2 041.665	2 042.321	414 281.85–463 245.76	6–8	1 64+00	1 36-01	5.50+00	_0.088	B	2,3
			2 060.363	2 061.022	415 172.28–463 691.90	4–6			2.10+00			2,3
			2 023.228	2 023.880	414 281.85-463 691.90	6-6			8.08-01			2,3
			2 044.130	2 044.786	415 172.28-464 077.16	4-4	1.05 - 01	6.57-03	1.77 - 01	-1.580	C	2,3
			2 007.572	2 008.221	414 281.85–464 077.16	6-4	1.93 - 02	7.79 - 04	3.09 - 02	-2.330	D+	2,3
48		$^{2}\text{D}^{\circ}-{}^{2}\text{F}$				10–14						
40		<i>D</i> – 1	2011.065	2.012.515	414 201 05 462 050 02		6.27 00	5.16 01	2.05.01	0.401	ъ.	2.2
			2 011.865	2 012.515	414 281.85–463 970.92	6–8	6.37+00	5.16-01	2.05+01	0.491	B+	2,3
49		$^{2}D^{\circ}-^{2}D$		1 999.87	414 638.0–464 641.2	10–10	3.12+00	1.87-01	1.23+01	0.272	С	2,3
				1 995.677	414 281.85–464 390.17	6-6	8.12-01	4.85 - 02	1.91 + 00	-0.536	E	2,3
			2 005.548	2 006.197	415 172.28-465 017.83	4-4	1.50+08	9.05 - 02	2.39+00	-0.441	$\mathrm{B}+$	2,3
				1 970.988	414 281.85–465 017.83	6-4	2.44 - 01	9.49 - 03	3.69 - 01	-1.245	C+	2,3
			2 031.128	2 031.782	415 172.28–464 390.17	4–6	3.08+00	2.86-01	7.66+00	0.058	C+	2,3
50		$^{2}D^{\circ}-^{4}P$										
				1 986.119	414 281.85–464 631.29	6-4	8.79-02	3.47 - 03	1.36 - 01	-1.682	C	2,3
			2 030.230	2 030.883	415 172.28-464 411.94	4-2	6.48 - 03	2.00-04	5.36-03	-3.097	D	2,3
				1 973.807	414 281.85–464 945.37	6-6			5.55 - 01			2,3
			2 021.225	2 021.876	415 172.28–464 631.29	4–4			4.84 - 01			2,3
			2 008.468	2 009.118	415 172.28–464 945.37	4–6			3.49 + 00			2,3
51		$^{2}\text{D}^{\circ}-^{2}\text{P}$		1 927.11	414 638.0–466 529.3	10–6	3.96-01	1.32-02	8.40-01	-0.879	C+	2,3
				1 904.538	414 281.85–466 788.03	6-4	1.72-01	6.25-03	2.35-01	-1.426	C+	2,3
				1 966.969	415 172.28-466 011.91	4–2	4.61 - 01	1.34 - 02	3.46 - 01	-1.271	C+	2,3
				1 937.393	415 172.28–466 788.03	4–4	1.80-01	1.01 - 02	2.59-01	-1.394	C+	2,3
52		$^{2}\text{S}^{\circ}$ $ ^{4}\text{D}$										
			2 288.446	2 289.151	416 909.31-460 593.62	2-4	3.11-03	4.88-04	7.36-03	-3.011	D	2,3
			2 280.439	2 281.143	416 909.31–460 746.98	2-2	7.58 - 03	5.92 - 04	8.88 - 03	-2.927	D	2,3
53		$^{2}\text{S}^{\circ}-^{4}\text{P}$										
			2 094.805	2 095.470	416 909.31–464 631.29	2–4			5.62-01			2,3
			2 104.479	2 105.147	416 909.31–464 411.94	2–2	2.37-02	1.57-03	2.18-02	-2.503	D+	2,3
54		$^2S^{\circ}-^2P$	2 014.67	2 015.32	416 909.31–466 529.3	2-6	3.50+00	6.39-01	8.48+00	0.107	B+	2,3
			2 004.214	2 004.863	416 909.31–466 788.03	2-4	2.07+00	2.49-01	3.29+00	-0.303	B+	2.3
			2 035.898	2 036.552	416 909.31–466 011.91	2–2			5.20+00			2,3
55		4g° 2p										
55		$^4S^{\circ}-^2D$	2 127 (12	2 120 205	417 402 00 464 200 17	1.6	1 27 01	1 40 .02	2.0101	1 252	C	2.2
			2 127.613 2 099.563	2 128.285 2 100.229	417 403.98–464 390.17 417 403.98–465 017.83	4–6 4–4			3.91-01 $1.58+00$			2,3 2,3
				2 100.229	417 403.36–403 017.63	4-4	8.02-01	3.70-02	1.56+00	-0.042	Б	2,3
56		$^{4}\text{S}^{\circ} - ^{4}\text{P}$	2 111.36	2 112.03	417 403.98–464 751.8	4–12	2.79+00	5.60-01	1.56+01	0.350	B+	2,3
			2 102.763	2 103.430	417 403.98-464 945.37	4-6	2.31+00	2.30-01	6.37+00	-0.036	B+	2,3
			2 116.749	2 117.419	417 403.98–464 631.29	4–4			5.68 + 00			2,3
			2 126.627	2 127.299	417 403.98–464 411.94	4–2	3.71+00	1.26-01	3.52+00	-0.298	B+	2,3
57		$^{4}\text{S}^{\circ}-^{2}\text{P}$										
			2 024.293	2 024.945	417 403.98–466 788.03	4-4	9.33-03	5.74-04	1.53-02	-2.639	D+	2,3
			2 056.619	2 057.277	417 403.98-466 011.91	4-2	1.69-02	5.36-04	1.45 - 02	-2.669	D+	2,3
58		$^{2}P^{\circ}-^{4}D$										
50		1 - D	2 380.668	2 381.395	418 417.50 -460 409.70	4–6	2.86-04	3.65-05	1.14-03	-3.836	E+	2.3
			_ 200.000	2 001.070	.10 .17.00 100 407.70	. 0	55 0-1	2.32 03	1.11 03	2.020	- '	_,5

TABLE 12. Transition probabilities of allowed lines for Na III (references for this table are as follows: 1=Butler and Zeippen, 15 2=Tachiev and Froese Fischer, 97 and 3=McPeake and Hibbert 57)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			2 378.127	2 378.852	418 556.54–460 593.62	2-4	1.43-06	2.43-07	3.80-06	-6.313	Е	2,3
			2 370.286	2 371.010	418 417.50-460 593.62	4-4	8.01 - 04	6.75 - 05	2.11 - 03	-3.569	D	2,3
			2 369.481	2 370.205	418 556.54-460 746.98	2-2	4.75 - 05	4.00-06	6.25-05	-5.097	E	2,3
			2 361.698	2 362.420	418 417.50–460 746.98	4–2	3.81-04	1.59 - 05	4.96-04	-4.197	E+	2,3
59		$^{2}P^{\circ}-^{4}F$										
			2 208.065	2 208.754	418 417.50-463 691.90	4-6	2.63 - 01	2.88 - 02	8.39-01	-0.939	C+	2,3
			2 196.121	2 196.807	418 556.54-464 077.16	2-4	1.67 - 01	2.42 - 02	3.50 - 01	-1.315	C+	2,3
			2 189.432	2 190.117	418 417.50–464 077.16	4–4	9.47-02	6.81 - 03	1.96-01	-1.565	C	2,3
60		$^{2}P^{\circ}-^{2}D$	2 164.88	2 165.56	418 463.8–464 641.2	6-10	1.46+00	1.71-01	7.31+00	0.011	C+	2,3
			2 174.524	2 175.205	418 417.50–464 390.17	4-6	1.00+00	1.07-01	3.06+00	-0.369	D+	2,3
			2 151.653	2 152.329	418 556.54-465 017.83	2-4	1.34+00	1.86 - 01	2.64+00	-0.429	$\mathrm{B} +$	2,3
			2 145.232	2 145.908	418 417.50–465 017.83	4-4	8.27-01	5.71 - 02	1.61 + 00	-0.641	В	2,3
61		$^{2}P^{\circ}-^{4}P$										
			2 163.177	2 163.856	418 417.50–464 631.29	4-4	2.37-01	1.66-02	4.74 - 01	-1.178	C+	2,3
			2 180.086	2 180.768	418 556.54–464 411.94	2–2			1.81 - 04			2,3
			2 173.494	2 174.176	418 417.50–464 411.94	4–2	4.45 - 03	1.58 - 04	4.51 - 03	-3.199	D	2,3
			2 148.573	2 149.249	418 417.50–464 945.37	4–6	1.54+00	1.60 - 01	4.52+00	-0.194	C	2,3
			2 169.706	2 170.386	418 556.54–464 631.29	2–4	1.81-01	2.55-02	3.65-01	-1.292	C	2,3
62		$^{2}P^{\circ}-^{2}P$	2 079.83	2 080.49	418 463.8–466 529.3	6-6	3.63+00	2.35-01	9.68+00	0.149	$\mathrm{B} +$	2,3
			2 066.714	2 067.374	418 417.50–466 788.03	4-4	1.53 + 00	9.81 - 02	2.67 + 00	-0.406	B +	2,3
			2 106.575	2 107.243	418 556.54-466 011.91	2-2	1.52 - 01	1.01 - 02	1.41 - 01	-1.695	C+	2,3
			2 100.420	2 101.087	418 417.50-466 011.91	4-2	7.41 - 01	2.45 - 02	6.78 - 01	-1.009	В	2,3
			2 072.673	2 073.334	418 556.54–466 788.03	2–4	3.52+00	4.53-01	6.19+00	-0.043	B+	2,3
63	$2p^4(^3P)3p - 2p^4(^3P)4s$	$^4P^{\circ}-^4P$		1 350.42	406 422.8–480 473.8	12–12	4.97+00	1.36-01	7.25+00	0.213	D	1
				1 355.286	406 190.15–479 975.34	6-6			2.54+00			LS
				1 347.190	406 550.63–480 779.21	4–4			3.23 - 01			LS
				1 342.398	406 865.11–481 358.65	2–2			2.02 - 01			LS
				1 340.679	406 190.15–480 779.21	6–4			1.09 + 00			LS
				1 336.755	406 550.63–481 358.65	4–2			1.01 + 00			LS
				1 361.939	406 550.63–479 975.34	4–6			1.09+00			LS
				1 352.922	406 865.11–480 779.21	2–4	2.06+00	1.13-01	1.01+00			LS
64		$^{4}D^{\circ}-^{4}P$		1 449.01	411 461.0–480 473.8	20–12	6.40+00	1.21-01	1.15+01	0.384	D	1
				1 449.309	410 976.94–479 975.34	8-6			4.62+00			LS
				1 444.193	411 536.38–480 779.21	6–4			2.42+00			LS
				1 440.780	411 951.78–481 358.65	4–2			9.62 - 01			LS
				1 461.156	411 536.38–479 975.34	6–6			1.04+00			LS
				1 452.909	411 951.78–480 779.21	4–4			1.23+00			LS
				1 445.730	412 189.46–481 358.65	2–2			9.61 - 01			LS
				1 470.079	411 951.78–479 975.34	4–6			1.15 - 01			LS
				1 457.944	412 189.46–480 779.21	2–4	3.14-01	2.00-02	1.92-01	-1.398	Е	LS
65		$^{2}D^{\circ}-^{2}P$		1 468.58	414 638.0–482 731.0	10–6	6.02+00	1.17-01	5.65+00	0.068	D+	1
				1 467.990	414 281.85–482 402.20	6–4			3.39+00			LS
				1 465.926	415 172.28–483 388.55	4–2			1.88 + 00			LS
				1 487.433	415 172.28–482 402.20	4–4	5.79-01	1.92-02	3.76-01	-1.115	E+	LS
66		$^4S^{\circ}-^4P$		1 585.54	417 403.98–480 473.8	4–12	8.15-01	9.21-02	1.92+00	-0.434	E+	1
				1 598.175	417 403.98–479 975.34	4-6			9.62-01			LS
				1 577.904	417 403.98–480 779.21	4–4	8.25 - 01	3.08 - 02	6.40 - 01	-0.909	E+	LS
				1 563.607	417 403.98–481 358.65	4–2	8.51-01	1.56-02	3.21 - 01	-1.205	E+	LS

TABLE 12. Transition probabilities of allowed lines for Na III (references for this table are as follows: 1=Butler and Zeippen, ¹⁵ 2=Tachiev and Froese Fischer, ⁹⁷ and 3=McPeake and Hibbert ⁵⁷)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{vac}~(\mathring{A})$ or $\sigma~(cm^{-1})^a$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
67		$^{2}P^{\circ}-^{2}P$		1 556.01	418 463.8–482 731.0	6–6	3.62+00	1.31-01	4.03+00	-0.105	D	1
				1 562.874	418 417.50–482 402.20	4-4	2.98+00	1.09-01	2.24+00	-0.361	D+	LS
				1 542.448	418 556.54-483 388.55	2-2	2.47 + 00	8.81-02	8.95-01	-0.754	D	LS
				1 539.147	418 417.50-483 388.55	4-2	1.24+00	2.21 - 02	4.48 - 01	-1.054	E+	LS
				1 566.277	418 556.54–482 402.20	2–4	5.90-01	4.34-02	4.48-01	-1.061	E+	LS
68	$2p^4(^3P)3p - 2p^4(^1D)3d$	$^{2}D^{\circ}-^{2}P$		1 272.46	414 638.0–493 226.0	10-6	3.82-02	5.57-04	2.33-02	-2.254	D+	2,3
				1 267.263	414 281.85–493 192.06	6-4	2.20-02	3.53 - 04	8.83 - 03	-2.674	D+	2,3
				1 280.054	415 172.28-493 293.98	4-2	6.42 - 03	7.88 - 05	1.33 - 03	-3.501	D	2,3
				1 281.726	415 172.28–493 192.06	4–4	3.17-02	7.80-04	1.32-02	-2.506	D+	2,3
69		$^{2}D^{\circ}-^{2}D$		1 250.03	414 638.0–494 636.0	10–10	1.26-01	2.95-03	1.21-01	-1.530	C	2,3
				1 245.006	414 281.85–494 602.73	6-6			6.37-02			2,3
				1 257.647	415 172.28–494 685.86	4–4	8.84 - 02	2.10 - 03	3.47 - 02	-2.076	C	2,3
				1 243.719	414 281.85–494 685.86	6–4	1.26-02	1.94 - 04	4.78 - 03	-2.934	D	2,3
				1 258.963	415 172.28–494 602.73	4–6	3.09 - 02	1.10 - 03	1.83 - 02	-2.357	D+	2,3
70		$^{2}D^{\circ}-^{2}F$		1 237.70	414 638.0–495 432.9	10–14	4.28-03	1.38-04	5.60-03	-2.860	D	2,3
				1 232.235	414 281.85-495 435.20	6-8	4.49-03	1.36-04	3.32-03	-3.088	D	2,3
				1 245.990	415 172.28-495 429.75	4-6	3.56-03	1.24-04	2.04-03	-3.305	D	2,3
				1 232.318	414 281.85–495 429.75	6-6	4.47 - 04	1.02-05	2.48-04	-4.213	E	2
71		$^2S^{\circ}-^2P$		1 310.33	416 909.31–493 226.0	2-6	2.12-01	1.64-02	1.41-01	-1.484	C+	2,3
				1 310.912	416 909.31-493 192.06	2-4	3.16-01	1.63-02	1.40-01	-1.487	C+	2,3
				1 309.163	416 909.31–493 293.98	2–2	4.23-03	1.09-04	9.37-04	-3.662	D	2,3
72		$^{2}P^{\circ}-^{2}P$		1 337.57	418 463.8–493 226.0	6-6	1.89+00	5.06-02	1.34+00	-0.518	В	2,3
				1 337.353	418 417.50–493 192.06	4-4	1.61+00	4.32-02	7.61-01	-0.762	В	2,3
				1 338.017	418 556.54-493 293.98	2-2	1.28+00	3.43 - 02	3.02 - 01	-1.164	C+	2,3
				1 335.533	418 417.50–493 293.98	4–2	8.77 - 01	1.17 - 02	2.06-01	-1.330	C+	2,3
				1 339.845	418 556.54–493 192.06	2–4	1.44-01	7.74-03	6.82-02	-1.810	C	2,3
73		$^{2}P^{\circ}-^{2}S$		1 326.52	418 463.8–493 849.24	6–2	3.52+00	3.10-02	8.11-01	-0.730	В	2,3
				1 325.702	418 417.50-493 849.24	4-2	2.29+00	3.02-02	5.28-01	-0.918	В	2,3
				1 328.150	418 556.54-493 849.24	2-2			2.84-01			2,3
74		$^{2}P^{\circ}-^{2}D$		1 312.82	418 463.8–494 636.0	6-10	7.11-01	3.06-02	7.94-01	-0.736	C+	2,3
				1 312.590	418 417.50–494 602.73	4-6	7 27-01	2 82 - 02	4.87-01	-0 948	B	2,3
				1 313.554	418 556.54–494 685.86	2–4			2.34-01			2,3
				1 311.160	418 417.50–494 685.86	4-4			7.29 - 02			2,3
75	$2p^4(^3P)3p - 2p^4(^1S)3d$	$^{2}P^{\circ}-^{2}D$		900.80	418 463.8–529 476.1	6–10	5.26-02	1.07-03	1.90-02	-2.192	D	3
				900.543	418 417.50–529 461.64	4-6	5.48-02	1.00-03	1.19-02	-2.398	D	3
				901.379	418 556.54-529 497.70	2-4			5.93-03			3
				900.250	418 417.50–529 497.70	4-4			1.19-03			3
76	$2p^4(^1S)3s - 2p^4(^1D)3p$	$^{2}S-^{2}P^{\circ}$	7 867.9	7 870.0	435 028.00–447 734.4	2-6	2.83-04	7.89-04	4.09-02	-2.802	D+	2,3
			7 985.05	7 987.25	435 028.00–447 547.96	2-4	2.92-04	5.59-04	2.94-02	-2.952	D+	2,3
			7 643.56	7 645.66	435 028.00–448 107.31	2–2			1.15-02			2,3
77	$2p^4(^1S)3s - 2p^4(^1S)3p$	$^{2}S-^{2}P^{\circ}$	2 280.19	2 280.90	435 028.00–478 870.4	2-6	3.40+00	7.95-01	1.19+01	0.201	B+	2,3
			2 279.482	2 280.186	435 028.00–478 884.07	2–4	3.40+00	5.30-01	7.96+00	0.025	B+	2,3
			2 281.620	2 282.324	435 028.00–478 842.99	2–2			3.98+00			2,3

TABLE 12. Transition probabilities of allowed lines for Na III (references for this table are as follows: 1=Butler and Zeippen, 15=2=Tachiev and Froese Fischer, 15=2=Tachiev and 15=3=Tachiev and

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{vac}~(\mbox{\normalfont\AA})$ or $\sigma~(\mbox{cm}^{-1})^a$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
78	$2p^4(^{1}D)3p - 2p^4(^{3}P)3d$	$^{2}D^{\circ}-^{2}F$				10–14						
			5 524.023	5 525.558	445 873.20–463 970.92	6-8	3.03-04	1.85-04	2.02-02	-2.955	D+	2,3
79		$^{2}D^{\circ}-^{2}D$	5 318.15	5 319.63	445 842.9–464 641.2	10-10	1.62-03	6.87-04	1.20-01	-2.163	D+	2,3
			5 398.951	5 400.452	445 873.20–464 390.17	6-6	4.88-04	2.13-04	2.28-02	-2.893	D	2,3
			5 201.381	5 202.830	445 797.52–465 017.83	4-4			7.58 - 02			2,3
			5 221.943	5 223.397	445 873.20–465 017.83	6-4	3.65 - 04	9.95-05	1.03 - 02	-3.224	D+	2,3
			5 376.974	5 378.469	445 797.52–464 390.17	4–6	2.51-04	1.63-04	1.16-02	-3.186	E	2,3
80		$^{2}D^{\circ}-^{2}P$	4 832.74	4 834.09	445 842.9–466 529.3	10-6	1.52-03	3.20-04	5.09-02	-2.495	D+	2,3
			4 779.960	4 781.296	445 873.20–466 788.03	6-4	8.37-04	1.91-04	1.81 - 02	-2.941	D+	2,3
			4 945.591	4 946.971	445 797.52–466 011.91	4-2	2.31-03	4.25 - 04	2.77 - 02	-2.770	C	2,3
			4 762.726	4 764.058	445 797.52–466 788.03	4–4	2.42-04	8.24-05	5.17-03	-3.482	D+	2,3
81		$^{2}P^{\circ}-^{4}F$										
			6 192.56	6 194.27	447 547.96–463 691.90	4-6	4.35-03	3.75-03	3.06-01	-1.824	D+	2,3
			6 260.07	6 261.80	448 107.31–464 077.16	2-4	3.24 - 03	3.81 - 03	1.57 - 01	-2.118	D	2,3
			6 048.22	6 049.90	447 547.96–464 077.16	4–4	1.32-05	7.25 - 04	5.77 - 02	-2.538	E+	2,3
82		$^{2}P^{\circ}-^{2}D$	5 913.1	5 914.8	447 734.4–464 641.2	6–10	2.19-02	1.91-02	2.23+00	-0.941	В	2,3
			5 935.82	5 937.46	447 547.96-464 390.17	4-6	1.27-02	1.01-02	7.87-01	-1.394	В	2,3
			5 911.84	5 913.48	448 107.31–465 017.83	2-4	2.55+02	2.68 - 02	1.04+00	-1.271	В	2,3
			5 722.55	5 724.14	447 547.96–465 017.83	4-4	1.09-02	5.36-03	4.04 - 01	-1.669	C+	2,3
83		$^{2}\text{P}^{\circ}-^{4}\text{P}$										
			5 852.04	5 853.66	447 547.96-464 631.29	4-4	3.29-03	1.69-03	1.30-01	-2.170	D	2,3
			6 131.53	6 133.23	448 107.31-464 411.94	2-2	5.88-05	3.32-05	1.34-03	-4.178	E	2,3
			5 928.16	5 929.80	447 547.96-464 411.94	4-2	5.74-05	1.51 - 05	1.18 - 03	-4.219	E	2,3
			5 746.39	5 747.98	447 547.96–464 945.37	4-6	1.66 - 02	1.23 - 02	9.31 - 01	-1.308	D	2,3
			6 050.14	6 051.81	448 107.31–464 631.29	2–4	4.32-03	4.74-03	1.89-01	-2.023	D	2,3
84		$^{2}P^{\circ}-^{2}P$	5 319.11	5 320.59	447 734.4–466 529.3	6–6	2.91-02	1.23-02	1.30+00	-1.132	C+	2,3
			5 196.039	5 197.486	447 547.96–466 788.03	4-4	1.44-02	5.85-03	4.00-01	-1.631	C+	2,3
			5 583.607	5 585.157	448 107.31–466 011.91	2-2	1.44 - 02	6.76 - 03	2.48 - 01	-1.869	C+	2,3
			5 414.454	5 415.959	447 547.96–466 011.91	4–2	7.74 - 03	1.70 - 03	1.21 - 01	-2.167	C	2,3
			5 351.624	5 353.113	448 107.31–466 788.03	2–4	1.74-02	1.49-02	5.26-01	-1.526	В	2,3
85	$2p^4(^1D)3p - 2p^4(^3P)4s$	$^{2}P^{\circ}-^{2}P$	2 856.58	2 857.42	447 734.4–482 731.0	6–6	5.93-01	7.26-02	4.10+00	-0.361	D	1
			2 868.249	2 869.091	447 547.96–482 402.20	4-4	4.88 - 01	6.02 - 02	2.27 + 00	-0.618	D+	LS
			2 833.534	2 834.367	448 107.31–483 388.55	2–2	4.05 - 01	4.88 - 02	9.11 - 01	-1.011	D	LS
			2 789.310	2 790.133	447 547.96–483 388.55	4–2			4.56-01			LS
			2 915.033	2 915.886	448 107.31–482 402.20	2–4	9.30-02	2.37-02	4.55-01	-1.324	E+	LS
86	$2p^4(^1D)3p - 2p^4(^1D)3d$	$^{2}F^{\circ}-^{2}G$		1 948.98	441 006.2–492 315.0	14–18	8.57+00	6.27-01	5.64+01	0.943	A	2,3
				1 950.906	441 055.67–492 313.91	8-10	8.55+00	6.10-01	3.13+01	0.688	A	2,3
				1 946.426	440 940.20–492 316.41	6–8		6.27 - 01		0.575		2,3
				1 950.811	441 055.67–492 316.41	8–8	3.11-01	1.77-02	9.10-01	-0.849	В	2,3
87		$^{2}F^{\circ}-^{2}D$		1 864.63	441 006.2–494 636.0	14–10	4.77-01	1.78-02	1.53+00	-0.603	В	2,3
				1 867.516	441 055.67–494 602.73	8-6			8.31-01			2,3
				1 860.615	440 940.20–494 685.86	6–4			6.32-01			2,3
				1 863.498	440 940.20–494 602.73	6–6	3.27-02	1.70-03	6.26-02	-1.991	С	2,3
88		$^{2}F^{\circ}-^{2}F$		1 837.33	441 006.2–495 432.9	14–14	3.45+00	1.74-01	1.48+01	0.387	B+	2,3

Table 12. Transition probabilities of allowed lines for Na III (references for this table are as follows: 1=Butler and Zeippen, 15 2=Tachiev and Froese Fischer, 97 and 3=McPeake and Hibbert 57)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{\rm vac}~({\rm \AA})$ or $\sigma~({\rm cm}^{-1})^{\rm a}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				1 838.927	441 055.67–495 435.20	8-8	3.31+00	1.68-01	8.13+00	0.128	B+	2,3
				1 835.214	440 940.20–495 429.75	6-6	3.31+00	1.67 - 01	6.06+00	0.001	B +	2,3
				1 839.112	441 055.67–495 429.75	8-6	1.86 - 01	7.06 - 03	3.42 - 01	-1.248	C+	2,3
				1 835.031	440 940.20–495 435.20	6–8	1.01 - 01	6.80-03	2.46-01	-1.389	C+	2,3
89		$^{2}D^{\circ}-^{2}P$	2 109.79	2 110.46	445 842.9–493 226.0	10-6	1.74+00	6.98-02	4.85+00	-0.156	B+	2,3
			2 112.653	2 113.322	445 873.20–493 192.06	6-4			2.88+00			2,3
			2 104.753	2 105.420	445 797.52–493 293.98	4–2			1.24+00			2,3
			2 109.279	2 109.948	445 797.52–493 192.06	4–4	3.97-01	2.65 - 02	7.37-01	-0.975	В	2,3
90		$^{2}D^{\circ}-^{2}D$	2 048.82	2 049.47	445 842.9–494 636.0	10-10	4.79+00	3.02-01	2.04+01	0.480	B+	2,3
			2 051.486	2 052.144	445 873.20-494 602.73	6-6	4.36+00	2.75-01	1.12+01	0.217	A	2,3
			2 044.821	2 045.478	445 797.52-494 685.86	4-4	4.00+00	2.51 - 01	6.75 + 00	0.002	$\mathrm{B} +$	2,3
			2 047.992	2 048.649	445 873.20-494 685.86	6-4	4.69 - 01	1.97 - 02	7.96 - 01	-0.927	В	2,3
			2 048.305	2 048.962	445 797.52–494 602.73	4–6	6.54-01	6.17 - 02	1.67 + 00	-0.608	$\mathrm{B} +$	2,3
91		$^{2}D^{\circ}-^{2}F$	2 015.89	2 016.54	445 842.9–495 432.9	10–14	5.39+00	4.60-01	3.05+01	0.663	A	2,3
			2 017.024	2 017.675	445 873.20–495 435.20	6-8	5.44+00	4.43-01	1.76+01	0.425	A	2,3
			2 014.169	2 014.820	445 797.52-495 429.75	4-6	4.88+00	4.46-01	1.18+01	0.251	A	2,3
			2 017.246	2 017.897	445 873.20–495 429.75	6-6	4.31-01	2.63 - 02	1.05+00	-0.802	В	2,3
92		$^{2}P^{\circ}-^{2}P$	2 197.52	2 198.21	447 734.4–493 226.0	6–6	4.14+00	3.00-01	1.30+01	0.255	B+	2,3
			2 190.179	2 190.864	447 547.96–493 192.06	4-4	3.28+00	2.36-01	6.81+00	-0.025	B+	2,3
			2 212.353	2 213.042	448 107.31-493 293.98	2-2	2.42+00	1.78-01	2.59+00	-0.449	$\mathrm{B} +$	2,3
			2 185.299	2 185.983	447 547.96-493 293.98	4-2	2.06+00	7.39-02	2.13+00	-0.529	$\mathrm{B} +$	2,3
			2 217.354	2 218.045	448 107.31–493 192.06	2–4	6.86-01	1.01-01	1.48+00	-0.695	В	2,3
93		$^{2}P^{\circ}-^{2}S$	2 167.82	2 168.50	447 734.4–493 849.24	6–2	5.15+00	1.21-01	5.18+00	-0.139	B+	2,3
			2 159.089	2 159.768	447 547.96-493 849.24	4-2	3.11+00	1.09-01	3.09+00	-0.361	$\mathrm{B}+$	2,3
			2 185.494	2 186.178	448 107.31–493 849.24	2-2	2.02+00	1.45 - 01	2.09+00	-0.538	B+	2,3
94		$^{2}P^{\circ}-^{2}D$	2 131.45	2 132.12	447 734.4–494 636.0	6–10	2.05+00	2.32-01	9.79+00	0.144	B+	2,3
			2 124.512	2 125.183	447 547.96–494 602.73	4-6	1.86+00	1.89-01	5.29+00	-0.121	B+	2,3
			2 146.235	2 146.911	448 107.31-494 685.86	2-4	1.68+00	2.33-01	3.29+00	-0.332	$\mathrm{B} +$	2,3
			2 120.765	2 121.435	447 547.96–494 685.86	4-4	6.44-01	4.34 - 02	1.21+00	-0.760	В	2,3
95	$2p^4(^1D)3p - 2p^4(^1D)4s$	$^{2}F^{\circ}-^{2}D$		1 419.89	441 006.2–511 434	14-10	6.01+00	1.30-01	8.50+00	0.260	D+	1
				1 420.886	441 055.67–511 434.3	8-6	5.73+00	1.30-01	4.86+00	0.017	C	LS
				1 418.568	440 940.20-511 433.8	6-4	6.02+00	1.21-01	3.39+00	-0.139	D+	LS
				1 418.558	440 940.20–511 434.3	6-6	2.87 - 01	8.65 - 03	2.42-01	-1.285	E+	LS
96		$^{2}D^{\circ}-^{2}D$		1 524.60	445 842.9–511 434	10–10	2.82+00	9.82-02	4.93+00	-0.008	D	1
				1 525.295	445 873.20–511 434.3	6-6	2.63+00	9.16-02	2.76+00	-0.260	D+	LS
				1 523.548	445 797.52-511 433.8	4-4	2.54+00	8.85-02	1.78+00	-0.451	D	LS
				1 525.306	445 873.20-511 433.8	6-4	2.82-01	6.55-03	1.97-01	-1.406	E	LS
				1 523.536	445 797.52–511 434.3	4–6	1.88 - 01	9.83 - 03	1.97-01	-1.405	E	LS
97		$^{2}P^{\circ}-^{2}D$		1 569.87	447 734.4–511 434	6–10	2.35+00	1.45-01	4.50+00	-0.060	D	1
				1 565.280	447 547.96–511 434.3	4-6	2.38+00	1.31-01	2.70+00	-0.281	D+	LS
				1 579.118	448 107.31–511 433.8	2-4			1.50+00			LS
				1 565.292	447 547.96–511 433.8	4-4			2.99-01			LS
98	$2p^4(^1D)3p - 2p^4(^1S)3d$	$^{2}F^{\circ}-^{2}D$		1 130.33	441 006.2–529 476.1	14-10	5.43-02	7.43-04	3.87-02	-1.983	D	3

TABLE 12. Transition probabilities of allowed lines for Na III (references for this table are as follows: 1=Butler and Zeippen, 15=2=Tachiev and Froese Fischer, 15=2=Tachiev and 15=3=Tachiev and

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				1 131.145	441 055.67–529 461.64	8–6	4.87=02	7.00-04	2.09-02	_2 252	D	3
				1 129.210	440 940.20–529 497.70	6–4			1.56-02			3
				1 129.670	440 940.20–529 461.64	6–6			2.23-03			3
99		$^{2}D^{\circ}-^{2}D$		1 195.70	445 842.9–529 476.1	10-10	6.35-02	1.36-03	5.35-02	-1.866	D	3
				1 196.338	445 873.20–529 461.64	6-6	6.06-02	1.30-03	3.07-02	-2.108	D+	3
				1 194.741	445 797.52–529 497.70	4-4	5.14-02	1.10-03	1.73-02	-2.357	D	3
				1 195.822	445 873.20-529 497.70	6-4	7.00 - 03	1.00-04	2.36-03	-3.222	E+	3
				1 195.256	445 797.52–529 461.64	4-6	6.23-03	2.00-04	3.15-03	-3.097	E+	3
100		$^{2}P^{\circ}-^{2}D$		1 223.37	447 734.4–529 476.1	6–10	2.85-02	1.07-03	2.58-02	-2.192	D	3
				1 220.797	447 547.96–529 461.64	4-6	2.09-02	7.00-04	1.13-02	-2.553	D	3
				1 228.646	448 107.31-529 497.70	2-4	3.09 - 02	1.40-03	1.13-02	-2.553	D	3
				1 220.260	447 547.96–529 497.70	4-4	8.96-03	2.00-04	3.21 - 03	-3.097	E+	3
101	$2p^4(^3P)3d - 2p^4(^1S)3p$	$^{2}D-^{2}P^{\circ}$	7 025.9	7 027.8	464 641.2–478 870.4	10-6	1.27-03	5.65-04	1.31-01	-2.248	D	3
			6 897.55	6 899.45	464 390.17–478 884.07	6–4	8.41-04	4.00-04	5.45-02	-2.620	D	3
			7 231.20	7 233.19	465 017.83–478 842.99	4–2			4.76-02			3
			7 209.77	7 211.76	465 017.83–478 884.07	4-4			2.85-02			3
102		$^{2}P-^{2}P^{\circ}$	8 100.8	8 103.0	466 529.3–478 870.4	6–6	9.63-04	9.48-04	1.52-01	-2.245	Е	3
			8 264.90	8 267.17	466 788.03–478 884.07	4–4	6.00_04	7 16 - 04	7.79-02	_2 5/13	E	LS
			7 791.43	7 793.58	466 011.91–478 842.99	2-2			3.08 - 02			3
			8 293.06	8 295.34	466 788.03–478 842.99	4–2			3.08 - 02 $3.28 - 02$			3
			7 766.57	7 768.70	466 011.91–478 884.07	2-4			1.02 - 02			3
103	$2p^4(^3P)3d-2p^4(^3P_2)4f$	$^{4}F-^{2}[5]^{\circ}$										1
				1 887.472	462 891.04–515 871.96	10–12	1.25+01	7.98-01	4.96+01	0.902	В	LS'
104		$^{4}P-^{2}[1]^{\circ}$										1
				1 020 64	464 411 04 515 004 5	2.2	0.20 00	4.72 01	6.04.00	0.024		T 01
				1 938.64 1 946.92	464 411.94–515 994.5 464 631.29–515 994.5	2–2 4–2			6.04+00 $1.21+00$			LS' LS'
105	$2p^4(^1S)3p - 2p^4(^1D)3d$	$^{2}P^{\circ}-^{2}P$	6 964.0	6 965.9	478 870.4–493 226.0	6-6	6.87-04	5.00-04	6.88-02	-2.523	D+	3
			6 987.17	6 989.10	478 884.07–493 192.06	4-4	5.46-04	4.00-04	3.68-02	-2.796	D+	3
			6 918.03	6 919.94	478 842.99-493 293.98	2-2	2.79 - 04	2.00-04	9.11-03	-3.398	D	3
			6 937.75	6 939.67	478 884.07-493 293.98	4-2	5.54-04	2.00-04	1.83-02	-3.097	D	3
			6 967.17	6 969.09	478 842.99–493 192.06	2-4	6.87-05	1.00 - 04	4.59-03	-3.699	E+	3
106		$^{2}P^{\circ}-^{2}S$	6 674.2	6 676.1	478 870.4–493 849.24	6–2	9.88-03	2.20-03	2.90-01	-1.879	C	3
			6 680.34	6 682.18	478 884.07–493 849.24	4-2	6.57-03	2.20-03	1.94-01	-2.056	C	3
			6 662.05	6 663.89	478 842.99–493 849.24	2-2			9.65-02			3
107		$^{2}P^{\circ}-^{2}D$	6 341.2	6 342.9	478 870.4–494 636.0	6–10	2.17-04	2.18-04	2.73-02	-2.883	E	1,3
			6 360.11	6 361.87	478 884.07–494 602.73	4-6	2.20-04	2.00-04	1.68-02	-3.097	D	3
			6 310.24	6 311.99	478 842.99–494 685.86	2–4			8.31-03			3
			6 326.65	6 328.40	478 884.07–494 685.86	4-4			2.24-03			LS
108	$2p^4(^1S)3p - 2p^4(^3P)4d$	$^{2}P^{\circ}-^{2}D$	2 750	2 751	478 870.4–515 226	6–10	1.27-01	2.39-02	1.30+00	-0.843	E+	1
			2 740.3	2 741.2	478 884.07–515 365	4–6	1.28_01	2 16-02	7.80-01	_1 062	D	LS
			2 763.6 2 766.7	2 764.4 2 767.6	478 842.99–515 017 478 884.07–515017	2–4 4–4			4.33-01 8.67-02			LS LS
		2 0 2	2 /00./							-2.021	ь	
109	$2p^4(^1S)3p - 2p^4(^1S)3d$	$^{2}P^{\circ}-^{2}D$		1 976.06	478 870.4–529 476.1	6–10	8.47 + 00	8.26-01	3.22+01	0.695	B+	3

TABLE 12. Transition probabilities of allowed lines for Na III (references for this table are as follows: 1=Butler and Zeippen, ¹⁵ 2=Tachiev and Froese Fischer, ⁹⁷ and 3=McPeake and Hibbert ⁵⁷)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\begin{array}{c} \lambda_{vac} \; (\mathring{A}) \\ \text{or} \; \sigma \; (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				1 977.161	478 884.07–529 461.64	4–6	8.46+00	7.43-01	1.94+01	0.473	B+	3
				1 974.150	478 842.99-529 497.70	2-4	7.07 + 00	8.26-01	1.07 + 01	0.218	B +	3
				1 975.752	478 884.07–529 497.70	4-4	1.41+00	8.27 - 02	2.15+00	-0.480	В	3
110	$2p^4(^3P)3s - 2p^4(^3P)3p$	$^{2}P-^{2}D^{\circ}$	2 458.89	2 459.63	3 73981.5–414 638.0	6-10	2.82+08	4.26-01	2.07+01	0.408	A	2,3
			2 459.309	2 460.053	373 632.32–414 281.85	4-6	2.80+08	3.81-01	1.24+01	0.183	A	2,3
			2 468.855	2 469.601	374 679.91-415 172.28	2-4	2.13+08	3.89-01	6.33+00	-0.109	A	2,3
			2 406.588	2 407.321	373 632.32–415 172.28	4-4	7.37 + 07	6.40-02	2.03+00	-0.592	A	2,3

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

10.3.3. Forbidden Transitions for Na III

Tachiev and Froese Fischer⁹⁷ used MCHF–Breit-Pauli calculations. We estimated the accuracies for the forbidden lines by applying the pooling fit parameters (see Sec. 4 of the Introduction) of allowed transitions from lower-lying levels of Na III. Thus the listed accuracies are less well established than for the allowed lines.

10.3.4. References for Forbidden Transitions for Na III

⁹⁷G. Tachiev and C. Froese Fischer, http://www.vuse. vanderbilt.edu/~cff/mchf_collection/ (MCHF, energy adjusted, downloaded on Dec. 3, 2003).

TABLE 13. Wavelength finding list for forbidden lines for Na III

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult No.
250.512	5	266.894	4	272.449	3	378.136	2
250.517	5	267.643	4	273.109	3	703.751	6
251.372	5	268.625	4	273.467	3	705.541	6
251.377	5	272.072	3	274.132	3		
Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult No.	Wavelength (air) (Å)	Mult No.
2 171.577	13	2 530.246	12	3 070.566	14	8 092.27	17
2 182.848	13	2 553.546	12	3 110.326	10	8 470.65	17
2 202.831	13	2 563.304	12	3 111.061	10	8 476.11	17
2 214.208	13	2 587.219	12	3 136.767	14	12 999.67	16
2 225.928	13	2 592.778	15	3 160.427	10	13 012.53	16
2 230.328	13	2 608.861	15	3 172.654	14	13 086.71	8
2 246.710	13	2 637.454	15	3 912.788	11	13 369.06	8
2 251.473	13	2 676.966	15	3 913.952	11	13 553.92	16
2 272.737	13	2 682.192	15	4 080.081	11	13 567.90	16
2 275.320	13	2 712.424	15	7 681.48	17	14 021.92	8
2 455.613	12	3 008.200	14	7 685.96	17	14 250.38	16
2 474.731	12	3 026.862	10	7 824.37	17	14 265.83	16
2 497.015	12	3 027.559	10	7 829.02	17	15 166.54	8
2 510.264	12	3 036.939	14	8 087.30	17	16 437.06	8
Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult No.
1 366.3	1	1 047.59	9	886.25	7	509.51	7

Table 14. Transition probabilities of forbidden lines for Na III (reference for this table is as follows: 1 = Tachieve and Froese 97)

1		Mult.	(Å)	or σ (cm ⁻¹) ^a	$E_i - E_k$	$g_i - g_k$	Type	(s^{-1})	(a.u.)	Acc.	Source
	$2p^5 - 2p^5$	$^{2}P^{\circ}-^{2}P^{\circ}$									
	r r			1 366.3 cm ⁻¹	0.0-1 366.3	4-2	M1	4.59-02	1.33+00	B+	1
				1 366.3 cm ⁻¹	0.0-1 366.3	4-2	E2	1.05 - 07	3.92-01	В	1
2	$2s^22p^5 - 2s2p^6$	$^{2}P^{\circ}-^{2}S$									
				378.136	0.0-264 455.0	4-2	M2	1.36+01	1.42 + 01	$\mathrm{B}+$	1
3	$2p^5 - 2p^4(^3P)3s$	$^{2}P^{\circ}-^{4}P$									
				272.449	0.0-367 040.66	4-4	M2	3.31 - 01	1.34 - 01	C	1
				272.072	0.0-367 550.17	4–2	M2	1.35+00	2.71 - 01	C+	1
				273.109	0.0-366 154.41	4–6	M2	5.57 + 00	3.40+00	В	1
				273.467	1 366.3–367 040.66	2-4	M2	3.94+00	1.62+00	В	1
		2 % 2		274.132	1 366.3–366 154.41	2–6	M2	1.44 + 00	8.96-01	В	1
4		$^{2}\text{P}^{\circ}-^{2}\text{P}$									
				267.643	0.0–373 632.32	4–4	M2	8.96-01	3.30 - 01	C+	1
				266.894	0.0–374 679.91	4–2	M2	8.36-01	1.52 - 01	C	1
		2 0 2		268.625	1 366.3–373 632.32	2–4	M2	5.22 - 01	1.96-01	C+	1
5	$2p^5 - 2p^4(^1D)3s$	$^{2}P^{\circ}-^{2}D$									
				251.377	1 366.3–399 174.71	2–6	M2	4.07 + 00	1.64+00	В	1
				250.517	0.0–399 174.71	4–6	M2	3.18+00	1.26+00	В	1
				251.372	1 366.3–399 182.31	2–4	M2	2.63 - 01	7.09 - 02	C	1
		2 4 8		250.512	0.0–399 182.31	4–4	M2	9.59-01	2.54 - 01	C+	1
6	$2s2p^6 - 2s^22p^4(^3P)3p$	$^{2}S-^{4}P^{\circ}$									
	2s-2p (P)5p			705.541	264 455.0–406 190.15	2.6	M2	2.35-04	1.65 02	D.	1
				703.341	264 455.0–406 550.63	2–6 2–4	M2	4.94-05	1.65-02 $2.29-03$	D+ D	1 1
7	$2p^4(^3P)3s - 2p^4(^3P)3s$	${}^{4}P - {}^{4}P$		/03./31	204 433.0-400 330.03	2-4	IVI Z	4.94-03	2.29-03	D	1
,	2p (1)3s-2p (1)3s	1 – 1		886.25 cm ⁻¹	366 154.41–367 040.66	6–4	M1	1.68-02	3.59+00	B+	1
				509.51 cm ⁻¹	367 040.66–367 550.17	4-2	M1	5.93-03	3.32+00	B+	1
8		$^{4}P - ^{2}P$		307.31 CIII	307 040.00-307 330.17	4 -2	IVII	3.73-03	3.32+00	D	1
O		1 - 1	15 166.54	15 170.69	367 040.66–373 632.32	4-4	M1	1.76-02	9.10-03	C+	1
			14 021.92	14 025.76	367 550.17–374 679.91	2–2	M1	2.73-02	5.58-03	C	1
			13 369.06	13 372.72	366 154.41–373 632.32	6-4	M1	3.77-02	1.34-02		1
			13 086.71	13 090.29	367 040.66–374 679.91	4–2	M1	1.40-03		D+	1
			16 437.06	16 441.55	367 550.17–373 632.32	2-4	M1	8.94-03	5.89-03	C	1
9		${}^{2}P - {}^{2}P$	10 157.00	10 111.55	307 330.17 373 032.32	2 1	1111	0.71 03	5.07 05	Č	•
				1 047.59 cm ⁻¹	373 632.32–374 679.91	4-2	M1	2.07-02	1.33+00	B+	1
10	$2p^4(^3P)3s - 2p^4(^1D)3s$	$^{4}P - ^{2}D$		1017107 0111	575 052.02 57 . 077.51		1111	2.07 02	1.00 . 00	2	-
	r () r ()		3 111.061	3 111.964	367 040.66-399 174.71	4-6	M1	8.79-02	5.89-04	D+	1
			3 160.427		367 550.17–399 182.31	2–4	M1		2.73-04		1
			3 027.559	3 028.440	366 154.41–399 174.71	6-6	M1		3.72-03		1
			3 110.326	3 111.228	367 040.66-399 182.31	4-4	M1	2.60-01	1.16-03		1
			3 026.862	3 027.743	366 154.41-399 182.31	6-4	M1	6.49 - 02	2.67-04		1
11		$^{2}P-^{2}D$									
			3 913.952	3 915.060	373 632.32–399 174.71	4-6	M1	1.19-01	1.59-03	C	1
			4 080.081	4 081.233	374 679.91-399 182.31	2-4	M1	7.79 - 02	7.85 - 04	C	1
			3 912.788	3 913.896	373 632.32–399 182.31	4-4	M1	2.70-01	2.40-03	C	1
12	$2p^4(^3P)3s-2p^4(^3P)3p$	$^{4}P-^{4}P^{\circ}$									
			2 497.015	2 497.768	366 154.41-406 190.15	6-6	M2	2.09 - 03	8.19+01	A	1
			2 530.246	2 531.007	367 040.66-406 550.63	4-4	M2	8.12 - 04	2.26+01	$\mathrm{B}+$	1
			2 455.613	2 456.357	366 154.41-406 865.11	6-2	M2	8.74 - 04	1.05 + 01	$\mathrm{B}+$	1
			2 474.731	2 475.479	366 154.41-406 550.63	6-4	M2	1.30 - 04	3.23+00	В	1
			2 510.264	2 511.020	367 040.66-406 865.11	4-2	M2	7.44 - 04	9.96+00	$\mathrm{B}+$	1
			2 553.546	2 554.312	367 040.66-406 190.15	4-6	M2	1.12-05	4.89 - 01	C+	1
			2 563.304	2 564.072	367 550.17-406 550.63	2-4	M2	2.59-04	7.71 + 00	$\mathrm{B} +$	1
			2 587.219	2 587.993	367 550.17-406 190.15	2-6	M2	1.46-04	6.82 + 00	$\mathrm{B}+$	1
13		$^{4}P-^{4}D^{\circ}$									
			2 275.320	2 276.023	367 040.66-410 976.94	4-8	M2	1.09 - 03	3.57+01	$\mathrm{B}+$	1
			2 272.737	2 273.440	367 550.17-411 536.38	2-6	M2	8.24 - 04	2.01+01	$\mathrm{B}+$	1

Table 14. Transition probabilities of forbidden lines for Na III (reference for this table is as follows: 1=Tachieve and Froese⁹⁷)—Continued

No.	Transition array	Mult.	$\lambda_{air} \ (\mathring{A})$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	E_i – E_k	$g_i - g_k$	Туре	$A_{ki} $ (s ⁻¹)	<i>S</i> (a.u.)	Acc.	Source
			2 230.328	2 231.021	366 154.41-410 976.94	6-8	M2	2.98-03	8.82+01	A	1
			2 246.710	2 247.407	367 040.66-411 536.38	4-6	M2	1.62-03	3.73 + 01	B+	1
			2 251.473	2 252.171	367 550.17-411 951.78	2-4	M2	1.52-03	2.37 + 01	B+	1
			2 202.831	2 203.518	366 154.41-411 536.38	6-6	M2	3.05 - 11	6.39-07	Е	1
			2 225.928	2 226.620	367 040.66-411 951.78	4-4	M2	6.55 - 07	9.62 - 03	D+	1
			2 182.848	2 183.531	366 154.41-411 951.78	6-4	M2	4.29 - 04	5.71 + 00	B+	1
			2 214.208	2 214.898	367 040.66-412 189.46	4-2	M2	1.29 - 03	9.25 + 00	B +	1
			2 171.577	2 172.258	366 154.41-412 189.46	6-2	M2	2.68 - 04	1.74+00	В	1
14		$^{2}P-^{4}P^{\circ}$									
			3 036.939	3 037.823	373 632.32-406 550.63	4-4	M2	3.76 - 05	2.61+00	В	1
			3 008.200	3 009.076	373 632.32-406 865.11	4-2	M2	1.72 - 04	5.71 + 00	B+	1
			3 070.566	3 071.458	373 632.32-406 190.15	4-6	M2	5.46 - 04	6.00+01	B+	1
			3 136.767	3 137.676	374 679.91-406 550.63	2-4	M2	3.24 - 04	2.64+01	B+	1
			3 172.654	3 173.572	374 679.91–406 190.15	2-6	M2	9.36-05	1.21 + 01	B+	1
15		$^{2}P-^{4}D^{\circ}$									
			2 676.966	2 677.762	373 632.32-410 976.94	4-8	M2	1.78 - 03	1.32 + 02	A	1
			2 712.424	2 713.228	374 679.91-411 536.38	2-6	M2	6.04 - 04	3.57 + 01	B+	1
			2 637.454	2 638.240	373 632.32-411 536.38	4-6	M2	1.94 - 04	1.00+01	B+	1
			2 682.192	2 682.989	374 679.91–411 951.78	2-4	M2	2.83 - 04	1.05+01	B+	1
			2 608.861	2 609.640	373 632.32-411 951.78	4-4	M2	4.85 - 05	1.58+00	В	1
			2 592.778	2 593.553	373 632.32-412 189.46	4-2	M2	1.04 - 04	1.64+00	В	1
16	$2p^4(^1D)3s - 2p^4(^3P)3p$	$^{2}D-^{4}P^{\circ}$									
			12 999.67	13 003.22	399 174.71–406 865.11	6-2	M2	3.93 - 12	1.96 - 04	E+	1
			13 553.92	13 557.63	399 174.71-406 550.63	6-4	M2	6.86 - 11	8.43 - 03	D+	1
			13 012.53	13 016.09	399 182.31-406 865.11	4-2	M2	8.41 - 10	4.21 - 02	C	1
			14 250.38	14 254.27	399 174.71-406 190.15	6-6	M2	1.20 - 10	2.85 - 02	C	1
			13 567.90	13 571.61	399 182.31–406 550.63	4-4	M2	4.96 - 10	6.13 - 02	C	1
			14 265.83	14 269.73	399 182.31-406 190.15	4-6	M2	1.27 - 10	3.01 - 02	C	1
17		$^{2}D-^{4}D^{\circ}$									
			8 087.30	8 089.52	399 174.71–411 536.38	6-6	M2	1.38 - 10	1.93 - 03	D	1
			7 829.02	7 831.18	399 182.31-411 951.78	4-4	M2	7.96 - 10	6.29 - 03	D+	1
			7 681.48	7 683.59	399 174.71-412 189.46	6-2	M2	1.53 - 09	5.48 - 03	D+	1
			7 824.37	7 826.52	399 174.71–411 951.78	6-4	M2	9.17 - 10	7.22 - 03	D+	1
			7 685.96	7 688.08	399 182.31-412 189.46	4-2	M2	3.16-10	1.14-03	D	1
			8 470.65	8 472.98	399 174.71-410 976.94	6-8	M2	1.56 - 10	3.65 - 03	D	1
			8 092.27	8 094.50	399 182.31-411 536.38	4-6	M2	5.53 - 10	7.73 - 03	D+	1
			8 476.11	8 478.43	399 182.31-410 976.94	4-8	M2	3.30 - 12	7.75 - 05	E	1

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

10.4. Na IV

Oxygen isoelectronic sequence Ground state: $1s^22s^22p^4$ 3P_2

Ionization energy: 98.915 eV=797 800 cm⁻¹

10.4.1. Allowed Transitions for Na IV

Only OP (Ref. 15) results were available for transitions from energy levels above the 4s. Wherever available we have used the results of Froese Fischer et al., 94 which are based on extensive MCHF calculations with Breit-Pauli corrections to order α^2 , and the second-order MBPT data of Vilkas et al. 119

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in two or more references, ^{15,94,119} as described in the general introduction. For this purpose the

spin-allowed (non-OP) and intercombination data were treated separately and each of these was in turn divided into two upper-level energy groups below and above 580 000 cm⁻¹. OP lines constituted a fifth group and have been used only when more accurate sources were not available, because spin-orbit effects are often significant for this spectrum. For the higher energy groups, only one data source was available.

Vilkas *et al.*¹¹⁹ provide data for transitions between lower levels. To estimate the accuracy of the higher-lying lines for Tachiev and Froese Fischer⁹⁴ and separately for OP (Ref. 15) for the lines unique to it, we isoelectronically averaged the "logarithmic quality factors" (see Sec. 4.1 of the Introduction) observed for lines from the lower-lying levels of O-like ions of Na, Mg, and Si, and scaled them for lines from highlying levels, as described in the introduction. Thus the listed accuracies for these higher-lying transitions are less well es-

TABLE 15. Wavelength finding list for allowed lines for Na IV—Continued

Mult.

No.

24

Wavelength

(vac) (Å)

155.349

tablished than for those from lower levels. The energy level labeled $2p^3(^2P)3p$ 1P_1 also has a significant component of the same configuration except with the 2D parent, and therefore transitions from it were assigned lower accuracies.

10.4.2. References for Allowed Transitions for Na IV

10.4.2. References for Allowed	Transitions for Na IV	155.349	24
		155.446	18
¹⁵ K. Butler and C. J. Zeippen, h	ttp://legacv.gsfc.nasa.gov/	155.462	24
topbase, downloaded on Aug. 8,		155.507	19
topoase, downloaded on Aug. 8,	1995 (Opacity Floject).	155.508	18
⁸⁹ G. Tachiev and C. Froese Fische	r, Astron. Astrophys. 385 ,	155.620	19
716 (2002).		155.687	18
0.4	roese Fischer, http://		31
		155.690	
www.vuse.vanderbilt.edu/~cff/m	chf_collection/ (MCHF,	155.714	18
ab initio, downloaded on May 6	5, 2002). See Tachiev and	155.776	18
Froese Fischer (Ref. 89).		155.828	18
	(7' ' 1'	156.493	17
¹¹⁹ M. J. Vilkas, G. Merkelis, R. l	Kisielius, G. Gaigalas, A.	156.508	17
Bernotas, and Z. Rudzikas, Phy	s. Scr. 49 , 592 (1994).	156.537	17
TABLE 15. Wavelength finding list for	or allowed lines for Na IV	156.764	17
		156.780	17
		156.880	17
XX 1 d	3.6.1.	157.084	30
Wavelength	Mult.		
(vac) (Å)	No.	157.589	29
		157.597	29
136.430	37	157.603	29
136.547	36	157.779	28
136.551	36	162.448	22
		163.189	21
136.636	37	163.840	20
136.724	37	164.841	32
136.754	36	168.086	16
136.758	36	168.096	16
136.842	36	168.099	16
136.847	35	168.409	16
136.850	35	168.412	16
136.855	35	168.545	16
137.055	35		
137.057	35	174.005	23
137.143	35	181.757	12
137.712	41	181.766	12
142.231	40	182.123	12
142.359	39	182.132	12
142.685	38	182.133	12
146.062	33	182.288	12
146.062	33	188.179	9
		188.571	9
146.065	33	190.130	14
146.299	33	190.426	8
146.302	33	190.434	8
146.399	33	190.445	8
150.286	27	190.828	8
150.292	27	190.836	8
150.298	27	190.999	8
150.458	26	192.550	13
150.536	27	192.561	
150.543	27		13
150.642	27	199.772	11
150.688	25	202.307	10
150.709	26	202.316	10
150.714	25	202.329	10
150.940	25	203.957	15
		205.486	7
150.966	25	205.955	7
151.050	25	206.154	7
151.073	25	280.202	48
151.299	34	280.228	48
155.082	24	280.247	48
155.239	19	200.2.7	10

TABLE 15. Wavelength finding list for allowed lines for Na IV—Continued

TABLE 15. Wavelength finding list for allowed lines for Na IV—Continued

Wavelength (vac) (Å) 280.994 281.020 281.429 290.962 291.901 292.302 304.077 304.218 304.231 305.151 305.165 305.679 306.621	Mult. No. 48 48 48 2 2 2 45 45 45 45 45 45 45 45 45 45 45 45 45	Wavelength (vac) (Å) 651.00 651.15 671.35 673.49 673.55 673.58 673.60 673.62 673.64 692.60 698.45 703.71 703.78 703.79 703.86	Mult. No. 64 64 177 63 63 63 63 63 179 178 128
280.994 281.020 281.429 290.962 291.901 292.302 304.077 304.218 304.231 305.151 305.165 305.679 306.621	48 48 48 2 2 2 2 45 45 45 45 45 45 45 45 45	651.15 671.35 673.49 673.55 673.58 673.60 673.62 673.64 692.60 698.45 703.71 703.78 703.79 703.86	64 64 177 63 63 63 63 63 63 179 178 128
281.020 281.429 290.962 291.901 292.302 304.077 304.218 304.231 305.151 305.165 305.679 306.621	48 48 2 2 2 45 45 45 45 45 45 45 45 45 45	651.15 671.35 673.49 673.55 673.58 673.60 673.62 673.64 692.60 698.45 703.71 703.78 703.79 703.86	64 177 63 63 63 63 63 63 179 178 128
281.429 290.962 291.901 292.302 304.077 304.218 304.231 305.151 305.165 305.679 306.621	48 2 2 2 45 45 45 45 45 45 45 45	671.35 673.49 673.55 673.58 673.60 673.62 673.64 692.60 698.45 703.71 703.78 703.79 703.86	177 63 63 63 63 63 63 179 178 128
290.962 291.901 292.302 304.077 304.218 304.231 305.151 305.165 305.679 306.621	2 2 2 45 45 45 45 45 45 45 45 45	673.49 673.55 673.58 673.60 673.62 673.64 692.60 698.45 703.71 703.78 703.79 703.86	63 63 63 63 63 179 178 128
291.901 292.302 304.077 304.218 304.231 305.151 305.165 305.679 306.621	2 2 45 45 45 45 45 45 45 45 43 4	673.55 673.58 673.60 673.62 673.64 692.60 698.45 703.71 703.78 703.79 703.86	63 63 63 63 179 178 128
292.302 304.077 304.218 304.231 305.151 305.165 305.679 306.621	2 45 45 45 45 45 45 45 43 4	673.58 673.60 673.62 673.64 692.60 698.45 703.71 703.78 703.79 703.86	63 63 63 63 179 178 128
304.077 304.218 304.231 305.151 305.165 305.679 306.621	45 45 45 45 45 45 45 43 4	673.60 673.62 673.64 692.60 698.45 703.71 703.78 703.79 703.86	63 63 63 179 178 128
304.218 304.231 305.151 305.165 305.679 306.621	45 45 45 45 45 43 4	673.62 673.64 692.60 698.45 703.71 703.78 703.79 703.86	63 63 179 178 128 128
304.231 305.151 305.165 305.679 306.621	45 45 45 45 43 4	673.64 692.60 698.45 703.71 703.78 703.79 703.86	63 179 178 128 128
305.151 305.165 305.679 306.621	45 45 45 43 4	692.60 698.45 703.71 703.78 703.79 703.86	179 178 128 128
305.165 305.679 306.621	45 45 43 4	698.45 703.71 703.78 703.79 703.86	178 128 128
305.679 306.621	45 43 4	703.71 703.78 703.79 703.86	128 128
306.621	43 4	703.78 703.79 703.86	128
	4	703.79 703.86	
		703.86	
319.644	42		128
341.884			128
341.907	42	704.54	128
343.056	42	728.12	136
343.064	42	731.48	135
343.087	42	740.16	134
343.737	42	767.94 768.00	172
360.761	6	768.00	172
371.854	50	768.09	172
380.022 395.427	49	768.20	172
	47	768.24	172 172
408.684	1	768.28 784.54	62
409.614 410.371	1	784.54 784.66	62
410.571	1 1	785.24	62
411.334	1	785.24 785.36	62
411.334	1	785.40	62
437.243	46	787.54	62
437.270	46	800.94	173
440.267	44	824.35	176
467.622	3	828.66	175
469.832	3	833.82	129
561.194	5	839.82	174
561.790	137	851.58	124
623.38	139	851.69	124
625.13	131	851.72	124
625.19	131	851.82	124
625.21	131	852.08	124
625.27	131	852.93	124
625.86	131	853.19	124
628.12	138	876.89	125
631.46	130	877.03	125
631.52	130	877.21	126
631.58	130	877.31	125
631.68	130	877.40	169
632.18	130	877.44	125
632.29	130	877.59	169
640.47	133	877.70	169
645.27	132	877.72	125
645.33	132	877.85	169
645.44	132	877.96	169
645.55	132	878.22	125
645.66	132	890.79	123
645.93	132	890.90	123
650.83	64	890.98	123
650.91	64	891.01	123
650.92 650.94	64 64	892.19	123 123

TABLE 15. Wavelength finding list for allowed lines for Na IV—Continued

TABLE 15. Wavelength finding list for allowed lines for Na IV—Continued

Wavelength	Mult.	Wavelength	Mult.		
(vac) (Å)	No.	(vac) (Å)	No.		
911.76	170	1 189.12	166		
920.30	61	1 189.12	166		
920.47	61	1 189.45	166		
920.52	61	1 189.65	166		
			77		
925.87 926.04	60 60	1 231.51	168		
		1 263.10			
926.09	60	1 306.15	122		
932.31	59	1 325.37	74		
933.25	59	1 325.40	74		
933.43	59	1 325.76	74		
933.48	59	1 325.83	74		
935.52	59	1 325.89	76		
935.69	59	1 325.96	74		
962.48	171	1 326.35	74		
972.31	58	1 326.39	74		
972.50	58	1 377.30	156		
972.55	58	1 377.94	156		
972.92	58	1 403.586	96		
973.10	58	1 403.867	96		
974.22	58	1 406.873	96		
1 050.40	127	1 407.65	95		
1 075.03	112	1 409.81	95		
1 075.20	112	1 410.10	95		
1 075.38	112	1 411.17	121		
1 075.54	112	1 414.98	95		
1 075.84	112	1 415.26	95		
1 077.31	112	1 415.398	100		
1 077.61	112	1 416.459	100		
1 095.97	110	1 417.776	100		
1 096.14	110	1 418.32	95		
1 097.34	110	1 445.97	75		
1 097.51	110	1 446.67	75		
1 097.97	110	1 447.19	75		
1 100.923	111	1 453.04	120		
1 101.096	111	1 453.20	94		
1 101.534	111	1 453.51	94		
1 101.84	110	1 453.68	120		
1 102.944	111	1 454.23	120		
1 103.384	111	1 456.942	104		
1 103.698	111	1 469.33	119		
1 115.33	117	1 494.04	155		
1 115.67	114	1 494.59	155		
1 116.05	114	1 500.747	118		
1 116.37	114	1 500.88	93		
1 116.71	114	1 501.20	93		
1 117.03	114	1 501.560	118		
1 117.85	114	1 502.32	93		
1 141.72	116	1 502.65	93		
1 142.06	116	1 505.32	93		
1 143.585	113	1 506.09	93		
1 144.057	113	1 508.09	160		
1 144.277	113	1 508.77	93		
1 144.750	113	1 518.767	103		
1 145.088	113	1 523.401	92		
1 145.611	113	1 534.47	73		
1 145.949	113	1 541.64	154		
1 151.35	115	1 541.77	154		
1 177.16	167	1 542.36	154		
1 188.77	166	1 542.39	154		
1 188.83	166	1 542.44	154		
1 188.98	166	1 542.44	154		

TABLE 15. Wavelength finding list for allowed lines for Na IV—Continued

Table 15. Wavelength finding list for allowed lines for Na IV—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
1 543.16	154	1 703.485	57
1 559.40	153	1 707.39	159
1 559.99	153	1 708.26	159
1 560.81	153	1 723.113	101
1 580.233	91	1 727.328	101
1 580.498	91	1 729.92	158
1 581.31	99	1 730.604	101
1 582.121	56	1 760.81	157
1 582.181	56	1 764.35	157
1 582.331	56	1 764.48	84
1 582.617	91	1 764.51	84
1 582.91	99	1 765.38	84
1 582.975	91	1 776.01	157
1 583.817	56	1 791.6	88
1 583.968	56	1 823.8	164
1 584.043	91	1 894.3	163
1 584.141	56	1 895.4	163
1 584.23	99	1 896.3	163
1 584.45	151	1 897.6	69
1 585.06	151	1 898.8	69
1 585.87	99	1 922.1	162
1 585.91	151	1 960.76	51
1 586.783	56	1 965.08	51
1 586.798	91	1 967.60	51
1 586.956	56	1 968.4	68
1 587.047	56	1 971.0	68
1 587.20	99	1 972.2	68
1 587.93	151	1 973.0	68
1 588.78	151	1 974.3	68
1 588.86	99	1 975.1	68
1 594.825	152	1 976.2	161
1 595.449	152	1 977.6	161
1 595.744	152	1 983.7	83
1 596.304	152	1 984.8	83
1 596.368	152	1 985.0	83
1 596.401	152	1 986.2	83
1 598.23	151	1 987.1	83
1 601.18	85	1 998.6	87
1 601.92	85	1,7,0.0	0,
1 606.973	52	Wavelength	Mult.
1 607.482	52	(air) (Å)	No.
1 613.947	98	· ·	
1 615.326	98	2 005.74	109
1 615.924	98		
1 617.040	98	2 018.14	54
1 617.639	98	2 018.38	54
1 618.568	98	2 019.19	54
1 652.10	165	2 106.3	67
1 655.467	102	2 107.7	67
1 666.772	97	2 113.1	67
1 668.597	97 97	2 114.5	67
1 669.240	97 97	2 115.2	67
	97 97	2 115.5	67
1 670.715 1 672.300	97 97	2 116.2	67
1 672.548	97 97	2 124.88	108
		2 139.2	107
1 673.780	97 57	2 151.1	107
1 701.98		2 153.5	80
1 702.415	57	2 154.8	80
1 702.736	57	2 155.8	72
1 702.986	57	2 177.49	145

TABLE 15. Wavelength finding list for allowed lines for Na IV—Continued

TABLE 15. Wavelength finding list for allowed lines for Na IV—Continued

Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.
(an) (A)	140.	(dii) (A)	110.
2 240.7	106	4 441.50	89
2 251.0	71	4 442.13	89
2 253.7	71	4 444.32	89
2 283.9	86	4 465.4	89
2 285.6	86	4 471.0	78
2 318.61	144	4 472.38	89
2 319.93	144	4 495.8	78
2 321.74	144	4 498.7	78
2 332.9	143	4 498.9	78
2 337.0	143	4 501.7	78
2 338.8	143	4 504.6	78
2 349.9	143	5 216.1	90
2 351.2	143	5 225.64	90
2 353.1	143	5 228.67	90
2 356.2	105	5 230.6	90
2 359.8	105	5 240.13	90
2 366.4	105	5 248.6	90
2 430.2	70	6 409	81
2 439.2	70	6 415	81
2 440.1	70	7 127	55
2 512.9	82	7 137	55
2 598.5	142	7 141	55
2 600.7	142	7 142	55
2 601.1	142	7 152	55
2 602.8	142	7 155	55
2 605.1	142	9 012	65
2 609.1	142	9 038	65
2 610.8	142	9 051	65
2 617.81	53	9 054	65
2 622.30	53	9 056	65
2 717.0	147	9 072	65
2 831.42	141	17 602.1	140
2 842.82	141	17 636.5	140
2 844.80	141	17 706.8	140
2 851.71	141	17 741.7	140
2 853.70	141	17 819	140
2 856.44	141	17 852	140
2 909.3	146	17 930	140
2 957.0	150	W1	3 6 1.
3 223.4	149	Wavenumber	Mult.
3 497.7	148	(cm ⁻¹)	No.
3 622.6	79	4 769	66
4 435.3	89	4 749	66

Table 16. Transition probabilities of allowed lines for Na IV (references for this table are as follows: 1=Butler and Zeippen, 15 2=Tachiev and Froese Fischer, 94 and 3=Vilkas et al. 119)

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	$_{ m vac}^{ m \lambda_{ m vac}}$ (Å) or σ (cm ⁻¹) $^{ m a}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
1	$2s^22p^4 - 2s2p^5$	$^{3}P-^{3}P^{\circ}$		410.43	544–244 190	9–9	6.30+01	1.59-01	1.94+00	0.156	B+	2,3
				410.371	0.0-243 681.9	5–5	4.73+01	1.19-01	8.07-01	-0.225	B+	2,3
				410.541	1 106.3-244 687.6	3–3	1.57+01	3.98-02	1.61-01	-0.923	$\mathrm{B} +$	2,3
				408.684	0.0-244 687.6	5-3	2.66+01	4.00-02	2.69-01	-0.699	$\mathrm{B} +$	2,3
				409.614	1 106.3-245 238.8	3-1	6.34+01	5.32-02	2.15-01	-0.797	$\mathrm{B} +$	2,3
				412.243	1 106.3-243 681.9	3–5	1.55+01	6.60-02	2.69-01	-0.703	$\mathrm{B} +$	2,3
				411.334	1 576.0-244 687.6	1-3	2.09+01	1.59-01	2.15-01	-0.799	$\mathrm{B} +$	2,3

Table 16. Transition probabilities of allowed lines for Na IV (references for this table are as follows: 1=Butler and Zeippen, ¹⁵ 2=Tachiev and Froese Fischer, ⁹⁴ and 3=Vilkas *et al.* ¹¹⁹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{ m vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
2		$^{3}P-^{1}P^{\circ}$										
				291.901	1 106.3-343 688	3-3	2.34-03	2.98-06	8.60-06	-5.049	D	2,3
				290.962	0.0-343 688	5-3	1.31-01	9.98-05	4.78-04	-3.302	C	2,3
				292.302	1 576.0–343 688	1-3	4.19-03	1.61-05	1.55-05	-4.793	D+	2,3
3		$^{1}D-^{3}P^{\circ}$										
				467.622	30 839.8-244 687.6	5-3	1.16-03	2.27-06	1.75-05	-4.945	D	2,3
				469.832	30 839.8–243 681.9	5–5	1.60-02	5.28-05	4.08-04	-3.578	C	2,3
4		$^{1}D-^{1}P^{\circ}$		319.644	30 839.8–343 688	5–3	2.52+02	2.32-01	1.22+00	0.064	B+	2,3
5		$^{1}S - ^{3}P^{\circ}$										
				561.194	66 496–244 687.6	1-3	2.33-03	3.30-05	6.10-05	-4.481	D	2,3
6		$^{1}S-^{1}P^{\circ}$		360.761	66 496–343 688	1–3	1.38+01	8.07-02	9.59-02	-1.093	B+	2,3
7	$2p^4 - 2p^3(^4S^{\circ})3s$	$^{3}P-^{3}S^{\circ}$		205.72	544–486 650.2	9–3	2.48+02	5.25-02	3.20-01	-0.326	В	2
	I I (= /			205.406	0.0.406.650.2	<i>5</i> 2					ъ.	2
				205.486	0.0–486 650.2	5–3			1.79-01			2
				205.955	1 106.3–486 650.2	3–3			1.06-01			2
				206.154	1 576.0–486 650.2	1–3	2.72+01	5.20-02	3.53-02	-1.284	В	2
8	$2p^4 - 2p^3(^2D^{\circ})3s$	$^{3}P-^{3}D^{\circ}$		190.64	544–525 106	9–15	8.19+01	7.44-02	4.20-01	-0.174	В	2
				190.445	0.0-525 085	5–7	8.21+01	6.25-02	1.96-01	-0.505	B+	2
				190.836	1 106.3-525 117	3-5	5.87+01	5.34-02	1.01-01	-0.795	В	2
				190.999	1 576.0-525 139	1-3	4.33+01	7.11-02	4.47-02	-1.148	В	2
				190.434	0.0-525 117	5–5	2.31+01	1.26-02	3.93-02	-1.201	В	2
				190.828	1 106.3-525 139	3–3	3.56+01	1.94-02	3.66-02	-1.235	В	2
				190.426	0.0–525 139	5–3	2.72+00	8.86-04	2.78-03	-2.354	В	2
9		$^{3}P-^{1}D^{\circ}$										
				188.571	1 106.3–531 410	3-5	2.71 - 02	2.41-05	4.49-05	-4.141	E+	2
				188.179	0.0–531 410	5–5	4.43-01	2.35-04	7.29-04	-2.930	D+	2
10		$^{1}D-^{3}D^{\circ}$										
				202.316	30 839.8-525 117	5-5	2.16-02	1.33 - 05	4.42-05	-4.177	E+	2
				202.307	30 839.8–525 139	5–3	5.58 - 02	2.06-05	6.85 - 05	-3.987	E+	2
				202.329	30 839.8–525 085	5–7	4.33-02	3.72-05	1.24-04	-3.730	D	2
11		$^{1}D-^{1}D^{\circ}$		199.772	30 839.8–531 410	5–5	2.05+02	1.23-01	4.04-01	-0.211	B+	2
12	$2p^4 - 2p^3(^2P^{\circ})3s$	$^{3}P-^{3}P^{\circ}$		181.94	544–550 173	9_9	8.48+01	4.21-02	2.27-01	-0.421	C	2
				181.757	0.0–550 186	5–5	6.07+01	3.00-02	8.99-02	-0.824	С	2
				182.133	1 106.3-550 157	3-3	2.04+01	1.02-02	1.83-02	-1.514	D+	2
				181.766	0.0-550 157	5-3	3.33+01	9.89-03	2.96-02	-1.306	D+	2
				[182.13]	1 106.3-550 158	3-1	8.44+01	1.40-02	2.52-02	-1.377	D+	2
				182.123	1 106.3-550 186	3-5	2.42+01	2.01-02	3.61-02	-1.220	C	2
				182.288	1 576.0–550 157	1–3	3.10+01	4.63-02	2.78-02	-1.334	D+	2
13		$^{1}D-^{3}P^{\circ}$										
				192.561	30 839.8-550 157	5-3	1.88-02	6.27-06	1.99-05	-4.504	E +	2
				192.550	30 839.8–550 186	5–5	6.42-01	3.57-04	1.13-03	-2.748	D+	2
14		$^{1}D-^{1}P^{\circ}$		190.130	30 839.8–556 796	5–3	9.39+01	3.05-02	9.55-02	-0.817	C	2
15		$^{1}S-^{1}P^{\circ}$		203.957	66 496–556 796	1–3	9.54+01	1.78-01	1.20-01	-0.750	С	2
1.0		3- P		203.731	55 776 550 170	1-5	J.J++UI	1.70-01	1.20-01	-0.730	_	-

Table 16. Transition probabilities of allowed lines for Na IV (references for this table are as follows: 1 = Butler and Zeippen, 15 = 2 = Tachiev and Froese Fischer, 15 = 2 = Tachiev and 15 = 3 = Tachiev and 15 = Tachiev and 15

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	$\lambda_{ m vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
16	$2p^4 - 2p^3(^4S^{\circ})3d$	$^{3}P-^{3}D^{\circ}$		168.25	544–594 913	9–15	3.30+02	2.33-01	1.16+00	0.322	C+	2
				168.086	0.0-594 934	5–7	3.33+02	1.97-01	5.46-01	-0.007	C+	2
				168.409	1 106.3-594 899.2	3–5	2.45+02	1.73-01	2.88-01	-0.285	C+	2
				168.545	1 576.0-594 888.1	1-3	1.81+02	2.31-01	1.28-01	-0.636	C	2
				168.096	0.0-594 899.2	5–5	8.38+01	3.55-02	9.82-02	-0.751	C	2
				168.412	1 106.3-594 888.1	3–3	1.37+02	5.81-02	9.67-02	-0.759	C	2
				168.099	0.0–594 888.1	5–3	9.35+00	2.38-03	6.57-03	-1.924	D+	2
17	$2p^4 - 2p^3(^2D^{\circ})3d$	$^{3}P-^{3}D^{\circ}$		156.65	544–638 901	9–15	2.81+02	1.73-01	8.01-01	0.192	C	2
				156.537	0.0-638 825	5–7			3.87-01			2
				156.780	1 106.3–638 943	3–5	2.12+02	1.30 - 01	2.02-01	-0.409	C	2
				156.880	1 576.0–639 007	1–3	1.52+02	1.68 - 01	8.67 - 02	-0.775	C	2
				156.508	0.0-638 943	5–5	6.45 + 01	2.37 - 02	6.10 - 02	-0.926	C	2
				156.764	1 106.3-639 007	3–3	1.07 + 02	3.94 - 02	6.10-02	-0.927	C	2
				156.493	0.0-639 007	5–3	6.26+00	1.38-03	3.55-03	-2.161	D	2
18		$^{3}P-^{3}P^{\circ}$		155.61	544–643 179	9_9	6.17+02	2.24-01	1.03+00	0.304	C	2
				155.508	0.0-643 052	5–5	4.81+02	1.74-01	4.46-01	-0.060	C+	2
				155.714	1 106.3-643 311	3–3	1.00+02	3.64-02	5.60-02	-0.962	C	2
				155.446	0.0-643 311	5-3	3.45 + 02	7.50-02	1.92-01	-0.426	C	2
				[155.69]	1 106.3-643 420	3-1	5.93+02	7.19-02	1.11-01	-0.666	C	2
				155.776	1 106.3-643 052	3-5			1.40-01			2
				155.828	1 576.0–643 311	1–3			8.79-02			2
19		$^{3}P-^{3}S^{\circ}$		155.37	544-644 166	9–3	3.79+02	4.57-02	2.11-01	-0.386	C	2
				155.239	0.0-644 166	5-3	1.88+02	4.07-02	1.04-01	-0.691	C	2
				155.507	1 106.3-644 166	3–3	1.40+02	5.07-02	7.78-02	-0.818	C	2
				155.620	1 576.0–644 166	1–3	5.13+01	5.59-02	2.86-02	-1.253	D+	2
20		$^{1}D-^{1}P^{\circ}$		163.840	30 839.8–641 193	5–3	3.56+02	8.60-02	2.32-01	-0.367	C	2
21		$^{1}D-^{1}D^{\circ}$		163.189	30 839.8-643 625.6	5–5	4.32+02	1.73-01	4.64-01	-0.063	C+	2
22		$^{1}D-^{1}F^{\circ}$		162.448	30 839.8-646 419.6	5–7	6.04+02	3.35-01	8.95-01	0.224	C+	2
23		$^{1}S-^{1}P^{\circ}$		174.005	66 496–641 193	1–3	4.33+01	5.89-02	3.38-02	-1.230	C	2
24	$2p^4 - 2p^3(^4S^{\circ})4s$	$^{3}P-^{3}S^{\circ}$		155.21	544-644 819	9–3	3.44+02	4.15-02	1.91-01	-0.428	C	2
				155.082	0.0-644 819	5-3	1.33+02	2.87-02	7.32-02	-0.843	C	2
				155.349	1 106.3-644 819	3-3	1.48+02	5.37-02	8.24-02	-0.793	C	2
				155.462	1 576.0–644 819	1–3			3.51-02			2
25	$2p^4 - 2p^3(^2P^{\circ})3d$	$^{3}P-^{3}P^{\circ}$		150.83	544-663 531	9_9	1.41+02	4.81-02	2.15-01	-0.364	C	2
				150.688	0.0-663 623	5–5	9.87+01	3.36-02	8.34-02	-0.775	C	2
				150.966	1 106.3-663 509	3–3	4.70+01	1.61-02	2.39-02	-1.316	D+	2
				150.714	0.0-663 509	5–3			2.79-02		_	2
				[151.05]	1 106.3-663 137	3-1			2.90-02			2
				150.940	1 106.3–663 623	3–5			2.31-02			2
				151.073	1 576.0–663 509	1–3			2.76-02			
26		$^{3}P-^{1}D^{\circ}$										
•		1 – D		150.709	1 106.3–664 637	3–5	3.10+01	1.76-02	2.62-02	-1.277	D	2

Table 16. Transition probabilities of allowed lines for Na IV (references for this table are as follows: 1=Butler and Zeippen, ¹⁵ 2=Tachiev and Froese Fischer, ⁹⁴ and 3=Vilkas *et al.* ¹¹⁹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{ m vac}$ (Å) or σ (cm $^{-1}$) $^{ m a}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Sourc
				150.458	0.0-664 637	5–5	3.32+00	1.13-03	2.79-03	-2.248	E+	2
27		$^{3}P-^{3}D^{\circ}$		150.42	544–665 364	9–15	2.41+02	1.36-01	6.06-01	0.088	C	2
				150.298	0.0-665 344	5–7	2.38+02	1.13-01	2.79-01	-0.248	C+	2
				150.543	1 106.3-665 370	3-5	1.71+02	9.70-02	1.44-01	-0.536	C	2
				150.642	1 576.0-665 400	1-3	1.56+02	1.59-01	7.88-02	-0.799	C	2
				150.292	0.0-665 370	5-5	5.41 + 01	1.83-02	4.54-02	-1.039	C	2
				150.536	1 106.3-665 400	3-3	1.10+02	3.74-02	5.56-02	-0.950	C	2
				150.286	0.0-665 400	5–3	6.42+00	1.30-03	3.23-03	-2.187	D	2
28		$^{1}D-^{1}D^{\circ}$		157.779	30 839.8–664 637	5–5	1.99+02	7.42-02	1.93-01	-0.431	C	2
29		$^{1}D-^{3}D^{\circ}$										
				157.597	30 839.8–665 370	5–5	3.50+01	1.30-02	3.38-02	-1.187	D	2
				157.589	30 839.8-665 400	5–3			5.74-05			2
				157.603	30 839.8–665 344	5–7			1.25-03			2
30		$^{1}D-^{1}F^{\circ}$		157.084	30 839.8–667 442	5–7	3.66+02	1.89-01	4.90-01	-0.025	C+	2
31		$^{1}D-^{1}P^{\circ}$		155.690	30 839.8–673 140	5–3	1.79+01	3.90-03	9.98-03	-1.710	D+	2
32		$^{1}S-^{1}P^{\circ}$		164.841	66 496–673 140	1–3	7.02+02	8.58-01	4.65-01	-0.067	C+	2
33	$2p^4 - 2p^3(^4S^{\circ})4d$	$^{3}P-^{3}D^{\circ}$		146.18	544–684 631	9–15	2.67+02	1.43-01	6.18-01	0.110	D+	1
				146.064	0.0-684 630	5–7	2.68+02	1.20-01	2.89-01	-0.222	C	LS
				146.302	1 106.3-684 626	3-5	2.00+02	1.07 - 01	1.55 - 01	-0.493	C	LS
				146.399	1 576.0–684 640	1-3	1.47 + 02	1.42 - 01	6.84 - 02	-0.848	D+	LS
				146.065	0.0-684 626	5-5	6.69+01	2.14-02	5.15 - 02	-0.971	D	LS
				146.299	1 106.3–684 640	3–3	1.11+02	3.55 - 02	5.13 - 02	-0.973	D	LS
				146.062	0.0–684 640	5–3	7.40+00	1.42-03	3.41-03	-2.149	Е	LS
34	$2p^4 - 2p^3(^2D^{\circ})4s$	$^{1}D-^{1}D^{\circ}$		151.299	30 839.8–691 781	5–5	6.70+01	2.30-02	5.73-02	-0.939	D	1
35	$2p^4 - 2p^3(^2D^{\circ})4d$	$^{3}P-^{3}D^{\circ}$		136.95	544–730 719	9–15	1.55+02	7.28-02	2.95-01	-0.184	D+	1
				136.855	0.0-730 702	5–7	1.56+02	6.12-02	1.38 - 01	-0.514	D+	LS
				137.057	1 106.3–730 728	3–5	1.16+02	5.46 - 02	7.39 - 02	-0.786	D+	LS
				137.143	1 576.0–730 742	1-3	8.59+01	7.27 - 02	3.28 - 02	-1.138	D	LS
				136.850	0.0-730 728	5–5	3.88+01	1.09 - 02	2.46-02	-1.264	D	LS
				137.055	1 106.3–730 742	3–3	6.46+01	1.82 - 02	2.46-02	-1.263	D	LS
				136.847	0.0–730 742	5–3	4.33+00	7.29-04	1.64-03	-2.438	E	LS
36		$^{3}P-^{3}P^{\circ}$				9_9						1
				136.551	0.0–732 325	5–5	2.08+02	5.81-02	1.31-01	-0.537	D+	LS
				136.754	1 106.3–732 346	3–3	6.88+01	1.93 - 02	2.61-02	-1.237	D	LS
				136.547	0.0-732 346	5–3	1.16+02	1.94-02	4.36-02	-1.013	D	LS
				136.758	1 106.3–732 325	3–5	6.89 + 01	3.22 - 02	4.35-02	-1.015	D	LS
				136.842	1 576.0–732 346	1–3	9.18+01	7.73-02	3.48-02	-1.112	D	LS
37		$^{3}P-^{3}S^{\circ}$		136.53	544–732 979	9–3	3.12+02	2.91-02	1.18-01	-0.582	D	1
				136.430	0.0-732 979	5-3	1.74+02	2.91-02	6.54-02	-0.837	D+	LS
				136.636	1 106.3–732 979	3–3	1.04+02	2.91 - 02	3.93-02	-1.059	D	LS
				136.724	1 576.0–732 979	1–3	3.46+01	2.91-02	1.31-02	-1.536	E+	LS

Table 16. Transition probabilities of allowed lines for Na IV (references for this table are as follows: 1 = Butler and Zeippen, 15 = 2 = Tachiev and Froese Fischer, 15 = 2 = Tachiev and 15 = 3 = Tachiev and 15 = Tachiev and 15

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
38		$^{1}D-^{1}P^{\circ}$		142.685	30 839.8–731 684	5–3	1.70+02	3.12-02	7.33-02	-0.807	D+	1
39		$^{1}D - ^{1}D^{\circ}$		142.359	30 839.8–733 288	5–5	2.77+02	8.43-02	1.98-01	-0.375	C	1
40		$^{1}D-^{1}F^{\circ}$		142.231	30 839.8–733 919	5–7	3.06+02	1.30-01	3.04-01	-0.187	С	1
41	$2p^4 - 2p^3(^2P^{\circ})4d$	$^{1}D-^{1}F^{\circ}$		137.712	30 839.8–756 995	5–7	1.68+02	6.67-02	1.51-01	-0.477	C	1
42	$2s2p^5 - 2s^22p^3(^4S^{\circ})3p$	$^{3}P^{\circ}-^{3}P$		342.49	244 190–536 173	9–9	1.18-01	2.07-04	2.10-03	-2.730	E+	2
	T T T T T			341.884	243 681.9–536 178.8	5–5	8 73-02	1 53-04	8.61-04	-3 116	D	2
				343.087	244 687.6–536 159.1	3–3			1.40-04			2
				341.907	243 681.9–536 159.1	5–3			3.28-04			2
				343.056	244 687.6–536 184.9	3–3						2
									2.23-04			
				343.064	244 687.6–536 178.8	3–5			3.26-04			2
				343.737	245 238.8–536 159.1	1–3	3.72-02	1.98-04	2.24-04	-3.703	E+	2
43	$2s2p^5 - 2p^6$	$^{3}P^{\circ}-^{1}S$		306.621	244 687.6–570 823	3–1	2.51 .02	1 10 05	3.57-05	1 151	D	2,3
		1 0 1										
44		$^{1}P^{\circ}-^{1}S$		440.267	343 688–570 823	3–1	1.69+02	1.63-01	7.11-01	-0.311	C+	2
45	$2s2p^5 - 2s^22p^3(^2D^{\circ})3p$	$^{3}P^{\circ}-^{3}D$		304.63	244 190–572 462	9–15	3.37-01	7.81-04	7.05-03	-2.153	D	2
				304.077	243 681.9-572 546.0	5–7	3.56-01	6.91-04	3.46-03	-2.462	D	2
				305.151	244 687.6-572 393.8	3-5	2.54-01	5.92-04	1.78-03	-2.751	D	2
				305.679	245 238.8-572 379.5	1-3	1.77-01	7.44-04	7.49-04	-3.128	E+	2
				304.218	243 681.9-572 393.8	5–5	7.69-02	1.07-04	5.34-04	-3.272	E+	2
				305.165	244 687.6–572 379.5	3–3			4.86-04			2
				304.231	243 681.9–572 379.5	5–3			3.65-05			2
46		$^{1}P^{\circ}-^{3}D$										
				437.243	343 688–572 393.8	3-5	6.78 - 05	3.24-07	1.40-06	-6.012	E	2
				437.270	343 688–572 379.5	3–3	4.97-02	1.42-04	6.15-04	-3.371	D+	2
47		$^{1}P^{\circ}-^{1}D$		395.427	343 688–596 578.9	3–5	1.12+00	4.39-03	1.71-02	-1.880	D+	2
48	$2s2p^5 - 2s^22p^3(^2P^{\circ})3p$	$^{3}P^{\circ}-^{3}D$		280.63	244 190–600 529	9–15	2.04+00	4.02-03	3.34-02	-1.442	D+	2
				280.247	243 681.9–600 509.6	5–7	2.04+00	3.36-03	1.55-02	-1.775	D+	2
				281.020	244 687.6-600 534.1	3-5	1.52+00	3.00-03	8.34-03	-2.046	D+	2
				281.429	245 238.8-600 567.7	1-3	1.14+00	4.07 - 03	3.77-03	-2.390	D	2
				280.228	243 681.9-600 534.1	5–5	5.15-01	6.07-04	2.80-03	-2.518	D	2
				280.994	244 687.6-600 567.7	3-3	8.66-01	1.03-03	2.84-03	-2.510	D	2
				280.202	243 681.9–600 567.7	5–3			1.81-04			2
49		$^{1}P^{\circ}-^{1}P$		[380.02]	343 688–606 831	3–3	1.51+00	3.27-03	1.23-02	-2.008	D+	2
50		$^{1}P^{\circ}-^{1}D$		[371.85]	343 688–612 611	3–5	9.03-01	3.12-03	1.15-02	-2.029	D+	2
51	$2p^3(^4S^{\circ})3s-2p^3(^4S^{\circ})3p$	$^{5}\text{S}^{\circ}$ – ^{5}P		1 963.6	473 950.0– <i>524</i> 878	5–15	3.69+00	6.40-01	2.07+01	0.505	B+	2
				1 960.76	473 950.0–524 950.6	5–7	3.71+00	2.99-01	9.65+00	0.175	B+	2
				1 965.08	473 950.0–524 838.6	5–5	3 68 ± 00	2.13-01	6.80±00	0.027	B+	2
				1 967.60	473 950.0–524 773.3	5–3			4.13+00			
52		$^{5}\text{S}^{\circ}$ – ^{3}P										
				[1 606.97]	473 950.0–536 178.8	5–5	2.25-03	8.70-05	2.30-03	-3.362	D+	2

Table 16. Transition probabilities of allowed lines for Na IV (references for this table are as follows: 1=Butler and Zeippen, ¹⁵ 2=Tachiev and Froese Fischer, ⁹⁴ and 3=Vilkas *et al.* ¹¹⁹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Sourc
				[1 607.48]	473 950.0–536 159.1	5–3	1.09-03	2.54-05	6.72-04	-3.896	D+	2
53		$^{3}\text{S}^{\circ}-^{5}\text{P}$										
			[2 617.8]	[2 618.6]	486 650.2-524 838.6	3-5	5.08-04	8.70-05	2.25-03	-3.583	D+	2
			[2 622.3]	[2 623.1]	486 650.2–524 773.3	3–3			6.54-04			2
54		$^{3}\text{S}^{\circ}$ – ^{3}P	2 018.6	2 019.3	486 650.2– <i>536 173</i>	3–9	3.44+00	6.31-01	1.26+01	0.277	В	2
			2 018.38	2 019.04	486 650.2–536 178.8	3–5	3 44+08	3.50-01	6 99 ± 00	0.021	B+	2
			2 019.19	2 019.84	486 650.2–536 159.1	3–3			4.20+00			2
			2 018.14	2 018.79	486 650.2–536 184.9	3–1			1.40+00			2
55	$2p^3(^4S^{\circ})3p-2p^3(^2P^{\circ})3s$	$^{3}P-^{3}P^{\circ}$	7140	7 143	536 173–550 173	9_9	9.32-04	7.13-04	1.51-01	-2.193	D+	2
			7 137	7 139	536 178.8–550 186	5–5	6.73_04	5 14-04	6.04-02	_2 500	С	2
			7 142	7 144	536 159.1–550 157	3–3			0.04 - 02 $1.15 - 02$			2
			7 152	7 154	536 178.8–550 157	5–3			2.09-02			2
												2
			[7 141]	[7 143]	536 159.1–550 158	3–1			1.66-02			
			7 127	7 129	536 159.1–550 186	3–5			2.36-02			2
			7 155	7 157	536 184.9–550 157	1–3			1.78-02			2
56	$2p^3(^4S^{\circ})3p-2p^3(^4S^{\circ})3d$	$^{5}P-^{5}D^{\circ}$		1 585.07	524 878–587 967	15–25	9.49+00	5.96-01	4.66+01	0.951	B+	2
				1 587.047	524 950.6-587 960.7	7–9	9.46+00	4.59-01	1.68+01	0.507	B +	2
				1 584.141	524 838.6-587 964.3	5-7	6.34+00	3.34-01	8.71 + 00	0.223	$\mathrm{B}+$	2
				1 582.331	524 773.3-587 971.2	3-5	3.34+00	2.09-01	3.26+00	-0.203	В	2
57				1 586.956	524 950.6-587 964.3	7–7	3.15+00	1.19-01	4.36+00	-0.079	В	2
				1 583.968	524 838.6–587 971.2	5–5		2.09-01		0.019		2
				1 582.181	524 773.3–587 977.2	3–3			4.20+00			2
				1 586.783	524 950.6–587 971.2	7–5			6.22-01			2
				1 583.817	524 838.6–587 977.2	5–3			1.40+00			2
				1 582.121	524 773.3–587 979.6	3–1			1.87+00			2
		$^{3}P-^{3}D^{\circ}$		1 702.41	536 173–594 913	9–15		5.74-01		0.713		2
				1 701 00	536 178.8–594 934	5 7	7.02 - 00	4.02 .01	1.25 - 01	0.292	D :	2
				1 701.98		5–7		4.82-01		0.382		
				1 702.415	536 159.1–594 899.2	3–5		4.31-01		0.112	_	2
				1 703.485	536 184.9–594 888.1	1–3			3.22+00		_	2
				1 702.986	536 178.8–594 899.2	5–5			2.41+00			2
				1 702.736	536 159.1–594 888.1	3–3			2.41+00			2
-0	2.41-22	2_ 2_ 0		1 703.308	536 178.8–594 888.1	5–3			1.61-01			2
58	$2p^3(^4S^{\circ})3p-2p^3(^2D^{\circ})3d$	$^{3}P-^{3}D^{\circ}$		973.4	536 173–638 901	9–15	9.20-03	2.18-04	6.28-03	-2.707	D	2
				974.22	536 178.8-638 825	5–7	1.02 - 02	2.04 - 04	3.27 - 03	-2.991	D	2
				972.92	536 159.1–638 943	3–5	7.93 - 03	1.88 - 04	1.80-03	-3.249	D	2
				972.55	536 184.9–639 007	1-3	5.37-03	2.29-04	7.32-04	-3.640	E+	2
				973.10	536 178.8-638 943	5–5	8.76 - 04	1.24-05	1.99-04	-4.208	E+	2
				972.31	536 159.1-639 007	3-3	2.05 - 03	2.91-05	2.79-04	-4.059	E+	2
				972.50	536 178.8–639 007	5–3	7.46-06	6.35-08	1.02-06	-6.498	E	2
59		$^{3}P-^{3}P^{\circ}$		934.5	536 173–643 179	9_9	1.89+00	2.47-02	6.83-01	-0.653	C	2
				935.69	536 178.8-643 052	5–5	1.33+00	1.75-02	2.69-01	-1.058	C+	2
				933.25	536 159.1-643 311	3–3	5.63-02	7.35-04	6.78-03	-2.657	D+	2
				933.43	536 178.8-643 311	5-3			2.22-01			2
				[932.3]	536 159.1–643 420	3–1			6.72-02			2
				[334.3]	JJU 1J9.1-043 42U	3-1	1.08+00	7.30-03	0.72-02	-1.060	C	

Table 16. Transition probabilities of allowed lines for Na IV (references for this table are as follows: 1=Butler and Zeippen, 15 2=Tachiev and Froese Fischer, 94 and 3=Vilkas et al. 119)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	$\lambda_{\rm vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc	Source
	array	iviuit.	(11)									
				935.52	536 159.1–643 052	3–5			8.76-02			2
				933.48	536 184.9–643 311	1–3	2.54-01	9.96-03	3.06-02	-2.002	C	2
60		$^{3}P-^{3}S^{\circ}$		926.0	536 173–644 166	9–3	1.24-01	5.33-04	1.46-02	-2.319	D+	2
				926.04	536 178.8-644 166	5–3	9.14-02	7.05-04	1.07-02	-2.453	D+	2
				925.87	536 159.1-644 166	3-3	2.72-02	3.50-04	3.20-03	-2.979	D	2
				926.09	536 184.9–644 166	1–3	5.66-03	2.18-04	6.66-04	-3.662	E+	2
61	$2p^3(^4S^{\circ})3p-2p^3(^4S^{\circ})4s$	$^{3}P-^{3}S^{\circ}$		920.4	536 173-644 819	9–3	2.75+01	1.16-01	3.17+00	0.019	В	2
				920.47	536 178.8-644 819	5-3	1.43+01	1.09-01	1.66+00	-0.264	В	2
				920.30	536 159.1-644 819	3-3	9.71+00	1.23-01	1.12+00	-0.433	В	2
				920.52	536 184.9–644 819	1–3	3.43+00	1.31-01	3.96-01	-0.883	C+	2
62	$2p^3(^4S^{\circ})3p-2p^3(^2P^{\circ})3d$	$^{3}P-^{3}P^{\circ}$		785.2	536 173–663 531	9_9	8.74-02	8.08-04	1.88-02	-2.138	D	2
				784.66	536 178.8–663 623	5–5	5.25-02	4 85-04	6.26-03	-2.615	D+	2
				785.24	536 159.1–663 509	3–3			2.43-03			2
				785.36	536 178.8–663 509	5–3			2.07-03			2
				[787.5]	536 159.1–663 137	3–1			2.82-03			2
				784.54	536 159.1–663 623	3–5			2.27-03			2
				785.40	536 184.9–663 509	1–3			2.95-03			2
63	$2p^3(^4S^{\circ})3p-2p^3(^4S^{\circ})4d$	$^{3}P-^{3}D^{\circ}$		673.6	536 173–684 631	9–15			1.55+00			1
				673.62	536 178.8–684 630	5–7	6.86±00	6.53_02	7.24-01	_0.486	C+	LS
				673.55	536 159.1–684 626	3–5			3.88-01			LS
				673.60	536 184.9–684 640	1–3			1.73-01			LS
				673.64	536 178.8–684 626	5–5			1.75-01			LS
				673.49	536 159.1–684 640	3–3						LS
				673.58	536 178.8–684 640	5–3			1.29-01 8.63-03			LS
					330 176.6-004 040	5–5	1.91-01	7.78-04	8.03-03	-2.410	L	Lo
64	$2p^3(^4S^{\circ})3p-2p^3(^2D^{\circ})4s$	$^{3}P-^{3}D^{\circ}$		651.0	536 173–689 776	9–15	4.08-01	4.32-03	8.33-02	-1.410	E+	1
				651.15	536 178.8–689 753	5–7	4.08 - 01	3.63 - 03	3.89 - 02	-1.741	D	LS
				650.91	536 159.1–689 789	3–5	3.06 - 01	3.24 - 03	2.08-02	-2.012	E+	LS
				650.94	536 184.9–689 808	1–3	2.27 - 01	4.32 - 03	9.26-03	-2.365	E+	LS
				651.00	536 178.8–689 789	5–5	1.02 - 01	6.48 - 04	6.94 - 03	-2.489	E	LS
				650.83	536 159.1–689 808	3–3	1.70 - 01	1.08 - 03	6.94 - 03	-2.489	E	LS
				650.92	536 178.8–689 808	5–3	1.13-02	4.32-05	4.63-04	-3.666	E	LS
65	$2p^3(^2D^{\circ})3s-2p^3(^4S^{\circ})3p$	$^{3}D^{\circ}-^{3}P$	9 030	9 036	525 106–536 173	15–9	2.06-03	1.51-03	6.76-01	-1.645	C	2
			9 012	9 014	525 085–536 178.8	7–5	1.74-03	1.51-03	3.14-01	-1.976	C+	2
			9 054	9 056	525 117–536 159.1	5–3	1.47 - 03	1.08 - 03	1.61 - 01	-2.268	C	2
			9 051	9 053	525 139–536 184.9	3-1	1.98-03	8.10-04	7.24-02	-2.614	C	2
			9 038	9 040	525 117–536 178.8	5–5	3.53 - 04	4.33 - 04	6.44-02	-2.665	C	2
			9 072	9 074	525 139-536 159.1	3-3	5.36-04	6.61 - 04	5.92-02	-2.703	C	2
			9 056	9 058	525 139–536 178.8	3–5	2.56-03	5.25-05	4.69-03	-3.803	D	2
66		$^{1}\text{D}^{\circ}-{}^{3}\text{P}$										
				4749 cm ⁻¹	531 410-536 159.1	5-3	2.21-07	8.81-07	3.05-04	-5.356	D	2
				4769 cm ⁻¹	531 410–536 178.8	5–5			2.82-04			2
67	a 3/25° a a 3/25° a	3D° 3D	2 111	2 112	525 106–572 462	15–15	2.87±00	1.92-01	2.00±01	0.459	B	2
67	$2p^3(^2D^{\circ})3s-2p^3(^2D^{\circ})3p$	$^{3}D^{\circ}-^{3}D$	2 111	2 112	323 100-372 402	10 10	2.07 + 00	1.72 01	2.00 1 01	0.737	Б	_

Table 16. Transition probabilities of allowed lines for Na IV (references for this table are as follows: 1=Butler and Zeippen, ¹⁵ 2=Tachiev and Froese Fischer, ⁹⁴ and 3=Vilkas *et al.* ¹¹⁹)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			2 114.5	2 115.2	525 117–572 393.8	5–5	2.10+00	1.41-01	4.91+00	-0.152	В	2
			2 116.2	2 116.8	525 139–572 379.5	3–3	2.04+00	1.37 - 01	2.86+00	-0.386	В	2
			2 113.1	2 113.8	525 085-572 393.8	7–5	4.70 - 01	2.25 - 02	1.10+00	-0.803	C+	2
			2 115.2	2 115.8	525 117–572 379.5	5–3	7.03 - 01	2.83 - 02	9.86-01	-0.849	C+	2
			2 107.7	2 108.4	525 117–572 546.0	5–7	1.99-01	1.86 - 02	6.45 - 01	-1.032	C+	2
			2 115.5	2 116.2	525 139–572 393.8	3–5	3.12-01	3.50-02	7.31-01	-0.979	C+	2
68		$^{3}D^{\circ}-^{3}F$		1 971	525 106–575 837	15–21	3.80+00	3.10-01	3.01+01	0.667	B+	2
				1 968.4	525 085–575 886.6	7–9	3.82+00	2.85 - 01	1.29+01	0.300	B +	2
				1 972.2	525 117–575 821.0	5–7	3.51+00	2.87 - 01	9.31+00	0.157	B +	2
				1 975.1	525 139–575 768.1	3–5	3.32+00	3.24-01	6.31+00	-0.012	В	2
				1 971.0	525 085-575 821.0	7–7	2.70 - 01	1.57 - 02	7.13-01	-0.959	C+	2
				1 974.3	525 117–575 768.1	5–5	4.50 - 01	2.63 - 02	8.54 - 01	-0.881	C+	2
				1 973.0	525 085–575 768.1	7–5	7.44-03	3.10-04	1.41-02	-2.664	D+	2
69		$^{3}D^{\circ}-^{1}F$										
				1 898.8	525 117–577 782.7	5–7	1.47-02	1.12-03	3.49-02	-2.252	C+	2
				1 897.6	525 085–577 782.7	7–7	3.51-08	1.89-09	8.28-08	-7.878	E	2
70		$^{1}D^{\circ}-^{3}D$										
			2 439.2	2 440.0	531 410-572 393.8	5-5	3.77-05	3.37-06	1.35-04	-4.773	D	2
			2 440.1	2 440.8	531 410-572 379.5	5-3	8.68-02	4.65-03	1.87-01	-1.634	В	2
			2 430.2	2 431.0	531 410-572 546.0	5-7	6.35-04	7.88-05	3.15-03	-3.405	C	2
71		$^{1}D^{\circ}-^{3}F$										
, 1		D - F	2 251.0	2 251.7	531 410–575 821.0	5–7	8 46-03	9.00-04	3.34-02	-2 347	C+	2
			2 253.7	2 254.4	531 410–575 768.1	5–5			9.47-04			2
72		$^{1}D^{\circ}-^{1}F$	2 155.8	2 156.4	531 410–577 782.7	5–7	2.97+00	2.90-01	1.03+01	0.161	B+	2
73		$^{1}D^{\circ}-^{1}D$		1 534.47	531 410–596 578.9	5–5	7.14+00	2.52-01	6.37+00	0.100	В	2
74	$2p^3(^2D^{\circ})3s-2p^3(^2P^{\circ})3p$	$^{3}D^{\circ}-^{3}D$		1 325.9	525 106–600 529	15–15	3.21-01	8.45-03	5.53-01	-0.897	С	2
				1 325.83	525 085-600 509.6	7–7	2 92 - 01	7 71 - 03	2.35-01	-1 268	С	2
				1 325.96	525 117–600 534.1	5–5			1.22-01			2
				1 325.76	525 139-600 567.7	3–3			7.87-02			2
				1 325.40	525 085-600 534.1	7–5			3.17-02			2
				1 325.37	525 117-600 567.7	5-3			2.87-02			2
				1 326.39	525 117-600 509.6	5–7			2.89-02			2
				1 326.35	525 139-600 534.1	3–5			2.74-02			2
75		$^{1}D^{\circ}-^{3}D$										
				1 446.67	531 410-600 534.1	5–5	6.20-02	1.95-03	4.63-02	-2.011	D +	2
				1 445.97	531 410-600 567.7	5–3	9.64-03	1.81 - 04	4.31 - 03	-3.043	E+	2
				1 447.19	531 410-600 509.6	5–7	3.66-04	1.61-05	3.84-04	-4.094	E	2
76		$^{1}D^{\circ}-^{1}P$		[1 325.9]	531 410–606 831	5–3	1.16+00	1.83-02	3.99-01	-1.039	C+	2
77		$^{1}D^{\circ}-^{1}D$		[1 231.5]	531 410-612 611	5–5	3.22+00	7.33-02	1.49+00	-0.436	В	2
78	$2p^3(^2P^{\circ})3s-2p^3(^2D^{\circ})3p$	$^{3}P^{\circ}-^{3}D$	4 485	4 487	550 173–572 462	9–15	8.84-03	4.44-03	5.91-01	-1.398	C	2
			4 471.0	4 472.3	550 196 573 546 0	5–7	0.00 02	2.01 .02	2.81-01	1.720	CI	2
				+ + / /)	550 186-572 546.0	.)-/	9 (18 – 113	3 21 - 113	/ 81 – 111	-1 770	CT.	

Table 16. Transition probabilities of allowed lines for Na IV (references for this table are as follows: 1=Butler and Zeippen, 15 2=Tachiev and Froese Fischer, 94 and 3=Vilkas et al. 119)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\begin{array}{c} \lambda_{vac} \ (\mathring{A}) \\ \text{or} \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			[4 499]	[4 500]	550 158–572 379.5	1–3	4.87-03	4.44-03	6.57-02	-2.353	С	2
			4 501.7	4 502.9	550 186-572 393.8	5-5	1.78-03	5.42-04	4.02-02	-2.567	C	2
			4 498.7	4 499.9	550 157-572 379.5	3-3	3.29-03	1.00-03	4.45-02	-2.523	C	2
			4 504.6	4 505.8	550 186-572 379.5	5–3	2.10-04	3.83-05	2.84-03	-3.718	D	2
79		$^{3}P^{\circ}-^{1}F$										
			3 622.6	3 623.6	550 186-577 782.7	5–7	7.55-05	2.08-05	1.24-03	-3.983	D+	2
80		$^{3}P^{\circ}-^{1}D$										
			2 153.5	2 154.2	550 157–596 578.9	3–5	1.15-02	1.34-03	2.84-02	-2.396	D	2
			2 154.8	2 155.5	550 186–596 578.9	5–5			2.84-02			2
81		$^{1}P^{\circ}-^{3}D$										
			6 409	6 411	556 796-572 393.8	3–5	3.01-07	3.10-07	1.96-05	-6.032	E+	2
			6 415	6 417	556 796–572 379.5	3–3			2.40-02			2
82		$^{1}P^{\circ}-^{1}D$	2 512.9	2 513.6	556 796–596 578.9	3–5	2.90-01	4.58-02	1.14+00	-0.862	В	2
83	2 3/2p°\2 2 3/2p°\2			1 986	550 173–600 529	9–15				0.498		2
03	$2p^3(^2P^{\circ})3s - 2p^3(^2P^{\circ})3p$	$^{3}P^{\circ}-^{3}D$		1 900		9-13	3.33+00	3.50-01	2.00+01	0.496	Б	2
				1 987.1	550 186–600 509.6	5–7	3.56+00	2.95 - 01	9.65+00	0.169	B+	2
				1 985.0	550 157-600 534.1	3–5	2.72+00	2.68 - 01	5.26+00	-0.095	В	2
				[1 984]	550 158-600 567.7	1–3	2.00+00	3.54 - 01	2.31+00	-0.451	В	2
				1 986.2	550 186-600 534.1	5–5	8.20-01	4.85 - 02	1.59+00	-0.615	В	2
				1 983.7	550 157-600 567.7	3-3	1.47 + 00	8.66-02	1.70+00	-0.585	В	2
				1 984.8	550 186-600 567.7	5–3	8.87-02	3.14-03	1.03-01	-1.804	C	2
84		$^{3}P^{\circ}-^{1}P$										
				[1 764.5]	550 157-606 831	3-3	5.11-04	2.39-05	4.16-04	-4.144	E	2
				[1 765.4]	550 186-606 831	5-3	1.06-06	2.96-08	8.61-07	-6.830	E	2
				[1 764.5]	550 158-606 831	1–3	5.18-02	7.26-03	4.22-02	-2.139	D+	2
85		$^{3}P^{\circ}-^{1}D$										
				[1 601.2]	550 157-612 611	3-5	4.47-03	2.86-04	4.53-03	-3.067	E+	2
				[1 601.9]	550 186-612 611	5–5			3.28-02			2
86		$^{1}P^{\circ}-^{3}D$										
			2 285.6	2 286.3	556 796-600 534.1	3–5	4.90-03	6.39-04	1.44-02	-2.717	D	2
			2 283.9	2 284.6	556 796-600 567.7	3–3	1.41-02	1.11-03	2.49-02	-2.478	D	2
87		$^{1}P^{\circ}-^{1}P$		[1 999]	556 796–606 831	3–3	3.28+00	1.96-01	3.87+00	-0.231	В	2
88		$^{1}P^{\circ}-^{1}D$		[1 792]	556 796–612 611	3–5	4 47+00	3.59-01	6.35+00	0.032	В	2
	- 2/2-° 2/4-°-		4 452 9									
89	$2p^3(^2D^{\circ})3p-2p^3(^4S^{\circ})3d$	$^{3}D - ^{3}D^{\circ}$	4 452.8	4 454.1	572 462–594 913	15–15	1.95-03	5.79-04	1.27-01	-2.061	D+	2
			4 465.4	4 466.7	572 546.0–594 934	7–7			5.22-02			2
			4 442.13	4 443.38	572 393.8–594 899.2	5–5			3.06-02			2
			4 441.50	4 442.75	572 379.5–594 888.1	3–3			1.87 - 02			2
			4 472.38	4 473.63	572 546.0–594 899.2	7–5			7.42 - 03			2
			4 444.32	4 445.57	572 393.8–594 888.1	5–3	5.47 - 04	9.72 - 05	7.11-03	-3.313	D+	2
			4 435.3	4 436.5	572 393.8–594 934	5–7	1.75 - 04	7.23 - 05	5.28-03	-3.442	D	2
			4 439.31	4 440.56	572 379.5–594 899.2	3–5	2.85-04	1.41-04	6.17-03	-3.374	D+	2
90		$^3F-^3D^{\circ}$	5 241	5 242	575 837–594 913	21–15	1.33-04	3.93-05	1.42-02	-3.083	D	2
			5 248.6	5 250.1	575 886.6–594 934	9–7	1.18-04	3.78-05	5.89-03	-3.468	D	2
							1.10 07	2.70 03	5.07 05	5.400		

Table 16. Transition probabilities of allowed lines for Na IV (references for this table are as follows: 1=Butler and Zeippen, ¹⁵ 2=Tachiev and Froese Fischer, ⁹⁴ and 3=Vilkas *et al.* ¹¹⁹)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Sourc
			5 240.13	5 241.58	575 821.0–594 899.2	7–5	8.26-05	2.43-05	2.94-03	-3.769	D	2
			5 228.67	5 230.13	575 768.1–594 888.1	5-3	9.14-05	2.25-05	1.94-03	-3.949	D	2
			5 230.6	5 232.0	575 821.0-594 934	7–7	4.07 - 05	1.67-05	2.01-03	-3.932	D	2
			5 225.64	5 227.09	575 768.1–594 899.2	5–5	3.86-05	1.58-05	1.36-03	-4.102	D	2
			5 216.1	5 217.6	575 768.1–594 934	5–7	1.86-06	1.06-06	9.14-05	-5.276	E+	2
91	$2p^3(^2D^{\circ})3p-2p^3(^2D^{\circ})3d$	$^{3}D-^{3}F^{\circ}$		1 581.07	572 462–635 710	15–21	6.35+00	3.33-01	2.60+01	0.699	В	2
				1 580.498	572 546.0-635 817.2	7–9	6.27+00	3.02-01	1.10+01	0.325	$\mathrm{B} +$	2
				1 580.233	572 393.8-635 675.6	5–7	5.64+00	2.96-01	7.69+00	0.170	B +	2
				1 582.617	572 379.5-635 566.0	3-5	5.11+00	3.20-01	5.00+00	-0.018	В	2
				1 584.043	572 546.0-635 675.6	7–7	8.48-01	3.19-02	1.16+00	-0.651	В	2
				1 582.975	572 393.8-635 566.0	5-5	1.14+00	4.28-02	1.11+00	-0.670	В	2
				1 586.798	572 546.0–635 566.0	7–5	3.88-02	1.05-03	3.83-02	-2.134	C	2
92		$^{3}D-^{1}G^{\circ}$										
				1 523.401	572 546.0–638 188.6	7–9	1.25-02	5.60-04	1.97-02	-2.407	D	2
93		$^{3}D - ^{3}D^{\circ}$		1 505.1	572 462–638 901	15–15	6.15+00	2.09-01	1.55+01	0.496	В	2
				1 508.77	572 546.0-638 825	7–7	5.50+00	1.88-01	6.52+00	0.119	В	2
				1 502.65	572 393.8-638 943	5-5	4.36+00	1.48 - 01	3.65+00	-0.131	В	2
				1 500.88	572 379.5-639 007	3-3	4.45+00	1.50-01	2.23+00	-0.347	В	2
				1 506.09	572 546.0-638 943	7–5	1.08+00	2.63-02	9.12-01	-0.735	C+	2
				1 501.20	572 393.8-639 007	5-3	1.69+00	3.43-02	8.48-01	-0.766	C+	2
				1 505.32	572 393.8-638 825	5–7			7.16-01			2
				1 502.32	572 379.5–638 943	3–5			6.56-01			2
94		$^{3}D-^{1}P^{\circ}$										
				1 453.51	572 393.8-641 193	5–3	3.35-02	6.36-04	1.52-02	-2.498	D	2
				1 453.20	572 379.5–641 193	3–3			1.83-01			2
95		$^{3}D-^{3}P^{\circ}$		1 414.1	572 462–643 179	15–9	3.01+00	5.42-02	3.78+00	-0.090	C+	2
				1 418.32	572 546.0-643 052	7–5	2.54+00	5.48-02	1.79+00	-0.416	В	2
				1 410.10	572 393.8-643 311	5-3	2.29+00	4.09-02	9.50-01	-0.689	C+	2
				[1 407.7]	572 379.5-643 420	3-1			4.14-01			2
				1 415.26	572 393.8-643 052	5–5			2.86-01			2
				1 409.81	572 379.5-643 311	3–3			3.30-01			
				1 414.98	572 379.5–643 052	3–5			1.13-02			
96		$^{3}D-^{1}D^{\circ}$										
				1 403.867	572 393.8-643 625.6	5–5	7.50-03	2.22-04	5.12-03	-2.955	E+	2
				1 406.873	572 546.0-643 625.6	7–5	3.64-04	7.72-06	2.50-04	-4.267	E	2
				1 403.586	572 379.5–643 625.6	3–5	3.80-01	1.87-02	2.59-01	-1.251	C	2
97		$^{3}F-^{3}F^{\circ}$		1 670.18	575 837–635 710	21–21	2.62+00	1.10-01	1.27+01	0.364	В	2
				1 668.597	575 886.6–635 817.2	9_9	2.65+00	1.11-01	5.48+00	-0.000	В	2
				1 670.715	575 821.0-635 675.6	7–7	2.20+00	9.21 - 02	3.55+00	-0.191	В	2
				1 672.300	575 768.1–635 566.0	5–5	2.17+00	9.09-02	2.50+00	-0.342	В	2
				1 672.548	575 886.6-635 675.6	9–7	2.11-01	6.88-03	3.41-01	-1.208	C+	2
				1 673.780	575 821.0-635 566.0	7–5			3.14-01			2
				1 666.772	575 821.0-635 817.2	7–9			2.34-01			2

Table 16. Transition probabilities of allowed lines for Na IV (references for this table are as follows: 1=Butler and Zeippen, 15 2=Tachiev and Froese Fischer, 94 and 3=Vilkas et al. 119)—Continued

1618_568	No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
	98		$^{3}F-^{3}G^{\circ}$		1 616.55	575 837–637 697	21–27	9.26+00	4.66-01	5.21+01	0.991	B+	2
					1 618.568	575 886.6–637 669.6	9–11	9.23+00	4.43-01	2.13+01	0.601	B+	2
					1 615.924	575 821.0-637 705.1	7–9	8.89+00	4.47-01	1.67+01	0.495	B+	2
					1 613.947	575 768.1-637 728.0	5-7	8.74+00	4.78-01	1.27+01	0.378	B+	2
					1 617.639	575 886.6-637 705.1	9_9	3.81-01	1.49-02	7.16-01	-0.873	C+	2
99 \$\begin{array}{c c c c c c c c c c c c c c c c c c c					1 615.326	575 821.0-637 728.0	7–7						2
1588.86					1 617.040	575 886.6–637 728.0	9–7						2
1 1 1 1 1 1 1 1 1 1	99		$^3F-^3D^{\circ}$		1 585.7	575 837–638 901	21–15	6.36-01	1.71-02	1.88+00	-0.445	C+	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 588.86	575 886.6–638 825	9–7	5.74-01	1.69-02	7.96-01	-0.818	C+	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 584.23	575 821.0–638 943	7–5	4.72 - 01	1.27 - 02	4.63 - 01	-1.051	C+	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 581.31	575 768.1–639 007	5–3	5.31 - 01	1.19 - 02	3.11-01	-1.225	C+	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 587.20	575 821.0-638 825	7–7	1.28 - 01	4.83 - 03	1.77 - 01	-1.471	C	2
101 F F F F F F F F F F					1 582.91	575 768.1–638 943	5-5	1.29 - 01	4.86 - 03	1.27 - 01	-1.614	C	2
					1 585.87	575 768.1–638 825	5–7	3.10-03	1.64-04	4.27-03	-3.086	D	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100		$^3F-^1F^{\circ}$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 416.459	575 821.0–646 419.6	7–7	2.31-02	6.96 - 04	2.27 - 02	-2.312	D	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 417.776	575 886.6–646 419.6	9–7	6.02 - 05	1.41 - 06	5.93-05	-4.897	E	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 415.398	575 768.1–646 419.6	5–7	1.09-03	4.60-05	1.07-03	-3.638	Е	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	101		$^{1}F-^{3}F^{\circ}$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 727.328	577 782.7–635 675.6	7–7	6.69 - 03	2.99 - 04	1.19 - 02	-2.679	D	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 730.604	577 782.7–635 566.0	7–5	1.46 - 03	4.69 - 05	1.87 - 03	-3.484	E+	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 723.113	577 782.7–635 817.2	7–9	1.37-02	7.82-04	3.11-02	-2.262	D	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	102		$^{1}F-^{1}G^{\circ}$		1 655.467	577 782.7–638 188.6	7–9	8.72+00	4.61-01	1.76+01	0.509	B+	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	103		$^{1}F-^{1}D^{\circ}$		1 518.767	577 782.7–643 625.6	7–5	6.70-01	1.65-02	5.79-01	-0.937	C+	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104		$^{1}F-^{1}F^{\circ}$		1 456.942	577 782.7–646 419.6	7–7	4.35+00	1.39-01	4.65+00	-0.012	В	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105		$^{1}D-^{3}D^{\circ}$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				2 359.8	2 360.5	596 578.9-638 943	5-5	5.50-03	4.59-04	1.78-02	-2.639	D	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				2 356.2	2 356.9	596 578.9-639 007	5-3	8.09-05	4.04-06	1.57-04	-4.695	Е	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				2 366.4	2 367.1	596 578.9–638 825	5–7	1.06-05	1.24-06	4.84-05	-5.208	E	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106		$^{1}D-^{1}P^{\circ}$	2 240.7	2 241.4	596 578.9–641 193	5–3	9.39-01	4.24-02	1.56+00	-0.674	В	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	107		$^{1}D-^{3}P^{\circ}$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				2 139.2	2 139.9	596 578.9-643 311	5-3	4.36-03	1.80 - 04	6.33-03	-3.046	E+	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				2 151.1	2 151.8	596 578.9–643 052	5–5	7.51 - 03	5.21-04	1.85-02	-2.584	D	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	108		$^{1}D-^{1}D^{\circ}$	2 124.88	2 125.55	596 578.9–643 625.6	5–5	2.34+00	1.58-01	5.54+00	-0.102	В	2
1 097.97 572 546.0-663 623 7-5 2.09-01 2.70-03 6.84-02 -1.724 C 2 1 097.51 572 393.8-663 509 5-3 1.56-01 1.69-03 3.05-02 -2.073 C 2 [1 101.8] 572 379.5-663 137 3-1 1.86-01 1.13-03 1.23-02 -2.470 D+ 2 1 096.14 572 393.8-663 623 5-5 4.30-02 7.74-04 1.40-02 -2.412 D+ 2 1 097.34 572 379.5-663 509 3-3 5.44-02 9.83-04 1.07-02 -2.530 D+ 2	109		$^{1}D-^{1}F^{\circ}$	2 005.74	2 006.39	596 578.9–646 419.6	5–7	3.12+00	2.64-01	8.71+00	0.121	B+	2
1 097.51 572 393.8-663 509 5-3 1.56-01 1.69-03 3.05-02 -2.073 C 2 [1 101.8] 572 379.5-663 137 3-1 1.86-01 1.13-03 1.23-02 -2.470 D+ 2 1 096.14 572 393.8-663 623 5-5 4.30-02 7.74-04 1.40-02 -2.412 D+ 2 1 097.34 572 379.5-663 509 3-3 5.44-02 9.83-04 1.07-02 -2.530 D+ 2	110	$2p^3(^2D^{\circ})3p-2p^3(^2P^{\circ})3d$	$^{3}D-^{3}P^{\circ}$		1 098.1	572 462–663 531	15–9	2.33-01	2.53-03	1.37-01	-1.421	C	2
[1 101.8] 572 379.5-663 137 3-1 1.86-01 1.13-03 1.23-02 -2.470 D+ 2 1 096.14 572 393.8-663 623 5-5 4.30-02 7.74-04 1.40-02 -2.412 D+ 2 1 097.34 572 379.5-663 509 3-3 5.44-02 9.83-04 1.07-02 -2.530 D+ 2					1 097.97	572 546.0–663 623	7–5	2.09-01	2.70-03	6.84-02	-1.724	C	2
1 096.14 572 393.8-663 623 5-5 4.30-02 7.74-04 1.40-02 -2.412 D+ 2 1 097.34 572 379.5-663 509 3-3 5.44-02 9.83-04 1.07-02 -2.530 D+ 2					1 097.51	572 393.8-663 509	5-3	1.56-01	1.69-03	3.05-02	-2.073	C	2
1 096.14 572 393.8-663 623 5-5 4.30-02 7.74-04 1.40-02 -2.412 D+ 2 1 097.34 572 379.5-663 509 3-3 5.44-02 9.83-04 1.07-02 -2.530 D+ 2					[1 101.8]	572 379.5-663 137	3-1	1.86-01	1.13-03	1.23-02	-2.470	D+	2
1 097.34 572 379.5–663 509 3–3 5.44–02 9.83–04 1.07–02 –2.530 D+ 2					1 096.14	572 393.8-663 623	5-5					_	2
**** *** *** *** *** *** ***					1 097.34	572 379.5–663 509	3-3					_	2

Table 16. Transition probabilities of allowed lines for Na IV (references for this table are as follows: 1=Butler and Zeippen, ¹⁵ 2=Tachiev and Froese Fischer, ⁹⁴ and 3=Vilkas *et al.* ¹¹⁹)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	$\lambda_{ m vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
111	•	$^{3}D-^{3}F^{\circ}$. /	1 102.39	572 462–663 174	15–21			4.39-03			2
				1 103.698	572 546.0–663 150.5	7–9	1.71-03	4.02-05	1.02-03	-3.551	D	2
				1 101.534	572 393.8-663 176.3	5–7	2.31-03	5.88-05	1.07-03	-3.532	D	2
				1 100.923	572 379.5–663 212.4	3–5			6.33-04			2
				1 103.384	572 546.0-663 176.3	7–7			1.19-03			2
				1 101.096	572 393.8-663 212.4	5–5			4.07-04			2
				1 102.944	572 546.0–663 212.4	7–5			7.41-05			2
112		$^3D - ^3D^{\circ}$		1 076.4	572 462–665 364	15–15	1.56-01	2.71-03	1.44-01	-1.391	D+	2
				1 077.61	572 546.0–665 344	7–7	1.41-01	2.46-03	6.11-02	-1.764	C	2
				1 075.54	572 393.8–665 370	5–5	8.49 - 02	1.47 - 03	2.61 - 02	-2.134	D+	2
				1 075.03	572 379.5-665 400	3-3	1.08 - 01	1.86-03	1.98-02	-2.253	D+	2
				1 077.31	572 546.0–665 370	7–5	3.51 - 02	4.36-04	1.08-02	-2.515	D+	2
				1 075.20	572 393.8-665 400	5-3	5.14-02	5.34-04	9.45-03	-2.573	D+	2
				1 075.84	572 393.8-665 344	5–7	2.17-02	5.27-04	9.33-03	-2.579	D+	2
				1 075.38	572 379.5–665 370	3–5	2.36-02	6.82-04	7.24-03	-2.689	D+	2
113		$^{3}F-^{3}F^{\circ}$		1 144.99	575 837–663 174	21–21	2.82-01	5.54-03	4.39-01	-0.934	C	2
				1 145.949	575 886.6–663 150.5	9_9	2.72-01	5.35-03	1.82-01	-1.317	C	2
				1 144.750	575 821.0–663 176.3	7–7	2.25 - 01	4.43 - 03	1.17 - 01	-1.508	C	2
				1 143.585	575 768.1–663 212.4	5–5	2.35 - 01	4.62 - 03	8.69-02	-1.636	C	2
				1 145.611	575 886.6–663 176.3	9–7	3.20 - 02	4.90 - 04	1.66-02	-2.356	D+	2
				1 144.277	575 821.0-663 212.4	7–5	3.93 - 02	5.51 - 04	1.45 - 02	-2.414	D+	2
				1 145.088	575 821.0-663 150.5	7–9	1.68 - 02	4.24 - 04	1.12-02	-2.528	D+	2
				1 144.057	575 768.1–663 176.3	5–7	2.09-02	5.74-04	1.08-02	-2.542	D+	2
114		$^{3}F-^{3}D^{\circ}$		1 117.0	575 837–665 364	21–15	2.20-01	2.94-03	2.27-01	-1.209	C	2
				1 117.85	575 886.6–665 344	9–7	2.01-01	2.92-03	9.68-02	-1.580	C	2
				1 116.71	575 821.0–665 370	7–5	1.72 - 01	2.29 - 03	5.90-02	-1.795	C	2
				1 115.67	575 768.1–665 400	5–3	2.15-01	2.40 - 03	4.41 - 02	-1.921	C	2
				1 117.03	575 821.0–665 344	7–7	2.88 - 02	5.38 - 04	1.39 - 02	-2.424	D+	2
				1 116.05	575 768.1–665 370	5–5	3.65 - 02	6.82 - 04	1.25 - 02	-2.467	D+	2
				1 116.37	575 768.1–665 344	5–7	1.20-03	3.13-05	5.76-04	-3.805	E+	2
115		$^{1}F-^{1}D^{\circ}$		1 151.35	577 782.7–664 637	7–5	4.92-01	6.99-03	1.85-01	-1.310	C	2
116		$^{1}F-^{3}D^{\circ}$										
				1 141.72	577 782.7–665 370	7–5	5.41 - 02	7.55 - 04	1.99 - 02	-2.277	D	2
				1 142.06	577 782.7–665 344	7–7	1.04-03	2.03-05	5.34-04	-3.847	Е	2
117		$^{1}F-^{1}F^{\circ}$		1 115.33	577 782.7–667 442	7–7	7.09-03	1.32-04	3.40-03	-3.034	D	2
118		$^{1}D-^{3}F^{\circ}$										
				1 501.560	596 578.9–663 176.3	5-7	7.93 - 02	3.75 - 03	9.28 - 02	-1.727	D+	2
				1 500.747	596 578.9–663 212.4	5–5	1.32-02	4.47-04	1.11-02	-2.651	D	2
119		$^{1}D-^{1}D^{\circ}$		1 469.33	596 578.9–664 637	5–5	1.95-03	6.31-05	1.53-03	-3.501	D	2
120		$^{1}D-^{3}D^{\circ}$										
				1 453.68	596 578.9–665 370	5–5	4.77-02	1.51-03	3.61-02	-2.122	D	2
				1 453.04	596 578.9–665 400	5-3	8.18-03	1.55-04	3.71-03	-3.111	E+	2
				1 454.23	596 578.9-665 344	5–7	1 73 _ 04	7.70-06	1 9 4 0 0 4	4 415	E	2

TABLE 16. Transition probabilities of allowed lines for Na IV (references for this table are as follows: 1=Butler and Zeippen, 15=2=Tachiev and Froese Fischer, 15=2=Tachiev and 15=3=Tachiev and

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{ m vac}$ (Å) or σ (cm $^{-1}$) $^{ m a}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
121		$^{1}D-^{1}F^{\circ}$		1 411.17	596 578.9–667 442	5–7	2.14+00	8.96-02	2.08+00	-0.349	В	2
122		$^{1}D-^{1}P^{\circ}$		1 306.15	596 578.9–673 140	5–3	1.22-02	1.87-04	4.02-03	-3.029	D	2
123	$2p^3(^2D^{\circ})3p-2p^3(^4S^{\circ})4d$	$^{3}D-^{3}D^{\circ}$		891.5	572 462–684 631	15–15	2.07-01	2.47-03	1.09-01	-1.431	E+	1
				892.19	572 546.0–684 630	7–7	1 84-01	2 19-03	4.50-02	-1 814	D	LS
				891.01	572 393.8–684 626	5–5			2.52-02			LS
				890.79	572 379.5–684 640	3–3			1.63-02			LS
				892.22	572 546.0–684 626	7–5			5.65-03			LS
				890.90	572 393.8–684 640	5–3			5.43-03			LS
				890.98	572 393.8–684 630	5–3 5–7						LS
				890.98	572 379.5–684 626	3–5			5.65-03 5.43-03			LS
124	$2p^3(^2D^{\circ})3p-2p^3(^2D^{\circ})4s$	$^{3}D-^{3}D^{\circ}$		852.4	572 462–689 776	15–15		1.07-01		0.205		1
	<i>zp (D) cp ' zp (D) .</i> .	2 2		853.19	572 546.0–689 753	7–7			1.86+00	_0 179	В	LS
				851.82	572 393.8–689 789	5–5			1.04+00			LS
				851.58	572 379.5–689 808	3–3			6.73-01			LS
				852.93	572 546.0–689 789	7–5			2.34-01			LS
				851.69	572 393.8–689 808	5–3			2.24-01			LS
				852.08	572 393.8–689 753	5–7			2.33-01			LS
				851.72	572 379.5–689 789	3–5			2.25-01			LS
125		$^{3}F-^{3}D^{\circ}$		877.7	575 837–689 776	21–15		1.12-01		0.371		1
				878.22	575 886.6–689 753	9–7	1.25+01	1.12-01	2.91+00	0.003	B+	LS
				877.44	575 821.0-689 789	7–5			2.02+00	-0.155	В	LS
				876.89	575 768.1–689 808	5–3			1.37+00			LS
				877.72	575 821.0–689 753	7–7			2.53-01			LS
				877.03	575 768.1–689 789	5–5			2.54-01			LS
				877.31	575 768.1–689 753	5–7			7.15-03			LS
126		$^{1}F-^{1}D^{\circ}$		877.21	577 782.7–691 781	7–5	1.26+01	1.04-01	2.10+00	-0.138	В	1
127		$^{1}D-^{1}D^{\circ}$		1 050.40	596 578.9–691 781	5–5	7.44+00	1.23-01	2.13+00	-0.211	В	1
128	$2p^3(^2D^{\circ})3p-2p^3(^2P^{\circ})4s$	$^{3}D-^{3}P^{\circ}$		704.2	572 462–714 476	15–9	9.19-01	4.10-03	1.43-01	-1.211	D	1
				704.54	572 546.0–714 483	7–5	7.71-01	4.10-03	6.66-02	-1.542	D+	LS
				703.86	572 393.8-714 468	5–3			3.56-02		_	LS
				[703.79]	572 379.5–714 468	3–1			1.58-02			LS
				703.78	572 393.8–714 483	5–5			1.19-02		_	LS
				703.79	572 379.5–714 468	3–3			1.19-02			LS
				703.71	572 379.5–714 483	3–5			7.92-04			LS
129		$^{1}D-^{1}P^{\circ}$		833.82	596 578.9–716 509	5–3			1.24-01			1
130	$2p^{3}(^{2}D^{\circ})3p-2p^{3}(^{2}D^{\circ})4d$	$^{3}D-^{3}D^{\circ}$		631.9	572 462–730 719	15–15			6.09-01			
	2p (D)3p-2p (D)4u	Ъ- Б		632.29	572 546.0–730 702	7–7			2.52-01			LS
				631.58	572 393.8–730 728	5–5			1.41-01			LS
				631.46								
					572 379.5–730 742 572 546 0–730 728	3–3 7–5			9.17-02		_	LS
				632.18	572 546.0–730 728 572 393 8–730 742	7–5 5–3			3.16-02		_	LS
				631.52	572 393.8–730 742 572 393 8, 730 702	5–3 5–7			3.05-02		_	LS
				631.68	572 393.8–730 702	5–7			3.17-02		_	LS
				631.52	572 379.5–730 728	3–5	4.90-01	4.88-03	3.04-02	-1.834	D	LS

Table 16. Transition probabilities of allowed lines for Na IV (references for this table are as follows: 1=Butler and Zeippen, ¹⁵ 2=Tachiev and Froese Fischer, ⁹⁴ and 3=Vilkas *et al.* ¹¹⁹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\begin{array}{c} \lambda_{vac} \; (\mathring{A}) \\ \text{or} \; \sigma \; (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
131		$^{3}D-^{3}P^{\circ}$				15–9						1
				625.86	572 546.0–732 325	7–5	8.27-01	3 47-03	5.00-02	-1.615	D	LS
				625.19	572 393.8–732 346	5–3			2.68-02			LS
				625.27	572 393.8–732 325	5–5			8.92-03			LS
				625.13	572 379.5–732 346	3–3			8.95-03			LS
				625.21	572 379.5–732 325	3–5			5.95-04			LS
132		$^{3}F-^{3}D^{\circ}$		645.7	575 837–730 719	21–15	4.32-01	1.93-03	8.61-02	-1.392	E+	1
				645.93	575 886.6-730 702	9–7	3.97-01	1.93-03	3.69-02	-1.760	D	LS
				645.55	575 821.0-730 728	7–5	3.83-01	1.71-03	2.54-02	-1.922	D	LS
				645.27	575 768.1-730 742	5-3	4.33-01	1.62-03	1.72-02	-2.092	E+	LS
				645.66	575 821.0-730 702	7–7	3.44-02	2.15-04	3.20-03	-2.822	Е	LS
				645.33	575 768.1–730 728	5–5			3.20-03			LS
				645.44	575 768.1–730 702	5–7			9.02-05			LS
133		$^{1}F-^{1}F^{\circ}$		640.47	577 782.7–733 919	7–7	1.21+00	7.43-03	1.10-01	-1.284	D+	1
134		$^{1}D-^{1}P^{\circ}$		740.16	596 578.9–731 684	5–3	2.74+00	1.35-02	1.64-01	-1.171	C	1
135		$^{1}D-^{1}D^{\circ}$		731.48	596 578.9–733 288	5–5	5.42+00	4.35-02	5.24-01	-0.663	C+	1
136		$^{1}D-^{1}F^{\circ}$		728.12	596 578.9–733 919	5–7	4.71+00	5.24-02	6.28-01	-0.582	C+	1
137	$2p^3(^2D^{\circ})3p-2p^3(^2P^{\circ})4d$	$^{1}F-^{1}D^{\circ}$		561.790	577 782.7–755 785	7–5	7.28-01	2.46-03	3.18-02	-1.764	D	1
138		$^{1}D-^{1}D^{\circ}$		628.12	596 578.9–755 785	5–5	2.15+00	1.27-02	1.31-01	-1.197	D+	1
139		$^{1}D-^{1}F^{\circ}$		623.38	596 578.9–756 995	5–7	7.30-01	5.95-03	6.11-02	-1.527	D	1
140	$2p^3(^4S^{\circ})3d-2p^3(^2P^{\circ})3p$	$^{3}D^{\circ}-^{3}D$	17 800	17 806	594 913–600 529	15–15	7.23-06	3.44-05	3.02-02	-3.287	D+	2
			17 930	17 935	594 934-600 509.6	7–7	6.13-06	2.95-05	1.22-02	-3.685	D+	2
			17 741.7	17 746.5	594 899.2-600 534.1	5-5	5.38-06	2.54-05	7.43-03	-3.896	D+	2
			17 602.1	17 606.9	594 888.1-600 567.7	3-3	5.95-06	2.76-05	4.81-03	-4.082	D	2
			17 852	17 857	594 934-600 534.1	7–5	7.36-07	2.51-06	1.03-03	-4.755	D	2
			17 636.5	17 641.4	594 899.2-600 567.7	5-3	1.81-06	5.07-06	1.47-03	-4.596	D	2
			17 819	17 824	594 899.2-600 509.6	5–7	8.36-07	5.57-06	1.64-03	-4.555	D	2
			17 706.8	17 711.7	594 888.1–600 534.1	3–5	1.20-06	9.42-06	1.65-03	-4.549	D	2
141	$2p^3(^2P^{\circ})3p-2p^3(^2D^{\circ})3d$	$^{3}D-^{3}F^{\circ}$	2 841.6	2 842.4	600 529–635 710	15–21	3.63-04	6.16-05	8.65-03	-3.034	D	2
			2 831.42	2 832.25	600 509.6-635 817.2	7–9	3.80-04	5.87-05	3.83-03	-3.386	D	2
			2 844.80	2 845.64	600 534.1-635 675.6	5–7	3.21-04	5.45-05	2.55-03	-3.565	D	2
			2 856.44	2 857.28	600 567.7-635 566.0	3-5	3.11-04	6.34-05	1.79-03	-3.721	D	2
			2 842.82	2 843.66	600 509.6-635 675.6	7–7	3.86-05	4.68-06	3.06-04	-4.485	E+	2
			2 853.70	2 854.54	600 534.1-635 566.0	5-5	2.88-05	3.52-06	1.65-04	-4.754	E+	2
			2 851.71	2 852.55	600 509.6-635 566.0	7–5	1.03-06	8.94-08	5.88-06	-6.204	E	2
142		$^{3}D-^{3}D^{\circ}$	2 605	2 606	600 529–638 901	15–15	4.98-02	5.07-03	6.53-01	-1.119	C	2
			2 609.1	2 609.9	600 509.6-638 825	7–7	4.51-02	4.60-03	2.77-01	-1.492	C+	2
			2 602.8	2 603.6	600 534.1-638 943	5-5	3.32-02	3.37-03	1.44-01	-1.773	C	2
			2 600.7	2 601.5	600 567.7-639 007	3–3			9.69-02			2
			2 601.1	2 601.9	600 509.6-638 943	7–5			3.42-02			2
			2 598.5	2 599.2	600 534.1-639 007	5-3			3.33-02			2
			2 610.8	2 611.6	600 534.1-638 825	5–7			3.45-02			2
			2 605.1	2 605.8	600 567.7-638 943	3–5			3.24-02			2

TABLE 16. Transition probabilities of allowed lines for Na IV (references for this table are as follows: 1=Butler and Zeippen, 15=2=Tachiev and Froese Fischer, 15=2=Tachiev and 15=3=3=Tachiev and 15=3=3=Tachiev and 15=3=3=Tachiev and 15=3=3=Tachiev and 15=3=3=Tachiev and 15=3=3=Tachiev and 15=3=3=7=Tachiev and 15=3=7=Tachiev and 15=3=7=7=Tachiev and 15=3=7=7=Tachiev

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{\rm vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
143		$^{3}D-^{3}P^{\circ}$	2344	2 345	600 529–643 179	15–9	1.23-01	6.10-03	7.07-01	-1.039	С	2
			2 349.9	2 350.6	600 509.6-643 052	7–5	1.05-01	6.21-03	3.37-01	-1.362	C+	2
			2 337.0	2 337.7	600 534.1-643 311	5-3	9.85 - 02	4.84-03	1.86-01	-1.616	C	2
			[2 333]	[2 334]	600 567.7-643 420	3-1	1.25-01	3.41-03	7.87-02	-1.990	C	2
			2 351.2	2 352.0	600 534.1-643 052	5-5	1.42-02	1.17-03	4.55-02	-2.233	C	2
			2 338.8	2 339.5	600 567.7-643 311	3-3	3.00-02	2.46-03	5.68-02	-2.132	C	2
			2 353.1	2 353.8	600 567.7–643 052	3–5			3.06-03			2
144		$^{3}D-^{1}D^{\circ}$										
			2 319.93	2 320.64	600 534.1–643 625.6	5–5	1.91-02	1.54-03	5.90-02	-2.114	D+	2
			2 318.61	2 319.32	600 509.6-643 625.6	7–5	1.35-04	7.78-06	4.16-04	-4.264	E	2
			2 321.74	2 322.45	600 567.7-643 625.6	3-5	5.62-02	7.58-07	1.74-05	-5.643	E	2
145		$^{3}D-^{1}F^{\circ}$										
			2 178.66	2 179.34	600 534.1-646 419.6	5–7	1.61-02	1.60-03	5.74-02	-2.097	D+	2
			2 177.49	2 178.17	600 509.6-646 419.6	7–7			2.28-04			2
146		$^{1}P-^{1}P^{\circ}$	[2 909]	[2 910]	606 831–641 193	3–3	1.11-01	1.41-02	4.06-01	-1.374	C+	2
147		$^{1}P-^{1}D^{\circ}$	[2 717]	[2 718]	606 831–643 625.6	3–5	3.31-03	6.12-04	1.64-02	-2.736	D+	2
148	$^{1}D-^{1}P^{\circ}$		[3 498]	[3 499]	612 611–641 193	5–3	8.03-03	8.84-04	5.09-02	-2.355	C	2
149		$^{1}D-^{1}D^{\circ}$	[3 223]	[3 224]	612 611–643 625.6	5–5	5.12-02	7.98-03	4.24-01	-1.399	C+	2
150		$^{1}D-^{1}F^{\circ}$	[2 957]	[2 958]	612 611–646 419.6	5–7	1.84-01	3.38-02	1.65+00	-0.772	В	2
151	$2p^3(^2P^{\circ})3p-2p^3(^2P^{\circ})3d$	$^{3}D-^{3}P^{\circ}$		1 587.3	600 529–663 531	15–9	1.90-01	4.31-03	3.38-01	-1.189	C	2
				1 584.45	600 509.6–663 623	7–5	1.57-01	4.23-03	1.55-01	-1.529	C	2
				1 587.93	600 534.1-663 509	5-3	1.28-01	2.91-03	7.60-02	-1.837	C	2
				[1 598.2]	600 567.7-663 137	3-1	1.79-01	2.28-03	3.60-02	-2.165	C	2
				1 585.06	600 534.1-663 623	5–5	3.98-02	1.50-03	3.91-02	-2.125	C	2
				1 588.78	600 567.7-663 509	3–3	5.38-02	2.03-03	3.19-02	-2.215	C	2
				1 585.91	600 567.7–663 623	3–5			2.47-04			2
152		$^{3}D-^{3}F^{\circ}$		1 596.31	600 529–663 174	15–21	9.53+00	5.10-01	4.02+01	0.884	B+	2
				1 596.401	600 509.6–663 150.5	7–9	9.55+00	4.69-01	1.73+01	0.516	B+	2
				1 596.368	600 534.1-663 176.3	5–7	8.59+00	4.59-01	1.21+01	0.361	B+	2
				1 596.304	600 567.7-663 212.4	3–5		5.20-01		0.193	B+	2
				1 595.744	600 509.6-663 176.3	7–7			1.26+00			2
				1 595.449	600 534.1-663 212.4	5–5			1.35+00		_	2
				1 594.825	600 509.6-663 212.4	7–5			3.36-02			2
153		$^{3}D-^{1}D^{\circ}$										
				1 559.99	600 534.1–664 637	5–5	1.62-01	5.91-03	1.52-01	-1.529	С	2
				1 559.40	600 509.6-664 637	7–5			1.88-02			2
				1 560.81	600 567.7–664 637	3–5			3.96-02		_	2
154		$^{3}D-^{3}D^{\circ}$		1 542.4	600 529–665 364	15–15	2.55+00	9.10-02	6.93+00	0.135	В	2
				1 542.39	600 509.6–665 344	7–7	2.53+00	9.01-02	3.20+00	-0.200	В	2
				1 542.36	600 534.1-665 370	5–5	1.73+00	6.16-02	1.56+00	-0.511	В	2
				1 542.44	600 567.7–665 400	3-3			1.05+00			2
				1 541.77	600 509.6-665 370	7–5			3.43-01			2

Table 16. Transition probabilities of allowed lines for Na IV (references for this table are as follows: 1=Butler and Zeippen, ¹⁵ 2=Tachiev and Froese Fischer, ⁹⁴ and 3=Vilkas *et al.* ¹¹⁹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{ m vac}$ (Å) or σ (cm ⁻¹) $^{ m a}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				1 541.64	600 534.1–665 400	5–3	6.19-01	1.32-02	3.36-01	-1.180	C+	2
				1 542.97	600 534.1-665 344	5-7	1.75-01	8.76-03	2.23-01	-1.359	C	2
				1 543.16	600 567.7–665 370	3–5	2.34-01	1.39-02	2.12-01	-1.380	C	2
155		$^{3}D-^{1}F^{\circ}$										
				1 494.59	600 534.1–667 442	5-7	3.99-02	1.87-03	4.60-02	-2.029	D+	2
				1 494.04	600 509.6-667 442	7–7	2.61-04	8.72-06	3.00-04	-4.214	E	2
156		$^{3}D-^{1}P^{\circ}$										
				1 377.30	600 534.1–673 140	5–3	3.43-04	5.85-06	1.33-04	-4.534	Е	2
				1 377.94	600 567.7–673 140	3–3		1.10-03				2
157		$^{1}P-^{3}P^{\circ}$										
				[1.764.2]	606 831–663 509	2.2	1 42 02	6.61 .05	1 15 02	2.702	Е	2
				[1 764.3] [1 776.0]	606 831–663 137	3–3 3–1		6.61-05				2
				[1 7/0.0]	606 831–663 623	3–5		1.31-06				
				[1 /00.81]	000 831-003 023	3–3	1.72-02	1.33-03	2.32-02	-2.399	D	2
158		$^{1}P-^{1}D^{\circ}$		[1 729.9]	606 831–664 637	3–5	5.28+00	3.95-01	6.75+00	0.074	В	2
159		$^{1}P-^{3}D^{\circ}$										
				[1 708.3]	606 831–665 370	3–5	4 67-01	3.41-02	5.75-01	-0.990	С	2
				[1 707.4]	606 831–665 400	3–3		9.16-08				2
160		$^{1}P-^{1}P^{\circ}$		[1 508.1]	606 831–673 140	3–3	5.30+00	1.81-01	2.69+00	-0.265	В	2
161		$^{1}D-^{3}F^{\circ}$										
				[1 978]	612 611–663 176.3	5–7	2.12-03	1.74-04	5.67-03	-3.060	E+	2
				[1 976]	612 611–663 212.4	5–5		5.56-04				2
162		$^{1}D-^{1}D^{\circ}$		[1 922]	612 611–664 637	5–5	1.29+00	7.14-02	2.26+00	-0.447	В	2
163		$^{1}D-^{3}D^{\circ}$										
				[1 895]	612 611–665 370	5–5	2.50-01	1.35-02	4.21-01	-1.171	С	2
				[1 894]	612 611-665 400	5-3		9.05-06				2
				[1 896]	612 611–665 344	5–7		8.54-04				2
164		$^{1}D-^{1}F^{\circ}$		[1 824]	612 611–667 442	5–7	5.85+00	4.09-01	1.23+01	0.311	B+	2
165		$^{1}D-^{1}P^{\circ}$		[1 652.1]	612 611–673 140	5-3		6.60-03		-1.481	C	2
166	$2p^3(^2P^{\circ})3p-2p^3(^4S^{\circ})4d$	$^{3}D-^{3}D^{\circ}$		1 189.0	600 529–684 631	15–15	1.34-01	2.84-03	1.67-01	-1.371	D	1
				1 188.77	600 509.6–684 630	7–7	1.19-01	2.52-03	6.90-02	-1.754	D+	LS
				1 189.18	600 534.1-684 626	5–5		1.98-03				LS
				1 189.45	600 567.7-684 640	3-3		2.13-03				LS
				1 188.83	600 509.6-684 626	7–5	2.09-02	3.16-04	8.66-03	-2.655	E+	LS
				1 188.98	600 534.1-684 640	5-3		4.26-04				LS
				1 189.12	600 534.1-684 630	5–7		4.43-04				LS
				1 189.65	600 567.7–684 626	3–5		7.09-04				LS
167	$2p^3(^2P^{\circ})3p-2p^3(^2D^{\circ})4s$	$^{1}P-^{1}D^{\circ}$		[1 177.2]	606 831–691 781	3–5	8.78-02	3.04-03	3.53-02	-2.040	D	1
168	-r (* 154 -p (D)+3	$^{1}D-^{1}D^{\circ}$		[1 263.1]	612 611–691 781	5–5		5.98-02				1
169	$2p^3(^2P^{\circ})3p-2p^3(^2P^{\circ})4s$	$^{3}D-^{3}P^{\circ}$		877.6	600 529–714 476	15–9		1.06-01		0.201		1
				877.40	600 509.6–714 483	7–5	1.29+01	1.06-01	2.14+00	-0.130	В	LS

J. Phys. Chem. Ref. Data, Vol. 37, No. 1, 2008

TABLE 16. Transition probabilities of allowed lines for Na IV (references for this table are as follows: 1=Butler and Zeippen, ¹⁵ 2=Tachiev and Froese Fischer, ⁹⁴ and 3=Vilkas *et al.* ¹¹⁹)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				877.70	600 534.1–714 468	5–3	1.15+01	7.95-02	1.15+00	-0.401	В	LS
				[878.0]	600 567.7–714 468	3-1		5.89-02				LS
				877.59	600 534.1-714 483	5-5	2.30+00	2.65-02	3.83-01	-0.878	C	LS
				877.96	600 567.7-714 468	3-3	3.82+00	4.41-02	3.82-01	-0.878	C	LS
				877.85	600 567.7–714 483	3–5	1.53-01	2.94-03	2.55-02	-2.055	D	LS
170		${}^{1}P - {}^{1}P^{\circ}$		[911.8]	606 831–716 509	3–3	6.27+00	7.82-02	7.04-01	-0.630	C+	1
171		$^{1}D-^{1}P^{\circ}$		[962.5]	612 611–716 509	5–3	1.45+00	1.21-01	1.92+00	-0.218	В	1
172	$2p^3(^2P^{\circ})3p-2p^3(^2D^{\circ})4d$	$^{3}D-^{3}D^{\circ}$		768.1	600 529–730 719	15–15	2.64-01	2.33-03	8.85-02	-1.457	E+	1
				768.09	600 509.6–730 702	7–7	2.34-01	2.07-03	3.66-02	-1.839	D	LS
				768.09	600 534.1-730 728	5-5	1.83-01	1.62-03	2.05-02	-2.092	E+	LS
				768.20	600 567.7-730 742	3-3	1.98-01	1.75-03	1.33-02	-2.280	E+	LS
				767.94	600 509.6-730 728	7–5	4.12-02	2.60-04	4.60-03	-2.740	E	LS
				768.00	600 534.1–730 742	5-3	6.60-02	3.50-04	4.42-03	-2.757	E	LS
				768.24	600 534.1–730 702	5-7	2.94-02	3.64-04	4.60-03	-2.740	E	LS
				768.28	600 567.7–730 728	3–5	3.95-02	5.83-04	4.42-03	-2.757	E	LS
173		$^{1}P-^{1}P^{\circ}$		[800.9]	606 831–731 684	3–3	4.77-01	4.59-03	3.63-02	-1.861	D	1
174		$^{1}D-^{1}P^{\circ}$		[839.8]	612 611–731 684	5–3	2.81-01	1.78-03	2.46-02	-2.051	D	1
175		$^{1}D-^{1}D^{\circ}$		[828.7]	612 611–733 288	5–5	8.72-01	8.98-03	1.22-01	-1.348	D+	1
176		$^{1}D-^{1}F^{\circ}$		[824.4]	612 611–733 919	5–7	1.61+00	2.29-02	3.11-01	-0.941	C	1
177	$2p^3(^2P^{\circ})3p-2p^3(^2P^{\circ})4d$	$^{1}P-^{1}D^{\circ}$		[671.4]	606 831–755 785	3–5	3.81+00	4.29-02	2.84-01	-0.890	C	1
178		$^{1}D-^{1}D^{\circ}$		[698.5]	612 611–755 785	5–5	6.03-01	4.41-03	5.07-02	-1.657	D	1
179		$^{1}D-^{1}F^{\circ}$		[692.6]	612 611–756 995	5–7	6.63+00	6.68-02	7.62-01	-0.476	C+	1

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

10.4.3. Forbidden Transitions for Na IV

We have compiled the MCHF results of Tachiev and Froese Fischer⁹⁴ and the second-order MBPT results of Gaigalas *et al.*³⁹ As part of the Iron Project, Galavis *et al.*⁴⁰ used the SUPERSTRUCTURE code with CI, relativistic effects, and semiempirical energy corrections.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in two or more references, ^{39,40,94} as described in the general introduction.

10.4.4. References for Forbidden Transitions for Na IV

ab initio, downloaded on May 6, 2002). See Tachiev and Froese Fischer (Ref. 89).

TABLE 17. Wavelength finding list for forbidden lines for Na IV

Wavelength	Mult.
(vac) (Å)	No.
175.186	26
175.526	26
179.599	22
179.957	22
181.757	21
181.766	21
182.123	21
182.133	21
182.279	21
185.191	27
188.179	16
188.571	16
188.738	16
190.130	24
190.426	15

³⁹G. Gaigalas, J. Kaniauskas, R. Kisielius, G. Merkelis, and M. J. Vilkas, Phys. Scr. 49, 135 (1994).

⁴⁰M. E. Galavis, C. Mendoza, and C. J. Zeippen, Astron. Astrophys., Suppl. Ser. **123**, 159 (1997).

⁸⁹G. Tachiev and C. Froese Fischer, Astron. Astrophys. **385**, 716 (2002).

⁹⁴G. Tachiev and C. Froese Fischer, http:// www.vuse.vanderbilt.edu/~cff/mchf collection/ (MCHF,

TABLE 17. Wavelength finding list for forbidden lines for Na IV—Continued

TABLE 17. Wavelength finding list for forbidden lines for Na IV—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
190.434	15	437.233	30
190.445	15	466.420	7
190.828	15	467.622	7
190.836	15	469.832	7
190.847	15	484.266	39
191.007	15	484.332	39
192.550	23	484.334	39
192.560	23	551.113	36
192.561	23	551.180	36
199.772	18	551.277	36
202.307	17	564.38	9
202.316	17	699.49	33
202.329	17	767.68	32
205.486	11	999.94	29
205.955	11	1 010.10	29
206.744	25	1 015.75	29
210.993	10	1 311.72	46
211.486	10	1 312.22	46
211.697	10	1 425.60	48
215.094	20	1 503.85	3
218.045	19	1 529.29	3
219.389	13	1 573.92	47
225.677	12	1 574.61	47
245.426	14	1 574.63	47
290.962	6	1 740.34	43
291.901	6	1 953.5	42
305.678	40	1 954.4	42
319.372	38	1 955.6	42
319.644	8	Wavelength	Mult.
320.402	38	(air) (Å)	No.
320.968 326.260	38 37	(411) (12)	110.
326.290	37		
326.291	37	2 233.5	45
327.334	37	2 536.5	54
327.364	37	2 597.4	44
327.365	37	2 598.9	44
327.926	37	2 803.7 3 155.8	4 52
327.957	37	3 157.9	52
347.550	35	3 241.63	2
348.769	35	3 362.24	2
349.441	35	3 416.21	2 2
355.294	34	3 982.8	51
355.322	34	3 987.9	51
355.362	34	3 991.4	51
356.568	34	3 992.5	51
356.596	34	3 995.8	51
356.637	34	3 996.0	51
357.270	34	4 844.3	57
357.298	34	5 324.5	53
407.766	5	5 332.7	53
408.684	5	7 871.7	41
410.371	5	15 058	56
410.541	5	15 061	56
411.576	31	15 124	56
412.243	5	15 806	50
413.042	5	15 886	50
413.287 414.231	31 31	15 942	50
414 / 31	31		
434.276	30		

TABLE 17. Wavelength finding list for forbidden lines for Na IV—Continued

TABLE 17. Wavelength finding list for forbidden lines for Na IV—Continued

Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.
		469.7	1
1 576.0	1	49	22
1 556.9	28	32	49
1 106.3	1	29	55
1 005.7	28		
551.2	28		

TABLE 18. Transition probabilities of forbidden lines for Na IV (references for this table are as follows: 1=Tachiev and Froese Fischer, 94 2=Gaigalas *et al.*, 94 and 3=Galavis *et al.* 94

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Type	A_{ki} (s ⁻¹)	<i>S</i> (a.u.)	Acc.	Source
1	$2p^4 - 2p^4$	$^{3}P - ^{3}P$									
				1 576.0 cm ⁻¹	0.0-1 576.0	5-1	E2	1.62 - 07	1.49 - 01	B+	1,2,3
				1 106.3 cm ⁻¹	0.0-1 106.3	5-3	M1	3.05 - 02	2.50+00	A	1,2,3
				1 106.3 cm ⁻¹	0.0-1 106.3	5–3	E2	2.07 - 08	3.34 - 01	B+	1,2
				469.7 cm ⁻¹	1 106.3–1 576.0	3–1	M1	5.64-03	2.02+00	A	1,2,3
2		${}^{3}P - {}^{1}D$									
			3 416.21	3 417.19	1 576.0-30 839.8	1-5	E2	2.19 - 05	4.57 - 05	C+	2,3
			3 362.24	3 363.21	1 106.3-30 839.8	3-5	M1	1.83 - 01	1.29 - 03	В	1,2,3
			3 362.24	3 363.21	1 106.3-30 839.8	3-5	E2	8.97 - 05	1.72 - 04	C+	1,2
			3 241.63	3 242.56	0.0-30 839.8	5-5	M1	6.13 - 01	3.87 - 03	В	1,2,3
			3 241.63	3 242.56	0.0-30 839.8	5–5	E2	7.10-04	1.14-03	В	1,2
3		$^{3}P-^{1}S$									
				1 503.85	0.0-66 496	5-1	E2	1.04 - 02	7.15-05	C+	1,2,3
				1 529.29	1 106.3-66 496	3-1	M1	7.13+00	9.45 - 04	В	1,2,3
4		$^{1}D-^{1}S$									
7		ъ	2 803.7	2 804.6	30 839.8-66 496	5-1	E2	3.33+00	5.17-01	$\mathrm{B}+$	1,2,3
5	$2s^22p^4-2s2p^5$	$^{3}P-^{3}P^{\circ}$									
3	2s 2p - 2s2p	1 – 1		410.371	0.0-243 681.9	5–5	M2	4.09+00	1.60+01	B+	1
				410.541	1 106.3-244 687.6	3–3	M2	2.71+00	6.36+00	В	1
				407.766	0.0-245 238.8	5-1	M2	2.61+00	1.98+00	В	1
				408.684	0.0-244 687.6	5–3	M2	8.53-04	1.96-03	C	1
				412.243	1 106.3-243 681.9	3–5	M2	4.24-04	1.69-03	D+	1
				413.042	1 576.0-243 681.9	1-5	M2	5.62-01	2.26+00	В	1
6		$^{3}P-^{1}P^{\circ}$									
				291.901	1 106.3-343 688	3–3	M2	6.93+00	2.95+00	В	1
				290.962	0.0-343 688	5-3	M2	2.06+01	8.63+00	В	1
7		$^{1}D-^{3}P^{\circ}$									
,		DI		466.420	30 839.8-245 238.8	5-1	M2	2.53+00	3.75+00	В	1
				467.622	30 839.8-244 687.6	5–3	M2	1.81+00	8.15+00	В	1
				469.832	30 839.8–243 681.9	5–5	M2	7.69-01	5.90+00	В	1
8		$^{1}D-^{1}P^{\circ}$									
O		D- 1		319.644	30 839.8–343 688	5–3	M2	2.62-01	1.76-01	C+	1
9		$^{1}S-^{3}P^{\circ}$									
9		3- F		564.38	66 496–243 681.9	1–5	M2	3.54-01	6.79+00	В	1
10	$2p^4 - 2p^3(^4S^{\circ})3s$	$^{3}P-^{5}S^{\circ}$									
10	2p - 2p (3)38	1 – 3		[210.99]	0.0-473 950.0	5–5	M2	7.77+00	1.09+00	В	1
				[211.49]	1 106.3–473 950.0	3–5	M2	9.59+00	1.36+00	В	1
				[211.70]	1 576.0–473 950.0	1–5	M2	4.20+00			1
				[211.70]	1370.0 773 730.0	1 3	1712	1.20100	5.77 01	<u> </u>	

Table 18. Transition probabilities of forbidden lines for Na IV (references for this table are as follows: 1=Tachiev and Froese Fischer, 94 2=Gaigalas *et al.*, 99 and 3=Galavis *et al.* 90—Continued

		Mult.	(Å)	or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Type	(s^{-1})	(a.u.)	Acc.	Source
11		$^{3}P-^{3}S^{\circ}$									
				205.486	0.0-486 650.2	5-3	M2	3.95+00	2.91-01	C+	1
				205.955	1 106.3–486 650.2	3–3	M2	1.25+00	9.35-02	C+	1
12		$^{1}D-^{5}S^{\circ}$									
12		D- 3		[225.68]	30 839.8-473 950.0	5–5	M2	6.79-04	1.33-04	D	1
				[223.00]	30 037.0 173 730.0	5 5	1112	0.77 01	1.55 01	Ь	1
13		$^{1}D-^{3}S^{\circ}$									
				219.389	30 839.8–486 650.2	5–3	M2	1.64-04	1.68-05	D	1
14		$^{1}S-^{5}S^{\circ}$									
				[245.43]	66 496-473 950.0	1-5	M2	2.75 - 05	8.21-06	D	1
15	$2p^4 - 2p^3(^3D^{\circ})3s$	$^{3}P-^{3}D^{\circ}$									
13	2p - 2p (D)3s	1 – D		190.847	1 106.3–525 085	3–7	M2	4.41+00	5.24-01	C+	1
				191.007	1 576.0–525 117	1–5	M2	4.13+00	3.52-01	C+	1
				190.445	0.0-525 085	5–7	M2	9.18+00	1.08+00	В	1
				190.836	1 106.3-525 117	3-5	M2	4.72+00	4.01-01	C+	1
				190.434	0.0-525 117	5-5	M2	8.57-02	7.20-03	C	1
				190.828	1 106.3–525 139	3-3	M2	1.79+00	9.13 - 02	C+	1
				190.426	0.0-525 139	5–3	M2	1.92+00	9.69-02	C+	1
16		$^{3}P-^{1}D^{\circ}$									
10		1 – D		188.738	1 576.0-531 410	1–5	M2	2.32+00	1.86-01	C+	1
				188.571	1 106.3–531 410	3–5	M2	5.77+00	4.62-01	C+	1
				188.179	0.0-531 410	5–5	M2	5.27+00	4.17-01		1
		1p 3p°									
17		$^{1}D-^{3}D^{\circ}$		202 216	20.020.0 525.117		1.10	1.20 - 01	1 47 - 00	D	1
				202.316 202.307	30 839.8–525 117 30 839.8–525 139	5–5 5–3	M2 M2	1.29+01 $5.51+00$	1.47+00 $3.76-01$	B C+	1 1
				202.307	30 839.8–525 085	5–3 5–7	M2	1.46+01	2.32+00	C⊤ B	1
				202.32)	30 037.0 323 003	5 /	1412	1.40101	2.32 1 00	Ь	1
18		$^{1}D-^{1}D^{\circ}$									
				199.772	30 839.8–531 410	5–5	M2	9.25-02	9.87-03	С	1
19		$^{1}\text{S} - ^{3}\text{D}^{\circ}$									
				218.045	66 496-525 117	1-5	M2	3.55-03	5.86-04	D+	1
20		la lo°									
20		$^{1}\mathrm{S} - ^{1}\mathrm{D}^{\circ}$		215 004	66 496–531 410	1 5	142	2.72 02	5.74-04	D.	1
				215.094	00 490-331 410	1–5	M2	3.72-03	5.74-04	D+	1
21	$2p^4 - 2p^3(^2P^{\circ})3s$	$^{3}P-^{3}P^{\circ}$									
				181.757	0.0-550 186	5–5	M2	1.78+01	1.18+00	В	1
				182.133	1 106.3–550 157	3–3	M2	1.42 + 01	5.73-01		1
				[181.77]	0.0–550 158	5–1	M2	1.37 + 01	1.82 - 01		1
				181.766	0.0–550 157	5–3	M2	1.76-02	7.02-04		1
				182.123	1 106.3–550 186	3–5	M2	3.92-03	2.63-04	D+	1
				182.279	1 576.0–550 186	1–5	M2	3.33+00	2.25-01	C+	1
22		${}^{3}P - {}^{1}P^{\circ}$									
				179.957	1 106.3–556 796	3–3	M2	6.82+00	2.59-01		1
				179.599	0.0–556 796	5–3	M2	2.04+01	7.66-01	В	1
23		$^{1}D - {}^{3}P^{\circ}$									
				[192.56]	30 839.8–550 158	5–1	M2	1.98+01	3.52-01	C+	1
				192.561	30 839.8–550 157	5–3	M2	1.38+01	7.36-01		1
				192.550	30 839.8-550 186	5–5	M2	5.49+00	4.87-01		1
24		$^{1}D-^{1}P^{\circ}$									
24		.Db		190.130	30 839.8–556 796	5–3	M2	8.02-01	4.01-02	C	1
				190.130	JU 0J7.8-JJU 190	5-5	1 V1 ∠	0.02-01	4.01-02	C	1

TABLE 18. Transition probabilities of forbidden lines for Na IV (references for this table are as follows: 1=Tachiev and Froese Fischer, 94 2=Gaigalas *et al.*, 90 and 3=Galavis *et al.* 90—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	A_{ki} (s ⁻¹)	S (a.u.)	Acc.	Source
25		$^{1}S - ^{3}P^{\circ}$									
		5 1		206.744	66 496–550 186	1-5	M2	7.26+00	9.19-01	В	1
26	2-22-4 2-6	$^{3}P-^{1}S$									
26	$2s^22p^4-2p^6$	P-3		175.186	0.0-570 823	5–1	E2	1.78+02	2.62-05	С	1,2
				175.526	1 106.3–570 823	3–1	M1	2.00+00	4.02-07		1,2
				173.320	1 100.3 370 023	5 1	1411	2.00100	1.02 07	C	1,2
27		$^{1}D-^{1}S$									
				185.191	30 839.8–570 823	5–1	E2	2.54+05	4.94-02	B+	1,2
28	$2s2p^5 - 2s2p^5$	$^{3}\text{P}^{\circ} - ^{3}\text{P}^{\circ}$									
				1 556.9 cm ⁻¹	243 681.9–245 238.8	5-1	E2	1.49 - 07	1.45-01	В	2
				$1~005.7~{\rm cm^{-1}}$	243 681.9–244 687.6	5–3	M1	2.31 - 02	2.53+00	A	1,2
				1 005.7 cm ⁻¹	243 681.9–244 687.6	5–3	E2	1.28 - 08	3.33-01	B+	2
				551.2 cm ⁻¹	244 687.6–245 238.8	3–1	M1	8.98-03	1.99+00	A	1,2
29		$^{3}P^{\circ}-^{1}P^{\circ}$									
				1 010.10	244 687.6–343 688	3–3	M1	6.58-01	7.55-05	C+	1,2
				1 010.10	244 687.6–343 688	3–3	E2	2.04-02	5.73-05	C	2
				999.94	243 681.9-343 688	5-3	M1	1.13+00	1.26-04	C+	1,2
				999.94	243 681.9-343 688	5-3	E2	6.37-03	1.71-05	C	2
				1 015.75	245 238.8–343 688	1-3	M1	8.39-01	9.78 - 05	C	1
30	$2s2p^5 - 2s^22p^3(^4S^{\circ})3s$	$^{3}P^{\circ}-^{5}S^{\circ}$									
30	282p -28 2p (3)38	P - 3		[434.28]	243 681.9–473 950.0	5–5	M1	7.21-05	1.10-09	E+	1
				[434.28]	243 681.9–473 950.0	5–5	E2	2.51-02	1.73-06	D+	1
				[436.18]	244 687.6–473 950.0	3–5	M1	5.68-05	8.74-10	E+	1
				[436.18]	244 687.6–473 950.0	3–5	E2	2.66-02	1.88-06	D+	1
				[437.23]	245 238.8-473 950.0	1-5	E2	1.06-02	7.60-07	D+	1
		$^{3}P^{\circ}-^{3}S^{\circ}$									
31		3P - 3S		411 576	242 601 0 406 650 2	5 2	М1	4.27 02	2 21 00	D	1
				411.576 411.576	243 681.9–486 650.2 243 681.9–486 650.2	5–3 5–3	M1 E2	4.27-03 4.19-02	3.31-08 1.33-06	D D+	1 1
				413.287	244 687.6–486 650.2	3–3 3–3	E2 M1	2.92-03	2.29-08	D+ D	1
				413.287	244 687.6–486 650.2	3–3	E2	7.34-03	2.37-07	D	1
				414.231	245 238.8–486 650.2	1–3	M1	3.33-03	2.63-08	D	1
		1 0 7 0									
32		$^{1}P^{\circ}-^{5}S^{\circ}$		5							
				[767.7]	343 688–473 950.0	3–5	M1	1.68-08	1.41-12		1
				[767.7]	343 688–473 950.0	3–5	E2	5.94-06	7.07-09	D	1
33		$^{1}P^{\circ}-^{3}S^{\circ}$									
				699.49	343 688-486 650.2	3–3	M1	1.53 - 02	5.84-07	D+	1
				699.49	343 688–486 650.2	3–3	E2	9.94-03	4.46 - 06	D+	1
34	$2s2p^5 - 2s^22p^3(^2D^{\circ})3s$	$^{3}P^{\circ}-^{3}D^{\circ}$									
54	232p -23 2p (D)33	1 - D		356.637	244 687.6–525 085	3–7	E2	3.83+02	1.38-02	В	1
				357.298	245 238.8–525 117	1–5	E2	3.60+02	9.35-03	В	1
				355.362	243 681.9–525 085	5–7	M1	5.67-04	6.61-09		1
				355.362	243 681.9–525 085	5–7	E2	7.75 + 02	2.74-02	В	1
				356.596	244 687.6-525 117	3-5	M1	8.07-07	6.78-12	Е	1
				356.596	244 687.6-525 117	3–5	E2	8.06+01	2.08-03	C+	1
				357.270	245 238.8-525 139	1-3	M1	2.09 - 04	1.06-09	E+	1
				355.322	243 681.9–525 117	5–5	M1	7.78 - 04	6.47-09	D	1
				355.322	243 681.9–525 117	5–5	E2	7.16+02	1.81 - 02	В	1
				356.568	244 687.6–525 139	3–3	M1	8.51 - 04	4.29-09	E+	1
				356.568	244 687.6–525 139	3–3	E2	8.36+02	1.29-02	В	1
				355.294	243 681.9–525 139	5–3	M1	3.49-04	1.74-09	E+	1
				355.294	243 681.9–525 139	5–3	E2	3.18+02	4.83 - 03	C+	1

TABLE 18. Transition probabilities of forbidden lines for Na IV (references for this table are as follows: 1 = Tachiev and Froese Fischer, 94 2 = Gaigalas et al., 39 and 3 = Galavis et al. 40)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{ m vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	A_{ki} (s ⁻¹)	S (a.u.)	Acc.	Source
35		$^{3}P^{\circ}-^{1}D^{\circ}$									
				349.441	245 238.8-531 410	1-5	E2	3.14-01	7.31-06	C	1
				348.769	244 687.6-531 410	3–5	M1	2.23-03	1.75-08	D	1
				348.769	244 687.6-531 410	3–5	E2	1.28+00	2.96-05	C	1
				347.550	243 681.9-531 410	5–5	M1	7.18-03	5.59-08	D	1
				347.550	243 681.9–531 410	5–5	E2	6.47-01	1.46-05		1
36		$^{1}P^{\circ}-^{3}D^{\circ}$									
				551.277	343 688-525 085	3–7	E2	4.53 - 03	1.44-06	D+	1
				551.180	343 688-525 117	3-5	M1	1.94-03	6.03-08	D	1
				551.180	343 688-525 117	3-5	E2	5.60-04	1.27 - 07	D	1
				551.113	343 688-525 139	3–3	M1	1.13-03	2.10-08	D	1
				551.113	343 688–525 139	3–3	E2	7.38-02	1.01-05		1
37	$2s2p^5 - 2s^22p^3(^2P^{\circ})3s$	$^{3}P^{\circ}-^{3}P^{\circ}$									
				326.260	243 681.9-550 186	5-5	M1	4.45-03	2.87-08	D	1
				326.260	243 681.9-550 186	5–5	E2	4.01+02	6.62-03	C+	1
				327.365	244 687.6-550 157	3–3	M1	1.80-03	7.03-09	D	1
				327.365	244 687.6–550 157	3–3	E2	3.55+02	3.57-03	C+	1
				[326.29]	243 681.9–550 158	5–1	E2	1.29+03	4.27-03	C+	1
				326.291	243 681.9–550 157	5–3	M1	8.24-04	3.18-09	E+	1
				326.291	243 681.9–550 157	5–3	E2	9.33+02	9.24-03	В	1
				[327.36]	244 687.6–550 158	3–1	M1	2.23-03	2.89-09	E+	1
					244 687.6–550 186						
				327.334		3–5	M1	9.47-06	6.16-11	E+	1
				327.334	244 687.6–550 186	3–5	E2	5.91+02	9.92-03	В	1
				327.957	245 238.8–550 157	1–3	M1	1.97 - 05	7.74 - 11	E+	1
				327.926	245 238.8–550 186	1–5	E2	2.80+02	4.75-03	C+	1
38		$^{3}P^{\circ}-^{1}P^{\circ}$									
				320.402	244 687.6–556 796	3–3	M1	5.64 - 03	2.07 - 08	D	1
				320.402	244 687.6–556 796	3–3	E2	1.01 + 00	9.09-06	C	1
				319.372	243 681.9–556 796	5–3	M1	9.80 - 03	3.55 - 08	D	1
				319.372	243 681.9–556 796	5–3	E2	4.18 - 01	3.72 - 06	D+	1
				320.968	245 238.8–556 796	1–3	M1	7.94-03	2.92-08	D	1
39		$^{1}P^{\circ}-^{3}P^{\circ}$									
				484.334	343 688–550 157	3–3	M1	1.87 - 04	2.36 - 09	E+	1
				484.334	343 688–550 157	3–3	E2	4.77 - 04	3.41 - 08	D	1
				[484.33]	343 688-550 158	3-1	M1	7.40 - 04	3.12 - 09	E+	1
				484.266	343 688-550 186	3-5	M1	1.31 - 04	2.75 - 09	E+	1
				484.266	343 688–550 186	3–5	E2	8.39-01	9.97-05	C	1
40	$2s2p^5 - 2p^6$	$^{3}P^{\circ}-^{1}S$									
				305.678	243 681.9–570 823	5–1	M2	5.65+01	1.01 + 01	В	1
41	$2p^3(^4S^{\circ})3s-2p^3(^4S^{\circ})3s$	$^{5}\text{S}^{\circ}$ – $^{3}\text{S}^{\circ}$									
			[7872]	[7874]	473 950.0–486 650.2	5–3	M1	1.04-06	5.66-08	D	1
42	$2p^3(^4S^{\circ})3s-2p^3(^2D^{\circ})3s$	$^{5}\text{S}^{\circ} - ^{3}\text{D}^{\circ}$									
				[1 956]	473 950.0–525 085	5–7	M1	8.38 - 04	1.63-06	D+	1
				[1 954]	473 950.0-525 117	5-5	M1	1.31 - 02	1.81 - 05	C	1
				[1 954]	473 950.0–525 139	5–3	M1	4.48 - 03	3.72-06	$\mathrm{D} +$	1
43		$^{5}\text{S}^{\circ} - ^{1}\text{D}^{\circ}$									
				[1 740.3]	473 950.0–531 410	5–5	M1	1.48 - 02	1.45 - 05	C	1
44		$^{3}\text{S}^{\circ} - ^{3}\text{D}^{\circ}$									
			2 598.9	2 599.6	486 650.2-525 117	3-5	M1	2.25-03	7.33-06	C	1
			2 597.4	2 598.2	486 650.2–525 139	3–3	M1	1.28-02	2.50-05		1
			Z 391.4	2 398.2	460 030.2–323 139	3-3	IVII	1.28-02	2.30-03	C	1

TABLE 18. Transition probabilities of forbidden lines for Na IV (references for this table are as follows: 1=Tachiev and Froese Fischer, 94 2=Gaigalas *et al.*, 90 and 3=Galavis *et al.* 90—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{ m vac}$ (Å) or σ (cm $^{-1}$) $^{ m a}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Type	A_{ki} (s ⁻¹)	<i>S</i> (a.u.)	Acc.	Source
45		$^{3}\text{S}^{\circ} - ^{1}\text{D}^{\circ}$									
			2 233.5	2 234.1	486 650.2–531 410	3–5	M1	2.32-04	4.79-07	D+	1
46	$2p^3(^4S^{\circ})3s-2p^3(^2P^{\circ})3s$	${}^{5}\text{S}^{\circ} - {}^{3}\text{P}^{\circ}$									
	1 () 1 ()			[1 311.7]	473 950.0–550 186	5–5	M1	3.82+00	1.60-03	C+	1
				[1 312.2]	473 950.0–550 157	5–3	M1	2.14+00	5.38-04	C+	1
47		$^{3}\text{S}^{\circ} - ^{3}\text{P}^{\circ}$									
.,		5 1		1 573.92	486 650.2–550 186	3–5	M1	3.52-01	2.54-04	С	1
				1 574.63	486 650.2-550 157	3–3	M1	3.45 - 01	1.50-04	C	1
				[1 574.6]	486 650.2–550 158	3-1	M1	1.43+00	2.06-04	C	1
48		$^{3}\text{S}^{\circ} - ^{1}\text{P}^{\circ}$									
70		5 – 1		1 425.60	486 650.2–556 796	3–3	M1	3.12+00	1.01-03	C+	1
40	a 3/25°\a a 3/25°\a	3-0 3-0									
49	$2p^3(^2D^{\circ})3s - 2p^3(^2D^{\circ})3s$	D - D		32 cm ⁻¹	525 085–525 117	7–5	M1	8.24-07	4.66+00	B+	1
				22 cm ⁻¹	525 117–525 139	7–3 5–3	M1	4.30-07	4.49+00	в+	1
				22 CIII	323 117-323 139	3–3	1V11	4.30-07	4.49+00	Б	1
50		$^{3}\text{D}^{\circ} - ^{1}\text{D}^{\circ}$		15.001	505 445 504 440		3.54		2 2 2 2 2		
			15 886	15 891	525 117–531 410	5–5	M1	4.46-05	3.32-05		1
			15 806	15 810	525 085–531 410	7–5	M1	1.07-05	7.80-06	C	1
			15 942	15 946	525 139–531 410	3–5	M1	2.95-05	2.22-05	C	1
51	$2p^3(^2D^{\circ})3s-2p^3(^2P^{\circ})3s$	$^{3}\text{D}^{\circ} - ^{3}\text{P}^{\circ}$									
			3 982.8	3 983.9	525 085-550 186	7–5	M1	6.07 - 01	7.12 - 03	C+	1
			3 992.5	3 993.6	525 117–550 157	5–3	M1	3.77 - 08	2.67 - 10	E+	1
			[3996]	[3 997]	525 139–550 158	3–1	M1	7.15 - 01	1.69-03	C+	1
			3 987.9	3 989.0	525 117–550 186	5–5	M1	4.28-01	5.03-03	C+	1
			3 996.0	3 997.1	525 139–550 157	3–3	M1	7.13-01	5.07-03	C+	1
			3 991.4	3 992.5	525 139–550 186	3–5	M1	1.15-01	1.36-03	C+	1
52		$^{3}\text{D}^{\circ} - ^{1}\text{P}^{\circ}$									
			3 155.8	3 156.7	525 117–556 796	5–3	M1	1.35+00	4.73 - 03	C+	1
			3 157.9	3 158.9	525 139–556 796	3–3	M1	4.53-01	1.59-03	C+	1
53		$^{1}D^{\circ}-^{3}P^{\circ}$									
			5 332.7	5 334.2	531 410-550 157	5–3	M1	2.71 - 01	4.58 - 03	C+	1
			5 324.5	5 325.9	531 410–550 186	5–5	M1	4.91 - 01	1.37 - 02	В	1
54	$2s^22p^3(^2D^{\circ})3s-2p^6$	$^{1}D^{\circ}-^{1}S$									
	20 2p (2)00 2p	2 5	2 536.5	2 537.2	531 410-570 823	5-1	M2	3.02-09	2.13-05	D	1
~ ~	2 3/2p°\2 2 3/2p°\2	3p° 3p°									
55	$2p^3(^2P^{\circ})3s-2p^3(^2P^{\circ})3s$	$^{3}P^{\circ} - ^{3}P^{\circ}$		29 cm ⁻¹	550 157–550 186	3–5	М1	3.28-07	2.50+00	D⊥	1
56		$^{3}P^{\circ}-^{1}P^{\circ}$		29 CIII	330 137-330 180	3–3	M1	3.20-07	2.30+00	D	1
		- •									
			15 058	15 063	550 157–556 796	3–3	M1	3.71-06	1.41-06		1
			15 124	15 129	550 186–556 796	5–3	M1	7.29-05	2.81-05		1
			[15 061]	[15 065]	550 158–556 796	1–3	M1	1.43-05	5.45-06	D+	1
57	$2s^22p^3(^2P^{\circ})3s-2p^6$	$^{3}P^{\circ}-^{1}S$									
			4 844.3	4 845.7	550 186–570 823	5-1	M2	9.77 - 11	1.75 - 05	D	1

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

10.5. Na v

Nitrogen isoelectronic sequence Ground state: $1s^22s^22p^3$ $^4S_{3/2}^{\circ}$

Ionization energy: 138.40 eV=1 116 300 cm⁻¹

10.5.1. Allowed Transitions for Na V

Only OP (Ref. 12) results were available for transitions from energy levels above the 3d. Wherever available, we have used the data of Tachiev and Froese Fischer, ⁹⁴ which result from extensive MCHF calculations with Breit-Pauli corrections to order α^2 . Also we found the MBPT calculations of Merkelis *et al.* ⁶⁵ to be in excellent agreement with those of Tachiev and Froese Fischer. ⁹⁴

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in two or more references, ^{12,65,94} as described in the general introduction. For this purpose the spin-allowed (non-OP) and intercombination data were treated separately and each of these was in turn divided into two upper-level energy groups below and above 780 000 cm⁻¹. OP lines constituted a fifth group and have been used only when more accurate sources were not available, because spin-orbit effects are often significant for this spectrum.

Merkelis *et al.*⁶⁵ contain only data for transitions from energy levels below 780 000 cm⁻¹. To estimate the accuracy

of the higher-lying lines for Tachiev and Froese Fischer⁹⁴ and separately for OP (Ref. 12) for the lines unique to it, we isoelectronically averaged the logarithmic quality factors (see Sec. 4.1) observed for lines from the lower-lying levels of N-like ions of Na, Mg, Al, and Si and scaled them for lines from high-lying levels, as described in the introduction. The listed accuracies for these higher-lying transitions are thus less well established than for those from lower levels. All transitions involving the $2s^22p^2(^3P)3d^4P$ or $2s2p^3(^5S^o)3s^4S^o_{3/2}$ energy levels were excluded from the fitting because these yielded consistently poorer RSDM's that the other transitions.

10.5.2. References for Allowed Transitions for Na V

¹²V. M. Burke and D. J. Lennon, to be published, http://legacy.gsfc.nasa.gov/topbase, downloaded on Aug. 8, 1995 (Opacity Project).

⁶⁵G. Merkelis, M. J. Vilkas, R. Kisielius, G. Gaigalas, and I. Martinson, Phys. Scr. **56**, 41, (1997).

⁸⁹G. Tachiev and C. Froese Fischer, Astron. Astrophys. **385**, 716 (2002).

⁹⁴G. Tachiev and C. Froese Fischer, http://www.vuse. vanderbilt.edu/~cff/mchf_collection/ (MCHF, *ab initio*, downloaded on May 6, 2002). See Tachiev and Froese Fischer (Ref. 89).

TABLE 19. Wavelength finding list for allowed lines for Na V

TABLE 19. Wavelength finding list for allowed lines for Na V—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
100.880	42	129.942	30
100.883	42	130.673	29
106.278	34	130.680	29
106.302	34	130.722	29
107.937	40	130.728	29
107.941	40	131.625	28
108.017	39	131.643	28
108.021	39	131.650	28
110.812	38	133.162	21
110.816	38	133.245	22
110.878	38	133.282	22
110.916	41	133.288	22
110.921	41	133.361	22
111.511	35	133.367	22
111.516	35	133.382	21
111.550	35	133.388	21
111.554	35	133.528	20
111.534	33 37	133.526	20 20
114.735	37		
		133.566	20
114.740	37	134.183	19
115.579	36	134.269	19
115.584	36	134.275	19
117.989	31	138.112	24
122.070	32	138.119	24
122.076	32	138.152	24
125.178	18	138.159	24
125.216	18	138.812	23
125.286	18	138.819	23
125.304	17	138.911	23
125.895	33	138.918	23
125.901	33	140.164	55
126.091	54	140.171	55
126.207	53	140.258	55
126.256	54	142.205	51
126.342	54	142.415	51
126.372	53	142.525	51
126.459	53	144.331	50
126.557	27	144.548	50
126.563	27	144.661	50
126.609	27	147.889	16
126.781	52	147.897	16
126.817	52	148.642	11
126.921	52	148.856	11
126.948	52	149.001	11
126.983	52	150.953	48
127.008	52	151.124	14
127.036	52	151.132	14
127.444	26	151.189	48
127.450	26	151.313	48
127.467	26	157.030	15
127.473	26	157.039	15
128.019	25	157.207	12
128.025	25	157.216	12
128.051	25	157.512	12
129.936	30	163.608	13

TABLE 19. Wavelength finding list for allowed lines for Na V—Continued

TABLE 19. Wavelength finding list for allowed lines for Na V—Continued

Wavelength	Mult.	Wavelength	Mult.		
(vac) (Å)	No.	(vac) (Å)	No.		
(vac) (11)	110.	(vac) (11)	110.		
163.618	13	476.014	74		
163.929	13	476.109	73		
163.939	13	477.122	73		
167.510	49	477.674	73		
167.520	49	482.663	60		
170.622	47	484.191	60		
170.924	47	484.388	72		
171.083	47	484.905	72		
267.428	3	485.037	72		
268.290	3	485.437	72		
283.221	43	485.607	72		
283.658	43	485.956	72		
283.698	43	486.008	72		
284.534	43	486.469	60		
284.975	43	506.981	46		
285.106	2	510.087	46		
296.030	63	511.203	46		
296.604	63	514.361	46		
297.457	63	541.064	64		
307.157	6	552.321	58		
308.260	6	557.336	58		
308.295	6	591.46	4		
332.542	10	593.24	4		
332.583	10	593.37	4		
333.875	10	596.91	4		
333.917	10	597.04	4		
360.323	9	635.93	82		
360.371	9	636.61	82		
367.565	44	637.51	82		
369.730	44	690.85	93		
369.779	44	693.38	7		
400.663	5	693.55	7		
400.721	5	695.41	83		
400.779	5	696.00	7		
403.333	62	696.18	7		
404.400	62	697.74	83		
405.988	62	701.24	7		
445.042	8	705.76	57		
445.115	8	713.97	57		
445.186	8	719.53	77		
456.142	45	720.62	77		
459.557	45	764.44	59		
459.897	1	768.29	59		
461.050	1	774.04	59		
463.263	1	819.60	68		
468.887	71	821.02	68		
469.945	71	827.16	69		
471.620	71	830.22	69		
472.541	61	831.89	69		
472.690	71	861.43	56		
473.597	70	862.29	95		
474.068	70	870.40	56		
474.460	74	873.69	56		
475.226	61	874.20	95		
475.466	74	882.92	56		

TABLE 19. Wavelength finding list for allowed lines for Na V—Continued

TABLE 19. Wavelength finding list for allowed lines for Na V—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(air) (Å)	No.
1 033.05	67	2 113.9	89
1 046.41	67	2 192.8	75
1 088.49	76	2 294.5	88
1 107.54	76	2 685.9	104
1 212.12	98	2 721.0	104
1 219.21	98	2 736.7	105
1 250.94	92	2 773.1	105
1 261.83	91	2 942.9	86
1 445.50	101	3 247.8	80
1 455.60	101	3 476.1	107
1 481.70	100	3 535.1	107
1 486.33	100	3 555.2	106
1 502.86	102	3 616.9	106
1 509.89	102	3 726.1	94
1 520.91	102	3 959.3	94
1 524.60	78	4 573.3	97
1 529.12	78	4 617.6	97
1 564.95	99	4 808.7	96
1 565.93	99	5 001.1	96
1 570.11	99	6 450	84
1 570.35	99	7 182	84
1 575.55	99		
1 612.54	79	Wavenumber	Mult.
1 616.24	79	(cm ⁻¹)	No.
1 624.96	87	3 891	65
1 634.76	81	3 776	66
1 636.39	103	3 330	66
1 646.36	87	3 088	66
1 649.35	103	3 050	85
1 650.98	103	1 855	85
1 664.17	103		

TABLE 20. Transition probabilities of allowed lines for Na V (references for this table are as follows: 1=Burke and Lennon, 12 2=Tachiev and Froese Fischer, 94 and 3=Merkelis *et al.* 65)

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
1	$2s^22p^3 - 2s2p^4$	$^{4}\text{S}^{\circ}$ $ ^{4}\text{P}$		461.96	0–216 469	4–12	2.17+01	2.08-01	1.27+00	-0.080	B+	2,3
				463.263	0-215 860	4-6	2.15+01	1.04-01	6.34-01	-0.381	B+	2,3
				461.050	0-216 896	4-4	2.19+01	6.97-02	4.23-01	-0.555	B+	2,3
				459.897	0-217 440	4–2	2.20+01	3.49 - 02	2.11-01	-0.855	B +	2,3
2		$^{4}\text{S}^{\circ}$ $ ^{2}\text{S}$										
				285.106	0-350 747	4–2	1.01 - 02	6.12-06	2.30-05	-4.611	C	3
3		$^4\text{S}^{\circ}$ – ^2P										
				268.290	0-372 731	4-4	1.80-02	1.94-05	6.85-05	-4.110	C	3
				267.428	0-373 932	4–2	5.46-03	2.92-06	1.03 - 05	-4.933	C	3
4		$^{2}D^{\circ}-^{4}P$										
				593.24	48 330-216 896	6-4	8.10-05	2.85-07	3.34-06	-5.767	D	3
				591.46	48 366–217 440	4–2	1.31-04	3.42-07	2.67-06	-5.864	D	3

Table 20. Transition probabilities of allowed lines for Na V (references for this table are as follows: 1 = Burke and Lennon, 12 = Tachiev and Froese Fischer, 94 = Tachiev and 3 = Merkelis et al. 12 = Tachiev and Froese Fischer, 12 = Tachiev and Froese Fischer, 12 = Tachiev and 12

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{\rm vac}~({\rm \AA})$ or $\sigma~({\rm cm}^{-1})^{\rm a}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				596.91	48 330–215 860	6–6	1.27-03	6.80-06	8.02-05	-4.389	С	3
				593.37	48 366-216 896	4-4	2.53 - 04	1.33-06	1.04-05	-5.274	D	3
				597.04	48 366-215 860	4-6	1.85 - 04	1.48-06	1.17-05	-5.228	C	3
5		$^2D^{\circ}-^2D$		400.72	48 344–297 894	10-10	5.22+01	1.26-01	1.66+00	0.100	A	2,3
				400.721	48 330–297 880	6-6	4.87+01	1.17-01	9.28-01	-0.154	A	2,3
				400.721	48 366-297 916	4-4	4.82 + 01	1.16-01	6.12-01	-0.333	Α	2,3
				400.663	48 330-297 916	6-4	4.84 + 00		6.15-02			2,3
				400.779	48 366–297 880	4-6			5.51-02			2,3
6		$^{2}D^{\circ}-^{2}P$		307.89	48 344–373 131	10-6	2.17+02	1.85-01	1.87+00	0.267	A	2,3
				308.260	48 330–372 731	6–4	1.96+02	1.86-01	1.13+00	0.048	A	2,3
				307.157	48 366-373 932	4–2			6.00-01			2,3
				308.295	48 366–372 731	4-4			1.42-01			2,3
7		$^{2}P^{\circ}-^{4}P$										
/		P - P		696.18	73 255–216 896	4-4	9.32-04	6.77-06	6.21-05	-4.567	C	3
				693.38	73 218–217 440	2–2			1.20-05			3
				693.55	73 255–217 440	4-2			5.98-07			3
				701.24	73 255–215 860	4-6			6.53-05			3
				696.00	73 218–216 896	2–4			3.07-07			3
8		$^{2}\text{P}^{\circ}-^{2}\text{D}$		445.13	73 243–297 894	6–10	7.11+00	3.52-02	3.09-01	-0.675	B+	2,3
				445.186	73 255–297 880	4–6	7.50±00	3 34 _ 02	1.96-01	_0.874	ВΤ	2,3
					73 218–297 916				1.01-01			
				445.042 445.115	73 255–297 916	2–4 4–4			1.01-01			2,3 2,3
9		$^{2}P^{\circ}-^{2}S$		360.35	73 243–350 747	6–2			5.42-01			2,3
				260.271	72.255.250.747	4.2	7.54 . 01	7.24 02	2 40 01	0.522		
				360.371 360.323	73 255–350 747 73 218–350 747	4–2 2–2			3.49-01 1.94-01			2,3 2,3
10		$^{2}\mathbf{p}^{\circ}-^{2}\mathbf{p}$		333.46	73 243–373 131	6-6			6.45-01			2,3
10		1 - 1										
				333.917	73 255–372 731	4–4			3.33-01			2,3
				332.542	73 218–373 932	2–2			1.31-01			2,3
				332.583	73 255–373 932	4–2			1.08 - 01			2,3
				333.875	73 218–372 731	2–4	9.94+00	3.32-02	7.30-02	-1.178	B+	2,3
11	$2p^3 - 2p^2(^3P)3s$	$^{4}\text{S}^{\circ}$ $-^{4}\text{P}$		148.77	0–672 165	4–12	1.29+02	1.29-01	2.52-01	-0.287	B+	2
				148.642	0-672 757	4-6	1.30+02	6.46 - 02	1.26 - 01	-0.588	B+	2
				148.856	0-671 790	4-4	1.29 + 02	4.29 - 02	8.41 - 02	-0.765	B +	2
				149.001	0–671 136	4–2	1.28 + 02	2.14-02	4.20-02	-1.068	B+	2
12		$^{2}D^{\circ}-^{2}P$		157.31	48 344–684 035	10-6	2.07+02	4.62-02	2.39-01	-0.335	B+	2
				157.207	48 330-684 434	6-4	1.90+02	4.68-02	1.45 - 01	-0.552	$\mathrm{B}+$	2
				157.512	48 366-683 238	4-2	2.18+02	4.05 - 02	8.40 - 02	-0.790	B +	2
				157.216	48 366-684 434	4-4	1.26+01	4.68 - 03	9.68-03	-1.728	В	2
13		$^{2}P^{\circ}-^{2}P$		163.72	73 243–684 035	6–6	1.62+02	6.52-02	2.11-01	-0.408	B+	2
				163.618	73 255–684 434	4-4	1.38+02	5.54-02	1.19-01	-0.654	B+	2
				163.929	73 218–683 238	2–2			4.62-02			2
				163.939	73 255–683 238	4-2			2.00-02			2
				163.608	73 218–684 434	2–4			2.55-02			2
14	$2p^3 - 2p^2(^1D)3s$	$^{2}D^{\circ}-^{2}D$		151.13	48 344–710 039	10–10			2.94-01			2

Table 20. Transition probabilities of allowed lines for Na V (references for this table are as follows: 1 = Burke and Lennon, 12 = Tachiev and Froese Fischer, 94 = Tachiev and 3 = Merkelis *et al.* 12 = Tachiev and Froese Fischer, 12 = Tachiev and Froese Fischer, 12 = Tachiev and 1

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				151.124	48 330–710 039	6–6	1.62+02	5.53-02	1.65-01	-0.479	B+	2
				151.132	48 366-710 039	4-4	1.54 + 02	5.27-02	1.05-01	-0.676	B+	2
				151.124	48 330-710 039	6-4	1.36+01	3.10-03	9.25-03	-1.730	В	2
				151.132	48 366-710 039	4-6	1.43 + 01	7.36-03	1.47 - 02	-1.531	В	2
15		$^{2}\text{P}^{\circ}-^{2}\text{D}$		157.04	73 243–710 039	6–10	6.11+01	3.76-02	1.17-01	-0.647	B+	2
				157.039	73 255–710 039	4-6	5.79+01	3.21-02	6.65-02	-0.891	B+	2
				157.030	73 218–710 039	2-4	4.82 + 01	3.56 - 02	3.68 - 02	-1.148	B +	2
				157.039	73 255–710 039	4–4	1.76+01	6.52-03	1.35 - 02	-1.584	В	2
16	$2p^3 - 2p^2(^1S)3s$	$^{2}P^{\circ}-^{2}S$		147.89	<i>73 243</i> –749 402	6–2	2.26+02	2.47-02	7.22-02	-0.829	B+	2
				147.897	73 255–749 402	4-2	1.48 + 02	2.42-02	4.72 - 02	-1.014	B+	2
				147.889	73 218–749 402	2–2	7.83 + 01	2.57-02	2.50-02	-1.289	B+	2
17	$2p^3 - 2p^2(^3P)3d$	$^{4}\text{S}^{\circ}$ $ ^{2}\text{F}$		125.304	0-798 059	4–6	3.82+02	1.35-01	2.22-01	-0.268	C	2
18		$^{4}\text{S}^{\circ}$ – ^{4}P		125.24	0–798 437	4–12	1.38+03	9.75-01	1.61+00	0.591	C+	2
				125.286	0-798 174	4-6	1.18+03	4.16-01	6.86 - 01	0.221	В	2
				125.216	0-798 620	4-4		3.72 - 01		0.173		2
				125.178	0–798 862	4–2	1.60+03	1.88-01	3.10-01	-0.124	C+	2
19		$^{2}D^{\circ}-^{2}P$		134.24	48 344–793 275	10–6	1.00+02	1.63-02	7.19-02	-0.788	D+	2
				134.269	48 330-793 104	6-4	9.69 + 01	1.75 - 02	4.63 - 02	-0.979	C	2
				134.183	48 366-793 617	4-2	5.35 + 01	7.22 - 03	1.28 - 02	-1.539	D+	2
				134.275	48 366–793 104	4–4	2.68+01	7.24 - 03	1.28 - 02	-1.538	D+	2
20		$^{2}D^{\circ}-^{4}D$										
				133.559	48 330–797 060	6-6		7.36-06				2
				133.566	48 366–797 060	4-4	4.77 + 00	1.28 - 03	2.25 - 03	-2.291	E	2
				133.559	48 330–797 060	6–4	1.05 + 01	1.87 - 03	4.92 - 03	-1.950	E+	2
				133.528	48 366–797 270	4–2		7.18 - 03				2
				133.566	48 366–797 060	4–6	1.50+00	6.03-04	1.06-03	-2.618	Е	2
21		$^{2}\text{D}^{\circ}-^{2}F$		133.26	48 344–798 765	10–14	4.64+02	1.73-01	7.59-01	0.238	C+	2
				133.162	48 330-799 295	6-8	5.21 + 02	1.85 - 01	4.86-01	0.045	C+	2
				133.388	48 366-798 059	4-6	3.64+02	1.46 - 01	2.56 - 01	-0.234	C+	2
				133.382	48 330–798 059	6–6	2.44+01	6.52 - 03	1.72 - 02	-1.408	D+	2
22		$^{2}D^{\circ}-^{4}P$										
				133.282	48 330–798 620	6-4	2.91 - 01	5.17 - 05	1.36 - 04	-3.508	E	2
				133.245	48 366-798 862	4-2	9.76 - 02	1.30 - 05	2.28 - 05	-4.284	E	2
				133.361	48 330–798 174	6-6	8.59+00	2.29 - 03	6.03 - 03	-1.862	E+	2
				133.288	48 366–798 620	4-4	2.48 - 02	6.61 - 06	1.16-05	-4.578	E	2
				133.367	48 366–798 174	4–6	1.14+02	4.55 - 02	7.98 - 02	-0.740	D+	2
23		$^{2}P^{\circ}-^{2}P$		138.88	73 243–793 275	6–6	3.49+02	1.01-01	2.77-01	-0.218	C	2
				138.918	73 255–793 104	4-4	3.21 + 02	9.29-02	1.70-01	-0.430	C	2
				138.812	73 218–793 617	2–2		4.88 - 02				2
				138.819	73 255–793 617	4–2		1.26-02				2
				138.911	73 218–793 104	2–4	7.45+01	4.31-02	3.94-02	-1.064	D+	2
24		$^{2}P^{\circ}-^{4}D$			50 655 5 55			4.4.2	0.1-		_	
				138.159	73 255–797 060	4–6		1.18-05				2
				138.152	73 218–797 060	2–4		5.77-03				2
				138.159	73 255–797 060	4–4		1.15-02				2
				138.112	73 218–797 270	2–2	1.55 + 02	4.43-02	4.03 - 02	-1.053	D	2

Table 20. Transition probabilities of allowed lines for Na V (references for this table are as follows: 1 = Burke and Lennon, 12 = Tachiev and Froese Fischer, 94 = Tachiev and 3 = Merkelis *et al.* 12 = Tachiev and Froese Fischer, 12 = Tachiev and Froese Fischer, 12 = Tachiev and 1

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{ m vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				138.119	73 255–797 270	4–2	8.02+01	1.15-02	2.09-02	-1.337	D	2
25	$2p^3 - 2p^2(^1D)3d$	$^{2}D^{\circ}-^{2}F$		128.04	48 344–829 352	10–14	1.15+03	3.95-01	1.66+00	0.597	В	2
				128.051	48 330–829 269	6–8	9.67+02	3.17-01	8.02-01	0.279	В	2
				128.025	48 366–829 463	4–6		4.62-01		0.267		2
				128.019	48 330–829 463	6–6			8.43-02			2
26		$^{2}D^{\circ}-^{2}D$		127.46	48 344–832 931	10–10	7.96+02	1.94-01	8.13-01	0.288	C+	2
				127.444	48 330-832 988	6-6	7.02+02	1.71-01	4.30-01	0.011	C+	2
				127.473	48 366-832 846	4-4	7.53 + 02	1.83 - 01	3.08 - 01	-0.135	C+	2
				127.467	48 330-832 846	6-4	8.89 + 01	1.44 - 02	3.63 - 02	-1.063	D+	2
				127.450	48 366–832 988	4-6			3.89 - 02			2
27		$^2D^{\circ}-^2P$		126.57	48 344–838 390	10-6	3.11+02	4.48-02	1.87-01	-0.349	C	2
				126.557	48 330–838 485	6–4	2.71+02	4.34-02	1.08-01	-0.584	C	2
				126.609	48 366-838 200	4-2	3.42 + 02	4.11-02	6.85 - 02	-0.784	C	2
				126.563	48 366–838 485	4-4	2.43+01	5.84-03	9.74-03	-1.632	D	2
28		$^{2}P^{\circ}-^{2}D$		131.63	73 243–832 931	6-10	4.64+02	2.01-01	5.22-01	0.081	C+	2
				131.625	73 255–832 988	4–6	4 93 ± 02	1 92_01	3.33-01	_0.115	C +	2
				131.643	73 218–832 846	2–4			1.65-01			2
									2.34-02			2
20		2p° 2p		131.650	73 255–832 846	4–4						
29		$^{2}P^{\circ}-^{2}P$		130.69	73 243–838 390	6–6	6.32+02	1.62-01	4.18-01	-0.012	С	2
				130.680	73 255–838 485	4-4	5.49 + 02	1.40 - 01	2.42 - 01	-0.252	C+	2
				130.722	73 218-838 200	2-2	4.19 + 02	1.07 - 01	9.23 - 02	-0.670	C	2
				130.728	73 255-838 200	4-2	1.74 + 02	2.23-02	3.83-02	-1.050	D+	2
				130.673	73 218–838 485	2–4	1.04+02	5.32-02	4.57 - 02	-0.973	C	2
30		$^{2}P^{\circ}-^{2}S$		129.94	<i>73 243</i> –842 829	6–2	7.51+02	6.34-02	1.63-01	-0.420	C	2
				129.942	73 255–842 829	4–2	5 14+02	6.50-02	1.11-01	-0.585	C	2
				129.936	73 218–842 829	2–2			5.13-02			2
31	$2s^22p^3 - 2s2p^3(^5S^{\circ})3p$	$^4S^{\circ}-^4P$		117.99	0–847 539	4–12	2.27+02	1.42-01	2.21-01	-0.246	С	2
				117.989	0-847 539	4–6	2.28+02	7.14-02	1.11-01	-0.544	С	2
				117.989	0-847 539	4-4	2.26+02	4.71-02	7.32-02	-0.725	C	2
				117.989	0–847 539	4–2			3.64-02			
32	$2p^3 - 2p^2(^1S)3d$	$^{2}D^{\circ}-^{2}D$		122.07	48 344–867 530	10–10	8.69+00	1.94-03	7.80-03	-1.712	E+	2
				[122.07]	48 330–867 530	6-6	7.91+00	1.77-03	4.26-03	-1.974	D	2
				[122.07]	48 366-867 530	4-4	6.18+00	1.38-03	2.22 - 03	-2.258	E+	2
				[122.07]	48 330-867 530	6-4	8.74-01	1.30-04	3.14-04	-3.108	Е	2
				[122.08]	48 366–867 530	4–6	1.87 + 00	6.28 - 04	1.01 - 03	-2.600	E+	2
33		$^{2}P^{\circ}-^{2}D$		125.90	73 243–867 530	6-10	5.65+02	2.24-01	5.56-01	0.128	C+	2
				[125.90]	73 255–867 530	4–6	5.53+02	1.97-01	3.27-01	-0.103	C+	2
				[125.90]	73 218–867 530	2–4			1.92-01			2
				[125.90]	73 255–867 530	4-4			3.77-02			2
34	$2p^3 - 2p^2(^3P)4d$	$^{4}\text{S}^{\circ}$ $ ^{4}\text{P}$				4–12						1
				106 202	0.040.720	1.6	6.41 : 02	1.62 01	2.20 01	0.107	D.	T C
				106.302 106.278	0–940 720 0–940 930	4–6 4–4			2.28-01 1.53-01			LS LS
25		$^{2}D^{\circ}-^{2}D$										
35		-ט – ט		111.53	48 344–944 976	10–10	1.8/+02	5.48-02	1.28-01	-0.458	ט	1

J. Phys. Chem. Ref. Data, Vol. 37, No. 1, 2008

Table 20. Transition probabilities of allowed lines for Na V (references for this table are as follows: 1 = Burke and Lennon, 12 = Burke and Froese Fischer, 94 = Burke and 12 = Burke a

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				111.511	48 330–945 100	6-6	1.74+02	3.25-02	7.16-02	-0.710	D	LS
				111.554	48 366-944 790	4-4	1.68 + 02	3.13 - 02	4.60 - 02	-0.902	D	LS
				111.550	48 330-944 790	6-4	1.87 + 01	2.32-03	5.11-03	-1.856	E	LS
				111.516	48 366-945 100	4-6	1.24+01	3.48 - 03	5.11 - 03	-1.856	E	LS
36		$^{2}\text{P}^{\circ}-^{2}\text{P}$				6-6						
				[115.58]	73 255–938 430	4-4	1.32+02	2.65-02	4.03-02	-0.975	D	LS
				[115.58]	73 218–93 8 430	2-4	2.65+01	1.06-02	8.07-03	-1.674	E+	LS
37		$^{2}P^{\circ}-^{2}D$		114.71	73 243–944 976	6-10	3.95+02	1.30-01	2.95-01	-0.108	D+	1
				114.699	73 255–945 100	4-6	3.95 + 02	1.17-01	1.77-01	-0.330	D+	LS
				114.735	73 218-944 790	2-4	3.29 + 02	1.30-01	9.82-02	-0.585	D	LS
				114.740	73 255–944 790	4-4	6.59+01	1.30-02	1.96-02	-1.284	E+	LS
38	$2s^22p^3-2s2p^3(^3D^{\circ})3p$	$^2D^{\circ}-^2F$		110.85	48 344–950 451	10–14	7.45+02	1.92-01	7.01-01	0.283	C	1
				110.878	48 330–950 220	6-8	7.45 + 02	1.83-01	4.01-01	0.041	C	LS
				[110.82]	48 366–950 760	4–6		1.92-01				LS
				[110.81]	48 330–950 760	6–6		9.15-03				LS
39	$2p^3 - 2p^2(^1D)4d$	$^{2}D^{\circ}-^{2}F$		108.02	48 344–974 110	10–14	3.85+02	9.43-02	3.35-01	-0.025	D+	1
				[108.02]	48 330–974 110	6–8	3.85+02	8.98-02	1.92-01	-0.269	D+	LS
				[108.02]	48 366–974 110	4–6		9.43-02				LS
				[108.02]	48 330–974 110	6–6		4.49-03				LS
40	$2p^3 - 2p^2(^1D)4d$?	$^{2}D^{\circ}-^{2}D$?		[107.9]	48 344–974 800	10–10	2.77+02	4.83-02	1.72-01	-0.316	D	1
				107.937	48 330–974 800	6-6	2.58+02	4.51-02	9.62-02	-0.568	D	LS
				107.941	48 366-974 800	4-4		4.35-02				LS
				107.937	48 330–974 800	6–4		3.22-03				LS
				107.941	48 366–974 800	4–6		4.83-03				LS
41		$^{2}P^{\circ}-^{2}D$?		[110.9]	73 243–974 800	6–10	1.89+02	5.81-02	1.27-01	-0.458	D	1
				110.921	73 255–974 800	4-6	1.89+02	5.23-02	7.64-02	-0.679	D	LS
				110.916	73 218-974 800	2-4	1.58 + 02	5.81-02	4.24-02	-0.935	D	LS
				110.921	73 255–974 800	4-4	3.15+01	5.81 - 03	8.49-03	-1.634	E+	LS
42	$2p^3 - 2p^2(^1D)5d$	$^{2}D^{\circ}-^{2}D$		100.88	48 344–1 039 610	10–10	1.99+02	3.04-02	1.01-01	-0.517	D	1
				[100.88]	48 330–1 039 610	6–6	1.86+02	2.84-02	5.66-02	-0.769	D	LS
				[100.88]	48 366-1 039 610	4-4	1.80 + 02	2.74-02	3.64-02	-0.960	D	LS
				[100.88]	48 330-1 039 610	6-4	2.00+01	2.03-03	4.05-03	-1.914	E	LS
				[100.88]	48 366–1 039 610	4-6	1.33+01	3.04-03	4.04-03	-1.915	E	LS
43	$2s2p^4 - 2p^5$	$^{4}P-^{2}P^{\circ}$										
				284.534	216 896–568 348	4-4	3.48-03	4.22-06	1.58-05	-4.773	D	3
				283.658	217 440-569 977	2-2		4.62-06				3
				283.698	215 860–568 348	6–4		1.16-05				3
				283.221	216 896–569 977	4–2		5.35-07				3
				284.975	217 440–568 348	2–4		2.15-06				3
44		$^{2}D-^{2}P^{\circ}$		369.01	297 894–568 891	10-6	8.84+01	1.08-01	1.32+00	0.033	A	2,3
				369.730	297 880–568 348	6–4	7.91+01	1.08-01	7.89_01	-0.188	A	2,3
				367.565	297 916–569 977	4–2		8.93-02				2,3
				369.779	297 916–568 348	4-4		1.93 - 02				2,3
15		$^{2}S-^{2}P^{\circ}$										
45		-8 - 2P		458.41	350 747–568 891	2–6	3.99+00	3.77-02	1.14-01	-1.123	R+	2,3

Table 20. Transition probabilities of allowed lines for Na V (references for this table are as follows: 1 = Burke and Lennon, 12 = Tachiev and Froese Fischer, 94 = Tachiev and 3 = Merkelis et al. 12 = Tachiev and Froese Fischer, 12 = Tachiev and Froese Fischer, 12 = Tachiev and 12

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				459.557	350 747–568 348	2–4	4.47+00	2.83-02	8.57-02	-1.247	B+	2,3
				456.142	350 747–569 977	2-2	3.02+00	9.41-03	2.83 - 02	-1.725	B+	2,3
46		$^{2}P-^{2}P^{\circ}$		510.83	373 131–568 891	6–6	5.42+01	2.12-01	2.14+00	0.104	B+	2,3
				511.203	372 731–568 348	4-4	4.48+01	1.76-01	1.18+00	-0.152	B+	2,3
				510.087	373 932-569 977	2-2	3.70+01	1.44 - 01	4.85 - 01	-0.541	B +	2,3
				506.981	372 731-569 977	4-2	1.89 + 01	3.64 - 02	2.43 - 01	-0.837	B +	2,3
				514.361	373 932–568 348	2-4	8.46+00	6.71 - 02	2.27-01	-0.872	B+	2,3
47	$2s2p^4 - 2s2p^3(^5S^{\circ})3s$	$^4P-^4S^{\circ}$		170.80	216 469–801 950	12-4	2.80+02	4.08-02	2.75-01	-0.310	C	2
				170.622	215 860-801 950	6-4	1.41+02	4.09-02	1.38-01	-0.610	C	2
				170.924	216 896-801 950	4-4	9.28 + 01	4.06 - 02	9.15 - 02	-0.789	C	2
				171.083	217 440-801 950	2-4	4.62+01	4.05 - 02	4.57 - 02	-1.092	C	2
48	$2s2p^4 - 2s2p^3(^3D^{\circ})3s$	$^{4}P-^{4}D^{\circ}$		151.09	216 469–878 320	12-20	1.66+02	9.49-02	5.66-01	0.056	D	1
				150.953	215 860–878 320	6–8		7.60-02				LS
				151.189	216 896–878 320	4–6		5.97-02				LS
				151.313	217 440–878 320	2–4		4.74-02				LS
				150.953	215 860–878 320	6–6		1.71-02				LS
				151.189	216 896–878 320	4-4		3.03-02				LS
				151.313	217 440–878 320	2–2		4.74-00				LS
				150.953	215 860–878 320	6–4		1.90-03				LS
				151.189	216 896–878 320	4–2		4.74-03				LS
49		$^{2}D-^{2}D^{\circ}$		167.51	297 894–894 860	10–10	2.14+02	9.00-02	4.96-01	-0.046	D+	1
				167.510	297 880–894 860	6–6	2 00+02	8.40-02	2 78-01	-0.298	D+	LS
				167.520	297 916–894 860	4-4		8.10-02				LS
				167.510	297 880–894 860	6–4	2.14+01		1.99-02			LS
				167.520	297 916–894 860	4–6		9.00-03				LS
50	$2s2p^4 - 2s2p^3(^5S^\circ)3d$	$^{4}P-^{4}D^{\circ}$		144.46	216 469–908 710	12-20	5.78+02	3.02-01	1.72+00	0.559	C	1
				144.331	215 860–908 710	6–8	5 79±02	2.41-01	6.87-01	0.160	C	LS
				144.548	216 896–908 710	4–6		1.90-01				LS
				144.661	217 440–908 710	2–4		1.51-01				LS
				144.331	215860–908 710	6-6		5.43-02				LS
				144.548	216 896–908 710	4–4		9.64-02				LS
				144.661	217 440–908 710	2–2		1.51-01				
				144.331	215 860–908 710	6–4		6.04-03				LS
				144.548	216 896–908 710	4–2		1.51-02				LS
51	$2s2p^4 - 2s2p^3(^3P^\circ)3s$	$^4P-^4P^{\circ}$		142.33	216 469–919 070	12–12	1.22+02	3.71-02	2.08-01	-0.351	D	1
				142.205	215 860–919 070	6–6	8.58+01	2.60-02	7.30-02	-0.807	D	LS
				142.415	216 896–919 070	4-4		4.94-03				LS
				142.525	217 440–919 070	2–2		6.17-03				LS
				142.205	215 860–919 070	6–4		1.11-02				LS
				142.415	216 896–919 070	4–2		1.54-02				LS
				142.415	216 896–919 070	4-6		1.67-02				LS
				142.525	217 440–919 070	2–4		3.09-02				LS
52	$2s2p^4 - 2s2p^3(^3D^{\circ})3d$	$^4P-^4P^{\circ}$		126.89	216 469–1 004 538	12–12		3.04-01				1
				126.817	215 860–1 004 400	6–6	8.83+02	2.13-01	5.34-01	0.107	C	LS
				126.948	216 896–1 004 620	4-4		4.06-02				LS
				127.008	217 440–1 004 790	2-2		5.07 - 02				LS
				126.781	217 440–1 004 730	6–4		9.14-02				LS
				126.921	216 896–1 004 790	4–2		1.27-01				
				120.721	210 070 1 004 790	7-2	1.05 + 05	1.27-01	2.12-01	0.274	١٠	LU

J. Phys. Chem. Ref. Data, Vol. 37, No. 1, 2008

Table 20. Transition probabilities of allowed lines for Na V (references for this table are as follows: 1 = Burke and Lennon, 12 = Tachiev and Froese Fischer, 94 = Tachiev and 3 = Merkelis *et al.* 12 = Tachiev and Froese Fischer, 12 = Tachiev and Froese Fischer, 12 = Tachiev and 1

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	$\lambda_{\rm vac} (\mathring{\rm A})$ or $\sigma ({\rm cm}^{-1})^a$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				126.983	216 896–1 004 400	4-6	3.78+02	1.37-01	2.29-01	-0.261	D+	LS
				127.036	217440-1004 620	2-4	5.23 + 02	2.53-01	2.12-01	-0.296	D+	LS
53		$^4P-^4D^{\circ}$		126.30	216 469–1 008 210	12-20	5.73+02	2.29-01	1.14+00	0.439	D+	1
				126.207	215 860-1 008 210	6-8	5.75+02	1.83-01	4.56-01	0.041	C	LS
				126.372	216 896-1 008 210	4-6	4.01 + 02	1.44 - 01	2.40-01	-0.240	D+	LS
				126.459	217 440-1 008 210	2-4	2.38+02	1.14 - 01	9.49 - 02	-0.642	D	LS
				126.207	215 860-1 008 210	6-6	1.73 + 02	4.12 - 02	1.03 - 01	-0.607	D	LS
				126.372	216 896-1 008 210	4-4	3.06+02	7.32 - 02	1.22 - 01	-0.533	D+	LS
				126.459	217 440–1 008 210	2–2	4.75 + 02	1.14 - 01	9.49 - 02	-0.642	D	LS
				126.207	215 860–1 008 210	6-4	2.88+01	4.58 - 03	1.14 - 02	-1.561	E+	LS
				126.372	216 896–1 008 210	4–2	9.52+01	1.14-02	1.90-02	-1.341	E+	LS
54		$^4P-^4S^{\circ}$		126.19	216 469–1 008 940	12–4	1.08+03	8.60-02	4.29-01	0.014	D+	1
				126.091	215 860-1 008 940	6-4	5.42 + 02	8.61-02	2.14-01	-0.287	D+	LS
				126.256	216 896-1 008 940	4-4	3.59+02	8.59 - 02	1.43 - 01	-0.464	D+	LS
				126.342	217 440–1 008 940	2–4	1.79 + 02	8.59-02	7.15 - 02	-0.765	D	LS
55		$^{2}D-^{2}F^{\circ}$		140.22	297 894–1 011 056	10–14	7.67+02	3.16-01	1.46+00	0.500	C	1
				140.258	297 880-1 010 850	6-8	7.65 + 02	3.01-01	8.34-01	0.257	C	LS
				140.171	297 916-1 011 330	4-6	7.17 + 02	3.17-01	5.85 - 01	0.103	C	LS
				140.164	297 880–1 011 330	6-6	5.13+01	1.51 - 02	4.18 - 02	-1.043	D	LS
56	$2p^5 - 2s^2 2p^2 (^3P)3s$	$^{2}P^{\circ}-^{2}P$		868.5	568 891–684 035	6–6	2.70-04	3.06-06	5.25-05	-4.736	C+	2
				861.43	568 348-684 434	4-4	2.24-04	2.50-06	2.83-05	-5.000	C+	2
				882.92	569 977-683 238	2-2	1.88 - 04	2.20-06	1.28 - 05	-5.357	C+	2
				870.40	568 348-683 238	4-2	9.17 - 05	5.21 - 07	5.97-06	-5.681	C	2
				873.69	569 977–684 434	2–4	4.09 - 05	9.36-07	5.39-06	-5.728	C	2
57	$2p^5 - 2s^2 2p^2 (^1D)3s$	$^{2}P^{\circ}-^{2}D$		708.5	568 891–710 039	6–10	2.55-04	3.20-06	4.48-05	-4.717	C+	2
				705.76	568 348-710 039	4-6	2.57 - 04	2.88-06	2.67-05	-4.939	C+	2
				713.97	569 977-710 039	2-4	2.11 - 04	3.23 - 06	1.52 - 05	-5.190	C+	2
				705.76	568 348-710 039	4-4	4.15-05	3.10-07	2.88-06	-5.907	C	2
58	$2p^5 - 2s^2 2p^2(^1S)3s$	$^{2}P^{\circ}-^{2}S$		553.98	568 891–749 402	6–2	2.98-03	4.57-06	5.00-05	-4.562	C+	2
				552.321	568 348-749 402	4-2	2.04-03	4.67-06	3.40-05	-4.729	C+	2
				557.336	569 977–749 402	2–2	9.38-04	4.37-06	1.60 - 05	-5.058	C+	2
59	$2s^22p^2(^3P)3s - 2s2p^3(^5S^{\circ})3s$	$^4P-^4S^{\circ}$		770.5	672 165–801 950	12–4	4.01+00	1.19-02	3.62-01	-0.845	C	2
	1 \ /			774.04	672 757–801 950	6 1	1.07 + 00	1 10 02	1.81-01	1 150	C	2
				774.04 768.29	671 790–801 950	6–4 4–4			1.21-01			2 2
				764.44	671 136–801 950	2-4			6.07 - 02			2
60	$2s^22p^2(^3P)3s -$	$^{4}P-^{4}D^{\circ}$		485.07	672 165–878 320	12–20			2.76+00			1
	$2s2p^3(^3D^\circ)3s$											
				486.469	672 757-878 320	6-8	2.43+01	1.15-01	1.11+00	-0.161	C	LS
				484.191	671 790–878 320	4-6	1.73 + 01	9.10-02	5.80 - 01	-0.439	C	LS
				482.663	671 136–878 320	2-4			2.30-01			LS
				486.469	672 757–878 320	6-6	7.30+00	2.59-02	2.49-01	-0.809	D+	LS
				484.191	671 790–878 320	4–4			2.95-01			LS
				482.663	671 136–878 320	2–2			2.30-01			LS
				486.469	672 757–878 320	6–4			2.77-02			LS
				484.191	671 790–878 320	4–2	4.11+00	7.22-03	4.60-02	-1.539	D	LS

Table 20. Transition probabilities of allowed lines for Na V (references for this table are as follows: 1 = Burke and Lennon, 12 = Tachiev and Froese Fischer, 94 = Tachiev and 3 = Merkelis *et al.* 12 = Tachiev and Froese Fischer, 12 = Tachiev and Froese Fischer, 12 = Tachiev and 1

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
61		$^{2}P-^{2}D^{\circ}$		474.33	684 035–894 860	6–10	8.81+00	4.95-02	4.64-01	-0.527	D+	1
				475.226	684 434-894 860	4–6	8.76+00	4.45-02	2.78-01	-0.750	D+	LS
				472.541	683 238-894 860	2-4	7.42 + 00	4.97-02	1.55-01	-1.003	D+	LS
				475.226	684 434–894 860	4-4	1.46+00	4.95-03	3.10-02	-1.703	D	LS
62	$2s^22p^2(^3P)3s - 2s2p^3(^3P^{\circ})3s$	$^4P-^4P^{\circ}$		405.01	672 165–919 070	12–12	1.51+01	3.72-02	5.95-01	-0.350	D	1
				405.988	672 757–919 070	6–6	1.05+01	2.60-02	2.09-01	-0.807	D+	LS
				404.400	671 790-919 070	4-4		4.97-03				LS
				403.333	671 136-919 070	2-2	2.55+00	6.23-03	1.65 - 02	-1.904	E+	LS
				405.988	672 757-919 070	6-4	6.74+00	1.11-02	8.90-02	-1.177	D	LS
				404.400	671 790–919 070	4-2	1.26+01	1.55-02	8.25-02	-1.208	D	LS
				404.400	671 790–919 070	4-6	4.57 + 00	1.68-02	8.95-02	-1.173	D	LS
				403.333	671 136–919 070	2–4		3.12-02				LS
63	$2s^22p^2(^3P)3s - 2s2p^3(^3D^{\circ})3d$	$^4P-^4S^{\circ}$		296.93	672 165–1 008 940	12–4	1.90+01	8.39-03	9.85-02	-0.997	D	1
				297.457	672 757–1 008 940	6–4	9.48±00	8.38-03	4 92 - 02	_1 299	D	LS
				296.604	671 790–1 008 940	4–4		8.40-03				LS
				296.030	671 136–1 008 940	2–4		8.42-03				LS
64	$2s^22p^2(^1D)3s - 2s2p^3(^3D^{\circ})3s$	$^{2}D-^{2}D^{\circ}$		541.06	710 039–894 860	10–10	2.51+00	1.10-02	1.96-01	-0.959	D	1
				541.064	710 039–894 860	6–6	2.35±00	1.03-02	1 10-01	_1 200	DΤ	LS
				541.064	710 039–894 860	4-4		9.90-03				LS
				541.064	710 039–894 860	6–4		7.33-04				LS
				541.064	710 039–894 860	4–6		1.10-03				LS
65	$2s^22p^2(^3P)3d - 2s2p^3(^5S^{\circ})3s$	$^2F-^4S^{\circ}$										
				3891 cm ⁻¹	798 059–801 950	6–4	4.15-05	2.74-04	1.39-01	-2.784	С	2
66		$^{4}P-^{4}S^{\circ}$		3 513 cm ⁻¹	<i>798 437</i> –801 950	12–4	2.22-04	8.99-04	1.01+00	-1.967	C+	2
				3 776 cm ⁻¹	798174–801 950	6–4	1 17-04	8.18-04	4 28 - 01	-2 309	C+	2
				3 330 cm ⁻¹	798 620–801 950	4–4		9.77-04				2
				3 088 cm ⁻¹	798 862–801 950	2–4		9.20-04				2
67	$2s^22p^2(^3P)3d - 2s2p^3(^3D^{\circ})3s$	$^{2}F-^{2}D^{\circ}$		1 040.6	798 765–894 860	14–10	1.95-01	2.26-03	1.09-01	-1.500	D	1
				1 046.41	799 295–894 860	8–6	1.83_01	2.25-03	6.20=02	_1 745	D	LS
				1 033.05	798 059–894 860	6–4		2.13-03				LS
				1 033.05	798 059–894 860	6–6		1.52-04				LS
68	$2s^{2}2p^{2}(^{3}P)3d - 2s2p^{3}(^{3}P^{\circ})3s$	$^4D - ^4P^{\circ}$				20–12						1
				819.60	797 060–919 070	6–4	1 36+00	9.13-03	1 48 - 01	-1 261	D+	LS
				819.60	797 060–919 070	4–2		5.43-03				LS
				819.60	797 060–919 070	6–6		3.91-03				LS
				819.60	797060–919 070	4-4		6.96-03				LS
				821.02	797 270–919 070	2–2		1.09-02				LS
				819.60	797060–919 070	4–6		6.52 - 04				LS
				821.02	797 270–919 070	2–4		2.17-03				LS

Table 20. Transition probabilities of allowed lines for Na V (references for this table are as follows: 1 = Burke and Lennon, 12 = Tachiev and Froese Fischer, 94 = Tachiev and 3 = Merkelis et al. 12 = Tachiev and Froese Fischer, 12 = Tachiev and Froese Fischer, 12 = Tachiev and 12

Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Sourc
			827.16	798174–919 070	6–6	8.39-01	8.61-03	1.41-01	-1.287	D+	LS
			830.22	798 620-919 070	4-4	1.58 - 01	1.63-03	1.78 - 02	-2.186	E+	LS
			831.89	798 862-919 070	2-2	1.97 - 07	2.04-03	1.12-02	-2.389	E+	LS
			827.16	798 174-919 070	6-4	5.40-01	3.69-03	6.03 - 02	-1.655	D	LS
			830.22	798 620-919 070	4-2	9.89-01	5.11-03	5.59-02	-1.690	D	LS
			830.22	798 620-919 070	4-6	3.55 - 01	5.51-03	6.02 - 02	-1.657	D	LS
			831.89	798 862–919 070	2–4	4.92-01	1.02-02	5.59-02	-1.690	D	LS
$2s^22p^2(^3P)3d - 2s2p^3(^3D^{\circ})3d$	$^4D - ^4D^{\circ}$				20–20						1
			473.597	797 060-1 008 210	6-6	5.32+00	1.79-02	1.67-01	-0.969	D+	LS
			473.597	797 060-1 008 210	4-4	3.72+00	1.25 - 02	7.80 - 02	-1.301	D	LS
			474.068	797 270-1 008 210	2-2	4.63 + 00	1.56-02	4.87-02	-1.506	D	LS
											LS
											LS
											LS
											LS
			474.068	797 270–1 008 210	2–4						LS
	$^2F-^2F^{\circ}$		471.05	798 765–1 011 056	14-14	6.59+00	2.19-02	4.76-01	-0.513	D+	1
			472.690	799 295–1 010 850	8-8	5.76+00	1.93-02	2.40-01	-0.811	D+	LS
			468.887	798 059-1 011 330	6-6	7.13 + 00	2.35-02	2.18-01	-0.851	D+	LS
						2.86-01					LS
			469.945	798 059–1 010 850	6–8						LS
	$^4P-^4P^{\circ}$		485.20	798 437–1 004 538	12-12	1.10+01	3.89-02	7.45-01	-0.331	D+	1
			484.905	798 174–1 004 400	6-6	7.72 + 00	2.72-02	2.61-01	-0.787	D+	LS
			485.437	798 620-1 004 620	4-4	1.47 + 00	5.18-03	3.31 - 02	-1.684	D	LS
			485.607	798 862-1 004 790	2-2	1.83 + 00	6.47-03	2.07 - 02	-1.888	E+	LS
						4.99+00					LS
											LS
											LS
			486.008	798 862–1 004 620	2–4						LS
	$^{4}P-^{4}D^{\circ}$		476.71	798 437–1 008 210	12-20	4.38+00	2.49-02	4.69-01	-0.525	D	1
			476.109	798 174–1 008 210	6-8	4.39+00	1.99-02	1.87-01	-0.923	D+	LS
			477.122	798 620-1 008 210	4-6	3.07 + 00	1.57 - 02	9.86 - 02	-1.202	D	LS
			477.674	798 862-1 008 210	2-4	1.81 + 00	1.24 - 02	3.90 - 02	-1.606	D	LS
			476.109	798 174-1 008 210	6-6	1.32+00	4.49 - 03	4.22 - 02	-1.570	D	LS
			477.122	798 620-1 008 210	4-4	2.33+00	7.96 - 03	5.00 - 02	-1.497	D	LS
			477.674	798 862-1 008 210	2-2	3.62+00	1.24 - 02	3.90 - 02	-1.606	D	LS
			476.109	798 174-1 008 210	6-4	2.20 - 01	4.98-04	4.68-03	-2.525	E	LS
			477.122	798 620–1 008 210	4–2	7.27 - 01	1.24-03	7.79-03	-2.305	E+	LS
	$^4P-^4S^{\circ}$		475.05	798 437–1 008 940	12-4	1.59+01	1.79-02	3.36-01	-0.668	D+	1
			474.460	798 174–1 008 940	6–4	7.96+00	1.79-02	1.68-01	-0.969	D+	LS
			475.466	798 620–1 008 940	4-4	5.28+00	1.79 - 02	1.12 - 01	-1.145	D+	LS
			476.014	798 862–1 008 940	2–4	2.63+00	1.79-02	5.61-02	-1.446	D	LS
$2s2p^{3}(^{5}S^{\circ})3s - 2s2p^{3}(^{5}S^{\circ})3p$	$^{4}\text{S}^{\circ}-^{4}\text{P}$	2 193	2 194	801 950–847 539	4–12	2.07+00	4.47-01	1.29+01	0.252	B+	2
		2 192.8	2 193.5	801 950-847 539	4–6	2.07 + 00	2.24-01	6.46+00	-0.048	B+	2
											2
											2
		2 192.8	2 193.5	801 930-847 339	4-2	2.07+00	7.45-02	2.15+00	-0.526	В	2
	array $2s^{2}2p^{2}(^{3}P)3d-2s2p^{3}(^{3}D^{\circ})3d$ $2s2p^{3}(^{5}S^{\circ})3s-$	array Mult. $2s^22p^2(^3P)3d - 2s^22p^3(^3D^\circ)3d$ $^2F - ^2F^\circ$ $^4P - ^4P^\circ$ $^4P - ^4S^\circ$ $^2S^2p^3(^5S^\circ)3s - ^4S^\circ - ^4P$	array Mult. (Å) $ 2s^{2}2p^{2}(^{3}P)3d- \\ 2s^{2}p^{3}(^{3}D^{\circ})3d \\ ^{2}F-^{2}F^{\circ} $ $ ^{4}P-^{4}P^{\circ} $	array Mult. (Å) or σ (cm ⁻¹) ^a 827.16 830.22 831.89 827.16 830.22 830.22 830.22 831.89 2 $s^22p^3(^3\text{P})^3d$ $^4\text{D}^{-4}\text{D}^{\circ}$ $^4\text{T3.597}$ 473.597 473.597 473.597 474.068 473.597 473.597 474.068 474.068 474.068 474.068 472.690 468.887 471.05 472.690 468.887 471.020 469.945 485.20 4P-4P° 485.20 484.905 484.388 485.037 485.607 484.388 485.037 485.956 486.008 470.71 476.109 477.674 476.109 477.122 477.674 476.109 477.122 477.674 476.109 477.122 477.674 476.09 477.122 470.6109 477.122 477.674 470.014 470.019 477.122 470.014	A matray Mult. (Å) or σ (cm ⁻¹) ^a (cm ⁻¹)	array Malt. (Å) or σ (cm ⁻¹)* (cm ⁻¹) $g_1 = g_1$ 827.16 798174–919070 6-6 830.22 798 620–919070 4-4 831.89 798 862–919070 4-2 832.16 798 174–919070 4-2 830.22 798 620–919070 4-2 830.22 798 620–919070 4-2 830.22 798 620–919070 4-2 830.22 798 620–919070 4-2 830.22 798 620–919070 4-2 830.22 798 620–919070 4-2 830.22 798 620–919070 4-2 473.597 797 660–1 008 210 6-6 473.597 797 060–1 008 210 6-4 473.597 797 060–1 008 210 6-4 473.597 797 060–1 008 210 6-4 473.597 797 060–1 008 210 6-4 473.597 797 060–1 008 210 4-4 473.597 797 060–1 008 210 4-2 473.597 797 060–1 008 210 4-2 473.597 797 060–1 008 210 6-2 473.597 797 060–1 008 210 6-2 473.597 797 060–1 008 210 6-2 474.068 797 270–1 008 210 2-4 474.068 797 270–1 008 210 2-4 474.068 797 270–1 008 210 2-4 474.069 799 295–1 010 850 8-8 468.887 798 059–1 011 330 8-6 471.620 799 295–1 011 330 8-6 471.620 799 295–1 011 330 8-6 469.945 798 059–1 011 330 8-6 469.945 798 059–1 011 330 8-6 471.620 798 862–1 004 538 12–12 485.607 798 862–1 004 400 4-6 485.956 798 620–1 004 400 4-6 485.956 798 620–1 004 400 4-6 485.956 798 620–1 004 620 4-4 485.956 798 620–1 004 620 4-4 485.956 798 620–1 004 620 4-4 485.956 798 620–1 004 620 4-4 485.956 798 620–1 004 620 4-4 485.956 798 620–1 004 620 4-4 485.956 798 620–1 004 620 4-4 471.671 798 437–1 008 210 6-2 477.674 798 862–1 004 620 2-4 477.674 798 862–1 008 210 6-2 477.674 798 862–1 008 210 6-4 477.674 798 862–1 008 21	array Mult. (Å) or σ (cm ⁻¹) ² (cm ⁻¹) $g_1 - g_k$ (10 ⁸ s ⁻¹) 827.16 798.174-919.070 6-6 8.39-0.1 830.22 798.602-919.070 2-2 1.97-07 827.16 798.174-919.070 6-4 5.40-01 831.89 798.802-919.070 2-2 9.89-01 827.16 798.174-919.070 6-4 5.40-01 831.22 798.602-919.070 2-2 4.92-01 830.22 798.602-919.070 2-4 4.92-01 831.80 798.802-919.070 2-4 4.92-01 2s ² 2 p^2 (3 P)3 3 d 4 D- 4 D 4	array Mult. (Å) or σ (cm ⁻¹) $g_1 = g_1$ (10 $g_2 = g_3$) f_3 (10 $g_3 = g_3$) $f_3 = g_3$ (10 $g_3 = g_3$) $f_3 = g_3$ (11 $g_3 = g_3$) $g_3 = g_3$ (12 $g_3 = g_3$) $g_3 = g_3$ (13 $g_3 = g_3$) $g_3 = g_3$ (14 $g_3 = g_3$) $g_3 = g_3$ (15 $g_3 = g_3$) $g_3 = g_3$ (16 $g_3 = g_3$) $g_3 = g_3$ (17 $g_3 = g_3$) $g_3 = g_3$ (19 $g_3 = g_3$) $g_3 = g_3$ $g_3 $	array Mult. (Å) or σ (cm ⁻¹)* (cm ⁻¹)* $g_{r}g_{s}$ (10* s ⁻¹)* f_{g} (a.u.) **Results** **Results** **R	Annaly Mult (A) or or (sum ⁻¹) (sum ⁻¹) g _F -g _s (10 ²) f _g (30) log gf	array Mult. (Å) or σ (cm ⁻¹)* (cm ⁻¹) g_{-Rg} (10 ² *)* g_{-Rg} Au. log g_{-} Acc. Race Race 827.16 788174-19 070 6-6 8.39-01 8.61-03 1.41-01 1.287 1.22-12-21-86 Feb. 8.18.9 798 862-919 070 4-2 1.58-01 1.63-03 1.78-02 2.389 Feb. 8.30.22 798 862-919 070 4-2 9.80-01 5.11-03 559-02 -1.690 D 2.x3p ² (PD)3d 4D-4D' 831.89 798 862-919 070 2-4 492-01 1.02-02 5.90-02 -1.690 D 2.x3p ² (PD)3d 4D-4D' 831.89 799 60-1 008 210 6-6 5.32+00 1.97-02 1.67-01 -0.969 D+ 2.x3p ² (PD)3d 435.99 797 060-1 008 210 6-6 5.32+00 1.67-01 -0.969 D+ 4.73.99 797 060-1 008 210 6-6 5.32+00 1.67-01 -0.969 D+ 4.73.99 797 060-1 008

Table 20. Transition probabilities of allowed lines for Na V (references for this table are as follows: 1 = Burke and Lennon, 12 = Tachiev and Froese Fischer, 94 = Tachiev and 3 = Merkelis *et al.* 12 = Tachiev and Froese Fischer, 12 = Tachiev and Froese Fischer, 12 = Tachiev and 1

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
76	$2s2p^{3}(^{5}S^{\circ})3s - 2s^{2}2p^{2}(^{3}P)4s$	$^4S^{\circ}-^4P$				4–12						1
				1 088.49	801 950-893 820	4-6	5.18-01	1.38-02	1.98-01	-1.258	D+	LS
				1 107.54	801 950-892 240	4–2	4.90-01	4.51-03	6.58-02	-1.744	D	LS
77	$2s2p^3(^5S^{\circ})3s - 2s^22p^2(^3P)4d$	$^{4}\text{S}^{\circ}$ $-^{4}\text{P}$				4–12						1
				720.62 719.53	801 950–940 720 801 950–940 930	4-6 4-4		3.27-02 2.18-02				LS LS
78	$2s^22p^2(^1D)3d - 2s2p^3(^3D^{\circ})3s$	$^2F-^2D^{\circ}$		1 526.5	829 352–894 860	14–10	3.35-0.1	8.35-03	5.87-01	-0.932	D+	1
				1 524.60	829 269–894 860	8-6	3.20-01	8.36-03	3.36-01	-1.175	C	LS
				1 529.12	829 463-894 860	6-4	3.33 - 01	7.78-03	2.35 - 01	-1.331	D+	LS
				1 529.12	829 463–894 860	6–6	1.59-02	5.56-04	1.68-02	-2.477	E+	LS
79		$^{2}D-^{2}D^{\circ}$		1 614.8	832 931–894 860	10–10	1.13-01	4.43-03	2.35-01	-1.354	D	1
				1 616.24	832 988-894 860	6-6	1.05 - 01	4.13-03	1.32-01	-1.606	D+	LS
				1 612.54	832 846-894 860	4-4	1.02 - 01	3.99-03	8.47 - 02	-1.797	D	LS
				1 616.24	832 988-894 860	6-4	1.13 - 02	2.95 - 04	9.42 - 03	-2.752	E+	LS
				1 612.54	832 846–894 860	4-6	7.59-03	4.44 - 04	9.43-03	-2.751	E+	LS
80	$2s2p^3(^5S^{\circ})3p - 2s2p^3(^3D^{\circ})3s$	$^4P-^4D^{\circ}$	3 248	3 249	847 539–878 320	12–20	3.08-03	8.11-04	1.04-01	-2.012	E+	1
			3 247.8	3 248.8	847 539-878 320	6-8	3.08-03	6.49-04	4.16-02	-2.410	D	LS
			3 247.8	3 248.8	847 539-878 320	4-6	2.15 - 03	5.11-04	2.19-02	-2.690	E+	LS
			3 247.8	3 248.8	847 539-878 320	2-4	1.28 - 03	4.06 - 04	8.68-03	-3.090	E+	LS
			3 247.8	3 248.8	847 539-878 320	6-6	9.23 - 04	1.46-04	9.37-03	-3.057	E+	LS
			3 247.8	3 248.8	847 539-878 320	4-4	1.64 - 03	2.60 - 04	1.11 - 02	-2.983	E+	LS
			3 247.8	3 248.8	847 539-878 320	2-2	2.57 - 03	4.06 - 04	8.68 - 03	-3.090	E+	LS
			3 247.8	3 248.8	847 539-878 320	6-4	1.54 - 04	1.62 - 05	1.04 - 03	-4.012	E	LS
			3 247.8	3 248.8	847 539–878 320	4–2	5.13-04	4.06 - 05	1.74-03	-3.789	E	LS
81	$2s2p^{3}(^{5}S^{\circ})3p - 2s2p^{3}(^{5}S^{\circ})3d$	$^4P - ^4D^{\circ}$		1 634.8	847 539–908 710	12–20	7.01+00	4.68-01	3.02+01	0.749	В	1
				1 634.76	847 539–908 710	6–8	7.00+00	3.74-01	1.21+01	0.351	C+	LS
				1 634.76	847 539-908 710	4-6	4.91 + 00	2.95-01	6.35 + 00	0.072	В	LS
				1 634.76	847 539-908 710	2-4	2.92+00	2.34-01	2.52+00	-0.330	C+	LS
				1 634.76	847 539-908 710	6-6	2.10+00	8.42-02	2.72+00	-0.297	C+	LS
				1 634.76	847 539-908 710	4-4	3.74+00	1.50-01	3.23 + 00	-0.222	В	LS
				1 634.76	847 539-908 710	2-2	5.84 + 00	2.34-01	2.52+00	-0.330	C+	LS
				1 634.76	847 539–908 710	6-4	3.50 - 01	9.36-03	3.02 - 01	-1.251	C	LS
				1 634.76	847 539–908 710	4–2	1.17+00	2.34 - 02	5.04 - 01	-1.029	C	LS
82	$2s2p^3(^5S^{\circ})3p - 2s2p^3(^3D^{\circ})3d$	$^4P - ^4P^{\circ}$		636.9	847 539–1 004 538	12–12	1.68+00	1.03-02	2.58-01	-0.908	D	1
				637.51	847 539–1 004 400	6-6	1.18+00	7.17-03	9.03-02	-1.366	D	LS
				636.61	847 539–1 004 620	4-4		1.37-03				LS
				635.93	847 539–1 004 790	2-2		1.71-03				LS
				636.61	847 539-1 004 620	6-4		3.08-03				LS
				635.93	847 539-1 004 790	4-2		4.28-03				LS
				000.70	017 337 1 001 770		1.11 1 00	1.20 03	3.30-02	-1.700	D	LO
				637.51	847 539–1 004 400	4-6		4.61-03				LS

Table 20. Transition probabilities of allowed lines for Na V (references for this table are as follows: 1 = Burke and Lennon, 12 = Tachiev and Froese Fischer, 94 = Tachiev and 3 = Merkelis *et al.* 12 = Tachiev and Froese Fischer, 12 = Tachiev and Froese Fischer, 12 = Tachiev and 1

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
83	$2s^{2}2p^{2}(^{1}S)3d - 2s2p^{3}(^{3}D^{\circ})3d$	$^{2}D-^{2}F^{\circ}$		696.7	867 530–1 011 056	10–14	2.59-01	2.64-03	6.06-02	-1.578	E+	1
				[697.7]	867 530–1 010 850	6-8	2.58-01	2.51-03	3.46-02	-1.822	D	LS
				[695.4]	867 530–1 011 330	4–6		2.65-03				LS
				[695.4]	867 530–1 011 330	6-6	1.74-02	1.26-04	1.73-03	-3.121	E	LS
84	$2s2p^{3}(^{3}D^{\circ})3s - 2s^{2}2p^{2}(^{3}P)4s$	$^4D^{\circ}-^4P$				20–12						1
			6 450	6 452	878 320–893 820	8-6	1.95-02	9.11-03	1.55 + 00	-1.137	C+	LS
			7 182	7 184	878 320-892 240	4-2	8.81-03	3.41-03	3.23-01	-1.865	C	LS
			6 450	6 452	878 320-893 820	6-6	4.37-03	2.73-03	3.48 - 01	-1.786	C	LS
			7 182	7 184	878 320-892 240	2-2	8.81 - 03	6.82-03	3.23-01	-1.865	C	LS
			6 450	6 452	878 320–893 820	4–6	4.87 - 04	4.56-04	3.87 - 02	-2.739	D	LS
85		$^{2}D^{\circ}-^{2}P$		2 652 cm ⁻¹	894 860–897 512	10-6	3.04-05	3.89-04	4.84-01	-2.410	D+	1
				[3 050]	894 860–897 910	6–4	4.17-05	4.48-04	2.90-01	-2.571	D+	LS
				[1 855]	894 860-896 715	4-2	1.04 - 05	2.27-04	1.61-01	-3.042	D+	LS
				[3 050]	894 860–897 910	4-4	4.64-06	7.47 - 05	3.23 - 02	-3.525	D	LS
86	$2s2p^{3}(^{3}D^{\circ})3s - 2s^{2}2p^{2}(^{1}D)4s$	$^2D^{\circ}-^2D$	2 943	2 944	894 860–928 830	10–10	1.50-01	1.95-02	1.89+00	-0.710	C	1
			[2 943]	[2 944]	894 860–928 830	6–6	1.40-01	1.82-02	1.06+00	-0.962	С	LS
			[2 943]	[2 944]	894 860-928 830	4-4	1.35-01	1.75-02	6.78-01	-1.155	C	LS
			[2 943]	[2 944]	894 860-928 830	6-4		1.30-03				LS
			[2 943]	[2 944]	894 860–928 830	4-6	1.00-02	1.95-03	7.56-02	-2.108	D	LS
87	$2s2p^{3}(^{3}D^{\circ})3s - 2s^{2}2p^{2}(^{3}P)4d$	$^4D^{\circ}-^4D$				20–20						1
				1 646.36	878 320–939 060	6-6	2.90-02	1.18-03	3.84-02	-2.150	D	LS
				1 646.36	878 320-939 060	4-4	2.02 - 02	8.21 - 04	1.78 - 02	-2.484	E+	LS
				1 624.96	878 320–939 860	2-2	2.63 - 02	1.04 - 03	1.11 - 02	-2.682	E+	LS
				1 646.36	878 320-939 060	8-6	9.61 - 03	2.93 - 04	1.27 - 02	-2.630	E+	LS
				1 646.36	878 320–939 060	6-4	1.77 - 02	4.79 - 04	1.56 - 02	-2.542	E+	LS
				1 624.96	878 320–939 860	4–2	2.63 - 02	5.20 - 04	1.11 - 02	-2.682	E+	LS
				1 646.36	878 320–939 060	4-6	1.18 - 02	7.19 - 04	1.56 - 02	-2.541	E+	LS
				1 646.36	878 320–939 060	2–4	1.27-02	1.03-03	1.12-02	-2.686	E+	LS
88		$^{2}D^{\circ}-^{2}P$				10-6						1
			[2 295]	[2 295]	894 860–938 430	6–4		1.80-02				LS
		2- 0 2-	[2 295]	[2 295]	894 860–938 430	4–4	3.80-02	3.00-03	9.07-02	-1.921	D	LS
89		$^{2}D^{\circ}-^{2}F$				10–14						1
			[2 114]	[2 115]	894 860–942 150	6–8	1.44-00	1.29-01	5.39+00	-0.111	В	LS
90	$2s2p^{3}(^{3}D^{\circ})3s - 2s2p^{3}(^{3}D^{\circ})3p$	$^{2}D^{\circ}-^{2}F$		1 799	894 860–950 451	10–14	1.77-00	1.20-01	7.12+00	0.079	В	1
				1 806.4	894 860–950 220	6-8	1.75+00	1.14-01	4.07 + 00	-0.165	В	LS
				[1 789]	894 860–950 760	4-6	1.68+00	1.21-01	2.85+00	-0.315	C+	LS
				[1 789]	894 860–950 760	6–6	1.20+01	5.78-03	2.04-01	-1.460	D+	LS
91	$2s2p^{3}(^{3}D^{\circ})3s - 2s^{2}2p^{2}(^{1}D)4d$	$^{2}D^{\circ}-^{2}F$		1 261.8	894 860–974 110	10–14	1.16+00	3.89-02	1.62+00	-0.410	C	1
				[1 261.8]	894 860–974 110	6-8	1.17+00	3.71-02	9.25-01	-0.652	С	LS
				[1 261.8]	894 860–974 110	4-6		3.89-02				LS

Table 20. Transition probabilities of allowed lines for Na V (references for this table are as follows: 1 = Burke and Lennon, 12 = Tachiev and Froese Fischer, 94 = Tachiev and 3 = Merkelis *et al.* 12 = Tachiev and Froese Fischer, 12 = Tachiev and Froese Fischer, 12 = Tachiev and 1

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				[1 261.8]	894 860–974 110	6–6	7.75-02	1.85-03	4.61-02	-1.955	D	LS
92	$2s2p^3(^3D^{\circ})3s - 2s^22p^2(^1D)4d?$	$^{2}D^{\circ}-^{2}D$?		[1 251]	894 860–974 800	10–10	1.52+00	3.58-02	1.47+00	-0.446	С	1
				1 250.94	894 860–974 800	6-6	1.42+00	3.34-02	8.25-01	-0.698	C	LS
				1 250.94	894 860-974 800	4-4	1.37 + 00	3.22-02	5.30-01	-0.890	C	LS
				1 250.94	894 860-974 800	6-4	1.52+01	2.38 - 03	5.88 - 02	-1.845	D	LS
				1 250.94	894 860–974 800	4–6	1.01 - 01	3.57-03	5.88-02	-1.845	D	LS
93	$2s2p^3(^3D^{\circ})3s - 2s^22p^2(^1D)5d$	$^2D^{\circ}-^2D$		690.8	894 860–1 039 610	10–10	4.09-01	2.93-03	6.66-02	-1.533	E+	1
				[690.9]	894 860–1 039 610	6-6	3.82-01	2.73-03	3.73-02	-1.786	D	LS
				[690.9]	894 860-1 039 610	4-4	3.69-01	2.64-03	2.40-02	-1.976	E+	LS
				[690.9]	894 860-1 039 610	6-4	4.09 - 02	1.95 - 04	2.66-03	-2.932	E	LS
				[690.9]	894 860–1 039 610	4–6	2.73 - 02	2.93-04	2.67-03	-2.931	E	LS
94	$2s^{2}2p^{2}(^{3}P)4s - 2s2p^{3}(^{3}P^{\circ})3s$	$^4P-^4P^{\circ}$				12–12						1
			3 959.3	3 960.4	893 820–919 070	6–6	2.75-01	6.47-02	5.06+00	-0.411	В	LS
			3 726.1	3 727.2	892 240-919 070	2–2			4.02-01			LS
			3 959.3	3 960.4	893 820-919 070	6-4			2.17 + 00			LS
			3 726.1	3 727.2	892 240–919 070	2-4			2.01 + 00			LS
95	$2s^22p^2(^3P)4s - 2s2p^3(^3D^{\circ})3d$	$^4P - ^4D^{\circ}$				12–20						1
				874.20	893 820–1 008 210	6–8	2.11-01	3.22-03	5.56-02	-1.714	D	LS
				862.29	892 240-1 008 210	2-4	9.15-02	2.04-03	1.16-02	-2.389	E+	LS
				874.20	893 820-1 008 210	6-6	6.32-02	7.24-04	1.25-02	-2.362	E+	LS
				862.29	892 240-1 008 210	2-2	1.83-01	2.04-03	1.16-02	-2.389	E+	LS
				874.20	893 820–1 008 210	6–4	1.05 - 02	8.05 - 05	1.39-03	-3.316	E	LS
96	$2s2p^{3}(^{3}P^{\circ})3s - 2s^{2}2p^{2}(^{3}P)4d$	$^4P^{\circ}-^4D$				12–20						1
			5 001.1	5 002.5	919 070–939 060	4-6	1.46-01	8.24-02	5.43 + 00	-0.482	В	LS
			5 001.1	5 002.5	919 070-939 060	2-4	8.72-02	6.54-02	2.15+00	-0.883	C+	LS
			5 001.1	5 002.5	919 070-939 060	6-6	6.26-02	2.35-02	2.32+00	-0.851	C+	LS
			5 001.1	5 002.5	919 070-939 060	4-4	1.11 - 01	4.18 - 02	2.75 + 00	-0.777	C+	LS
			4 808.7	4 810.0	919 070-939 860	2-2	1.96-01	6.80-02	2.15+00	-0.866	C+	LS
			5 001.1	5 002.5	919 070-939 060	6-4	1.05 - 02	2.62-03	2.59 - 01	-1.804	D+	LS
			4 808.7	4 810.0	919 070–939 860	4–2	3.92-02	6.80-03	4.31-01	-1.565	C	LS
97		$^4P^{\circ}-^4P$				12–12						1
			4 617.6	4 618.9	919 070–940 720	6-6	1.23 - 01	3.95 - 02	3.60+00	-0.625	В	LS
			4 573.3	4 574.6	919 070–940 930	4-4	2.42 - 02	7.59 - 03	4.57 - 01	-1.518	C	LS
			4 573.3	4 574.6	919 070–940 930	6–4			1.55+00			LS
			4 617.6	4 618.9	919 070–940 720	4-6			1.54+00			LS
			4 573.3	4 574.6	919 070–940 930	2–4	7.55 - 02	4.74-02	1.43+00	-1.023	C+	LS
98	$2s^22p^2(^1D)4s - 2s2p^3(^3D^\circ)3d$	$^2D-^2F^{\circ}$		1 216.2	928 830–1 011 056	10–14	6.76-02	2.10-03	8.40-02	-1.678	D	1
				[1 219.2]	928 830–1 010 850	6-8	6.70-02	1.99-03	4.79-02	-1.923	D	LS
				[1 212.1]	928 830-1 011 330	4-6	6.39-02	2.11-03	3.37-02	-2.074	D	LS
				[1 212.1]	928 830–1 011 330	6-6	4.54-03	1.00 - 04	2.39-03	-3.222	E	LS

Table 20. Transition probabilities of allowed lines for Na V (references for this table are as follows: 1 = Burke and Lennon, 12 = Burke and Froese Fischer, 94 = Burke and 12 = Burke a

No.	Transition array	Mult.	$\lambda_{air} \ (\mathring{A})$	$\begin{array}{c} \lambda_{vac} \; (\mathring{A}) \\ \text{or} \; \sigma \; (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
99	$2s^22p^2(^3P)4d-$ $2s2p^3(^3D^{\circ})3d$	$^{4}P-^{4}P^{\circ}$				12–12						1
				1 570 25	040 720 1 004 400		0.01.02	2.06.02	0.10.02	1.751	Б	T. C.
				1 570.35	940 720–1 004 400	6–6			9.18-02			LS
				1 570.11 1 564.95	940 930–1 004 620	4–4			1.17-02 3.93-02			LS
				1 565.93	940 720–1 004 620 940 930–1 004 790	6–4 4–2			3.93 - 02 $3.65 - 02$			LS LS
				1 575.55	940 930–1 004 400	4-2			3.03 - 02 $3.94 - 02$			LS
100		$^{4}P-^{4}D^{\circ}$		1373.33	710 750 1 001 100	12–20	3.10 02	1.50 05	3.51 02	2.11)	D	1
				1 401 70	040 720 1 000 210	6 0	2.42 01	1.50 .02	4.20 01	1.046	C	T C
				1 481.70	940 720–1 008 210	6–8			4.39-01			LS
				1 486.33	940 930–1 008 210	4–6			2.31-01			LS
				1 481.70	940 720–1 008 210	6–6			9.89-02			LS
				1 486.33	940 930–1 008 210	4–4			1.17-01			LS
				1 481.70	940 720–1 008 210	6–4			1.10-02			LS
				1 486.33	940 930–1 008 210	4–2	5.65-02	9.36-04	1.83-02	-2.427	E+	LS
101		$^{2}F-^{2}F^{\circ}$				14–14						1
				[1 455.6]	942 150-1 010 850	8-8	2.27 - 00	7.22-02	2.77 + 00	-0.238	C+	LS
				[1 445.5]	942 150–1 011 330	8–6	1.14-01	2.69-03	1.02-01	-1.667	D	LS
102		$^{2}D-^{2}F^{\circ}$		1 513.3	944 976–1 011 056	10–14	3.43-01	1.65-02	8.21-01	-0.783	C	1
				1 520.91	945 100-1 010 850	6-8	3.37 - 01	1.56 - 02	4.69-01	-1.029	C	LS
				1 502.86	944 790-1 011 330	4-6	3.27 - 01	1.66 - 02	3.29 - 01	-1.178	C	LS
				1 509.89	945 100–1 011 330	6-6	2.31-02	7.88 - 04	2.35 - 02	-2.325	E+	LS
103	$2s2p^3(^3D^{\circ})3p - 2s2p^3(^3D^{\circ})3d$	$^{2}F-^{2}F^{\circ}$		1 650.0	950 451–1 011 056	14–14	1.58-00	6.46-02	4.91+00	-0.044	C+	1
				1 649.35	950 220-1 010 850	8-8	1.40-00	5.71-02	2.48+00	-0.340	C±	LS
				[1 651.0]	950 760–1 011 330	6–6			2.25+00			LS
				1 636.39	950 220–1 011 330	8–6			9.18-02			LS
				[1 664.2]	950 760–1 010 850	6–8			9.17-02			LS
104	$2s^22p^2(^1D)4d - 2s2p^3(^3D^{\circ})3d$	$^2F-^2F^{\circ}$	2 706	2 707	974 110–1 011 056	14–14	6.80-03	7.47-04	9.32-02	-1.981	D	1
			[2.721]	[2,722]	074 110 1 010 050	0 0	5.01.02	(5(04	4.70 .02	2 200	D	T.C.
			[2 721]	[2 722]	974 110–1 010 850	8–8			4.70-02			LS
			[2 686]	[2 687]	974 110–1 011 330	6–6			4.27-02			LS
			[2 686] [2 721]	[2 687] [2 722]	974 110–1 011 330 974 110–1 010 850	8–6 6–8			1.74-03 $1.74-03$			LS LS
105	$2s^22p^2(^1D)4d? - 2s^2p^3(^3D^\circ)3d$	2 D? $-^{2}$ F $^{\circ}$	2 757	2 758	974 800–1 011 056	10–14			3.00-01			1
	202p (2)eu											
			2 773.1	2 773.9	974 800–1 010 850	6–8			1.72 - 01			LS
			2 736.7	2 737.5	974 800–1 011 330	4–6	1.98 - 02	3.33 - 03	1.20 - 01	-1.875	B+	LS
			2 736.7	2 737.5	974 800–1 011 330	6–6	1.41 - 03	1.58 - 04	8.54-03	-3.023	E+	LS
106	$2s2p^3(^3D^{\circ})3d - 2s^22p^2(^1D)5d$	$^2F^{\circ}-^2F$	3 581	3 582	1 011 056–1 038 970	14–14	3.20-03	6.16-04	1.02-01	-2.064	D	1
			[3 555]	[3 556]	1 010 850-1 038 970	8-8	2.89-03	5.48-04	5.13-02	-2.358	D	LS
			[3 617]	[3 618]	1 010 030-1 038 970	6–6			4.66-02			LS
			[3 555]	[3 556]	1 010 850-1 038 970	8–6			1.90-03			LS
			[3 617]	[3 618]	1 010 330-1 038 970	6–8			1.90-03			LS
107		${}^{2}F^{\circ}-{}^{2}D$	3 501	3 502	1 011 056–1 039 610	14–10			5.56-02			1
			[3 476]	[3 477]	1 010 850-1 039 610	8–6			3.18-02			LS
			[37/0]	[3 711]	1 010 050-1 057 010	0-0	2.55-05	5.77-04	5.10-02	-2.337	D	LO

TABLE 20. Transition probabilities of allowed lines for Na V (references for this table are as follows: 1=Burke and Lennon, 12 2=Tachiev and Froese Fischer, 94 and 3=Merkelis *et al.* 65)—Continued

No.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source		
			[3 535] [3 535]		1 011 330–1 039 610 1 011 330–1 039 610							

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

10.5.3. Forbidden Transitions for Na V

The MCHF results of Tachiev and Froese Fischer⁹⁴ and the second-order MBPT results of Merkelis *et al.*⁶³ are compiled.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in both references, ^{63,94} as described in the general introduction. In this spectrum, the forbidden transitions between different configurations generally are stronger for E2 than for M1 lines. We note that these types of transitions have only been computed by a single source, ^{63,94}

and that their estimated accuracies are therefore comparatively uncertain. The same also holds for the M2 transitions.

10.5.4. References for Forbidden Transitions for Na V

⁸⁹G. Tachiev and C. Froese Fischer, Astron. Astrophys. **385**, 716 (2002).

⁹⁴G. Tachiev and C. Froese Fischer, http://www.vuse. vanderbilt.edu/~cff/mchf_collection/ (MCHF, *ab initio*, downloaded on May 6, 2002). See Tachiev and Froese Fischer (Ref. 89).

⁶³G. Merkelis, I. Martinson, R. Kisielius, and M. J. Vilkas, Phys. Scr. **59**, 122 (1999).

TABLE 21. Wavelength finding list for forbidden lines for Na V

Wavelength (vac) (Å)	Mult. No.						
146.106	18	167.064	21	322.059	34	597.04	9
146.362	18	167.075	21	323.304	34	636.80	29
147.897	25	167.257	21	330.669	11	637.47	29
148.642	17	218.868	33	330.709	11	639.01	29
148.856	17	219.332	33	332.583	16	641.70	29
149.001	17	219.365	33	333.875	16	643.95	29
151.124	23	219.627	33	333.917	16	693.55	13
151.132	23	219.647	33	335.665	6	696.00	13
157.030	24	219.831	33	335.706	6	696.18	13
157.039	24	220.095	33	360.371	15	701.06	13
157.207	20	220.148	33	400.663	10	701.24	13
157.216	20	220.412	33	400.721	10	747.10	28
157.503	20	221.473	36	400.779	10	750.15	28
157.512	20	221.491	36	445.042	14	1 218.68	27
160.147	19	242.625	35	445.113	14	1 219.21	27
160.156	19	242.646	35	445.115	14	1 234.26	27
160.395	19	267.428	8	445.186	14	1 234.81	27
160.404	19	268.290	8	459.897	5	1 242.61	27
160.564	19	285.106	7	461.050	5	1 315.51	30
160.573	19	307.123	12	463.263	5	1 335.99	30
163.608	22	307.157	12	591.33	9	1 336.63	30
163.618	22	308.260	12	591.46	9	1 365.09	2
163.939	22	308.295	12	593.24	9	1 365.78	2
166.795	21	320.818	34	593.37	9		
166.805	21	322.054	34	596.91	9		
Wavelength	Mult.	Wavelength	Mult.	Wavelength	Mult.	Wavelength	Mult.
(air) (Å)	No.						
2 066.9	1	4 010.9	3	4 016.9	3	4 311.9	31
2 068.4	1	4 016.7	3	4 022.7	3	4 547.5	31
Wavenumber	Mult.	Wavenumber	Mult.	Wavenumber	Mult.	Wavenumber	Mult.
(cm ⁻¹)	No.						
1 201	32	1 036	26	654	37	37	4
1 196	38	967	37	544	26		

TABLE 22. Transition probabilities of forbidden lines for Na V (references for this table are as follows: 1=Tachiev and Froese Fischer 94 and 2=Merkelis et al. 63)

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	A_{ki} (s^{-1})	S (a.u.)	Acc.	Source
1	$2p^3 - 2p^3$	$^{4}\text{S}^{\circ}-^{2}\text{D}^{\circ}$									
	• •		2 068.4	2 069.1	0-48 330	4-6	M1	7.43 - 04	1.46-06	D+	1,2
			2 068.4	2 069.1	0-48 330	4-6	E2	9.82-04	2.00-04	C	2
			2 066.9	2 067.6	0-48 366	4-4	M1		3.22-05		1,2
			2 066.9	2 067.6	0–48 366	4-4	E2		8.56-05		2
2		$^{4}\text{S}^{\circ} - ^{2}\text{P}^{\circ}$									
2		5 - 1		1 365.09	0–73 255	4-4	M1	4.16+00	1.57-03	В	1,2
				1 365.09	0-73 255	4-4	E2	1.60-05	2.71 - 07	D	2
				1 365.78	0-73 218	4-2	M1	1.68+00	3.18-04	C+	1,2
				1 365.78	0–73 218	4–2	E2		9.51-07		2
3		$^{2}\text{D}^{\circ}-^{2}\text{P}^{\circ}$									
		2 .	4 016.9	4 018.0	48 330-73 218	6–2	E2	1.29-01	2.41-01	B+	2
			4 010.9	4 012.0	48 330–73 255	6–4	M1		6.29-03		1,2
			4 010.9	4 012.0	48 330–73 255	6–4	E2	2.26-01	8.39-01		2
			4 022.7	4 023.8	48 366–73 218	4–2	M1	7.22-01	3.49-03		1,2
			4 022.7	4 023.8	48 366–73 218	4–2	E2		3.62-01		2
			4 016.7	4 017.8	48 366–73 255	4-4	M1	1.16+00			1,2
									3.54-01		
			4 016.7	4 017.8	48 366–73 255	4–4	E2	9.47-02	3.54-01	В+	2
4		$^{2}\text{P}^{\circ}-^{2}\text{P}^{\circ}$		37 cm ⁻¹	73 218–73 255	2–4	E2	1.70_20	8.76-06	D±	2
				37 CIII	73 216-73 233	2-4	EZ	1.70-20	8.70-00	D⊤	2
5	$2s^22p^3 - 2s2p^4$	$^{4}\text{S}^{\circ}-^{4}\text{P}$		462.262	0.015.060	4.6	1.10	1.02 - 00	0.70 . 00	D.	
				463.263	0–215 860	4–6	M2	1.02+00			1
				461.050	0–216 896	4–4	M2	7.59-01	4.24+00		1
				459.897	0–217 440	4–2	M2	2.35-01	6.49-01	В	1
6		$^{4}\text{S}^{\circ}-^{2}\text{D}$									
				335.706	0–297 880	4–6	M2		1.06-04		1
				335.665	0–297 916	4–4	M2	1.84-03	2.10-03	D+	1
7		$^{4}\text{S}^{\circ}-^{2}\text{S}$									
				285.106	0–350 747	4–2	M2	4.70-02	1.19-02	С	1
8		$^{4}\text{S}^{\circ}-^{2}\text{P}$									
				268.290	0-372 731	4–4	M2	1.23 + 01	4.58+00	B+	1
				267.428	0–373 932	4–2	M2	2.42+01	4.44 + 00	B+	1
9		$^{2}D^{\circ}-^{4}P$									
				591.33	48 330–217 440	6–2	M2		6.34 - 01		1
				593.24	48 330–216 896	6-4	M2	1.78 - 01	3.51+00	B+	1
				591.46	48 366-217 440	4-2	M2	5.08 - 01	4.93 + 00	B +	1
				596.91	48 330-215 860	6-6	M2	1.69 - 01	5.15+00	B +	1
				593.37	48 366-216 896	4-4	M2	2.66 - 01	5.25 + 00	B +	1
				597.04	48 366–215 860	4–6	M2	5.84-02	1.78 + 00	В	1
10		$^{2}D^{\circ}-^{2}D$									
				400.721	48 330–297 880	6-6	M2		1.33+01		1
				400.721	48 366–297 916	4-4	M2	3.57 - 01	9.90 - 01	В	1
				400.663	48 330–297 916	6-4	M2	2.18+00	6.03+00	B+	1
				400.779	48 366–297 880	4–6	M2	1.57 + 00	6.55 + 00	B+	1
11		$^{2}D^{\circ}-^{2}S$									
				330.669	48 330-350 747	6-2	M2	3.73 - 02	1.98 - 02	C	1
				330.709	48 366–350 747	4–2	M2	1.92-03	1.02-03	D+	1
12		$^{2}D^{\circ}-^{2}P$									
				307.123	48 330–373 932	6–2	M2	3.03+00	1.11+00	В	1

TABLE 22. Transition probabilities of forbidden lines for Na V (references for this table are as follows: 1=Tachiev and Froese Fischer 94 and 2=Merkelis et al. 63)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{\rm vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	A_{ki} (s ⁻¹)	S (a.u.)	Acc.	Source
				308.260	48 330–372 731	6–4	M2	7.90-01	5.90-01	В	1
				307.157	48 366-373 932	4-2	M2	1.90 - 01	6.96 - 02	C+	1
				308.295	48 366–372 731	4–4	M2	2.91-01	2.18-01	В	1
.3		$^{2}P^{\circ}-^{4}P$									
				696.18	73 255–216 896	4-4	M2	5.61 - 03	2.46 - 01	В	1
				693.55	73 255–217 440	4–2	M2	4.78 - 02	1.03+00	В	1
				701.24	73 255–215 860	4–6	M2	1.44 - 01	9.85 + 00		1
				696.00	73 218–216 896	2–4	M2		5.26+00		1
				701.06	73 218–215 860	2–6	M2	4.24-02	2.89+00	B+	1
14		$^{2}P^{\circ}-^{2}D$									
				445.113	73 218–297 880	2–6	M2		6.61 + 00		1
				445.186	73 255–297 880	4–6	M2	6.80-01			1
				445.042	73 218–297 916	2–4	M2		3.08-01		1
				445.115	73 255–297 916	4–4	M2	2.19-01	1.03+00	В	1
15		$^{2}P^{\circ}-^{2}S$									
				360.371	73 255–350 747	4–2	M2	6.23+00	5.08+00	B+	1
16		$^{2}\text{P}^{\circ}-^{2}\text{P}$									
				333.917	73 255–372 731	4–4	M2		1.13+00		1
				332.583	73 255–373 932	4–2	M2		8.07-01		1
				333.875	73 218–372 731	2–4	M2	5.23-01	5.82-01	В	1
17	$2p^3 - 2p^2(^3P)3s$	$^{4}\text{S}^{\circ}$ – ^{4}P									
				148.642	0–672 757	4–6	M2		1.05 + 00		1
				148.856	0–671 790	4–4	M2	2.95+01	5.78-01		1
				149.001	0–671 136	4–2	M2	9.95+00	9.80-02	D	1
18		$^{4}\text{S}^{\circ}-^{2}\text{P}$								_	
				146.106	0–684 434	4–4	M2		4.57-01		1
				146.362	0–683 238	4–2	M2	5.39+01	4.86-01	C	1
19		$^{2}D^{\circ}-^{4}P$									
				160.564	48 330–671 136	6–2	M2		8.49 - 02		1
				160.395	48 330–671 790	6–4	M2		5.11-01		1
				160.573	48 366–671 136	4–2	M2	5.41+01	7.75-01 $8.23-01$		1
				160.147	48 330–672 757	6–6	M2 M2				1 1
				160.404 160.156	48 366–671 790 48 366–672 757	4–4 4–6	M2		7.34-01 $1.39-01$		1
20		$^{2}D^{\circ}-^{2}P$									
20		-DP		157.503	48 330–683 238	6–2	M2	1 21+01	1.57-01	D	1
				157.207	48 330–684 434	6–4	M2		9.96-02		1
				157.512	48 366–683 238	4–2	M2		8.94-03		1
				157.216	48 366–684 434	4-4	M2		3.40-02		1
21		$^{2}P^{\circ}-^{4}P$									
<i>L</i> 1		1 - 1		167.075	73 255–671 790	4-4	M2	8.89-01	3.11-02	E+	1
				167.257	73 255–671 136	4–2	M2		4.60-02		1
				166.805	73 255–672 757	4-6	M2	1.52+01	7.90-01		1
				167.064	73 218–671 790	2-4	M2	1.11+01	3.87 - 01	D+	1
				166.795	73 218–672 757	2-6	M2	4.39+00	2.28-01	D+	1
22		$^{2}P^{\circ}-^{2}P$									
				163.618	73 255–684 434	4-4	M2	2.38+00	7.49-02	D	1
				163.939	73 255–683 238	4–2	M2	4.11 - 01	6.53-03	E	1
				163.608	73 218-684 434	2-4	M2	1 22 01	4.19-03	E	1

TABLE 22. Transition probabilities of forbidden lines for Na V (references for this table are as follows: 1=Tachiev and Froese Fischer⁹⁴ and 2=Merkelis *et al.*⁶³)—Continued

No.	Transition array	Mult.	$_{(\mathring{A})}^{\lambda_{air}}$	$\lambda_{ m vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	$A_{ki} $ (s ⁻¹)	S (a.u.)	Acc.	Source
23	$2p^3 - 2p^2(^1D)3s$	$^{2}D^{\circ}-^{2}D$									
				151.124	48 330-710 039	6-6	M2	5.17+01	1.64+00	C+	1
				151.132	48 366-710 039	4-4	M2	4.86+00	1.03 - 01	D	1
				151.124	48 330-710 039	6-4	M2	3.41+01	7.22-01	C	1
				151.132	48 366-710 039	4–6	M2		7.08 - 01		1
24		$^{2}P^{\circ}-^{2}D$									
24		1 - D		157.030	73 218–710 039	2–6	M2	7.40+00	2.84-01	D+	1
				157.039	73 255–710 039	4–6	M2		4.69-01		1
				157.030	73 218-710 039	2-4	M2	1.77-01			1
				157.039	73 255–710 039	4-4	M2		4.75-02		1
25	$2p^3 - 2p^2(^1S)3s$	$^{2}P^{\circ}-^{2}S$									
23	2p - 2p (3)38	r - 3		147.897	73 255–749 402	4–2	M2	1.10+02	1.04+00	С	1
		4- 4-				. –					
26	$2s2p^4 - 2s2p^4$	$^{4}P-^{4}P$		1 036 cm ⁻¹	215 960 216 906	6.4	3.41	2.70 02	2 (0 : 00		1
					215 860–216 896	6–4	M1		3.60+00		1
				544 cm ⁻¹	216 896–217 440	4–2	M1	7.24-03	3.33+00	Α	1
27		$^{4}P - ^{2}D$									
				1 234.81	216 896–297 880	4-6	M1	3.08 - 01	1.29 - 04	C	1
				1 242.61	217 440–297 916	2-4	M1	2.02 - 01	5.76 - 05	C	1
				1 219.21	215 860-297 880	6-6	M1	1.83+00	7.37 - 04	C	1
				1 234.26	216 896-297 916	4-4	M1	8.07 - 01	2.25 - 04	C	1
				1 218.68	215 860–297 916	6–4	M1	1.62-01	4.36-05	C	1
28		$^{4}P-^{2}S$									
				747.10	216 896-350 747	4–2	M1	1.02+01	3.14-04	С	1
				750.15	217 440-350 747	2–2	M1		6.04-05		1
29		$^{4}P - ^{2}P$									
29		P- P		641.70	216 896–372 731	4-4	M1	4 34-01	1.70-05	D+	1
				639.01	217 440–373 932	2–2	M1		1.76-05		1
				637.47	217 440–373 732	6–4	M1		2.80-05		1
				636.80	216 896–373 932	4–2	M1		1.64-07		1
				643.95	217 440–372 731	2–4	M1		9.74-06		1
		2- 2-									
30		$^{2}D-^{2}P$		1 225 00	207 990 272 721	6.4	3.41	(00 01	2.12 .04	C	1
				1 335.99	297 880–372 731	6–4	M1		2.12-04		1
				1 315.51 1 336.63	297 916–373 932 297 916–372 731	4–2 4–4	M1 M1		1.19-04 3.81-04		1 1
				1 330.03	291 910-312 131	4-4	1711	1.07 +00	3.01-04	C	1
31		$^{2}S-^{2}P$									
			4 547.5	4 548.8	350 747–372 731	2–4	M1		1.97 - 03		1
			4 311.9	4 313.1	350 747–373 932	2–2	M1	6.61-01	3.94-03	C+	1
32		${}^{2}P - {}^{2}P$									
				1 201 cm ⁻¹	372 731–373 932	4–2	M1	3.11-02	1.33+00	$\mathrm{B}+$	1
33	$2s2p^4 - 2s^22p^2(^3P)3s$	${}^{4}P - {}^{4}P$									
	252p 25 2p (1)55	1 1		218.868	215 860-672 757	6–6	M1	8.68-01	2.02-06	Е	1
				218.868	215 860-672 757	6-6	E2		7.13-03		1
				219.831	216 896-671 790	4-4	M1		7.37-07		1
				219.831	216 896–671 790	4-4	E2		5.43-03		1
				220.412	217 440–671 136	2–2	M1		1.83-07		1
				219.647	215 860–671 136	6–2	E2		7.64-03		1
				219.332	215 860–671 790	6–4	M1		4.29-08		1
				219.332	215 860–671 790	6–4	E2		1.07-02		1
				220.148	216 896–671 136	4–2	M1		4.28-08		1
				220.148	216 896–671 136	4-2	E2		8.50-04		1
				220.140	210 090-0/1 130	4-2	12.2	9.21+02	0.50-04	E	1

TABLE 22. Transition probabilities of forbidden lines for Na V (references for this table are as follows: 1=Tachiev and Froese Fischer⁹⁴ and 2=Merkelis *et al.*⁶³)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	$\lambda_{\text{vac}} (\mathring{A})$ or $\sigma (\text{cm}^{-1})^a$	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	Туре	A_{ki} (s ⁻¹)	<i>S</i> (a.u.)	Acc.	Source
				219.365	216 896–672 757	4–6	M1	3.14-02	7.38-08	Е	1
				219.365	216 896-672 757	4–6	E2	3.93 + 03	1.07-02		1
				220.095	217 440-671 790	2-4	M1	4.44 - 02	7.01 - 08	E	1
				220.095	217 440-671 790	2-4	E2	4.61+02	8.50-04	Е	1
				219.627	217 440-672 757	2-6	E2	2.79+03	7.65 - 03	D	1
34		${}^{2}P - {}^{2}P$									
				320.818	372 731-684 434	4-4	M1	3.87 + 00	1.90-05	Е	1
				320.818	372 731-684 434	4-4	E2	9.55 + 02	1.16-02	D	1
				323.304	373 932-683 238	2–2	M1	1.96-01	4.91-07	Е	1
				322.054	372 731-683 238	4-2	M1	5.17-01	1.28-06	E	1
				322.054	372 731-683 238	4-2	E2	1.88+03	1.16-02	D	1
				322.059	373 932-684 434	2-4	M1	1.44 - 01	7.14-07	E	1
				322.059	373 932–684 434	2-4	E2	9.32+02	1.15-02	D	1
35	$2s2p^4 - 2s^22p^2(^1D)3s$	$^{2}D-^{2}D$									
	1 1 1 1			242.625	297 880-710 039	6–6	M1	1.57 + 00	4.99-06	Е	1
				242.625	297 880-710 039	6-6	E2	6.29 + 03	2.83-02	D+	1
				242.646	297 916-710 039	4-4	M1	3.06-01	6.49-07	Е	1
				242.646	297 916-710 039	4-4	E2	5.52+03	1.66-02	D	1
				242.625	297 880-710 039	6-4	M1	6.98-02	1.48 - 07	E	1
				242.625	297 880-710 039	6-4	E2	2.35+03	7.05 - 03	E+	1
				242.646	297 916-710 039	4-6	M1	5.20-02	1.65-07	E	1
				242.646	297 916–710 039	4-6	E2	1.56+03	7.05 - 03	E+	1
36	$2s2p^4 - 2s^22p^2(^1S)3s$	$^{2}D-^{2}S$									
				221.473	297 880-749 402	6–2	E2	7.85 + 03	7.47-03	D	1
				221.491	297 916-749 402	4-2	M1	6.50-06	5.23-12	E	1
				221.491	297 916–749 402	4–2	E2	5.20+03	4.95-03	E+	1
37	$2p^2(^3P)3s - 2p^2(^3P)3s$	${}^{4}P - {}^{4}P$									
				967 cm ⁻¹	671 790–672 757	4–6	M1	1.46-02	3.60+00	B+	1
				654 cm^{-1}	671 136–671 790	2-4	M1	6.28-03	3.33+00	B+	1
38		$^{2}P-^{2}P$		1 196 cm ⁻¹	683 238–684 434	2–4	M1	1.54-02	1.33+00	В	1

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

10.6. Na vi

Carbon isoelectronic sequence Ground state: $1s^22s^22p^2$ 3P_0

Ionization energy: 172.183 eV=1 388 750 cm⁻¹

10.6.1. Allowed Transitions for Na VI

Only OP (Ref. 56) results were available for transitions from energy levels above the 3d. Tachiev and Froese Fischer ⁹⁴ use extensive MCHF calculations with Breit-Pauli corrections to order α^2 . Aggarwal $et\ al.^4$ apply the CIV3 code. Tachiev and Froese Fischer ⁹⁴ and Aggarwal $et\ al.^4$ are in excellent agreement for transitions with upper levels of energy less than $600\ 000\ \text{cm}^{-1}$, but this deteriorates rapidly for lines with from higher-lying levels with line strengths less than 10^{-3} . We found the calculations of Mendoza $et\ al.^{62}$ to agree extremely well with those of Tachiev and Froese Fischer, ⁹⁴ though only a few intercombination lines were available.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition published in rates two more references, 4,21,56,62,94 as described in the general introduction. For this purpose the spin-allowed (non-OP) and intercombination data weretreated separately and each of these was in turn divided into two upper-level energy groups below and above 600 000 cm⁻¹. Estimated accuracies were substantially better for the lower energy groups. OP⁵⁶ lines constituted a fifth group and have been used only when more accurate sources were not available, because spin-orbit effects are often significant for this spectrum.

10.6.2. References for Allowed Transitions for Na VI

M. Aggarwal, F. P. Keenan, and A. Z. Msezane, Astrophys. J., Suppl. Ser. 136, 763 (2001).
 B. C. Fawcett, At. Data Nucl. Data Tables 37, 367 (1987).

⁵⁶D. Luo and A. K. Pradhan, J. Phys. B **22**, 3377 (1989),

- http://legacy.gsfc.nasa.gov/topbase, downloaded on Aug. 8, 1995 (Opacity Project).
- ⁶²C. Mendoza, C. J. Zeippen, and P. J. Storey, Astron. Astrophys., Suppl. Ser. **135**, 159 (1999).
- ⁸⁸G. Tachiev and C. Froese Fischer, Can. J. Phys. **79**, 955 (2001).
- ⁹⁴G. Tachiev and C. Froese Fischer, http://www.vuse. vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on May 6, 2002). See Tachiev and Froese Fischer (Ref. 88).

TABLE 23. Wavelengths finding list for allowed lines for Na VI

Wavelength	Mult.
(vac) (Å)	No.
80.645	81
81.543	33
83.639	34
87.141	77
87.211	77
88.223	31
88.248	31
88.270	31
88.277	31
88.338	31
88.368	31
88.460	80
88.467	80
88.470	80
90.468	32
95.182	78
95.255	78
95.263	78
95.307	78
95.316	78
95.319	78
95.933	30
96.475	29
98.302	79
99.496	28
99.501	28
99.565	28
99.616	28
99.680	28
100.471	27
100.515	27
100.588	27
103.004	26
103.078	26
103.201	26
106.040	60
106.077	60
106.125	60
107.014	20
107.062	20
107.094	20
107.156	20
107.227	20
107.289	20
107.532	69
107.542	69
107.547	69
107.553	19
107.608	19
107.634	19
107.683	19
107.742	19
107.768	19
107.933	68
107.944	68

TABLE 23. Wavelengths finding list for allowed lines for Na VI—Continued

TABLE 23. Wavelengths finding list for allowed lines for Na VI—Continued

Wavelength	Mult.	Wavelength	Mult.		
(vac) (Å)	No.	(vac) (Å)	No.		
107.948	68	134.022	53		
108.555	67	134.029	53		
108.566	67	134.135	53		
108.571	67	134.530	18		
109.766	24	137.455	66		
109.896	23	137.585	66		
110.749	72	138.688	58		
112.014	71	140.835	54		
112.449	70	141.038	54		
112.949	22	141.155	54		
113.124	21	146.404	59		
114.664	25	149.442	50		
115.724	63	149.462	50		
115.736	63	149.470	50		
115.762	63	149.621	50		
115.775	63	149.629	50		
115.780	63	158.241	51		
115.803	63	158.419	51		
115.808	63	158.529	55		
117.491	62	158.785	55		
117.596	62	158.934	55		
117.609	62	266.500	35		
117.682	62	266.729	38		
117.695	62	267.440	35		
117.700	62	281.754	96		
118.501	61	285.454	6		
118.506	61	286.024	6		
118.585	61	286.977	6		
118.598	61	295.356	132		
118.603	61	295.994	132		
119.194	74	296.005	41		
119.682	73	311.926	5		
120.931	65	312.606	5		
120.973	65	313.745	5		
121.004	65	317.641	11		
121.773	52	320.907	4		
121.913	52	322.107	4		
122.018	52	331.146	37		
123.132	56	331.245	37		
123.146	56	331.287	37		
123.151	56	338.639	151		
123.747	16	339.282	129		
123.867	16	339.714	150		
123.925	16	350.765	10		
123.953	64	361.249	9		
123.974	16	362.444	15		
124.059	64	363.774	36		
124.153	16	364.466	36		
124.850	76	364.517	36		
125.385	75	366.106	36		
127.838	17	366.228	36		
129.044	57	366.279	36		
133.823	53	370.961	130		
133.839	53	371.968	130		
133.846	53	377.682	40		

TABLE 23. Wavelengths finding list for allowed lines for Na VI—Continued

TABLE 23. Wavelengths finding list for allowed lines for Na VI—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
379.075	95	494.066	2
380.098	95	494.159	2
380.807	127	494.381	2
381.869	127	494.976	172
382.468	94	495.909	172
382.717	94	496.697	107
383.274	94	497.277	171
383.759	94	498.082	172
383.862	131	498.219	171
384.320	94	500.413	171
384.808	131	502.159	173
386.722	46	508.363	105
387.582	126	509.762	105
387.687	126	510.491	105
388.561	126	511.389	103
388.787	126	511.980	103
389.666	126	513.321	103
394.415	128	515.999	43
395.413	128	537.606	114
406.215	14	539.011	45
410.931	123	540.570	114
414.351	3	544.336	113
415.553	3	544.959	113
417.568	3	545.375	113
420.493	39	546.090	113
421.486	39	548.005	113
423.844	39	549.149	113
433.971	102	574.81	147
436.960	49	592.55	7
440.509	101	592.68	7
457.896	149	593.00	7
458.337	124	595.77	156
459.834	93	596.52	92
459.876	124	599.05	92
463.779	86	599.06	13
466.135	148	601.39	42
467.880	148	606.20	42
469.153	148	630.64	44
475.376	106	632.88	44
476.599	106	638.21	44
477.236	106	641.87	48
478.194	125	694.11	84
478.583	85	699.06	84
479.662	125	701.31	84
481.997	85	701.95	84
485.684	170	706.36	84
485.807	8	724.22	122
485.814	100	728.07	122
488.400	108	742.83	121
489.438	104	746.88	121
489.570	2	751.15	91
489.980	104	754.77	91
491.207	104	755.17	91
491.248	2	758.84	91
491.340	2	770.14	12

TABLE 23. Wavelengths finding list for allowed lines for Na VI—Continued

TABLE 23. Wavelengths finding list for allowed lines for Na VI—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
776.17	47	1 741.55	87
779.56	47	1 747.64	87
787.66	47	1 748.44	87
810.04	90	1 750.09	117
810.18	90	1 763.36	87
814.86	90	1 770.41	87
889.52	137	1 800.2	83
930.23	139	1 807.0	111
974.05	1	1 808.6	111
985.19	1	1 823.5	83
1 017.71	89	1 828.2	111
1 022.39	138	1 840.9	111
1 024.80	162	1 862.9	111
1 025.12	89	1 868.5	155
1 065.30	143	1 808.5	133
1 105.71	143	Wavelength	Mult.
1 105.71	112	(air) (Å)	No.
1 112.97	112		
1 125.75	112	2 190.4	110
	99	2 204.4	110
1 137.53		2 240.5	110
1 175.09	141	2 245.0	135
1 201.20	163	2 307.2	154
1 239.16	168	2 323.2	119
1 245.02	168	2 358.3	119
1 258.81	168	2 361.1	119
1 285.18	169	2 397.4	119
1 294.33	116	2 507.4	153
1 305.99	116	2 584.5	134
1 318.91	144	3 288.5	176
1 342.46	136	3 766.8	175
1 362.58	146	3 883.9	175
1 384.08	118	3 973.4	175
1 389.66	118	4 174.2	133
1 393.73	118	4 346.6	152
1 398.21	118	4 386.7	152
1 403.90	118	4 443.2	152
1 429.18	145	4 624.9	97
1 515.84	82	4 673.8	97
1 532.33	82	4 747.0	109
1 550.63	82	4 787.9	97
1 567.89	82	4 854.0	97
1 589.83	120	4 883.8	109
1 595.15	120	4 907.8	97
1 598.72	120	4 934.5	115
1 606.17	120	4 971.3	165
1 608.75	88	4 997.1	97
1 611.60	120	5 118.9	115
1 616.03	88	5 140.0	109
1 630.26	88	5 723	98
1 634.79	88	5 905	98
1 649.35	88	6 077	98
1 708.82	117	6 284	98
1 709.69	117	6 396	98
1 728.01	117	6 526	98
1 731.30	117	6 647	140

TABLE 23. Wavelengths finding list for allowed lines for Na VI—Continued

Wavelength	Mult.
(vac) (Å)	No.
7 001	140
7 131	174
7 319	140
10 602	158
11 693	158
12 237	158
12 655	166
14 282	167
17 387	160
18 513	164
Wavenumber	Mult.
(cm^{-1})	No.
4 120	159
3 370	157
3 240	159
2 860	159
2 290	161

Table 24. Transition probabilities of allowed lines for Na VI (references for this table are as follows: 1=Luo and Pradhan, ⁵⁶ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Aggarwal *et al.*, ⁴ 4=Fawcett, ²¹ and 5=Mendoza *et al.* ⁶²)

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s-1)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
1	$2s^22p^2-2s2p^3$	$^{3}P-^{5}S^{\circ}$										
	1 1			[985.2]	1 859-103 362	5–5	1.48-04	2.15-06	3.49-05	-4.969	C+	2,3,5
				[974.0]	698-103 362	3–5	5.95-05	1.41-06	1.36-05	-5.374	C+	2,3,5
2		$^{3}P-^{3}D^{\circ}$		492.80	1 265–204 188	9–15	1.40-01	8.47-02	1.24+00	-0.118	A	2,3
				494.381	1 859-204 132	5–7	1.38+01	7.08 - 02	5.76-01	-0.451	A	2,3
				491.340	698-204 223	3-5	1.10+01	6.64 - 02	3.22 - 01	-0.701	A	2,3
				489.570	0-204 261	1-3	8.27 + 08	8.91 - 02	1.44 - 01	-1.050	A	2,3
				494.159	1 859-204 223	5-5	3.03+00	1.11 - 02	9.04 - 02	-1.256	A	2,3
				491.248	698-204 261	3-3	5.63+00	2.04 - 02	9.88 - 02	-1.213	A	2,3
				494.066	1 859–204 261	5–3	3.12-07	6.84 - 04	5.56-03	-2.466	B+	2,3
3		$^{3}P - ^{3}P^{\circ}$		416.54	1 265–241 341	9_9	3.79+01	9.85-02	1.22+00	-0.052	A	2,3
				417.568	1 859–241 341	5–5	2.89+01	7.56-02	5.19-01	-0.423	A	2,3
				415.553	698-241 341	3-3	1.03+01	2.66 - 02	1.09 - 01	-1.098	A	2,3
				417.568	1 859-241 341	5-3	1.52+01	2.39-02	1.64 - 01	-0.923	A	2,3
				415.553	698-241 341	3-1	3.81 + 01	3.29 - 02	1.35 - 01	-1.006	A	2,3
				415.553	698-241 341	3-5	8.79 + 00	3.79 - 02	1.56 - 01	-0.944	A	2,3
				414.351	0-241 341	1–3	1.25+01	9.63-02	1.31 - 01	-1.016	A	2,3
4		$^{3}P-^{1}D^{\circ}$										
				320.907	698-312 315	3-5	3.07 - 03	7.89-06	2.50-05	-4.626	D	2,4
				322.107	1 859–312 315	5–5	5.89-02	9.16-05	4.86 - 04	-3.339	C	2,4
5		$^{3}P-^{3}S^{\circ}$		313.16	1 265–320 589	9–3	2.52+02	1.24-01	1.15+00	0.048	A	2,3
				313.745	1 859–320 589	5–3	1.40+02	1.24-01	6.42-01	-0.208	A	2,3
				312.606	698-320 589	3-3	8.37 + 07	1.23 - 01	3.79 - 01	-0.433	A	2,3
				311.926	0-320 589	1–3	2.79+01	1.22-01	1.25-01	-0.914	A	2,3
6		$^{3}P-^{1}P^{\circ}$										

Table 24. Transition probabilities of allowed lines for Na VI (references for this table are as follows: 1=Luo and Pradhan, ⁵⁶ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Aggarwal *et al.*, ⁴ 4=Fawcett, ²¹ and 5=Mendoza *et al.*, ⁶²)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	$\lambda_{\rm vac}~({\rm \AA})$ or $\sigma~({\rm cm}^{-1})^{\rm a}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s-1)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				286.024	698-350 319	3–3	9.05-02	1.11-04	3.14-04	-3.478	С	2,3
				286.977	1 859-350 319	5-3	6.23 - 03	4.62 - 06	2.18 - 05	-4.636	D	2,3
				285.454	0-350 319	1–3	9.64-04	3.53-06	3.32-06	-5.452	E+	2,3
7		$^{1}D-^{3}D^{\circ}$										
				592.68	35 498–204 223	5–5			5.34-05			2,3
				592.55	35 498–204 261	5–3	6.45-04		1.99-05			2,3
				593.00	35 498–204 132	5–7	5.12-03	3.78-05	3.69-04	-3.724	C	2,3
8		$^{1}D-^{3}P^{\circ}$		105.005	25 400 244 244	- a	ć 25. O2		1 00 01		.	2.4
				485.807	35 498–241 341	5–3			1.08-04			2,4
				485.807	35 498–241 341	5–5	8.52-04	3.01-06	2.41-05	-4.822	D	2,4
9		$^{1}D-^{1}D^{\circ}$		361.249	35 498–312 315	5–5	1.15+02	2.24-01	1.33+00	0.049	A	2,3
10		$^{1}D-^{3}S^{\circ}$										
				350.765	35 498–320 589	5–3	9.33-03	1.03-05	5.96-05	-4.288	D+	2,4
11		$^{1}D-^{1}P^{\circ}$		317.641	35 498-350 319	5–3	1.57+02	1.43-01	7.46-01	-0.146	A	2,3
12		$^{1}S-^{3}D^{\circ}$										
				770.14	74 414–204 261	1–3	3.83 - 04	1.02 - 05	2.59-05	-4.991	D	2,3
13		$^{1}S-^{3}P^{\circ}$										
		~ -		599.06	74 414–241 341	1-3	2.12-03	3.43-05	6.76-05	-4.465	D+	2,3
14		$^{1}S-^{3}S^{\circ}$										
14		3- 3		406.215	74 414–320 589	1–3	6.79-03	5.04-05	6.73-05	-4.298	D+	2,3
15		$^{1}S-^{1}P^{\circ}$		362.444	74 414–350 319	1–3	3 60±01	2 18 _ 01	2.60-01	-0.662	٨	2,3
	2 2 2 2			302.444	74 414-330 317		3.07+01	2.10-01	2.00-01	-0.002	Λ	2,3
16	$2p^2 - 2p3s$	$^{3}P-^{3}P^{\circ}$				9_9						
				123.925	1 859-808 800	5–5	2.38+02	5.47 - 02	1.12 - 01	-0.563	C+	2,3
				123.974	698–807 320	3–3			2.21-02			2,3
				124.153	1 859–807 320	5–3			3.73-02			2,3
				123.747	698-808 800	3–5			3.71-02			2,3
				123.867	0–807 320	1–3	1.05+02	7.24-02	2.95-02	-1.140	C+	2,3
17		$^{1}D-^{1}P^{\circ}$		127.838	35 498–817 740	5–3	3.68+02	5.41-02	1.14-01	-0.568	C+	2,3
18		$^{1}S-^{1}P^{\circ}$		134.530	74 414–817 740	1–3	1.12+02	9.14-02	4.05-02	-1.039	C	2,3
19	$2p^2-2p3d$	$^{3}P-^{3}D^{\circ}$		107.65	1 265–930 193	9–15	2.55+03	7.39-01	2.36+00	0.823	В	2,3
				107.683	1 859–930 510	5–7	2.57+03	6.26-01	1.11+00	0.496	B+	2,3
				107.608	698–930 000	3–5		6.38-01		0.282		2,3
				107.553	0–929 774	1–3			3.03-01			2,3
				107.742	1 859-930 000	5-5	3.18+02	5.53-02	9.81-02	-0.558	C+	2,3
				107.634	698-929 774	3-3	8.90 + 02	1.55 - 01	1.64-01	-0.333	В	2,3
				107.768	1 859–929 774	5–3	2.47 + 01	2.58 - 03	4.59-03	-1.889	D+	2,3
20		$^{3}P-^{3}P^{\circ}$		107.19	1 265–934 191	9_9	1.50+03	2.59-01	8.23-01	0.368	C+	2,3
				107.289	1 859–933 920	5–5	1.43+03	2.46-01	4.35-01	0.090	В	2,3
				107.094	698–934 460	3–3	5.58+02		1.02-01			2,3
				107.227	1 859–934 460	5–3			1.21-01			2,3
				[107.06]	698–934 740	3–1			8.95-02			2,3
				107.156	698–933 920	3–5			2.62-02			2,3
				107.014	0–934 460	1–3			5.04-02			2,3
21		$^{1}D-^{3}F^{\circ}$										
		= *		113.124	35 498–919 480	5–5	4.16+02	7.98-02	1.49-01	-0.399	C	2,3

Table 24. Transition probabilities of allowed lines for Na VI (references for this table are as follows: 1=Luo and Pradhan, 56 2=Tachiev and Froese Fischer, 94 3=Aggarwal *et al.*, 44=Fawcett, 21 and 5=Mendoza *et al.* 62)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s-1)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
22		$^{1}D-^{1}D^{\circ}$		112.949	35 498–920 850	5–5	5.76+02	1.10-01	2.05-01	-0.260	B+	2,3
23		$^{1}D-^{1}F^{\circ}$		109.896	35 498–945 450	5–7	2.95+02	7.48-01	1.35+00	0.573	B+	2,3
24		$^{1}D-^{1}P^{\circ}$		109.766	35 498–946 530	5–3	6.71+01	7.27-03	1.31-02	-1.439	D	2
25		$^{1}S-^{1}P^{\circ}$		114.664	74 414–946 530	1–3	1.68+03	9.92-01	3.74-01	-0.003	C+	2
26	$2s^22p^2-2s2p^2(^4P)3p$	$^{3}P-^{3}S^{\circ}$		103.14	<i>1 265</i> –970 840	9–3	8.17+02	4.34-02	1.33-01	-0.408	С	4
				103.201	1 859–970 840	5–3	4.40+02	4.22-02	7.17-02	-0.676	С	4
				103.078	698–970 840	3–3			4.55-02			4
				103.004	0–970 840	1–3	9.64+01					4
27		$^{3}P - ^{3}D^{\circ}$				9–15						
				100.515	1 859–996 740	5–7	5.51+02	1.17-01	1.93-01	-0.233	C+	4
				100.471	698-996 010	3-5	4.32+02	1.09 - 01	1.08 - 01	-0.485	C	4
				100.588	1 859–996 010	5–5	1.17+02	1.78-02	2.95-02	-1.051	D+	4
28		$^{3}P-^{3}P^{\circ}$				9_9						4
				99.616	1 859–1 005 710	5–5	4.45+02	6.62-02	1.09-01	-0.480	C	4
				[99.56]	698-1 005 070	3-3	1.41 + 02	2.10-02	2.07 - 02	-1.201	D+	4
				[99.68]	1 859–1 005 070	5–3	2.53+02	2.26-02	3.71 - 02	-0.947	D+	4
				99.501	698-1 005 710	3–5	1.25 + 02	3.10-02	3.05 - 02	-1.032	D+	4
				[99.50]	0–1 005 070	1–3	1.68+02	7.50-02	2.46-02	-1.125	D+	4
29	$2s^22p^2-2s2p^2(^2D)3p$	$^{1}D-^{1}F^{\circ}$		96.475	35 498–1 072 040	5–7	7.30+02	1.43-01	2.26-01	-0.146	C+	4
30		$^{1}D-^{1}D^{\circ}$		95.933	35 498–1 077 890	5–5	6.64+02	9.16-02	1.45-01	-0.339	C	4
31	$2p^2-2p4d$	$^{3}P-^{3}D^{\circ}$		88.27	1 265–1 134 205	9–15	1.02+03	1.98-01	5.17-01	0.251	D	1
				88.270	1 859–1 134 750	5–7	1.02+03	1.66-01	2.41-01	-0.081	D+	LS
				88.248	698-1 133 870	3–5	7.61 + 02	1.48 - 01	1.29 - 01	-0.353	D	LS
				88.223	0-1 133 490	1-3	5.66+02	1.98 - 01	5.75 - 02	-0.703	E+	LS
				88.338	1 859–1 133 870	5–5	2.54+02	2.97 - 02	4.32 - 02	-0.828	E+	LS
				88.277	698-1 133 490	3–3	4.24+02	4.95 - 02	4.32 - 02	-0.828	E+	LS
				88.368	1 859–1 133 490	5–3	2.82+01	1.98-03	2.88-03	-2.004	Е	LS
32		$^{1}D-^{1}F^{\circ}$		90.468	35 498–1 140 860	5–7	1.04+03	1.79-01	2.67-01	-0.048	D+	1
33	$2p^2-2p5d$	$^{3}P-^{3}D^{\circ}$				9–15						1
				[81.54]	1 859–1 228 210	5–7	3.91+02	5.45-02	7.32-02	-0.565	D	LS
34		$^{1}D-^{1}F^{\circ}$		83.639	35 498–1 231 110	5–7	5.11+02	7.50-02	1.03-01	-0.426	D	1
35	$2s2p^3-2p^4$	$^{5}\text{S}^{\circ}$ $ ^{3}\text{P}$										
				[267.44]	103 362-477 277	5–5	5.76-03	6.18-06	2.72-05	-4.510	D	2,3
				[266.50]	103 362–478 597	5–3			7.05-06			2,3
36		$^{3}\text{D}^{\circ}-^{3}\text{P}$		365.31	204 188–477 926	15–9	9.61+01	1.15-01	2.08+00	0.237	A	2,3
				366.106	204 132–477 277	7–5	8.02+01	1.15-01	9.71-01	-0.094	A	2,3
				364.466	204 223-478 597	5-3	7.07 + 01					2,3
				363.774	204 261-479 157	3-1	9.49+01					2,3
				366.228	204 223-477 277	5–5	1.54+01	3.10-02	1.87 - 01	-0.810	A	2,3
				364.517	204 261-478 597	3–3	2.48+01	4.94-02	1.78 - 01	-0.829	A	2,3
				366.279	204 261–477 277	3–5	1.09+00	3.65-03	1.32-02	-1.961	B+	2,3
37		$^{3}D^{\circ}-^{1}D$										
				331.245	204 223–506 114	5–5	1.68-02	2.76-05	1.50-04	-3.860	D+	2,3

TABLE 24. Transition probabilities of allowed lines for Na VI (references for this table are as follows: 1=Luo and Pradhan, ⁵⁶ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Aggarwal *et al.*, ⁴ 4=Fawcett, ²¹ and 5=Mendoza *et al.* ⁶²)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	$\lambda_{\rm vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s-1)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				331.146 331.287	204 132–506 114 204 261–506 114	7–5 3–5		1.01-04 9.03-07				2,3 2,3
38		$^{3}D^{\circ}-^{1}S$										
30		D - S		266.729	204 261–579 173	3-1	3.76-03	1.34-06	3.52-06	-5.396	D	2,4
39		$^{3}P^{\circ}-^{3}P$		422.68	241 341–477 926	9_9	2.20+01	5.90-02	7.39-01	-0.275	A	2,3
				423.844	241 341–477 277	5–5	1 57+01	4.22-02	2 95-01	-0.676	A	2,3
				421.486	241 341 477 277	3–3		1.30-02				2,3
				421.486	241 341–478 597	5–3	1.05+01		1.16-01			2,3
				420.493	241 341–479 157	3–1	2.34+01		8.58-02			2,3
				423.844	241 341 477 277	3–5		2.54-02				2,3
				421.486	241 341–478 597	1–3		5.92-02				2,3
40		$^{3}P^{\circ}-^{1}D$		377.682	241 341–506 114	3–5	6.65-03	2.37-05	8 84-05	-4 148	D+	2,3
40		ı b		377.682	241 341 506 114	5–5		6.58-07				2,3
		3-0 1-		377.002	241 341 300 114	3 3	3.00 04	0.50 07	4.07 00	3.403	D	2,3
41		$^{3}P^{\circ}-^{1}S$		296.005	241 341–579 173	3–1	1.96-02	8.59-06	2.51-05	-4.589	D	2,3
42		$^{1}\text{D}^{\circ}$ – ^{3}P										
72		Б		601.39	312 315-478 597	5-3	5 55-04	1.81-06	1 79-05	-5 043	D	2,3
				606.20	312 315–477 277	5–5		1.04-04				2,3
		1_ ° 1_										
43		$^{1}D^{\circ}-^{1}D$		515.999	312 315–506 114	5–5	5.60+01	2.24-01	1.90+00	0.049	Α	2,3
44		$^{3}\text{S}^{\circ} - ^{3}\text{P}$		635.6	320 589–477 926	3–9	1.30+01	2.36-01	1.48+00	-0.150	A	2,3
				638.21	320 589-477 277	3-5	1.27 + 01	1.30-01	8.18-01	-0.409	A	2,3
				632.88	320 589-478 597	3-3	1.32+01	7.95 - 02	4.97 - 01	-0.623	A	2,3
				630.64	320 589–479 157	3-1	1.35+01	2.68 - 02	1.67-01	-1.095	A	2,3
45		$^{3}S^{\circ}-^{1}D$										
				539.011	320 589–506 114	3–5	6.38-04	4.63-06	2.47 - 05	-4.857	D	2,3
46		$^{3}\text{S}^{\circ}-^{1}\text{S}$										
				386.722	320 589–579 173	3–1	1.20-01	8.96-05	3.42 - 04	-3.571	C	2,3
47		$^{1}P^{\circ}-^{3}P$										
				779.56	350 319-478 597	3-3	5.52-03	5.03-05	3.87-04	-3.821	C	2,3
				776.17	350 319-479 157	3-1	6.70 - 04	2.02-06	1.55-05	-5.218	D	2,3
				87.66	350 319-477 277	3–5	1.44-03	2.23-05	1.74 - 04	-4.175	D+	2,3
48		$^{1}P^{\circ}-^{1}D$		641.87	350 319–506 114	3–5	5.86+00	6.03-02	3.82-01	-0.743	A	2,3
49		$^{1}P^{\circ}-^{1}S$		436.960	350 319–579 173	3–1	1.47+02	1.40-01	6.05-01	-0.377	A	2,3
50	$2s2p^3 - 2s^22p3p$	$^{3}D^{\circ}-^{3}P$				15–9						2,3
	252p 25 2p3p	2 .		140 442	204 122 972 200		2.00 . 01	7.12 02	2.46 02	1 202		
				149.442	204 132–873 290	7–5 5 2		7.13-03				2,3
				149.621	204 223-872 580	5–3		5.33-03				2,3
				149.462	204 223-873 290	5–5		1.81-03				2,3
				149.629	204 261 872 280	3–3		3.00-03				2,3
		2 6 2		149.470	204 261–873 290	3–5	3.62-01	2.02-04	2.98-04	-3.218	В	2,3
51		$^{3}P^{\circ}-^{3}P$				9_9						
				158.241	241 341-873 290	5-5	2.15+00	8.09-04	2.11-03	-2.393	C	2,3
				158.419	241 341-872 580	3–3	1.47 + 00	5.53 - 04	8.64 - 04	-2.780	D	2,3
				159 410	241 341-872 580	5-3	2.20 01	5.18-05	1 25 04	2 507	$\mathbf{E} \perp$	2,3
				158.419	241 341-672 360	3-3	2.30-01	5.16-05	1.33-04	-3.367	ET	2,5
				158.241	241 341–873 290	3–5		5.35-04				2,3

Table 24. Transition probabilities of allowed lines for Na VI (references for this table are as follows: 1=Luo and Pradhan, 56 2=Tachiev and Froese Fischer, 94 3=Aggarwal *et al.*, 44=Fawcett, 21 and 5=Mendoza *et al.* 62)—Continued

- ⁵ P	121.87 121.773 121.913 122.018 133.93	103 362–923 917 103 362–924 560 103 362–923 620 103 362–922 910 204 188–950 871	5–15 5–7 5–5 5–3	2.23+02		2.97-01		С	4
- ³ P	121.913 122.018 133.93	103 362–923 620 103 362–922 910	5–5		6.94-02	1 20 01			
- ³ P	122.018 133.93	103 362–922 910		2.21 + 02		1.39-01	-0.460	C	4
- ³ P	122.018 133.93		5-3		4.92 - 02	9.87-02	-0.609	C	4
- ³ P		204 188–950 871		2.20+02	2.94-02	5.90-02	-0.833	C	4
	122 022		15–9	2.10+02	3.39-02	2.24-01	-0.294	C	4
	133.823	204 132–951 390	7–5	1.78+02	3.41-02	1.05-01	-0.622	C	4
	134.022	204 223-950 370	5–3	1.65 + 02	2.66-02	5.87 - 02	-0.876	C	4
	134.135	204 261–949 780	3-1	2.15+02	1.93 - 02	2.56 - 02	-1.237	D+	4
	133.839	204 223-951 390	5-5	2.68+01	7.20 - 03	1.59 - 02	-1.444	D	4
	134.029	204 261-950 370	3-3	4.95 + 01	1.33 - 02	1.76 - 02	-1.399	D+	4
	133.846	204 261–951 390	3–5	1.49+00	6.67 - 04	8.81 - 04	-2.699	E	4
- ³ P			9_9						
	140.835	241 341–951 390	5–5	1.32+02	3.92-02	9.09-02	-0.708	C	4
	141.038	241 341–950 370	3–3	4.06+01	1.21 - 02	1.69 - 02	-1.440	E+	LS
	141.038	241 341-950 370	5-3	6.76 + 01	1.21 - 02	2.81 - 02	-1.218	E+	LS
	141.155	241 341-949 780	3-1	1.63 + 02	1.62 - 02	2.26 - 02	-1.313	E+	LS
	140.835	241 341-951 390	3-5	4.37 + 01	2.17 - 02	3.01 - 02	-1.186	D+	4
	141.038	241 341–950 370	1–3	5.42+01	4.85 - 02	2.25-02	-1.314	E+	LS
- ³ P	158.66	320 589–950 871	3–9	5.00+00	5.67-03	8.88-03	-1.769	E+	4
	158.529	320 589–951 390	3-5	5.31+00	3.33-03	5.22-03	-2.000	D	4
	158.785	320 589-950 370	3–3	4.41 + 00	1.67 - 03	2.61 - 03	-2.300	E+	4
	158.934	320 589–949 780	3–1	5.28+00	6.67 - 04	1.05 - 03	-2.699	E	4
- ³ D	123.14	204 188–1 016 270	15–15	3.40+02	7.74-02	4.71-01	0.065	C	4
	123.132	204 132-1 016 270	7–7	3.02+02	6.87 - 02	1.95-01	-0.318	C+	4
	123.146	204 223-1 016 270	5-5	2.31 + 02	5.26-02	1.07 - 01	-0.580	C	4
	123.151	204 261-1 016 270	3-3	2.51+02	5.70-02	6.93-02	-0.767	C	4
	123.132	204 132-1 016 270	7–5	5.10+01	8.29-03	2.35 - 02	-1.236	D+	4
	123.146	204 223-1 016 270	5-3	8.21 + 01	1.12-02	2.27-02	-1.252	D+	4
	123.146	204 223-1 016 270	5–7	4.34+01	1.38-02	2.80-02	-1.161	D+	4
	123.151	204 261–1 016 270	3–5	5.54+01	2.10-02	2.55-02	-1.201	D+	4
-3D	129.04	241 341–1 016 270	9–15	1.24+02	5.16-02	1.97-01	-0.333	C	4
	129.044	241 341–1 016 270	5–7	1.21+02	4.22-02	8.96-02	-0.676	C	4
	129.044	241 341-1 016 270	3-5	8.97 + 01	3.73 - 02	4.76 - 02	-0.951	C	4
	129.044	241 341-1 016 270	1-3	6.81 + 01	5.10-02	2.17-02	-1.292	D+	4
	129.044	241 341-1 016 270	5-5	3.61+01	9.00-03	1.91-02	-1.347	D+	4
	129.044	241 341-1 016 270	3-3	5.61 + 01	1.40-02	1.78 - 02	-1.377	D+	4
	129.044	241 341–1 016 270	5–3	4.01+00	6.00-04	1.27-03	-2.523	E+	4
- ¹ D	138.688	312315–1 033 360	5–5	2.25+10	6.48-02	1.48-01	-0.489	C	4
· ¹D	146.404	350 319–1 033 360	3–5	7.97+01	4.27-02	6.17-02	-0.892	C	4
- ⁵ P	106.09	103 362–1 045 940	5–15	2.85+03	1.44+00	2.52+00	0.857	В	4
	106.125	103 362-1 045 650	5–7	2.84+03	6.72-01	1.17+00	0.526	В	4
	106.077	103 362-1 046 070	5-5	2.85+03	4.82-01	8.41-01	0.382	В	4
	106.040	103 362-1 046 400	5–3	2.87+03	2.91-01	5.07-01	0.163	В	4
- ³ P			15–9						
	118.585	204 132–1 047 410	7–5	1.11+02	1.67-02	4.57-02	-0.932	C	4
	- ³ P - ³ D - ¹ D - ¹ D - ¹ D - ³ P	133.839 134.029 133.846 - ³P 140.835 141.038 141.038 141.155 140.835 141.038 - ³P 158.66 158.529 158.785 158.934 - ³D 123.146 123.151 123.132 123.146 123.151 123.132 123.146 123.151 - ³D 129.04 129.044	133.839 204 223-951 390 134.029 204 261-950 370 133.846 204 261-951 390 - 3P 140.835 241 341-951 390 141.038 241 341-950 370 141.038 241 341-950 370 141.038 241 341-951 390 140.835 241 341-951 390 141.038 241 341-950 370 141.038 241 341-950 370 141.038 241 341-950 370 141.038 241 341-950 370 141.038 241 341-950 370 141.038 241 341-950 370 141.038 241 341-950 370 158.529 320 589-950 871 158.529 320 589-950 370 158.934 320 589-949 780 123.132 204 132-1 016 270 123.146 204 223-1 016 270 123.151 204 261-1 016 270 123.151 204 261-1 016 270 123.146 204 223-1 016 270 123.146 204 223-1 016 270 123.146 204 223-1 016 270 123.146 204 223-1 016 270 123.146 204 223-1 016 270 123.146 204 223-1 016 270 123.151 204 261-1 016 270 123.151 204 261-1 016 270 123.151 204 261-1 016 270 129.044 241 341-1 0	133.839	133.839 204 223-951 390 5-5 2.68+01 134.029 204 261-950 370 3-3 4.95+01 133.846 204 261-951 390 3-5 1.49+00 -3P 9-9 140.835 241 341-951 390 5-5 1.32+02 141.038 241 341-950 370 3-3 4.06+01 141.038 241 341-950 370 5-3 6.76+01 141.155 241 341-950 370 5-3 4.37+01 141.038 241 341-950 370 1-3 5.42+01 141.038 241 341-950 370 1-3 5.42+01 141.038 241 341-950 370 1-3 5.42+01 141.038 241 341-950 370 1-3 5.42+01 141.038 241 341-950 370 1-3 5.42+01 158.529 320 589-950 871 3-9 5.00+00 158.785 320 589-951 390 3-5 5.31+00 158.785 320 589-950 370 3-3 4.41+00 158.934 320 589-949 780 3-1 5.28+00 158.934 320 589-949 780 3-1 5.28+00 123.146 204 223-1 016 270 5-5 2.31+02 123.151 204 261-1 016 270 5-5 5.10+01 123.146 204 223-1 016 270 5-5 5.10+01 123.146 204 223-1 016 270 5-3 8.21+01 123.146 204 223-1 016 270 5-3 8.21+01 123.146 204 223-1 016 270 5-7 4.34+01 123.151 204 261-1 016 270 3-5 5.54+01 123.151 204 261-1 016 270 3-5 5.54+01 123.151 204 261-1 016 270 3-5 5.54+01 123.146 204 223-1 016 270 5-7 4.34+01 123.151 204 261-1 016 270 3-5 5.54+01 129.044 241 341-1 016 270 3-5 5.54+01 129.044 241 341-1 016 270 3-5 5.54+01 129.044 241 341-1 016 270 3-5 5.54+01 129.044 241 341-1 016 270 3-5 5.54+01 129.044 241 341-1 016 270 3-5 5.54+01 129.044 241 341-1 016 270 3-5 5.54+01 129.044 241 341-1 016 270 3-5 5.54+01 129.044 241 341-1 016 270 3-5 5.54+01 129.044 241 341-1 016 270 3-5 5.54+01 129.044 241 341-1 016 270 3-5 5.54+01 129.044 241 341-1 016 270 3-5 5.54+01 129.044 241 341-1 016 270 3-5 5.54+01 129.044 241 341-1 016 270 5-5 3.61+01 129.044 241 341-1 016 270 5-5 3.61+01 129.044 241 341-1 016 270 5-5 3.61+01 129.044 241 341-1 016 270 5-5 3.61+01 129.044 241 341-1 016 270 5-5 3.61+01 129.044 241 341-1 016 270 5-5 3.61+01 129.044 241 341-1 016 270 5-5 3.61+01 129.044 241 341-1 016 270 5-5 3.61+01 129.044 241 341-1 016 270 5-5 3.61+01 129.044 241 341-1 016 270 5-5 3.61+01 129.044 241 341-1 016 270 5-5 3.61+01 129.044 241 341-1 016 270 5-5 3.61+01 129.044 241 341-1 016 270 5-5 3.61+01 129.044 241 341-1 016 270 5-5 3.61+01 129.044 241 341-	133.839	133.839	133.839	133.839

TABLE 24. Transition probabilities of allowed lines for Na VI (references for this table are as follows: 1=Luo and Pradhan, ⁵⁶ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Aggarwal *et al.*, ⁴ 4=Fawcett, ²¹ and 5=Mendoza *et al.* ⁶²)—Continued

No.	Transition array	Mult.	$\lambda_{air} \ (\mathring{A})$	$\lambda_{\rm vac} (\mathring{A})$ or $\sigma ({\rm cm}^{-1})^a$	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s-1)	f_{ik}	S (a.u.)	10g of	Acc	Source
	uruy	TVIUIL.	(21)									
				118.501	204 223–1 048 100	5–3			2.11-02			4
				118.598	204 223–1 047 410	5–5	3.51+01		1.44-02			4
				118.506	204 261–1 048 100	3–3	4.43+01		1.09-02			4
				118.603	204 261–1 047 410	3–5	3.79+00	1.33-03	1.56-03	-2.399	E+	4
62		$^{3}\text{D}^{\circ}-^{3}\text{F}$		117.58	204 188–1 054 678	15–21	1.32+03	3.83-01	2.22+00	0.759	В	4
				117.491	204 132–1 055 260	7–9	1.32+03	3.52-01	9.54-01	0.392	В	4
				117.609	204 223-1 054 500	5–7	1.18+03	3.43 - 01	6.65 - 01	0.234	В	4
				117.700	204 261–1 053 880	3-5	1.11+03	3.85 - 01	4.47 - 01	0.063	В	4
				117.596	204 132-1 054 500	7–7	1.34+02	2.77 - 02	7.51 - 02	-0.712	C	4
				117.695	204 223-1 053 880	5–5	1.94+02	4.02 - 02	7.79 - 02	-0.697	C	4
				117.682	204 132–1 053 880	7–5	4.82+00	7.14 - 04	1.94-03	-2.301	E+	4
63		$^{3}D^{\circ} - ^{3}D$		115.76	204 188–1 068 063	15–15	5.11+02	1.03-01	5.87-01	0.189	C	4
				115.724	204 132-1 068 260	7–7	4.71+01	9.46-02	2.52-01	-0.179	C+	4
				115.775	204 223-1 067 970	5-5	3.34+02	6.72 - 02	1.28 - 01	-0.474	C	4
				115.808	204 261-1 067 760	3-3	3.50+02	7.03 - 02	8.04 - 02	-0.676	C	4
				115.762	204 132-1 067 970	7–5	8.76 + 01	1.26-02	3.35 - 02	-1.055	D+	4
				15.803	204 223-1 067 760	5-3	1.28 + 02	1.54-02	2.94-02	-1.114	D+	4
				115.736	204 223-1 068 260	5-7	6.33 + 01	1.78 - 02	3.39-02	-1.051	D+	4
				115.780	204 261–1 067 970	3–5	7.66+01	2.57-02	2.93 - 02	-1.113	D+	4
64		$^{3}P^{\circ}-^{3}P$				9_9						
				124.059	241341-1 047 410	5–5	5.63+02	1.30-01	2.65-01	-0.187	C+	4
				123.953	241 341-1 048 100	3-3	1.82 + 02	4.20-02	5.14-02	-0.900	C	4
				123.953	241 341-1 048 100	5-3	3.36+02	4.64-02	9.47-02	-0.635	C	4
				124.059	241 341-1 047 410	3-5	2.22+02	8.53-02	1.05 - 01	-0.592	C	4
				123.953	241 341–1 048 100	1–3	2.84+02	1.96-01	8.00-02	-0.708	C	4
65		$^{3}P^{\circ}-^{3}D$		120.96	241 341–1 068 063	9–15	1.13+03	4.11-01	1.47+00	0.568	C+	4
				120.931	241 341–1 068 260	5–7	1.11+03	3.42-01	6.80-01	0.233	В	4
				120.973	241 341-1 067 970	3-5	8.08 + 02	2.95-01	3.53-01	-0.053	C+	4
				121.004	241 341-1 067 760	1-3	6.04+02	3.98-01	1.59-01	-0.400	C	4
				120.973	241 341-1 067 970	5-5	3.25+02	7.12-02	1.42 - 01	-0.449	C	4
				121.004	241 341-1 067 760	3-3	5.00+02	1.10-01	1.31-01	-0.481	C	4
				121.004	241 341–1 067 760	5–3	3.95+01	5.20-03	1.04-02	-1.585	D	4
66		$^{3}\text{S}^{\circ}$ – ^{3}P				3–9						
				137.585	320 589-1 047 410	3–5	1.95+02	9.20-02	1.25-01	-0.559	C	4
				137.455	320 589–1 048 100	3–3			7.74 - 02			4
67	$2s2p^3 - 2s2p^2(^2D)3d$	$^{3}D^{\circ}-^{3}F$		108.56	204 188–1 125 320	15–21	2.44+03	6.04-01	3.24+00	0.957	В	4
				108.555	204 132–1 125 320	7–9	2.45+03	5.55-01	1.39+00	0.589	B+	4
				108.566	204 223-1 125 320	5–7		5.32-01		0.425	В	4
				108.571	204 261-1 125 320	3–5	2.03+03	5.98-01	6.41-01	0.254		4
				108.555	204 132-1 125 320	7–7			1.29-01			4
				108.566	204 223-1 125 320	5-5	3.97 + 02	7.02-02	1.25-01	-0.455	C	4
				108.555	204 132–1 125 320	7–5			3.93-03			4
68		$^{3}D^{\circ}-^{3}P$		107.94	204 188–1 130 630	15–9	7.53+02	7.89-02	4.21-01	0.073	C	4
				107.933	204 132–1 130 630	7–5	6.28+02	7.83-02	1.95-01	-0.261	C+	4
				107.944	204 223-1 130 630	5–3			1.12-01			4
				107.948	204 261–1 130 630	3–1			5.05-02			4
				107.944	204 223–1 130 630	5–5			2.84-02			4
				107.744	204 223-1 130 030	5–5	9.10±01	1.00-02	2.04-02	-1.09/	דע⊤	+

TABLE 24. Transition probabilities of allowed lines for Na VI (references for this table are as follows: 1=Luo and Pradhan, ⁵⁶ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Aggarwal *et al.*, ⁴ 4=Fawcett, ²¹ and 5=Mendoza *et al.* ⁶²)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{\rm vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s-1)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
					204 261–1 130 630							4
				107.948 107.948	204 261–1 130 630	3–3 3–5	5.72+00		3.31-02 $1.78-03$			4
60		$^{3}D^{\circ}-^{3}D$		107.54	204 281–1 130 630	3–3 15–15	1.34+03		1.78 - 03 $1.23 + 00$	0.542		4
69		ים – ים		107.54	204 100-1 134 090	13-13	1.54+05	2.32-01	1.23+00	0.342	C+	4
				107.532	204 132–1 134 090	7–7	1.17+03		5.02 - 01	0.153		4
				107.542	204 223–1 134 090	5–5	9.41 + 02		2.89 - 01			4
				107.547	204 261–1 134 090	3–3	1.03+03		1.90-01			4
				107.532	204 132–1 134 090	7–5	2.10+02		6.44-02			4
				107.542	204 223–1 134 090	5–3	3.44+02		6.34 - 02			4
				107.542	204 223–1 134 090	5–7	1.43 + 02		6.12 - 02			4
				107.547	204 261–1 134 090	3–5	2.00+02	5.77-02	6.13-02	-0.762	С	4
70		$^{3}P^{\circ}-^{3}P$		112.45	241 341–1 130 630	9_9	1.30+03	2.47-01	8.22-01	0.347	C	4
				112.449	241 341-1 130 630	5-5	9.95+02	1.89-01	3.49-01	-0.025	C+	4
				112.449	241 341-1 130 630	3-3	3.50+02	6.63 - 02	7.37 - 02	-0.701	C	4
				112.449	241 341-1 130 630	5-3	4.91 + 02	5.58 - 02	1.03 - 01	-0.554	C	4
				112.449	241 341-1 130 630	3-1	1.26+03	7.97-02	8.85 - 02	-0.621	C	4
				112.449	241 341-1 130 630	3-5	3.26+02	1.03 - 01	1.14 - 01	-0.510	C	4
				112.449	241 341–1 130 630	1-3	4.43 + 02	2.52-01	9.33-02	-0.599	C	4
71		$^{3}P^{\circ}-^{3}D$		112.01	241 341–1 134 090	9–15	8.23+02	2.58-01	8.57-01	0.366	C+	4
				112.014	241 341–1 134 090	5–7	8.47+02	2.23-01	4.11-01	0.047	C+	4
				112.014	241 341–1 134 090	3–5	6.32+02		2.19-01			4
				112.014	241 341–1 134 090	1–3	4.55+02		9.48-02			4
				112.014	241 341–1 134 090	5–5	1.80+02		6.23-02			4
				112.014	241 341–1 134 090	3–3	3.15+02		6.56-02			4
				112.014	241 341–1 134 090	5–3	1.77+01		3.69-03			4
72		$^{3}P^{\circ}-^{3}S$		110.75	241 341–1 144 280	9–3	1.22+03	7.49-02	2.46-01	-0.171	C	4
				110.749	241 341–1 144 280	5–3	7.05+02	7 78 - 02	1.42-01	-0.410	C	4
				110.749	241 341–1 144 280	3–3	3.92+02		7.88-02			4
				110.749	241 341–1 144 280	1–3			2.52-02			4
73		$^{1}D^{\circ}-^{1}D$		119.682	312 315–1 147 860	5–5	1.73+03		7.32-01	0.270		4
74		$^{1}D^{\circ}-^{1}P$		119.194	312 315–1 151 280	5–3	3.43+02		8.59-02			4
75		$^{1}P^{\circ}-^{1}D$		125.385	350 319–1 147 860	3–5			3.53-01			4
		$^{1}P^{\circ}-^{1}P$										
76	2 2 3 2 2 2(47) 4 1	$^{5}P - ^{5}P$		124.850	350 319–1 151 280	3–3	3.00+02	7.01-02	8.64-02	-0.677	D	1
77	$2s2p^3 - 2s2p^2(^4P)4d$	3S – 3P				5–15						1
				87.211	103 362-1 250 010	5–7	8.21 + 02	1.31 - 01	1.88 - 01	-0.184	D	LS
				87.141	103 362-1 250 930	5–5	8.20+02	9.34-02	1.34 - 01	-0.331	D	LS
78		$^{3}D^{\circ}-^{3}F$		95.24	204 188–1 254 155	15–21	7.33+02	1.40-01	6.57-01	0.322	D	1
				95.182	204 132-1 254 750	7–9	7.33+02	1.28-01	2.81-01	-0.048	D+	LS
				95.263	204 223-1 253 950	5–7	6.51 + 02	1.24-01	1.94-01	-0.208	D	LS
				95.319	204 261–1 253 370	3–5			1.32-01			LS
				95.255	204 132–1 253 950	7–7			2.44-02			LS
				95.316	204 223–1 253 370	5–5			2.45-02			LS
				95.307	204 132–1 253 370	7–5			6.87-04			LS
79		$^{3}P^{\circ}-^{3}D$		98.30	241 341–1 258 610	9–15			4.29-01	0.122		1
				98.302	241 341–1 258 610	5–7			2.01-01			LS
				98.302	241 341–1 258 610	3–5	4.56+02	1.10-01	1.07-01	-0.481	D	LS

TABLE 24. Transition probabilities of allowed lines for Na VI (references for this table are as follows: 1=Luo and Pradhan, ⁵⁶ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Aggarwal *et al.*, ⁴ 4=Fawcett, ²¹ and 5=Mendoza *et al.* ⁶²)—Continued

N.T.	Transition	3.6.3:	λ_{air}	$\lambda_{\text{vac}} (\mathring{A})$	$E_i - E_k$		A_{ki}	C	S	1 2		C
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	$(10^8 \text{ s}-1)$	f_{ik}	(a.u.)	log gf	Acc.	Source
				98.302	241 341–1 258 610	1–3		1.47-01				LS
				98.302	241 341–1 258 610	5–5	1.53+02		3.58-02			LS
				98.302	241 341–1 258 610	3–3	2.54+02		3.57-02			LS
				98.302	241 341–1 258 610	5–3	1.69+01	1.47-03	2.38-03	-2.134	Е	LS
80	$2s2p^3 - 2s2p^2(^2D)4d$	$^{3}D^{\circ}-^{3}F$		88.46	204 188–1 334 585	15–21	2.61+02	4.28-02	1.87-01	-0.192	E+	1
				88.460	204 132–1 334 585	7–9		3.93 - 02				LS
				88.467	204 223–1 334 585	5–7		3.80 - 02				LS
				88.470	204 261–1 334 585	3–5		4.28 - 02				LS
				88.460	204 132–1 334 585	7–7		3.41 - 03				LS
				88.467	204 223–1 334 585	5–5		4.77 - 03				LS
				88.460	204 132–1 334 585	7–5	1.15+00	9.61-05	1.96-04	-3.172	Е	LS
81	$2s2p^3 - 2s2p^2(^5P)5d$	$^{5}\text{S}^{\circ} - ^{5}\text{P}$				5–15						1
				80.645	103 362–1 343 360	5–7	4.81+02	6.57-02	8.72-02	-0.483	D	LS
82	2p3s-2p3p	$^{3}P^{\circ}-^{3}P$				9_9						
				1 550.63	808 800-873 290	5-5	3.74+00	1.35-01	3.44+00	-0.171	A	2,3
				1 532.33	807 320-872 580	3-3	9.96-01	3.51-02	5.31-01	-0.978	В	2,3
				1 567.89	808 800-872 580	5-3	2.44+00	5.40-02	1.39 + 00	-0.569	$\mathrm{B}+$	2,3
				1 515.84	807 320-873 290	3-5	1.14+00	6.54-02	9.79-01	-0.707	B+	2,3
83		$^{1}P^{\circ}-^{3}P$										
				1 823.5	817 740–872 580	3–3	8.45-03	4.21-04	7.59-03	-2.899	D	2,3
				1 800.2	817 740–873 290	3–5	3.20-05	2.59-06	4.60-05	-5.110	Е	2,3
84	$2s^22p3s-2s2p^2(^3P)3s$	$^{3}P^{\circ}-^{3}P$				9_9						1
				701.31	808 800–951 390	5–5	2.47+00	1.82_02	2.10-01	_1.041	D	LS
				699.06	807 320–950 370	3–3	8.30-01		4.20-02			LS
				706.36	808 800–950 370	5–3	1.34+00		6.99 - 02			LS
				701.95	807 320–949 780	3–1	3.28+00		5.59 - 02			LS
				694.11	807 320–951 390	3–5		1.02 - 02				LS
85	$2s^22p3s-2s2p^2(^2D)3s$	$^{3}P^{\circ}-^{3}D$				9–15						1
				481.997	808 800–1 016 270	5–7	2 11+01	1.03-01	8 17-01	-0.288	C	LS
				478.583	807 320–1 016 270	3–5		9.28-02				LS
				481.997	808 800–1 016 270	5–5		1.84-02				LS
				478.583	807 320–1 0162 70	3–3		3.09-02				LS
				481.997	808 800–1 016 270	5–3		1.23 - 03				LS
86		$^{1}P^{\circ}-^{1}D$		463.779	817 740–1 033 360	3–5	7.09+00	3.81-02	1.75-01	-0.942	D	1
87	2p3p-2p3d	$^{3}P-^{3}D^{\circ}$				9–15						
				1 747.64	873 290–930 510	5–7	2.36+00	1.51-01	4.35+00	-0.122	A	2,3
				1 741.55	872 580–930 000	3-5	1.88+00	1.43-01	2.45+00	-0.368	$\mathrm{B}+$	2,3
				1 763.36	873 290–930 000	5-5	3.41 - 01	1.59-02	4.61 - 01	-1.100	В	2,3
				1 748.44	872 580-929 774	3-3	8.17 - 01	3.74 - 02	6.47 - 01	-0.950	B +	2,3
				1 770.41	873 290–929 774	5–3	2.94 - 02	8.27 - 04	2.41 - 02	-2.384	C	2,3
88		$^{3}P-^{3}P^{\circ}$				9_9						
				1 649.35	873 290–933 920	5–5	1.31+00	5.33-02	1.45+00	-0.574	B+	2,3
				1 616.03	872 580-934 460	3-3	8.41 - 01	3.29-02	5.25-01	-1.006	В	2,3
				1 634.79	873 290–934 460	5-3	6.38-01	1.53 - 02	4.13 - 01	-1.116	В	2,3

TABLE 24. Transition probabilities of allowed lines for Na VI (references for this table are as follows: 1=Luo and Pradhan, ⁵⁶ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Aggarwal *et al.*, ⁴ 4=Fawcett, ²¹ and 5=Mendoza *et al.* ⁶²)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{ m vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s-1)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				1 630.26	872 580–933 920	3–5	5.42-03	3.60-04	5.79-03	-2.967	D	2,3
89	$2s^22p3p-2s2p^2(^4P)3p$	$^{3}P-^{3}S^{\circ}$				9–3						1
				1 025.12	873 290–970 840	5–3	6.46-01	6.11-03	1.03-01	-1.515	D	LS
				1 017.71	872 580–970 840	3–3	3.97-01	6.16-03	6.19-02	-1.733	E+	LS
90		$^{3}P-^{3}D^{\circ}$				9–15						1
				810.04	873 290–996 740	5–7	3.99+00		7.32-01			LS
				810.18	872 580–996 010	3–5	2.99+00		3.92-01			LS
				814.86	873 290–996 010	5–5	9.79-01	9.75-03	1.31-01	-1.312	D	LS
91		$^{3}P-^{3}P^{\circ}$				9–9						1
				755.17	873 290–1 005 710	5–5	2.70+00		2.87 - 01			LS
				[754.8]	872 580–1 005 070	3–3	9.03-01		5.75 - 02			LS
				[758.8]	873 290–1 005 070	5–3			9.58-02			LS
				751.15	872 580–10 05 710	3–5	9.15-01	1.29-02	9.57-02	-1.412	D	LS
92	$2s^22p3p-2s2p^2(^2D)3p$	$^{3}P - ^{3}D^{\circ}$				9–15						1
				599.05	873 290–1 040 220	5–7	2.16+00	1.63 - 02	1.61 - 01	-1.089	D	LS
				596.52	872 580–1 040 220	3–5	1.64+00		8.60-02			LS
				599.05	873 290–1 040 220	5–5	5.39-01		2.86 - 02			LS
				596.52	872 580–1 040 220	3–3	9.11-01		2.86-02			LS
				599.05	873 290–1 040 220	5–3	6.01-01	1.94-04	1.91-03	-3.013	Е	LS
93	2p3p-2p4s	$^{3}P-^{3}P^{\circ}$				9_9						1
				459.834	873 290–1 090 760	5–5			1.26-01			LS
				458.337	872 580–1 090 760	3–5	1.76+00	9.26-03	4.19-02	-1.556	E+	LS
94	2p3p-2p4d	$^{3}P - ^{3}D^{\circ}$				9–15						1
				382.468	873 290–1 134 750	5–7	6.74+01	2.07-01	1.30+00	0.015	C	LS
				382.717	872 580-1 133 870	3-5	5.05+01	1.85 - 01	6.99 - 01	-0.256	C	LS
				383.759	873 290–1 133 870	5–5	1.67 + 01	3.68 - 02	2.32 - 01	-0.735	D+	LS
				383.274	872 580–1 133 490	3–3			2.33 - 01			LS
				384.320	873 290–1 133 490	5–3	1.84+00	2.45-03	1.55-02	-1.912	E+	LS
95		$^{3}P-^{3}P^{\circ}$				9–9						1
				380.098	873 290–1 136 380	5–5			4.60-01			LS
				379.075	872 580–1 136 380	3–5	1.14+01	4.10-02	1.53-01	-0.910	D	LS
96	2p3p-2p5d	$^{3}P - ^{3}D^{\circ}$				9–15						1
				[281.75]	873 290–1 228 210	5–7	3.32+01	5.53-02	2.56-01	-0.558	D+	LS
97	$2s^22p3d-2s2p^2(^4P)3s$	$^{3}D^{\circ}-^{3}P$	4 835	4 836	930 193–950 871	15–9	2.03-02	4.24-03	1.01 + 00	-1.197	D+	1
			4 787.9	4 789.3	930 510–951 390	7–5	1.73 - 02	4.26-03	4.70 - 01	-1.525	D+	LS
			4 907.8	4 909.2	930 000–950 370	5-3	1.43 - 02	3.11-03	2.51-01	-1.808	D+	LS
			4 997.1	4 998.5	929 774–949 780	3-1	1.82 - 02	2.27 - 03	1.12-01	-2.167	D	LS
			4 673.8	4 675.1	930 000–951 390	5–5	3.33-03	1.09 - 03	8.39 - 02	-2.264	D	LS
			4 854.0	4 855.3	929 774–950 370	3–3	4.95 - 03	1.75 - 03	8.39-02	-2.280	D	LS
			4 624.9	4 626.2	929 774–951 390	3–5	2.28 - 04	1.22-04	5.57-03	-3.437	E	LS
98		$^{3}P^{\circ}-^{3}P$	5 990	5 995	934 191–95 0 871	9_9	3.21-03	1.73-03	3.07-01	-1.808	E+	1
			5 723	5 724	933 920–951 390	5-5	2.77-03	1.36-03	1.28-01	-2.167	D	LS

Table 24. Transition probabilities of allowed lines for Na VI (references for this table are as follows: 1=Luo and Pradhan, 56 2=Tachiev and Froese Fischer, 94 3=Aggarwal *et al.*, 44=Fawcett, 21 and 5=Mendoza *et al.* 62)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s-1)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
			6 077	6 079	933 920–950 370	5–3	1.28-03	4.27-04	4.27-02	-2.671	E+	LS
			6 526	6 527	934 460–949 780	3–1	2.49 - 03	5.30 - 04	3.42 - 02	-2.799	E+	LS
			5 905	5 907	934 460–951 390	3–5		7.32 - 04				LS
			[6 396]	[6 398]	934 740–950 370	1–3	8.80-04	1.62-03	3.41 - 02	-2.790	E+	LS
99	$2s^22p3d-2s2p^2(^2D)3s$	${}^{1}F^{\circ} - {}^{1}D$		1 137.53	945 450–1 033 360	7–5	4.80-01	6.65-03	1.74-01	-1.332	D	1
100	$2s^22p3d-2s2p^2(^2D)3d$	$^{3}F^{\circ}-^{3}F$				21–21						1
				485.814	919 480-1 125 320	5-5	1.20+01	4.24-02	3.39-01	-0.674	D+	LS
				485.814	919 480–1 125 320	5–7	1.07+00	5.29-03	4.23-02	-1.578	E+	LS
101		$^{1}D^{\circ}-^{1}D$		440.509	920 850–1 147 860	5–5	1.58+01	4.59-02	3.33-01	-0.639	D+	1
102		$^{1}D^{\circ}-^{1}P$		433.971	920 850–1 151 280	5–3	8.85+00	1.50-02	1.07-01	-1.125	D	1
103		$^{3}\text{D}^{\circ}$ – ^{3}F		512.49	930 193–1 125 320	15–21	1.91+00	1.05-02	2.66-01	-0.803	D	1
				513.321	930 510–1 125 320	7–9	1.90+00	9.63-03	1.14-01	-1.171	D	LS
				511.980	930 000–1 125 320	5–7	1.70+00	9.34 - 03	7.87 - 02	-1.331	D	LS
				511.389	929 774–1 125 320	3–5	1.61+00	1.05 - 02	5.30 - 02	-1.502	E+	LS
				513.321	930 510–1 125 320	7–7	2.11-01	8.34 - 04	9.87 - 03	-2.234	E	LS
				511.980	930 000-1 125 320	5–5	2.98 - 01	1.17 - 03	9.86 - 03	-2.233	E	LS
				513.321	930 510–1 125 320	7–5	8.33-03	2.35 - 05	2.78 - 04	-3.784	E	LS
104		$^{3}D^{\circ}-^{3}D$		490.44	930 193–1 134 090	15–15	1.69+01	6.10-02	1.48+00	-0.039	D+	1
				491.207	930 510–1 134 090	7–7	1.50+01	5.41 - 02	6.12-01	-0.422	C	LS
				489.980	930 000-1 134 090	5–5	1.18+01	4.25 - 02	3.43 - 01	-0.673	D+	LS
				489.438	929 774–1 134 090	3–3	1.28+01	4.58 - 02	2.21-01	-0.862	D+	LS
				491.207	930 510–1 134 090	7–5	2.62+00	6.78 - 03	7.67 - 02	-1.324	D	LS
				489.980	930 000-1 134 090	5–3	4.24+00	9.15 - 03	7.38 - 02	-1.340	D	LS
				489.980	930 000-1 134 090	5–7	1.89+00	9.52 - 03	7.68 - 02	-1.322	D	LS
				489.438	929 774–1 134 090	3–5	2.56+00	1.53-02	7.40-02	-1.338	D	LS
105		$^{3}P^{\circ} - ^{3}P$		509.06	934 191–1 130 630	9_9	1.00+01	3.89-02	5.87-01	-0.456	D	1
				508.363	933 920–1 130 630	5–5	7.54+00	2.92-02	2.44 - 01	-0.836	D+	LS
				509.762	934 460–1 130 630	3–3	2.49+00	9.71 - 03	4.89 - 02	-1.536	E+	LS
				508.363	933 920–1 130 630	5–3	4.19+00	9.74 - 03	8.15 - 02	-1.312	D	LS
				509.762	934 460–1 130 630	3-1		1.30 - 02				LS
				509.762	934 460–1 130 630	3–5	2.50+00	1.62 - 02	8.16-02	-1.313	D	LS
				[510.49]	934 740–1 130 630	1–3	3.31+00	3.88 - 02	6.52 - 02	-1.411	D	LS
106		$^{3}P^{\circ}-^{3}S$		475.99	934 191–1 144 280	9–3	1.02+01	1.16-02	1.63-01	-0.981	D	1
				475.376	933 920-1 144 280	5-3	5.71+00	1.16-02	9.08-02	-1.237	D	LS
				476.599	934 460-1 144 280	3-3	3.38+00	1.15 - 02	5.41 - 02	-1.462	E+	LS
				[477.24]	934 740–1 144 280	1–3	1.12+00	1.15 - 02	1.81 - 02	-1.939	E+	LS
107		$^{1}P^{\circ}-^{1}D$		496.697	946 530–1 147 860	3–5	6.34+00	3.91-02	1.92-01	-0.931	D	1
108		$^{1}P^{\circ}-^{1}P$		488.400	946 530–1 151 280	3–3	4.98+00	1.78-02	8.59-02	-1.272	D	1
109	2s2p ² (⁴ P)3s- 2s2p ² (⁴ P)3p	$^{3}P-^{3}S^{\circ}$	5 006	5 008	950 871–970 840	9–3	1.34-01	1.68-02	2.50+00	-0.820	С	1
			5 140.0	5 141.4	951 390–970 840	5–3	6.90-02	1.64-02	1.39+00	-1.086	С	LS
			4 883.8		950 370–970 840	3–3		1.73-02				LS
			4 747.0		949 780–970 840	1–3		1.73 - 02 $1.77 - 02$				LS
110		$^{3}P-^{3}D^{\circ}$				9–15						1
110		1 - 1))-13						1

TABLE 24. Transition probabilities of allowed lines for Na VI (references for this table are as follows: 1=Luo and Pradhan, ⁵⁶ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Aggarwal *et al.*, ⁴ 4=Fawcett, ²¹ and 5=Mendoza *et al.* ⁶²)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s-1)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			2 204.4	2 205.1	951 390–996 740	5–7	1.63+00	1.66-01	6.03+00	-0.081	В	LS
			2 190.4	2 191.1	950 370-996 010	3-5	1.24+00	1.49 - 01	3.22+00	-0.350	C+	LS
			2 240.5	2 241.1	951 390–996 010	5-5	3.86-01	2.91 - 02	1.07 + 00	-0.837	C	LS
111		$^{3}P-^{3}P^{\circ}$				9–9						1
				1 840.9	951 390–1 005 710	5–5	2.20+00	1.12-01	3.39+00	-0.252	C+	LS
				[1 828]	950 370-1 005 070	3–3	7.50 - 01	3.76-02	6.79 - 01	-0.948	C	LS
				[1 863]	951 390-1 005 070	5-3	1.18+00	3.69-02	1.13+00	-0.734	C	LS
				1 807.0	950 370-1 005 710	3-5	7.77 - 01	6.34 - 02	1.13+00	-0.721	C	LS
				[1 809]	949 780–1 005 070	1–3	1.03+00	1.52-01	9.05-01	-0.818	C	LS
112	$2s2p^2(^4P)3s - 2s2p^2(^2D)3p$	$^{3}P-^{3}D^{\circ}$		1 119.2	950 871–1 040 220	9–15	1.02+00	3.20-02	1.06+00	-0.541	D+	1
				1 125.75	951 390–1 040 220	5–7	1.00+00	2.67-02	4.95-01	-0.875	D+	LS
				1 112.97	950 370–1 040 220	3–5	7.79 - 01	2.41 - 02	2.65 - 01	-1.141	D+	LS
				1 105.71	949 780–1 040 220	1–3	5.87 - 01	3.23 - 02	1.18 - 01	-1.491	D	LS
				1 125.75	951 390–1 040 220	5-5	2.51 - 01	4.76 - 03	8.82 - 02	-1.623	D	LS
				1 112.97	950 370–1 040 220	3–3	4.32 - 01	8.03 - 03	8.83 - 02	-1.618	D	LS
				1 125.75	951 390–1 040 220	5–3	2.78-02	3.17-04	5.87-03	-2.800	Е	LS
113	$2s2p^2(^4P)3s-2s^22p4d$	$^{3}P-^{3}D^{\circ}$		545.45	950 871–1 134 205	9–15	7.06+00	5.25-02	8.48-01	-0.326	D	1
				545.375	951 390-1 134 750	5–7	7.06+00	4.41-02	3.96-01	-0.657	D+	LS
				544.959	950 370-1 133 870	3-5	5.31+00	3.94-02	2.12-01	-0.927	D	LS
				544.336	949 780-1 133 490	1-3	3.95+00	5.26-02	9.43-02	-1.279	D	LS
				548.005	951 390-1 133 870	5-5	1.74+00	7.83-03	7.06-02	-1.407	D	LS
				546.090	950 370-1 133 490	3-3	2.93+00	1.31-02	7.07 - 02	-1.406	D	LS
				549.149	951 390–1 133 490	5–3	1.92-01	5.21-04	4.71-03	-2.584	E	LS
114		$^{3}P-^{3}P^{\circ}$				9–9						1
				540.570	951 390–1 136 380	5–5	3.97+00	1.74-02	1.55-01	-1.060	D	LS
				537.606	950 370–1 136 380	3–5	1.35+00	9.73-03	5.17-02	-1.535	E+	LS
115	$2s2p^2(^4P)3p - 2s2p^2(^2D)3s$	$^{3}D^{\circ}-^{3}D$				15–15						1
			5 118.9	5 120.3	996 740-1 016 270	7–7	3.03-03	1.19-03	1.40-01	-2.079	D	LS
			4 934.5	4 935.8	996 010-1 016 270	5-5	2.64-03	9.64-04	7.83 - 02	-2.317	D	LS
			5 118.9	5 120.3	996 740-1 016 270	7–5	5.31 - 04	1.49-04	1.76-02	-2.982	E+	LS
			4 934.5	4 935.8	996 010-1 016 270	5-3	9.49-04	2.08 - 04	1.69-02	-2.983	E+	LS
			4 934.5	4 935.8	996 010–1 016 270	5–7	4.22-04	2.16-04	1.75 - 02	-2.967	E+	LS
116	$2s2p^2(^4P)3p - 2s2p^2(^4P)3d$	$^{3}\text{S}^{\circ}$ – ^{3}P				3–9						1
				1 305.99	970 840–1 047 410	3–5	4 55+00	1 94-01	2.50+00	-0.235	C+	LS
				1 294.33	970 840–1 047 410	3–3			1.50+00			LS
117		$^{3}D^{\circ}-^{3}F$				15–21						1
117		Б									_	
				1 708.82	996 740–1 055 260	7–9		2.35-01		0.216		LS
				1 709.69	996 010–1 054 500	5–7		2.28-01		0.057		LS
				1 731.30	996 740–1 054 500	7–7			8.02-01			LS
				1 728.01 1 750.09	996 010–1 053 880 996 740–1 053 880	5–5 7–5			8.02-01 $2.27-02$			LS LS
118		$^{3}D^{\circ}-^{3}D$		1 750.07	770 710 1 033 000	15–15	1.71 02	3.02 04	2.2, 02	2.403		1
110		ע – ע		1 200 21	00740 1 079 279		1.06 - 00	F 46 02	1.76 : 00	0.410	C	
				1 398.21	996 740–1 068 260	7–7	1.86+00	5.46-02	1.76+00	-0.418	C	LS

TABLE 24. Transition probabilities of allowed lines for Na VI (references for this table are as follows: 1=Luo and Pradhan, ⁵⁶ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Aggarwal *et al.*, ⁴ 4=Fawcett, ²¹ and 5=Mendoza *et al.* ⁶²)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s-1)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				1 389.66	996 010–1 067 970	5–5	1.49+00	4.30-02	9.84-01	-0.668	С	LS
				1 403.90	996 740–1 067 970	7–5	3.23 - 01	6.82 - 03	2.21-01	-1.321	D+	LS
				1 393.73	996 010–1 067 760	5–3	5.29 - 01		2.12-01			LS
				1 384.08	996 010–1 068 260	5–7	2.41-01	9.69-03	2.21-01	-1.315	D+	LS
119		$^{3}P^{\circ} - ^{3}P$				9_9						1
			2 397.4		1 005 710–1 047 410	5–5			1.78 + 00			LS
			[2 323]	[2 324]	1 005 070–1 048 100	3–3			3.56-01			LS
			2 358.3 [2 361]	2 359.0 [2 362]	1 005 710–1 048 100 1 005 070–1 047 410	5–3 3–5			5.94-01 5.95-01			LS LS
120		$^{3}P^{\circ}-^{3}D$	[2 301]	[2 302]	1 003 070 1 047 410	9–15	1.05 01	2.33 02	3.75 01	1.110		1
.20		ı D		4.500.50	1 007 710 1 000 700		4.24 00	226.01	- o - o o	0.052		
				1 598.72	1 005 710–1 068 260	5–7		2.26-01	5.95+00 3.19+00	0.053		LS
				[1 589.8]	1 005 070–1 067 970 1 005 710–1067 970	3–5 5–5	1.04+00		1.06+00			LS
				1 606.17 [1 595.2]	1 005 070–1 067 760	3–3	1.76+00		1.06+00			LS LS
				1 611.60	1 005 070-1 007 700	5–3			7.06-02			LS
121	$2s2p^2(^4P)3p - 2s2p^2(^2D)3d$	$^{3}\text{D}^{\circ} - ^{3}\text{P}$				15–9						1
				746.88	996 740–1 130 630	7–5	7.99-01	4.77-03	8.21-02	-1.476	D	LS
				742.83	996 010-1 130 630	5–3	7.25-01		4.40-02	-1.745	E+	LS
				742.83	996 010–1 130 630	5–5	1.45-01	1.20-03	1.47-02	-2.222	E+	LS
122		$^{3}D^{\circ}-^{3}D$				15–15						1
				728.07	996 740-1 134 090	7–7	9.80-01	7.79-03	1.31-01	-1.263	D	LS
				724.22	996 010-1 134 090	5–5	7.80-01		7.31-02			LS
				728.07	996 740-1 134 090	7–5	1.72 - 01	9.76-04	1.64-02	-2.165	E+	LS
				724.22	996 010-1 134 090	5-3	2.80-01	1.32-03	1.57-02	-2.180	E+	LS
				724.22	996 010–1 134 090	5–7	1.24-01	1.37-03	1.63-02	-2.164	E+	LS
123	$2s2p^2(^4P)3p - 2s2p^2(^4P)4s$	$^{3}\text{S}^{\circ}$ – ^{3}P				3–9						1
124		$^{3}\text{D}^{\circ}-^{3}\text{P}$		[410.93]	970 840–1 214 190	3–5 15–9	9.36+00	3.95-02	1.60-01	-0.926	D	LS 1
				[459.88]	996 740–1 214 190	7–5	4.05+01	9.17-02	9.72-01	-0.193	C	LS
				[458.34]	996 010–1 214 190	5–5	7.30+00	2.30-02	1.74 - 01	-0.939	D	LS
125		$^{3}P^{\circ}-^{3}P$				9_9						1
				[479.66]	1 005 710–1 214 190	5–5	1.26+01	4.36-02	3.44-01	-0.662	D+	LS
				[478.19]	1 005 070–1 214 190	3–5	4.25+00	2.43 - 02	1.15 - 01	-1.137	D	LS
126	$2s2p^2(^4P)3p - 2s2p^2(^4P)4d$	$^{3}D^{\circ}-^{3}F$				15–21						1
				387.582	996 740–1 254 750	7–9	7.18+01	2.08-01	1.86+00	0.163	C	LS
				387.687	996 010–1 253 950	5–7	6.37 + 01	2.01-01	1.28+00	0.002	C	LS
				388.787	996 740–1 253 950	7–7	7.94+00	1.80 - 02	1.61 - 01	-0.900	D	LS
				388.561	996 010–1 253 370	5–5			1.61-01			LS
				389.666	996 740–1 253 370	7–5	3.11-01	5.06-04	4.54-03	-2.451	Е	LS
127		$^{3}\text{D}^{\circ} - ^{3}\text{D}$				15–15						1
				381.869	996 740–1 258 610	7–7			2.13-01			LS
				380.807	996 010–1 258 610	5–5			1.19-01			LS
				381.869	996 740–1 258 610	7–5	1.94+00	3.03-03	2.67-02	-1.673	E+	LS

TABLE 24. Transition probabilities of allowed lines for Na VI (references for this table are as follows: 1=Luo and Pradhan, ⁵⁶ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Aggarwal *et al.*, ⁴ 4=Fawcett, ²¹ and 5=Mendoza *et al.* ⁶²)—Continued

No.	Transition array	Mult.	$\lambda_{air} \ (\mathring{A})$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s-1)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				380.807	996 010–1 258 610	5–3	3.14+00		2.56-02			LS
				380.807	996 010–1 258 610	5–7						LS
128		$^{3}P^{\circ}-^{3}D$				9–15						1
120		F - D				9-13						
				395.413	1 005 710–1 258 610	5–7		1.47-01				LS
				[394.42]	1 005 070–1 258 610	3–5	3.40+01		5.14-01			LS
				395.413	1 005 710–1 258 610 1 005 070–1 258 610	5–5	1.12+01 1.88+01		1.71-01 1.71-01			LS LS
				[394.42] 395.413	1 005 070-1 258 610	3–3 5–3		1.75-03				LS
129	$2s2p^2(^4P)3p-2p^3(^4S^{\circ})3p$	$^{3}\text{S}^{\circ}$ – ^{3}P		339.28	970 840–1 265 580	3–9	4.21+01	2.18-01	7.31-01	-0.184	D+	1
	1 \ / 1 1 \ / 1			339.282	970 840–1 265 580	3–5	4.21+01		4.05-01			LS
				339.282	970 840–1 265 580	3–3	4.21+01		2.44 - 01			LS
				339.282	970 840–1 265 580	3–1		2.43 - 02				LS
		3_ 0 3_		337.202	770 010 1 203 300		1.22 1 01	2.13 02	0.11 02	1.157	D	
130		$^{3}\text{D}^{\circ} - ^{3}\text{P}$				15–9						1
				371.968	996 740–1 265 580	7–5	2.70+01	4.00 - 02	3.43 - 01	-0.553	D+	LS
				370.961	996 010–1 265 580	5–3	2.42+01		1.83 - 01			LS
				370.961	996 010–1 265 580	5–5	4.85+00	1.00-02	6.11-02	-1.301	E+	LS
131		$^{3}P^{\circ}-^{3}P$				9_9						1
				384.808	1 005 710–1 265 580	5–5	5.90+01	1.31-01	8.30-01	-0.184	C	LS
				[383.86]	1 005 070-1 265 580	3–3	1.98+01	4.38 - 02	1.66 - 01	-0.881	D	LS
				384.808	1 005 710–1 265 580	5–3	3.28+01	4.37 - 02	2.77 - 01	-0.661	D+	LS
				[383.86]	1 005 070–1 265 580	3–1	7.93+01		2.21-01			LS
				[383.86]	1 005 070–1 265 580	3–5	1.98+01	7.30-02	2.77-01	-0.660	D+	LS
132	$2s2p^2(^4P)3p - 2s2p^2(^4D)4d$	$^{3}D^{\circ}-^{3}F$				15–21						1
				295.994	996 740–1 334 585	7–9	1.53+01	2.58-02	1.76-01	-0.743	D	LS
				295.356	996 010–1 334 585	5–7	1.37 + 01	2.50-02	1.22 - 01	-0.903	D	LS
				295.994	996 740–1 334 585	7–7	1.70+00		1.52 - 02			LS
				295.356	996 010–1 334 585	5–5	2.40+00		1.53-02			LS
				295.994	996 740–1 334 585	7–5	6.71-02	6.30-05	4.30-04	-3.356	Е	LS
133	$2s2p^2(^2D)3s - 2s2p^2(^2D)3p$	$^{3}D-^{3}D^{\circ}$	4 174	4 175	1 016 270–1 040 220	15–15	2.60-01	6.80-02	1.40+01	0.009	C+	1
			4 174.2	4 175.4	1 016 270-1 040 220	7–7	2.31-01	6.04-02	5.81 + 00	-0.374	В	LS
			4 174.2	4 175.4	1 016 270-1 040 220	5-5	1.81 - 01	4.73 - 02	3.25+00	-0.626	C+	LS
			4 174.2	4 175.4	1 016 270–1 040 220	3–3	1.95 - 01	5.10-02	2.10+00	-0.815	C	LS
			4 174.2	4 175.4	1 016 270–1 040 220	7–5		7.58 - 03				LS
			4 174.2	4 175.4	1 016 270–1 040 220	5–3		1.02-02				LS
			4 174.2	4 175.4	1 016 270-1 040 220	5–7		1.06-02				LS
			4 174.2	4 175.4	1 016 270–1 040 220	3–5		1.70-02				LS
134		$^{1}D-^{1}F^{\circ}$	2 584.5	2 585.3	1 033 360–1 072 040	5–7	1.03+00	1.44-01	6.13+00	-0.143	В	1
135		$^{1}D-^{1}D^{\circ}$	2 245.0	2 245.7	1 033 360–1077 890	5–5	1.47 + 00	1.11-01	4.10+00	-0.256	C+	1
136	$2s2p^2(^2D)3s-2s^22p4s$	$^{3}D-^{3}P^{\circ}$				15–9						1
				1 342.46	1 016 270–1 090 760	7–5	2.43+00	4.69-02	1.45+00	-0.484	C	LS
				1 342.46	1 016 270-1 090 760	5-5	4.33-01	1.17-02	2.59-01	-1.233	D+	LS
				1 342.46	1 016 270–1090 760	3–5	2.89 - 02	1.30-03	1.72 - 02	-2.409	E+	LS
137	$2s2p^2(^2D)3s-2s^22p4d$	$^{3}D-^{3}F^{\circ}$				15–21						1

TABLE 24. Transition probabilities of allowed lines for Na VI (references for this table are as follows: 1=Luo and Pradhan, ⁵⁶ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Aggarwal *et al.*, ⁴ 4=Fawcett, ²¹ and 5=Mendoza *et al.* ⁶²)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s-1)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				889.52	1 016 270-1 128 690	3–5	4.88-01	9.65-03	8.48-02	-1.538	D	LS
				889.52	1 016 270-1 128 690	5-5	9.10-02	1.08 - 03	1.58 - 02	-2.268	E+	LS
				889.52	1 016 270–1 128 690	7–5	2.56-03	2.17 - 05	4.45 - 04	-3.818	E	LS
138		$^{1}D-^{1}D^{\circ}$		1 022.39	1 033 360–1 131 170	5–5	3.12-01	4.89-03	8.23-02	-1.612	D	1
139		$^{1}D-^{1}F^{\circ}$		930.23	1 033 360–1 140 860	5–7	1.21+00	2.19-02	3.35-01	-0.961	D+	1
140	$2s2p^2(^2D)3p - 2s2p^2(^4P)3d$	$^{3}D^{\circ}-^{3}F$	6 910	6 917	1 040 220–1 054 678	15–21	4.74-04	4.76-04	1.63-01	-2.146	E+	1
			6 647	6 649	1 040 220–1 055 260	7–9	5.34-04	4.55-04	6.97-02	-2.497	D	LS
			7 001	7 003	1 040 220-1 054 500	5–7	4.06-04	4.18-04	4.82-02	-2.680	E+	LS
			7 319	7 321	1 040 220-1 053 880	3-5	3.36-04	4.50-04	3.25-02	-2.870	E+	LS
			7 001	7 003	1 040 220-1 054 500	7–7	5.10-05	3.75-05	6.05-03	-3.581	E	LS
			7 319	7 321	1 040 220-1 053 880	5-5	6.25 - 05	5.02-05	6.05-03	-3.600	E	LS
			7 319	7 321	1 040 220–1 053 880	7–5	1.76-06	1.01-06	1.70 - 04	-5.151	E	LS
141	$2s2p^2(^2D)3p - 2s2p^2(^2D)3d$	$^{3}D^{\circ}-^{3}F$		1 175.1	1 040 220–1 125 320	15–21	7.45+00	2.16-01	1.25+01	0.511	C+	1
				1 175.09	1 040 220–1 125 320	7–9	7 44+00	1.98-01	5 36+00	0.142	C+	LS
				1 175.09	1 040 220-1 125 320	5–7			3.71+00			LS
				1 175.09	1 040 220-1 125 320	3–5			2.51+00			LS
				1 175.09	1 040 220-1 125 320	7–7			4.66-01			LS
				1 175.09	1 040 220-1 125 320	5–5			4.64-01			LS
				1 175.09	1 040 220-1 125 320	7–5			1.31-02			LS
142		$^{3}D^{\circ}-^{3}P$		1 106.1	1 040 220–1 130 630	15–9	3.70+00	4.07-02	2.23+00	-0.214	D+	1
				1 106.07	1 040 220–1 130 630	7–5	3.11+00	4.07-02	1.04+00	-0.545	C	LS
				1 106.07	1 040 220–1 130 630	5–3	2.78+00	3.06-02	5.57-01	-0.815	D+	LS
				1 106.07	1 040 220-1 130 630	3–1			2.47-01			LS
				1 106.07	1 040 220-1 130 630	5–5			1.86-01			LS
				1 106.07	1 040 220-1 130 630	3–3			1.86-01			LS
				1 106.07	1 040 220–1 130 630	3–5			1.23-02			LS
143		$^{3}D^{\circ}-^{3}D$		1 065.3	1 040 220–1 134 090	15–15	6.37+00	1.08-01	5.70+00	0.210	C	1
				1 065.30	1 040 220–1 134 090	7–7	5.65+00	9.62-02	2.36+00	-0.172	C+	LS
				1 065.30	1 040 220-1 134 090	5–5			1.32+00			LS
				1 065.30	1 040 220-1 134 090	3–3			8.54-01			LS
				1 065.30	1 040 220-1 134 090	7–5			2.97-01			LS
				1 065.30	1 040 220-1 134 090	5–3			2.84-01			LS
				1 065.30	1 040 220-1 134 090	5–7			2.96-01			LS
				1 065.30	1 040 220-1 134 090	3–5			2.85-01			LS
144		${}^{1}F^{\circ} - {}^{1}D$		1 318.91	1 072 040–1 147 860	7–5	9.99-01	1.86-02	5.65-01	-0.885	D+	1
145		$^{1}D^{\circ} - ^{1}D$		1 429.18	1 077 890–1 147 860	5–5	3.16+00	9.69-02	2.28+00	-0.315	C+	1
146		$^{1}D^{\circ}-^{1}P$		1 362.58	1 077 890–1 151 280	5–3	1.95+00	3.26-02	7.31-01	-0.788	C	1
147	$2s2p^2(^2D)3p - 2s2p^2(^4P)4s$	$^{3}\text{D}^{\circ} - ^{3}\text{P}$				15–9						1
				[574.8]	1 040220-1 214 190	7–5	4.72+00	1.67-02	2.21-01	-0.932	D+	LS
				[574.8]	1 040 220-1 214 190	5-5	8.44 - 01	4.18-03	3.96-02	-1.680	E+	LS
				[574.8]	1 040 220-1 214 190	3-5	5.62-02	4.64-04	2.63-03	-2.856	E	LS
148	$2s2p^2(^2D)3p - 2s2p^2(^4P)4d$	$^{3}D^{\circ}-^{3}F$		467.43	1 040 220–1 254 155	15–21	2.75+00	1.26-02	2.91-01	-0.724	D	1

Table 24. Transition probabilities of allowed lines for Na VI (references for this table are as follows: 1=Luo and Pradhan, 56 2=Tachiev and Froese Fischer, 94 3=Aggarwal *et al.*, 44=Fawcett, 21 and 5=Mendoza *et al.* 62)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{\rm vac}~({\rm \AA})$ or $\sigma~({\rm cm}^{-1})^{\rm a}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s-1)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				466.135	1 040 220–1 254 750	7–9	2.77 + 00		1.25-01	1.000	D.	LS
				467.880	1 040 220-1 253 950	5–7	2.44+00		8.63-02			LS
				469.153	1 040 220-1 253 370	3–5			5.84-02			LS
				467.880	1 040 220-1 253 950	7–7			1.08 - 02			LS
				469.153	1 040 220-1 253 370	5–5	4.24-01		1.08 - 02 $1.08 - 02$			LS
				469.153	1 040 220-1 253 370	7–5			3.06-04			LS
149		$^{3}D^{\circ}-^{3}D$		457.90	1 040 220–1 258 610	15–15	3.49+00	1.10-02	2.48-01	-0.783	E+	1
				457.896	1 040 220-1 258 610	7–7	3.10+00	9.76-03	1.03-01	-1.165	D	LS
				457.896	1 040 220-1 258 610	5-5	2.43+00	7.64 - 03	5.76-02	-1.418	E+	LS
				457.896	1 040 220-1 258 610	3-3	2.62+00	8.23-03	3.72-02	-1.607	E+	LS
				457.896	1 040 220-1 258 610	7–5	5.43-01	1.22-03	1.29-02	-2.069	E	LS
				457.896	1 040 220-1 258 610	5-3	8.75 - 01	1.65-03	1.24-02	-2.084	E	LS
				457.896	1 040 220-1 258 610	5–7	3.89-01	1.71-03	1.29-02	-2.068	E	LS
				457.896	1 040 220-1 258 610	3–5	5.23-01	2.74-03	1.24-02	-2.085	E	LS
150	$2s2p^2(^2D)3p - 2s2p^2(^2D)4d$	$^{3}D^{\circ}-^{3}F$		339.71	1 040 220–1 334 585	15–21	6.75+01	1.63-01	2.74+00	0.388	С	1
				339.714	1 040 220–1 334 585	7–9	6.74+01	1.50-01	1.17+00	0.021	C	LS
				339.714	1 040 220-1 334 585	5–7			8.11-01			LS
				339.714	1 040 220-1 334 585	3–5			5.50-01			LS
				339.714	1 040 220-1 334 585	7–7	7.51+00		1.02-01			LS
				339.714	1 040 220-1 334 585	5–5			1.02-01			LS
				339.714	1 040 220–1 334 585	7–5			2.87-03			LS
151		$^{3}D^{\circ}-^{3}P$		338.64	1 040 220–1 335 520	15–9	1.15+01	1.18-02	1.98-01	-0.752	E+	1
				338.639	1 040 220–1 335 520	7–5	9.61+00	1.18-02	9.21-02	-1.083	D	LS
				338.639	1 040 220-1 335 520	5-3	8.60+00	8.87-03	4.94-02	-1.353	E+	LS
				338.639	1 040 220-1 335 520	3-1	1.15+01	6.57-03	2.20-02	-1.705	E+	LS
				338.639	1 040 220-1 335 520	5-5	1.72+00	2.96-03	1.65-02	-1.830	E+	LS
				338.639	1 040 220-1 335 520	3-3	2.87 + 00	4.93-03	1.65 - 02	-1.830	E+	LS
				338.639	1 040 220–1 335 520	3–5	1.15-01	3.29-04	1.10-03	-3.006	E	LS
152	$2s2p^2(^4P)3d-2s^22p4s$	$^3D - ^3P^{\circ}$				15–9						1
			4 443.2	4 444.4	1 068 260-1 090 760	7–5	4.38-03	9.26-04	9.48-02	-2.188	D	LS
			4 386.7	4 387.9	1 067 970–1 090 760	5-5	8.11-04	2.34 - 04	1.69 - 02	-2.932	E+	LS
			4 346.6	4 347.8	1 067 760–1 090 760	3–5	5.57-05	2.63 - 05	1.13-03	-4.103	E	LS
153	$2s^22p4s-2s2p^2(^2D)3d$	$^{3}P^{\circ} - ^{3}P$				9_9						1
			2 507.4	2 508.2	1 090 760-1 130 630	5-5	6.45 - 01	6.08 - 02	2.51+00	-0.517	C+	LS
			2 507.4	2 508.2	1 090 760–1 130 630	5–3	3.59-01	2.03-02	8.38-01	-0.994	C	LS
154		$^{3}P^{\circ}-^{3}D$				9–15						1
			2 307.2	2 307.9	1 0907 60-1 134 090	5–7	5.08-01	5.68-02	2.16+00	-0.547	C	LS
			2 307.2	2 307.9	1 090 760-1 134 090	5-5	1.26 - 01	1.01 - 02	3.84 - 01	-1.297	D+	LS
			2 307.2	2 307.9	1 090 760–1 134 090	5–3	1.41 - 02	6.76-04	2.57 - 02	-2.471	E+	LS
155		$^{3}P^{\circ}-^{3}S$				9–3						1
				1868.5	1 090 760–1 144 280	5–3	1.28+00	4.01-02	1.23+00	-0.698	C	LS
156	$2s^22p4s-2s2p^2(^4P)4d$	$^{3}P^{\circ}-^{3}D$				9–15						1
				595.77	1 090 760–1 258 610	5–7	2.21+00	1.65-02	1.62-01	-1.084	D	LS
				595.77	1 090 760-1 258 610	5-5			2.88-02			LS
				595.77	1 090 760–1 258 610	5–3			1.92-03			LS

Table 24. Transition probabilities of allowed lines for Na VI (references for this table are as follows: 1=Luo and Pradhan, 56 2=Tachiev and Froese Fischer, 94 3=Aggarwal *et al.*, 44=Fawcett, 21 and 5=Mendoza *et al.* 62)—Continued

No.	Transition array	Mult.	$\lambda_{air} \ (\mathring{A})$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s-1)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
157	$2s2p^2(^2D)3d-2s^22p4d$	$^{3}F-^{3}F^{\circ}$				21–21						1
				3 370 cm ⁻¹	1 125 320-1 128 690	5–5	2 04-05	2 69-04	1.31-01	-2 871	D	LS
				3 370 cm ⁻¹	1 125 320-1 128 690	7–5			1.64-02			LS
158		$^3F-^3D^{\circ}$	11 250	11 255	1 125 320–1 134 205	21–15	3.50-03	4.75-03	3.70+00	-1.001	C	1
			10 602	10 604	1 125 320–1 134 750	9–7	3.84-03	5.04-03	1.58+00	-1.343	C	LS
			11 693	11 696	1 125 320-1 133 870	7–5	2.77 - 03	4.06 - 03	1.09+00	-1.546	C	LS
			12 237	12 240	1 125 320-1 133 490	5–3	2.72 - 03	3.67 - 03	7.39 - 01	-1.736	C	LS
			10 602	10 604	1 125 320-1 134 750	7–7	3.33 - 04	5.62 - 04	1.37 - 01	-2.405	D	LS
			11 693	11 696	1 125 320-1 133 870	5–5	3.48 - 04	7.13 - 04	1.37 - 01	-2.448	D	LS
			10 602	10 604	1 125 320–1 134 750	5–7	9.41-06	2.22-05	3.88-03	-3.955	E	LS
159		$^{3}P-^{3}D^{\circ}$		3 575 cm ⁻¹	1 130 630–1 134 205	9–15	5.03-05	9.86-04	8.18-01	-2.052	D	1
				4 120 cm ⁻¹	1 130 630–1 134 750	5–7	7.73-05	9.56-04	3.82-01	-2.321	D+	LS
				3 240 cm ⁻¹	1 130 630–1 133 870	3–5	2.82 - 05	6.71 - 04	2.05 - 01	-2.696	D	LS
				2 860 cm ⁻¹	1 130 630–1 133 490	1–3	1.44 - 05	7.90 - 04	9.09 - 02	-3.102	D	LS
				3 240 cm ⁻¹	1 130 630–1 133 870	5–5	9.38-06		6.81 - 02			LS
				2 860 cm ⁻¹	1 130 630–1 133 490	3–3			6.80 - 02			LS
				2 860 cm ⁻¹	1 130 630–1 133 490	5–3	7.18-07	7.90-06	4.55-03	-4.403	Е	LS
160		$^{3}P-^{3}P^{\circ}$				9_9						1
			17 387	17 391	1 130 630-1 136 380	5-5	6.02 - 05	2.73 - 04	7.82 - 02	-2.865	D	LS
			17 387	17 391	1 130 630–1 136 380	3–5	2.01-05	1.52-04	2.61 - 02	-3.341	E+	LS
61		$^{3}D-^{3}P^{\circ}$				9–15						1
				2 290 cm ⁻¹	1 134 090–1 136 380	7–5	4.68-05	9.56-04	9.62-01	-2.174	C	LS
				2 290 cm ⁻¹	1 134 090-1 136 380	5-5	8.36-06	2.39 - 04	1.72 - 01	-2.923	D	LS
				2 290 cm ⁻¹	1 134 090–1 136 380	3–5	5.58-07	2.66-05	1.15-02	-4.098	E	LS
162	$2s2p^2(^2D)3d-2s^22p5d$	$^{3}P-^{3}D^{\circ}$				9–15						1
				[1 024.8]	1 130 630–1 228 210	5–7	4.94-01	1.09-02	1.84-01	-1.264	D	LS
163		$^{1}D-^{1}F^{\circ}$		1 201.20	1 147 860–1 231 110	5–7	1.35-01	4.09-03	8.09-02	-1.689	D	1
164	$2s^22p4d-2s2p^2(^2D)3d$	$^{3}F^{\circ}-^{3}D$				21–15						1
			18 513	18 519	1 128 690-1 134 090	5–3	2.49 - 04	7.69-04	2.34-01	-2.415	D+	LS
			18 513	18 519	1 128 690-1 134 090	5–5	2.78 - 05	1.43-04	4.36-02	-3.146	E+	LS
			18 513	18 519	1 128 690–1 134 090	5–7			1.23-03			LS
165		$^{1}D^{\circ}-^{1}P$	4 971.3	4 972.7	1 131 170–1 151 280	5–3	1.49-02	3.31-03	2.71-01	-1.781	D+	1
166		$^{3}P^{\circ}-^{3}S$				9–3						1
			12 655	12 658	1 136 380–1 144 280	5–3	3.55-04	5.12-04	1.07-01	-2.592	D	LS
167		$^{1}F^{\circ}-^{1}D$	14 282	14 286	1 140 860–1 147 860	7–5	3.28-04	7.17-04	2.36-01	-2.299	D+	1
168	$2s^22p4d-2s2p^2(^4P)4s$	$^{3}D^{\circ}-^{3}P$				15–9						1
				[1 250 0]	1 134 750 1 214 100	75	1 52 , 00	2.50 .02	7.51 01	_0.742	C	16
				[1 258.8]	1 134 750–1 214 190	7–5 5–5			7.51 - 01			LS
				[1 245.0]	1 133 870-1 214 190	5–5 3 5			1.34-01			LS
		3_0 2		[1 239.2]	1 133 490–1 214 190	3–5	1.90-02	7.30-04	8.93-03	-2.000	Ľ	LS
169		$^{3}P^{\circ} - ^{3}P$				9_9						1
				[1 285.2]	1 1363 80–1 214 190	5–5	4.64-01	1.15-02	2.43-01	-1.240	D+	LS

TABLE 24. Transition probabilities of allowed lines for Na VI (references for this table are as follows: 1=Luo and Pradhan, 56 2=Tachiev and Froese Fischer, 94 3=Aggarwal et al., ⁴ 4=Fawcett, ²¹ and 5=Mendoza et al. ⁶²)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	$\lambda_{\rm vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s-1)	f_{ik}	S (a.u.)	log of	Acc	Source
			(21)	or o (cm)	(cm)		(10 3 1)	J ik	(a.u.)	105 81	7100.	
170	$2s^22p4d-2s2p^2(^2D)4d$	$^{3}F^{\circ}-^{3}F$				21–21						1
				485.684	1 128 690–1 334 585	5-5	4.30+00	1.52-02	1.22-01	-1.119	D	LS
				485.684	1 128 690–1 334 585	5–7	3.82-01	1.89-03	1.51 - 02	-2.025	E+	LS
171		$^{3}D^{\circ}-^{3}F$		499.05	1 134 205–1 334 585	15–21	7.31+00	3.82-02	9.41-01	-0.242	D+	1
				500.413	1 134 750–1 334 585	7–9	7.25+00	3.50-02	4.04-01	-0.611	D+	LS
				498.219	1 133 870-1 334 585	5–7	6.53+00	3.40-02	2.79-01	-0.770	D+	LS
				497.277	1 133 490-1 334 585	3-5	6.20+00	3.83 - 02	1.88 - 01	-0.940	D	LS
				500.413	1 134 750-1 334 585	7–7	8.07 - 01	3.03-03	3.49-02	-1.673	E+	LS
				498.219	1 133 870-1 334 585	5-5	1.14+00	4.26-03	3.49 - 02	-1.672	E+	LS
				500.413	1 134 750–1 334 585	7–5	3.19-02	8.55-05	9.86-04	-3.223	E	LS
172		$^{3}D^{\circ}-^{3}P$		496.73	1 134 205–1 335 520	15–9	2.62+00	5.81-03	1.43-01	-1.060	E+	1
				498.082	1 134 750–1 335 520	7–5	2.18+00	5.79-03	6.65-02	-1.392	D	LS
				495.909	1 133 870-1 335 520	5-3	1.98+00	4.37-03	3.57-02	-1.661	E+	LS
				494.976	1 133 490-1 335 520	3-1	2.65+00	3.24-03	1.58-02	-2.012	E+	LS
				495.909	1 1 33870-1 335 520	5-5	3.96-01	1.46-03	1.19-02	-2.137	Е	LS
				494.976	1 133 490-1 335 520	3-3	6.62 - 01	2.43-03	1.19-02	-2.137	Е	LS
				494.976	1 133 490–1 335 520	3–5	2.65-02	1.62-04	7.92 - 04	-3.313	E	LS
173		$^{3}P^{\circ}-^{3}P$				9_9						1
				502.159	1 136 380-1 335 520	5–5	2.02+00	7.63-03	6.31-02	-1.419	D	LS
				502.159	1 136 380–1 335 520	5–3			2.10-02			LS
174	$2s2p^2(^4P)4s-2s^22p5d$	$^{3}P - ^{3}D^{\circ}$				9–15						1
			[7 131]	[7 133]	1 214 190–1 228 210	5–7	5.88-02	6.28-02	7.37+00	-0.503	В	LS
175	$2s^22p5d-2s2p^2(^4P)4d$	$^{3}D^{\circ}-^{3}F$				15–21						1
			[3 767]	[3 768]	1 228 210-1 254 750	7–9	3.95-02	1.08-02	9.38-01	-1.121	C	LS
			[3 884]	[3 885]	1 228 210–1 253 950	7–7			8.11-02			LS
			[3 973]	[3 975]	1 228 210–1 253 370	7–5			2.29-03			LS
176		$^{3}D^{\circ}-^{3}D$				15–15						1
			[3 289]	[3 289]	1 228 210–1 258 610	7–7	7.58-03	1.23-03	9.32-02	-2.065	D	LS
			[3 289]	[3 289]	1 228 210–1 258 610	7–7 7–5			1.17 - 02			LS
axx r			_1		1 220 210 1 230 010	, ,	1.54 05	1.55 04	1.17 02	2.703		

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

10.6.3. Forbidden Transitions for Na VI

The MCHF results of Tachiev and Froese Fischer94 and the second-order MBPT results of Vilkas et al. 118 were used for all the compiled transitions, together with those of Galavis *et al.*⁴⁰ where available. As part of the Iron Project, Galavis *et al.*⁴⁰ used the SUPERSTRUCTURE code with CI, relativistic effects, and semiempirical energy corrections.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in two or more references, 40,71,94,118 as described in the general introduction.

10.6.4. References for Forbidden Transitions for Na VI

⁴⁰M. E. Galavis, C. Mendoza, and C. Zeippen, Astron. Astrophys., Suppl. Ser. 123, 159 (1997).

⁷¹H. Nussbaumer and C. Rusca, Astron. Astrophys. **72**, 129

⁸⁸G. Tachiev and C. Froese Fischer, Can. J. Phys. **79**, 955

^{(2001).}

⁹⁴G. Tachiev and C. Froese Fischer, http://www.vuse. vanderbilt.edu/~cff/mchf collection/ (MCHF, ab initio, downloaded on May 6, 2002). See Tachiev and Froese Fischer (Ref. 88).

¹¹⁸M. J. Vilkas, I. Martinson, G. Merkelis, G. Gaigalas, and R. Kisielius, Phys. Scr. 54, 281 (1996).

J. Phys. Chem. Ref. Data, Vol. 37, No. 1, 2008

TABLE 25. Wavelength finding list for forbidden lines for Na VI

TABLE 25. Wavelength finding list for forbidden lines for Na VI—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
172.868	23	684.66	35
173.216	23	724.75	28
183.933	25	770.36	18
197.584	22	858.69	34
197.857	22	859.36	34
209.004	21	859.64	34
209.513	21	917.62	38
209.522	21	924.36	33
209.759	21	925.14	33
209.829	21	925.46	33
225.398	24	967.47	5
225.683	24	974.05	5
247.413	26	985.19	5
248.223	26	991.09	27
286.024	10	991.46	27
286.977	10	992.36	27
312.606	9	1 261.86	37
313.745	9	1 356.56	3
317.641	16	1 378.26	3
320.190	8	1 408.97	36
320.907	8	1 473.54	11
322.107	8	XX 1 4	3.6.1.
350.765	15	Wavelength	Mult.
361.249	14	(air) (Å)	No.
414.351	7	2 568.9	4
415.553	7	2 686.7	32
417.568	7	2 693.3	32
420.343	20	2 696.1	32
460.348	30	2 816.2	2
478.577	29		
485.807	13	2 872.7	2
489.661		2 971.9	2
	6	3 362.6	40
491.248	6	3 453.5	17
491.340	6	12 083	39
491.560	6	W 1	3.6.1
494.066	6	Wavenumber	Mult.
494.159	6	(cm ⁻¹)	No.
494.381	6	1 859	1
592.55	12	1 161	1
592.68	12	698	1
593.00	12		
599.06	19	129	31
684.06	35	91	31
684.48	35	38	31

Table 26. Transition probabilities of forbidden lines for Na VI (references for this table are as follows: 1=Tachiev and Froese Fischer, 94 2=Vilkas *et al.*, 118 3=Galavis *et al.* 40)

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	A_{ki} (s ⁻¹)	<i>S</i> (a.u.)	Acc.	Source
1	$2p^2-2p^2$	$^{3}P - ^{3}P$									
				1 161 cm ⁻¹	698-1 859	3-5	M1	2.07 - 02	2.45+00	B+	1,2,3
				1 161 cm ⁻¹	698-1 859	3-5	E2	7.68 - 09	1.62-01	В	1,2
				698 cm ⁻¹	0-698	1-3	M1	5.98-03	1.95 + 00	B+	1,2,3
				1 859 cm ⁻¹	0-1 859	1-5	E2	3.65 - 08	7.34 - 02	В	1,2,3
2		$^{3}P-^{1}D$									

Table 26. Transition probabilities of forbidden lines for Na VI (references for this table are as follows: 1=Tachiev and Froese Fischer, 94 2=Vilkas *et al.*, 118 3=Galavis *et al.* 40)—Continued

No.	Transition array	Mult.	$\lambda_{air} \ (\mathring{A})$	$\lambda_{\rm vac}~({\rm \AA}) \ { m or}~\sigma~({ m cm}^{-1})^a$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	$A_{ki} $ (s ⁻¹)	S (a.u.)	Acc.	Source
			2 816.2	2 817.1	0-35 498	1–5	E2	5.38-05	4.26-05	В	1,2,3
			2 872.7	2 873.6	698-35 498	3–5	M1	4.17 - 01	1.83 - 03	B+	1,2,3
			2 872.7	2 873.6	698-35 498	3–5	E2	1.41 - 04	1.23 - 04	В	1,2
			2 971.9	2 972.7	1 859-35 498	5–5	M1	1.13+00	5.49 - 03	B+	1,2,3
			2 971.9	2 972.7	1 859–35 498	5–5	E2	8.71 - 04	9.03 - 04	B+	1,2
3		$^{3}P-^{1}S$									
				1 378.26	1 859-74 414	5-1	E2	1.71 - 02	7.59-05	В	1,2,3
				1 356.56	698-74 414	3–1	M1	1.30+01		B+	1,2,3
4		$^{1}D-^{1}S$									
			2 568.9	2 569.6	35 498-74 414	5-1	E2	3.38+00	3.38-01	A	1,2,3
5	$2s^22p^2-2s2p^3$	$^{3}P-^{5}S^{\circ}$									
	_F _F			[985.2]	1 859–103 362	5–5	M2	1.97-02	6.13+00	B+	1
				[974.0]	698-103 362	3-5	M2	2.72 - 02	7.99+00	B +	1
				[967.5]	0-103 362	1–5	M2	1.26-02	3.58+00	B+	1
6		$^{3}P-^{3}D^{\circ}$									
				491.560	698-204 132	3–7	M2	2.99 - 01	4.03 + 00	B+	1
				489.661	0-204 223	1-5	M2	3.12 - 01	2.95+00	B+	1
				494.381	1 859-204 132	5–7	M2	6.95 - 01	9.64+00	B+	1
				491.340	698-204 223	3–5	M2	3.27 - 01	3.14+00	B+	1
				494.159	1 859–204 223	5–5	M2	7.20-04	7.11-03	C+	1
				491.248	698–204 261	3–3	M2	1.30-01	7.50-01	B+	1
				494.066	1 859–204 261	5–3	M2	8.20-02	4.86-01	B+	1
7		$^{3}P-^{3}P^{\circ}$									
7		P- P		417.568	1 859–241 341	5–5	M2	1.08+00	4.59+00	B+	1
				415.553	698–241 341	3–3	M2	6.52-01	1.63 + 00	B+	1
				417.568	1 859–241 341	5–1	M2	6.47-01	5.51-01	B+	1
				417.568	1 859–241 341	5–3	M2	8.84-03	2.26-02	В	1
				415.553	698–241 341	3–5	M2	2.89-03	1.20-02	C+	1
				414.351	0-241 341	1–5	M2	1.32-01		B+	1
0		$^{3}P-^{1}D^{\circ}$									
8		P- D		320.190	0-312 315	1–5	M2	1.62+00	1.83+00	B+	1
				320.907	698–312 315	3–5	M2	3.67+00	4.19+00 $3.34+00$		1 1
				322.107	1 859–312 315	5–5	M2	2.87 + 00	3.34+00	Б⊤	1
9		$^{3}P-^{3}S^{\circ}$		212.745	1 050 220 500	5.0	3.60	2.12 00	1.01.00	ъ.	
				313.745 312.606	1 859–320 589 698–320 589	5–3 3–3	M2 M2	3.12+00 $1.27+00$	1.91+00 $7.61-01$		1 1
				312.000	098-320 389	3–3	NIZ	1.27+00	7.01-01	В+	1
0		$^{3}P-^{1}P^{\circ}$									
				286.024	698–350 319	3–3	M2	1.87+00	7.21 - 01		1
				286.977	1 859–350 319	5–3	M2	6.24+00	2.44+00	B+	1
.1		$^{1}D-^{5}S^{\circ}$									
				[1 473.5]	35 498-103 362	5–5	M2	1.43 - 06	3.33 - 03	C+	1
2		$^{1}D-^{3}D^{\circ}$									
				592.68	35 498-204 223	5–5	M2	3.72 - 01	9.12+00	B+	1
				592.55	35 498–204 261	5–3	M2	1.61 - 01	2.37 + 00	B+	1
				593.00	35 498–204 132	5–7	M2	4.17-01	1.43+01	B+	1
.3		$^{1}D-^{3}P^{\circ}$									
				485.807	35 498-241 341	5-1	M2	5.34-01	9.69-01	$\mathrm{B}+$	1
				485.807	35 498-241 341	5-3	M2	4.34 - 01	2.36+00	B+	1
				465.607	33 490-241 341	5-5	1012	4.54-01	2.30 + 00	D	1

Table 26. Transition probabilities of forbidden lines for Na VI (references for this table are as follows: 1=Tachiev and Froese Fischer, 94 2=Vilkas *et al.*, 118 3=Galavis *et al.* 40)—Continued

M2 M2 M2 M2 M2 M2 M2	5.18-02 2.55-03 3.72-03 2.33-09 2.26-05	1.07-01 2.73-03 2.42-03 3.85-04 2.06-03	C+	1 1 1
M2 M2 M2 M2 M2	2.55-03 3.72-03 2.33-09 2.26-05	2.73-03 2.42-03 3.85-04	C+	1
M2 M2 M2	3.72-03 2.33-09 2.26-05	2.42-03 3.85-04	C+	1
M2 M2 M2	3.72-03 2.33-09 2.26-05	2.42-03 3.85-04	C+	1
M2 M2	2.33-09 2.26-05	3.85-04		
M2 M2	2.33-09 2.26-05	3.85-04		
M2	2.26-05		С	1
M2	2.26-05		C	1
M2	2.26-05		•	1
		2.06 - 03		
M2			C+	1
M2				
	3.30 - 01	8.53+00	B+	1
M2	9.04-03	3.98-02	D	1
1112	9.04-03	3.96-02	Б	1
E2	3.83+04	1.38-02		2
M1	7.93-01	8.14-07		2
E2	2.65+04	2.89-02	B+	2
				2
				2
				2
E2	7.11+03	1.28-02	B+	2
E2	5.02 - 01	6.75 - 07	C	2
M1	2.44 - 01	3.50 - 07	C	2
E2	1.83 + 01	2.47 - 05	C+	2
E2	9.59+00	1.34-06	C	2
				2
F2	2.40 - 00	1.20 .00		2
				2
				2
E2	1.50+01	2.36-05	C+	2
E2	6.22 + 04	1.17 - 02	B+	2
E2	4 93-02	2 08-07	C	2
				2
M1	2.75 - 03			1
E2	9.46 - 03			1
M1	3.50 - 02	6.32 - 06	C	1
E2	8.34 - 03			1
M1	1.21 - 02	1.31 - 06	C	1
E2	3.57 - 03	9.15-06	C	1
М1	8 03 ± 00	6.30-04	B	1
M1 E2	8.93+00 1.41-04	6.30-04 1.26-07		1 1
	E2 M1 E2 E2 M1 E2 M1 E2 M1 E2 M1 E2 M1	M1 5.23-01 M1 5.17-01 E2 1.59+04 E2 7.11+03 E2 5.02-01 M1 2.44-01 E2 1.83+01 E2 9.59+00 M1 1.29+00 E2 2.49+00 M1 4.21-01 E2 1.50+01 E2 6.22+04 E2 4.93-02 M1 2.05-01 M1 2.75-03 E2 9.46-03 M1 3.50-02 E2 8.34-03 M1 1.21-02	M1 5.23-01 1.77-07 M1 5.17-01 8.85-07 E2 1.59+04 2.89-02 E2 7.11+03 1.28-02 E2 5.02-01 6.75-07 M1 2.44-01 3.50-07 E2 1.83+01 2.47-05 E2 9.59+00 1.34-06 M1 1.29+00 2.47-07 E2 2.49+00 1.29-06 M1 4.21-01 5.38-07 E2 1.50+01 2.36-05 E2 6.22+04 1.17-02 E2 4.93-02 2.08-07 M1 2.05-01 3.46-07 M1 2.75-03 6.98-07 E2 9.46-03 5.69-05 M1 3.50-02 6.32-06 E2 8.34-03 3.57-05 M1 1.21-02 1.31-06	M1 5.23-01 1.77-07 D+ M1 5.17-01 8.85-07 C E2 1.59+04 2.89-02 B+ E2 7.11+03 1.28-02 B+ E2 5.02-01 6.75-07 C M1 2.44-01 3.50-07 C E2 1.83+01 2.47-05 C+ E2 9.59+00 1.34-06 C M1 1.29+00 2.47-07 C E2 1.50+01 5.38-07 C E2 1.50+01 2.36-05 C+ E2 4.93-02 2.08-07 C M1 2.05-01 3.46-07 C M1 2.75-03 6.98-07 C E2 9.46-03 5.69-05 C+ M1 3.50-02 6.32-06 C E2 8.34-03 3.57-05 C+ M1 1.21-02 1.31-06 C

Table 26. Transition probabilities of forbidden lines for Na VI (references for this table are as follows: 1=Tachiev and Froese Fischer, 94 2=Vilkas *et al.*, 118 3=Galavis *et al.* 40)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	$A_{ki} \atop (s^{-1})$	<i>S</i> (a.u.)	Acc.	Source
				[724.8] [724.8]	103 362–241 341 103 362–241 341	5–3 5–3	M1 E2	4.97+00 4.11-05	2.10-04 2.20-08	C+ D+	1 1
29		$^{5}\text{S}^{\circ} - ^{1}\text{D}^{\circ}$									
2)		5 D		[478.58]	103 362-312 315	5–5	M1	1.71-04	3.48-09	D	1
20		5a° 3a°									
30		$^{5}\text{S}^{\circ} - ^{3}\text{S}^{\circ}$		[460.25]	102 262 220 590	5 2	M1	1 60 02	1 02 00	D.	1
				[460.35]	103 362–320 589	5–3	M1	1.68-03	1.82-08	D±	1
31		$^{3}D^{\circ}-^{3}D^{\circ}$									
				129 cm ⁻¹	204 132–204 261	7–3	E2	3.60 - 16	2.70 - 04	В	1
				91 cm ⁻¹	204132–204 223	7–5	M1	1.90-05	4.66+00	A	1
				91 cm ⁻¹	204132-204 223	7–5	E2	1.72-16	1.23-03	В	1
				38 cm ⁻¹	204 223–204 261	5–3	M1	2.22-06	4.50+00	A	1
				38 cm ⁻¹	204 223–204 261	5–3	E2	5.30-20	1.79-05	C+	1
32		$^{3}\text{D}^{\circ} - ^{3}\text{P}^{\circ}$									
			2 686.7	2 687.5	204 132-241 341	7–3	E2	9.85 - 01	3.70 - 01	A	1
			2 693.3	2 694.1	204 223-241 341	5-1	E2	2.08+00	2.64 - 01	B+	1
			2 686.7	2 687.5	204 132-241 341	7–5	M1	1.15+00	4.13 - 03	В	1
			2 686.7	2 687.5	204 132-241 341	7–5	E2	1.18+00	7.37 - 01	A	1
			2 693.3	2 694.1	204 223–241 341	5–3	E2	1.72 - 01	6.54 - 02	B+	1
			2 696.1	2 696.9	204 261–241 341	3–1	M1	1.35+00	9.84-04	В	1
			2 693.3	2 694.1	204 223–241 341	5–5	M1	8.14-01	2.95-03	В	1
			2 693.3	2 694.1	204 223–241 341	5–5	E2	7.27-01	4.61-01	A	1
			2 696.1	2 696.9	204 261–241 341	3–3	M1	1.35+00	2.95-03	В	1
			2 696.1	2 696.9	204 261 241 341	3–3	E2	9.30-01	3.55-01	A	1
			2 696.1	2 696.9	204 261 241 341	3–5	M1	2.17-01	7.88-04	В	1
			2 696.1	2 696.9	204 261–241 341	3–5	E2	1.87-01	1.19-01	В÷	1
33		$^{3}D^{\circ}-^{1}D^{\circ}$									
				925.14	204 223–312 315	5–5	M1	2.93 - 03		C	1
				925.14	204 223–312 315	5–5	E2	2.35 - 02	7.10 - 05	C+	1
				924.36	204 132–312 315	7–5	M1	5.51 - 03	8.07 - 07	C	1
				924.36	204 132–312 315	7–5	E2	4.20-02	1.27 - 04	C+	1
				925.46	204 261–312 315	3–5	M1	1.29-03	1.90-07	C	1
				925.46	204 261–312 315	3–5	E2	2.14-03	6.47-06	С	1
34		$^{3}D^{\circ}-^{3}S^{\circ}$									
				858.69	204 132-320 589	7–3	E2	1.32+00	1.65 - 03	В	1
				859.36	204 223-320 589	5-3	M1	2.41 - 02	1.70 - 06	C	1
				859.36	204 223-320 589	5–3	E2	1.37 + 00	1.72 - 03	В	1
				859.64	204 261-320 589	3–3	M1	1.61 - 02	1.14-06	C	1
				859.64	204 261–320 589	3–3	E2	1.02+00	1.29 - 03	В	1
35		$^{3}\text{D}^{\circ}-^{1}\text{P}^{\circ}$									
		2 1		684.06	204 132-350 319	7–3	E2	7.28-03	2.92-06	С	1
				684.48	204 223–350 319	5–3	M1	8.09+00	2.89-04	В	1
				684.48	204 223-350 319	5–3	E2	4.29-03	1.73-06	C	1
				684.66	204 261-350 319	3-3	M1	2.69+00	9.61-05	C+	1
				684.66	204 261-350 319	3–3	E2	1.73 - 03	6.99 - 07	C	1
26		$^{3}\text{P}^{\circ}-^{1}\text{D}^{\circ}$									
36		r – 'D		1 408.97	241 341–312 315	1–5	E2	5.80-06	1.44-07	D+	1
				1 408.97	241 341–312 315	3–5	M1	7.80-00	4.04-04	D⊤ B	1
				1 408.97	241 341–312 315	3–5	E2	9.11-06	2.26-07		1
				1 408.97	241 341–312 315	5–5	M1	2.34+00	1.21-03	В	1
				,						-	-

Table 26. Transition probabilities of forbidden lines for Na VI (references for this table are as follows: 1=Tachiev and Froese Fischer, 94 2=Vilkas et al., 118 3=Galavis et al. 40)—Continued

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	$\lambda_{ m vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	A_{ki} (s ⁻¹)	<i>S</i> (a.u.)	Acc.	Source
37		$^{3}P^{\circ}-^{3}S^{\circ}$									
				1 261.86	241 341-320 589	5–3	M1	9.60-01	2.15-04	В	1
				1 261.86	241 341-320 589	5-3	E2	7.72 - 05	6.62 - 07	C	1
				1 261.86	241 341-320 589	3-3	M1	5.76-01	1.29 - 04	C+	1
				1 261.86	241 341-320 589	3–3	E2	2.42 - 05	2.08 - 07	C	1
				1 261.86	241 341–320 589	1–3	M1	7.71 - 01	1.72 - 04	C+	1
38		$^{3}\text{P}^{\circ}-^{1}\text{P}^{\circ}$									
				917.62	241 341-350 319	3–3	M1	4.14-03	3.55 - 07	C	1
				917.62	241 341-350 319	3-3	E2	1.31 - 02	2.29 - 05	C+	1
				917.62	241 341-350 319	5-3	M1	1.28 - 02	1.10-06	C	1
				917.62	241 341-350 319	5-3	E2	4.20 - 02	7.31 - 05	C+	1
				917.62	241 341-350 319	1–3	M1	2.70 - 03	2.32 - 07	C	1
39		$^{1}D^{\circ}-^{3}S^{\circ}$									
			12 083	12 086	312 315-320 589	5-3	M1	1.78 - 07	3.50 - 08	D+	1
			12 083	12 086	312 315-320 589	5-3	E2	1.37-06	9.47 - 04	В	1
40		$^{3}\text{S}^{\circ}-^{1}\text{P}^{\circ}$									
			3 362.6	3 363.6	320 589-350 319	3–3	M1	1.73+00	7.34-03	B+	1
			3 362.6	3 363.6	320 589-350 319	3-3	E2	1.11-06	1.28 - 06	C	1

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

10.7. Na vii

Boron isoelectronic sequence Ground state: $1s^22s^22p^2P_{1/2}^0$

Ionization energy: $208.50 \text{ eV} = 1.681 \text{ } 700 \text{ cm}^{-1}$

10.7.1. Allowed Transitions for Na VII

In general the transition rates for this boronlike spectrum are in good agreement, including the results of the ${\rm OP.}^{25}$ Most of the compiled data below have been taken from this source. The high-quality (based on good agreement) data from the other references 41,64,81,94 are available primarily for the lower-lying transitions. Tachiev and Froese Fischer 94 performed extensive MCHF calculations with Breit-Pauli corrections to order α^2 . Merkelis *et al.* 64 used a second-order MBPT theory with Breit-Pauli corrections. As part of the Iron Project, Galavis *et al.* 41 used the SUPERSTRUCTURE code with CI, relativistic effects, and semiempirical energy corrections. Only OP results were available for energy levels above the 3d.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in two or more references, 25,41,64,81,94 as described in the general introduction. For this purpose the spin-allowed (non-OP) and intercombination data were treated separately and each of these was in turn divided into two upper-level energy groups having energies below and above 500 000 cm⁻¹. OP lines constituted a fifth group. However, Merkelis *et al.*,⁶⁴ Galavis *et al.*,⁴¹ and Safronova *et al.*⁸¹ contain only data for transitions from lower levels. To estimate the accuracy of lines from higher-lying levels of Tachiev and Froese Fischer, 94 we iso-

electronically averaged the logarithmic quality factors (see Sec. 4.1 of the Introduction) observed for lines from the lower-lying levels of B-like ions of Na, Mg, Al, and Si and scaled them for lines from high-lying levels, as described in the introduction. Thus the listed accuracies for these higher-lying transitions are less well established than for those from lower levels.

10.7.2. References for Allowed Transitions for Na VII

²³J. A. Fernley, A. Hibbert, A. E. Kingston, and M. J. Seaton, J. Phys. B **32**, 5507 (1999).

²⁵J. A. Fernley, A. Hibbert, A. E. Kingston, and M. J. Seaton, http://legacy.gsfc.nasa.gov/topbase, downloaded on Aug. 8, 1995 (Opacity Project). See Fernley *et al.* (Ref. 23).

⁴¹M. E. Galavis, C. Mendoza, and C. J. Zeippen, Astron. Astrophys. Suppl. Ser. **131**, 499 (1998).

⁶⁴G. Merkelis, J. J. Vilkas, G. Gaigalas, and R. Kisielius, Phys. Scr. **51**, 233 (1995).

⁸¹U. I. Safronova, W. R. Johnson, and A. E. Livingston, Phys. Rev. A 60, 996 (1999). A complete data listing was made available by private communication.

⁹⁴G. Tachiev and C. Froese Fischer, http:// www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on May 6, 2002).

TABLE 27. Wavelength finding list for allowed lines for Na VII

TABLE 27. Wavelength finding list for allowed lines for Na VII—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
(vac) (A)	NO.	(vac) (A)	NO.
(2.142	25	74.001	00
63.142	25 25	74.991	80
63.227	25 24	75.124	14
63.357		75.198	14
63.443	24	75.244	14
64.025	23	76.502	68
64.113	23	76.564	68
64.828	87	76.827	110
64.859	87 87	76.862	110
64.904	86	77.225	13 13
65.311		77.353	76
65.342	86 22	78.797	
65.383	86 86	78.840	76 76
65.388	22	78.842	76 75
65.474	84	78.907	75 75
67.793	84 84	78.980	75 75
67.827	84 83	78.982	12
67.829 67.863	83	79.436 79.451	74
	84		74
67.876	84 83	79.453	12
67.912	21	79.571 79.676	81
68.422			
68.519	21 21	79.759	11 81
68.522	20	79.760 70.786	
68.866 68.908	20 20	79.786 79.893	11 10
68.967	20	79.895 79.895	10
69.292	19	79.893	11
69.314	19	80.008	10
69.395	19	80.030	10
69.417	19	80.130	62
69.803	18	80.177	62
69.826	18	80.246	62
69.907	18	81.359	61
69.930	18	81.430	61
70.640	17	81.487	69
70.747	17	81.489	69
71.919			
72.020	16 85	81.855 82.636	60 77
72.020	16	82.685	77
72.030	85	83.987	79
72.079	85	84.038	79
72.865	82	84.080	79
72.867	82	84.131	79
74.121	73	84.218	66
74.180	73	84.221	66
74.217	72	84.828	78
74.255	72	85.260	65
74.257	72	85.295	65
74.268	72	85.297	65
74.208	72	85.299	9
74.314	72	85.455	9
74.861	15	85.602	70
74.980	15	86.597	8
74.980	15	86.652	8
74.988	80	86.757	8
77.700	00	30.737	O

TABLE 27. Wavelength finding list for allowed lines for Na VII—Continued

Table 27. Wavelength finding list for allowed lines for Na VII—Continued

***		***	36 1:	
Wavelength	Mult.	Wavelength	Mult.	
(vac) (Å)	No.	(vac) (Å)	No.	
87.053	71	98.378	102	
87.153	71	98.386	102	
87.465	63	98.394	102	
87.468	63	98.765	47	
88.697	7	98.836	47	
88.746	7	98.839	47	
88.866	7	99.421	46	
88.915	7	99.552	46	
90.177	67	99.556	46	
90.284	67	99.669	101	
90.822	56	99.678	101	
90.825	56	100.717	51	
91.058	55	100.717	51	
91.038	55	100.721	109	
91.072	55	101.190	109	
91.075	55 55	101.309	109	
92.003	55 54	101.783	45	
92.003	54 54	101.783	45	
92.746	44	101.787	45	
92.775	44	101.918	45	
92.809	44	102.233	108	
92.839	44	102.235	99	
92.883	44	102.243	108 99	
92.931	44	102.244		
92.976	44	102.282	108	
93.393	43	102.291	108	
93.434	43	102.390	98	
93.457	43	102.439	98	
93.486	43	102.448	98	
93.528	43	103.349	105	
93.550	43	103.359	105	
93.910	64	103.399	105	
94.026	64	103.410	105	
94.288	6	103.778	39	
94.468	6	103.842	39	
94.479	6	103.893	39	
95.963	57	103.921	39	
96.058	107	104.000	39	
96.066	107	104.036	39	
96.173	107	104.871	48	
96.181	107	104.955	48	
96.845	97	105.114	5	
96.872	97	105.195 105.206	104	
96.922	97		104	
97.006 97.014	106	105.351	5	
	106	107.057	50	
97.058	106	107.079	52	
97.790	59	107.144	50	
97.916	59	107.209	50	
98.010	103	107.296	50	
98.019	103	108.058	100	
98.064	103	108.069	100	
98.080	58	108.193	94	
98.191	58	108.373	94	

TABLE 27. Wavelength finding list for allowed lines for Na VII—Continued

TABLE 27. Wavelength finding list for allowed lines for Na VII—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
108.746	95	220.702	129
108.834	95	224.754	128
108.844	95	225.388	128
109.359	53	228.290	191
109.517	53	228.446	191
110.771	49	229.022	191
110.779	49	234.610	160
110.933	49	235.383	160
111.209	40	235.743	127
111.213	40	236.005	127
111.387	40	236.390	190
115.359	96	237.175	190
115.457	96	242.701	143
115.470	96	243.321	143
118.840	92	243.392	143
118.852	92	247.850	142
118.912	92	247.924	142
119.016	41	251.819	228
119.215	41	252.621	228
121.840	42	255.284	227
122.036	42	256.108	227
122.048	42	259.437	244
122.245	42	263.116	243
124.532	37	267.501	229
124.537	37	268.456	229
126.781	93	272.116	276
126.796	93	272.814	231
126.850	93	273.254	276
126.865	93	273.381	231
134.405	38	275.028	242
134.432	89	276.886	230
134.447	89	277.469	230
134.686	89	279.096	159
134.701	89	280.136	159
139.837	88	280.191	159
139.853	88	280.836	275
139.975	88	281.595	115
141.378	91	282.048	275
141.397	91	284.107	225
144.703	90	285.185	225
144.977	90	285.606	28
144.997	90	285.682	28
170.074	134	286.205	28
173.816	133	286.282	28
175.460	132	286.632	158
178.044	131	286.755	158
191.924	130	287.082	28
193.338	144	287.588	185
193.382	144	287.786	158
207.792	116	288.101	185
208.108	162	288.184	185
208.716	162	288.700	185
210.469	161	290.107	226
211.091	161	290.748	226
220.668	129	292.475	269

TABLE 27. Wavelength finding list for allowed lines for Na VII—Continued

Table 27. Wavelength finding list for allowed lines for Na VII—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
293.126	269	348.505	265
293.419	269	349.052	124
294.161	157	349.858	155
294.559	157	350.140	266
295.377	157	350.645	4
295.779	157	350.668	266
297.071	184	352.275	4
301.005	141	353.294	4
301.114	141	354.950	4
303.150	341	356.773	308
303.591	156	356.977	308
304.025	156	357.054	267
304.887	156	359.945	182
305.325	156	361.768	182
305.427	126	363.689	223
305.446	126	363.769	307
306.617	268	363.782	223
306.937	268	363.980	307
308.556	342	365.364	223
309.071	125	365.457	223
309.129	342	367.809	309
309.866	125	370.975	302
309.962	154	374.925	219
310.241	154	375.094	113
310.665	154	376.166	113
310.945	154	376.690	219
311.459	154	376.705	219
312.237	154	378.215	3
312.744	188	378.487	219
312.754	154	379.348	305
313.450	188	379.795	241
314.832	188	379.896	241
314.861	140	381.300	3
315.219	140	384.231	183
315.338	140	385.061	31
315.676	187	385.115	31
315.906	187	385.254	31
317.078	187	386.892	374
323.342	186	386.937	303
324.812	186	387.177	303
326.829	343	387.462	330
327.022	181	387.687	374
327.472	343	388.123	374
327.686	181	389.090	330
330.918	189	389.120	330
331.708	189	389.803	218
336.228	27	390.503	218
337.059	27	391.512	304
337.154	27	391.727	218
338.276	27	392.065	240
338.372	27	393.996	240
343.159	306	396.335	26
344.911	310	397.489	26
348.092	265	399.182	26
348.153	155	399.265	123

TABLE 27. Wavelength finding list for allowed lines for Na VII—Continued

TABLE 27. Wavelength finding list for allowed lines for Na VII—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
404.760	373	448.712	261
404.957	114	450.167	261
405.400	322	450.207	179
405.630	373	450.633	177
406.108	373	450.857	261
406.421	396	451.182	179
406.537	214	451.896	177
406.686	139	452.120	263
406.769	322	453.001	263
406.884	139	453.063	260
407.315	214	453.597	263
407.415	396	454.483	263
407.564	122	454.773	260
408.280	122	455.477	260
408.630	214	456.850	216
409.165	224	457.018	216
409.283	224	459.643	216
409.769	314	459.812	216
410.526	121	460.109	239
410.560	224	463.714	264
410.779	220	464.209	217
411.100	121	465.224	217
411.472	138	465.268	264
411.675	138	465.853	217
411.743	138	466.875	217
411.946	138	466.962	205
412.899	220	467.596	205
413.035	220	468.165	205
413.070	213	468.209	151
413.223	329	468.757	205
413.257	329	469.329	205
415.093	213	469.969	151
415.231	213	470.389	205
420.133	180	470.854	259
422.619	180	471.143	151
423.442	222	471.587	151
425.695	222	471.609	259
427.077	222	474.563	151
429.941	153	475.579	262
431.499	137	482.509	208
431.723	137	483.045	208
432.507	153	483.131	30
432.545	153	483.216	30
435.483	340	483.328	30
436.681	212	483.412	30
438.750	152	483.723	208
439.097	212	483.746	208
439.850	152	483.840	208
441.462	152	484.168	423
442.517	221	484.262	423
443.420	221	484.520	208
444.010	221	484.966	208
444.919	221	485.578	423
448.350	179	485.625	355
448.451	301	485.673	423

TABLE 27. Wavelength finding list for allowed lines for Na VII—Continued

TABLE 27. Wavelength finding list for allowed lines for Na VII—Continued

Wavelength	Mult.	Wavelength	Mult.	
(vac) (Å)	No.	(vac) (Å)	No.	
486.098	215	580.08	274	
486.741	2	580.21	274	
486.760	355	582.45	274	
487.638	423	585.27	274	
489.261	215	585.41	274	
490.028	424	590.81	298	
490.629	207	591.05	298	
491.473	424	610.05	120	
491.862	2	616.60	386	
491.949	2	617.75	29	
492.271	328	617.89	29	
492.320	328	621.04	293	
493.681	207	625.90	293	
494.144	370	632.35	299	
495.368	206	632.63	299	
497.315	206	632.99	299	
498.229	33	633.27	299	
498.462	33	642.43	150	
498.480	206	644.66	300	
515.623	178	644.95	300	
519.373	178	648.26	150	
520.400	238	652.44	112	
523.560	372	658.46	112	
523.725	357	659.24	175	
525.017	372	661.64	395	
525.707	371	664.19	149	
525.818	372	665.38	175	
527.176	371	666.09	149	
527.983	371	667.11	295	
533.732	369	667.82	295	
538.938	356	670.42	149	
551.748	36	670.74	387	
552.035	36	671.10	387	
552.700	256	671.91	174	
553.741	256	672.36	149	
553.894	210	672.63	174	
555.796	36	672.72	295	
556.087	36	673.45	295	
556.731	313	673.63	148	
557.880	257	676.77	119	
558.005	210	678.29	174	
558.472	209	678.47	148	
558.971	313	679.02	174	
559.222	257	680.04	148	
559.942	209	680.83	297	
560.884	388	683.25	119	
562.65	209	686.11	394	
564.14	209	686.67	297	
564.37	388	688.04	201	
566.12	172	691.99	201	
567.60	172	694.06	201	
568.12	172	697.40	321	
575.64	258	698.08	201	
577.17 579.71	211 211	700.92 705.02	321 321	

TABLE 27. Wavelength finding list for allowed lines for Na VII—Continued

TABLE 27. Wavelength finding list for allowed lines for Na VII—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
708.57	254	798.79	289
710.28	254	799.30	289
710.43	320	802.63	204
710.63	405	803.47	404
711.39	405	810.90	384
712.15	320	811.03	286
715.72	294	815.73	422
716.38	320	819.27	202
716.54	294	820.55	422
717.00	405	824.88	202
717.10	255	828.29	202
718.08	294	835.49	418
719.32	255	840.27	118
726.27	312	844.67	118
727.01	173	859.92	409
727.06	237	860.44	409
727.17	237	864.22	1
730.46	327	869.73	1
731.53	296	871.23	203
732.76	287	872.30	1
733.19	287	874.89	417
734.00	296	877.58	203
734.48	173	880.50	1
736.65	327	883.47	203
736.76	327	886.22	1
745.55	176	891.42	419
748.06	236	892.70	288
752.39	319	900.82	419
752.73	236	909.67	421
752.79	273	915.67	421
755.69	410	916.09	291
757.12	319	936.24	385
761.56	273	940.38	385
761.61	410	944.82	198
762.02	410	947.15	198
773.46	393	951.47	198
774.23	290	955.75	339
775.19	290	956.57	420
777.06	290	958.68	198
778.05	35	961.08	198
785.48	136	963.21	420
786.13	35	967.31	339
786.23	136	971.91	32
786.65	35	985.61	318
791.83	253	993.74	318
792.71	253	1 007.76	199
792.77	292	1 013.07	199
793.34	136	1 015.02	416
794.09	136	1 022.08	413
794.16	204	1 023.54	199
794.28	204	1 027.22	416
794.85	253	1 029.02	199
795.48	404	1 030.40	251
795.73	292	1 032.42	392
	289	·- -	199

TABLE 27. Wavelength finding list for allowed lines for Na VII—Continued

TABLE 27. Wavelength finding list for allowed lines for Na VII—Continued

Wavelength	Mult.	Wavelength	Mult.	
(vac) (Å)	No.	(vac) (Å)	No.	
1 033.16	326	1 400.76	272	
1 033.38	326	1 411.23	169	
1 034.02	251	1 446.76	147	
1 034.77	282	1 476.67	147	
1 034.98	235	1 489.20	193	
1 039.07	402	1 494.54	335	
1 039.83	282	1 498.80	193	
1 044.06	402	1 517.68	193	
1 048.55	252	1 519.76	368	
1 053.30	252	1 529.52	192	
1 058.76	338	1 532.10	368	
1 063.94	338	1 537.52	192	
1 097.21	164	1 551.35	427	
1 104.73	164	1 557.63	367	
1 106.44	164	1 559.58	192	
1 107.05	414	1 567.89	192	
1 114.08	164	1 578.03	367	
1 121.58	414	1 578.28	427	
1 135.33	415	1 579.03	367	
1 144.69	415	1 583.03	167	
1 149.43	284	1 591.34	367	
1 151.41	403	1 592.36	367	
1 151.54	284	1 599.74	367	
1 168.22	403	1 602.31	167	
1 171.51	283	1 621.80	317	
1 175.78 1 178.00	283 283	1 639.08 1 643.93	167 317	
1 1/8.00	363	1 643.93 1 650.44	234	
1 187.23	366	1 650.44	353	
1 199.76	285	1 653.99	163	
1 190.76	337	1 671.68	163	
1 192.04	354	1 686.34	353	
1 193.74	363	1 689.19	163	
1 193.89	354	1 697.79	379	
1 194.74	34	1 718.80	379	
1 198.75	337	1 727.12	411	
1 199.62	366	1 740.64	432	
1 200.62	354	1 751.31	378	
1 203.95	363	1 752.23	111	
1 210.80	363	1 754.69	325	
1 215.36	365	1 755.31	325	
1 218.01	34	1 762.74	411	
1 232.89	365	1 787.9	378	
1 248.75	336	1 796.9	412	
1 250.00	336	1 802.1	233	
1 286.67	200	1 813.9	166	
1 299.38	200	1 816.2	233	
1 323.63	362	1 820.5	412	
1 323.98	351	1 824.8	271	
1 331.91	362	1 826.5	331	
1 332.45	351	1 836.2	247	
1 346.26	351	1 844.3	331	
1 358.70	364	1 861.2	166	
1 371.37	272	1 861.5	232	
1 398.99	169	1 873.4	232	
- 370.77	107	2 073.1		

TABLE 27. Wavelength finding list for allowed lines for Na VII—Continued

TABLE 27. Wavelength finding list for allowed lines for Na VII—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(air) (Å)	No.
1 877.2	271	2 426.4	383
1 882.5	249	2 442.5	197
1 897.9	249	2 452.0	194
1 912.8	117	2 458.7	245
1 917.2	117	2 479.4	245
1 925.3	246	2 483.7	332
1 931.2	246	2 511.2	350
1 938.0	246	2 513.1	332
1 939.5	146	2 521.9	277
1 944.0	246	2 537.3	430
1 961.6	347	2 541.2	350
1 964.6	347	2 575.9	277
1 980.2	347	2 644.0	346
1 983.3	347	2 678.0	346
1 985.3	352	2 707.8	334 334
1 993.6	146 248	2 729.2	
1 996.0	248	2 732.2	196
Wavelength	Mult.	2 764.7	196
(air) (Å)	No.	2 769.3	334
(<i>)</i> (- * <i>)</i>		2 777.0	349
2 003.0	352	2 783.1	349
2 006.2	248	2 790.1	196
2 000.2	248	2 824.0	196
		2 829.6	380
2 064.6	377	2 836.0	380
2 067.6	426	2 871.1	195
2 100.6	250	2 899.4	195
2 132.0	270	2 964.7	195
2 141.6	316	3 019.4	165
2 157.8	316	3 121.2	434
2 180.3	316	3 138.8	165
2 191.8	168	3 141.8	398
2 229.0	168	3 152.7	165
2 231.9	431	3 179.7	382
2 270.0	135	3 187.9	398
2 271.5	381	3 211.4	429
2 275.6	381	3 214.5	398
2 276.2	135	3 232.2	434
2 297.6	170	3 262.8	398
2 298.1	280	3 283.1	165
2 299.2	280	3 405.0	281
2 333.6	381	3 407.3	281
2 337.9	381	3 448.5	391
2 344.5	135	3 456.8	391
2 353.9	324	3 505.3	278
2 358.3	383	3 525.1	278
2 371.8	360	3 610.4	278
2 374.0	170	3 631.4	278
2 374.6	194	3 852.5	171
2 379.7	324	3 920.5	279
2 380.8	324		279 279
2 384.8	383	4 052.4	
2 393.9	194	4 129.4	145
2 395.6	333	4 193.4	436
2 397.9	197	4 197.0	361
2 399.1	383	4 237.9	145

TABLE 27. Wavelength finding list for allowed lines for Na VII—Continued

TABLE 27. Wavelength finding list for allowed lines for Na VII—Continued

Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.
4 292.5	361	8 770	442
4 358.0	428	8 966	344
4 379.0	348	8 974	407
4 382.8	441	9 257	442
4 396.3	436	9 343	399
4 457.1	401	9 361	344
4 501.2	441	9 370	344
4 505.3	145	9 458	389
4 604.9	401	9 801	344
4 787.9	397	9 820	439
4 817.9	390	9 888	389
4 886.2	401	9 957	407
5 126.8	390	10 027	407
5 137.3	400	10 535	425
5 158.5	400	11 010	439
5 377.7	438	12 933	435
5 490.0	400	16 859	437
5 687	315		
5 891	375		
5 968	315	Wavenumber	Mult.
6 280	433	(cm ⁻¹)	No.
7 684	408	4 300	358
7 744	323	3 830	358
7 756	323	3 580	440
7 915	345	2 530	406
8 134	408	2 480	440
8 181	408	2 460	406
8 228	345	2 350	359
8 366	399	460	376

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
1	$2s^22p - 2s2p^2$	$^{2}P^{\circ}-^{4}P$										
	1 1			[880.5]	2 139-115 711	4-4	7.77-05	9.03-07	1.05-05	-5.442	C+	2,3,4
				[869.7]	0-114 978	2-2	3.68-04	4.18-06	2.39-05	-5.078	C+	2,3,4
				[886.2]	2 139-114 978	4-2	3.25 - 04	1.91 - 06	2.23 - 05	-5.117	C+	2,3,4
				[872.3]	2 139-116 778	4-6	2.84 - 04	4.85 - 06	5.58-05	-4.712	C+	2,3,4
				[864.2]	0–115 711	2-4	8.95-06	2.01-07	1.14-06	-6.396	C	2,3,4
2		$^{2}P^{\circ}-^{2}D$		490.20	1 426–205 426	6–10	1.35+01	8.11-02	7.85-01	-0.313	A	2,3,4,5
				491.949	2 139–205 412	4-6	1.33+01	7.26-02	4.70-01	-0.537	A	2,3,4,5
				486.741	0-205 448	2-4	1.17 + 01	8.33-02	2.67-01	-0.778	A	2,3,4,5
				491.862	2 139–205 448	4–4	2.04+00	7.38 - 03	4.78 - 02	-1.530	$\mathrm{B} +$	2,3,4,5
3		$^{2}\text{P}^{\circ}-^{2}\text{S}$		380.27	1 426–264 400	6–2	6.20+01	4.48-02	3.37-01	-0.571	A	2,3,4,5
				381.300	2 139–264 400	4–2	3.70+01	4.03-02	2.02-01	-0.793	A	2,3,4,5
				378.215	0-264 400	2–2	2.52+01	5.40-02	1.34-01	-0.967	A	2,3,4,5
4		$^{2}P^{\circ}-^{2}P$		352.95	1 426–284 749	6–6	1.18+02	2.21-01	1.54+00	0.123	B+	2,3,4,5
				353.294	2 139–285 189	4-4	9.88+01	1.85-01	8.60-01	-0.131	A	2,3,4,5

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				352.275	0–283 869	2–2	7.41+01	1.38-01	3.20-01	-0.559	A	2,3,4,5
				354.950	2 139–283 869	4–2	4.23 + 01	3.99-02	1.87 - 01	-0.797	$\mathrm{B} +$	2,3,4,5
				350.645	0–285 189	2–4	2.03+01	7.48 - 02	1.73-01	-0.825	B+	2,3,4,5
5	2p-3s	$^{2}P^{\circ}-^{2}S$		105.27	1 426–951 350	6–2	4.93+02	2.73-02	5.68-02	-0.786	C	2
				105.351	2 139–951 350	4-2	3.29+02	2.74-02	3.80-02	-0.960	C	2
				105.114	0–951 350	2–2	1.64+02	2.71-02	1.88-02	-1.266	D+	2
6	2p-3d	$^{2}P^{\circ}-^{2}D$		94.41	1 426–1 060 652	6–10	2.64+03	5.88-01	1.10+00	0.548	В	2
				94.468	2 139–1 060 700	4-6			6.58-01	0.326	В	2
				94.288	0-1 060 580	2–4		5.88 - 01		0.070		2
				94.479	2 139–1 060 580	4–4	4.40+02	5.88-02	7.32-02	-0.629	С	2
7	$2s^22p - 2s2p(^3P^\circ)3p$	$^{2}P^{\circ}-^{2}P$		88.83	1 426–1 127 223	6–6	9.55+02	1.13-01	1.98-01	-0.169	C	1
				88.866	2 139–1 127 430	4-4	7.95 + 02	9.41 - 02	1.10-01	-0.424	C+	LS
				88.746	0-1 126 810	2–2			4.41 - 02			LS
				88.915	2 139–1 126 810	4–2			2.20-02			LS
				88.697	0–1 127 430	2–4	1.60+02	3.77-02	2.20-02	-1.123	С	LS
8		$^{2}P^{\circ}-^{2}D$		86.64	1 426–1 155 620	6–10	1.01+03	1.89-01	3.23-01	0.055	C+	1
				86.652	2 139–1 156 180	4-6	1.01 + 03	1.70 - 01	1.94-01	-0.167	C+	LS
				86.597	0-1 154 780	2-4			1.08 - 01			LS
				86.757	2 139–1 154 780	4–4	1.67 + 02	1.89-02	2.16-02	-1.121	C	LS
9		$^{2}P^{\circ}-^{2}S$		85.40	<i>1 426</i> –1 172 340	6–2	9.61+02	3.50-02	5.91-02	-0.678	C	1
				85.455	2 139-1 172 340	4–2	6.39+02	3.50-02	3.94-02	-0.854	C	LS
				85.299	0–1 172 340	2–2	3.22+02	3.51-02	1.97-02	-1.154	C	LS
10	$2s^22p - 2s2p(^1P^{\circ})3p$	$^{2}P^{\circ}-^{2}D$		79.97	1 426–1 251 874	6–10	1.17+02	1.87-02	2.95-02	-0.950	D+	1
				80.008	2 139-1 252 010	4-6	1.17 + 02	1.68 - 02	1.77-02	-1.173	C	LS
				79.893	0-1 251 670	2-4	9.77 + 01	1.87 - 02	9.84 - 03	-1.427	D+	LS
				80.030	2 139–1 251 670	4–4	1.95+01	1.87-03	1.97-03	-2.126	D	LS
11		$^{2}P^{\circ}-^{2}P$		79.86	1 426–1 253 637	6–6	3.33+02	3.18-02	5.02-02	-0.719	D+	1
				79.895	2 139-1 253 780	4-4	2.77 + 02	2.65 - 02	2.79-02	-0.975	C	LS
				79.786	0-1 253 350	2–2	2.23+02	2.13 - 02	1.12 - 02	-1.371	D+	LS
				79.923	2 139–1 253 350	4–2			5.59-03			
				79.759	0–1 253 780	2–4	5.56+01	1.06-02	5.57-03	-1.674	D+	LS
12		$^{2}P^{\circ}-^{2}S$		79.53	1 426–1 258 880	6–2	4.02+02	1.27-02	1.99-02	-1.118	D+	1
				79.571	2 139-1 258 880	4-2	2.68+02	1.27 - 02	1.33-02	-1.294	D+	LS
				79.436	0-1 258 880	2–2	1.34+02	1.27-02	6.64-03	-1.595	D+	LS
13	2p-4s	$^{2}P^{\circ}-^{2}S$		77.31	<i>1 426</i> –1 294 910	6–2	3.92+01	1.17-03	1.79-03	-2.154	E+	1
				77.353	2 139–1 294 910	4–2	2.61+01	1.17-03	1.19-03	-2.330	D	LS
				77.225	0–1 294 910	2–2	1.31 + 01	1.17-03	5.95-04	-2.631	E+	LS
14	$2s^22p-2p^2(^1D)3s$	$^{2}P^{\circ}-^{2}D$		75.18	1 426–1 331 638	6–10	1.80+01	2.54-03	3.77-03	-1.817	D	1
				75.198	2 139–1 331 970	4-6	1.79+01	2.28-03	2.26-03	-2.040	D	LS
				75.124	0-1 331 140	2-4	1.50+01	2.54-03	1.26-03	-2.294	D	LS
				75.244	2 139–1 331 140	4-4	2.99+00	2.54-04	2.52-04	-2.993	E+	LS
15	2p-4d	$^{2}P^{\circ}-^{2}D$		74.94	1 426–1 335 822	6–10	8.70+02	1.22-01	1.81-01	-0.135	C	1

Table 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	E_i – E_k (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				74.980	2 139–1 335 830	4-6	8.70+02	1.10-01	1.09-01	-0.357	C+	LS
				74.861	0-1 335 810	2-4	7.26+02	1.22-01	6.01 - 02	-0.613	C	LS
				74.981	2 139–1 335 810	4-4	1.45 + 02	1.22 - 02	1.20-02	-1.312	D+	LS
16	$2s^22p - 2p^2(^3P)3d$	$^{2}P^{\circ}-^{2}D$		71.99	1 426–1 390 450	6–10	1.13+02	1.47-02	2.09-02	-1.055	D+	1
				[72.03]	2 139-1 390 450	4-6	1.13+02	1.32-02	1.25-02	-1.277	D+	LS
				[71.92]	0-1 390 450	2-4	9.48 + 01	1.47 - 02	6.96-03	-1.532	D+	LS
				[72.03]	2 139–1 390 450	4-4	1.89 + 01	1.47 - 03	1.39-03	-2.231	D	LS
17	$2s^22p-2p^2(^1D)3d$	$^{2}P^{\circ}-^{2}D$		70.71	1 426–1 415 630	6–10	6.12+01	7.65-03	1.07-02	-1.338	D	1
				70.747	2 139–1 415 630	4-6			6.41 - 03			LS
				70.640	0-1 415 630	2–4			3.56-03			LS
				70.747	2 139–1 415 630	4–4	1.02+01	7.64-04	7.12-04	-2.515	E+	LS
18		$^{2}\text{P}^{\circ}-^{2}\text{P}$		69.88	1 426–1 432 453	6–6	3.75+01	2.75-03	3.79-03	-1.783	D	1
				69.907	2 139-1 432 610	4-4	3.13+01	2.29-03	2.11-03	-2.038	D	LS
				69.826	0-1 432 140	2-2	2.50+01	1.83 - 03	8.41 - 04	-2.437	E+	LS
				69.930	2 139-1 432 140	4-2	1.25+01	4.58 - 01	4.22 - 04	-2.737	E+	LS
				69.803	0–1 432 610	2–4	6.28+00	9.17-04	4.21 - 04	-2.737	E+	LS
19	$2s^22p - 2s2p(^3P^{\circ})4p$	$^{2}P^{\circ}-^{2}P$		69.37	1 426–1 443 017	6–6	4.44+02	3.21-02	4.39-02	-0.715	D+	1
				69.395	2 139-1 443 170	4-4	3.70+02	2.67-02	2.44-02	-0.971	C	LS
				69.314	0-1 442 710	2-2	2.97 + 02	2.14-02	9.77-03	-1.369	D+	LS
				69.417	2 139-1 442 710	4-2	1.48 + 02	5.34-03	4.88-03	-1.670	D	LS
				69.292	0–1 443 170	2–4	7.43 + 01	1.07 - 02	4.88 - 03	-1.670	D	LS
20		$^{2}P^{\circ}-^{2}D$		68.90	1 426–1 452 850	6–10	3.87+02	4.59-02	6.25-02	-0.560	C	1
				68.908	2 139-1 453 350	4-6	3.87 + 02	4.13-02	3.75-02	-0.782	C	LS
				68.866	0-1 452 100	2-4	3.23 + 02	4.60 - 02	2.09 - 02	-1.036	C	LS
				68.967	2 139–1 452 100	4–4	6.44+01	4.59-03	4.17-03	-1.736	D	LS
21	2p-5d	$^{2}P^{\circ}-^{2}D$		68.49	1 426–1 461 562	6–10	3.97+02	4.66-02	6.30-02	-0.553	C	1
				68.519	2 139-1 461 590	4-6	3.97 + 02	4.19-02	3.78-02	-0.776	C	LS
				68.422	0-1 461 520	2-4	3.32+02	4.66-02	2.10-02	-1.031	C	LS
				68.522	2 139–1 461 520	4-4	6.62+01	4.66-03	4.20-03	-1.730	D	LS
22	2p-6d	$^{2}P^{\circ}-^{2}D$		65.44	1 426–1 529 460	6–10	2.36+02	2.52-02	3.26-02	-0.820	D+	1
				65.474	2 139–1 529 460	4-6	2.35+02	2.27-02	1.96-02	-1.042	C	LS
				65.383	0-1 529 460	2-4	1.97 + 02	2.52 - 02	1.08 - 02	-1.298	D+	LS
				65.474	2 139–1 529 460	4–4	3.92+01	2.52-03	2.17-03	-1.997	D	LS
23	$2s^22p - 2s2p(^1P^{\circ})4p$	$^{2}P^{\circ}-^{2}D$		64.08	1 426–1 561 890	6–10	1.26+02	1.29-02	1.63-02	-1.111	D+	1
				[64.11]	2 139-1 561 890	4-6	1.25 + 02	1.16-02	9.79-03	-1.333	D+	LS
				[64.03]	0-1 561 890	2-4	1.05+02	1.29 - 02	5.44 - 03	-1.588	D+	LS
				[64.11]	2 139–1 561 890	4–4	2.09+01	1.29 - 03	1.09-03	-2.287	E+	LS
24	$2s^22p - 2s2p(^3P^{\circ})5p$	$^{2}P^{\circ}-^{2}P$		63.41	1 426–1 578 350	6-6	2.89+02	1.74-02	2.18-02	-0.981	D+	1
				63.443	2 139–1 578 350	4-4	2.40+02	1.45-02	1.21-02	-1.237	D+	LS
				63.357	0-1 578 350	2–2	1.93 + 02	1.16-02	4.84-03	-1.635	D	LS
				63.443	2 139-1 578 350	4–2	9.61+01	2.90-03	2.42-03	-1.936	D	LS
				63.357	0-1 578 350	2–4	4.82 + 01	5.80-03	2.42-03	-1.936	D	LS
25		$^{2}P^{\circ}-^{2}D$		63.20	1 426–1 583 740	6–10	1.97+02	1.97-02	2.46-02	-0.927	D+	1

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				63.227	2 139–1 583 740	4–6	1.97+02	1.77-02	1.47-02	-1.150	D+	LS
				63.142	0-1 583 740	2-4	1.65 + 02	1.97 - 02	8.19-03	-1.405	D+	LS
				63.227	2 139–1 583 740	4-4	3.29+01	1.97 - 03	1.64-03	-2.103	D	LS
26	$2s2p^2 - 2p^3$	$^4P-^4S^{\circ}$		398.14	116 122–367 290	12-4	1.09+02	8.62-02	1.36+00	0.015	A	2,3,4,5
				399.182	116 778–367 290	6-4	5.39+01	8.59-02	6.77-01	-0.288	A	2,3,4,5
				397.489	115 711-367 290	4-4	3.64+01	8.63 - 02	4.52 - 01	-0.462	A	2,3,4,5
				396.335	114 978–367 290	2–4	1.84+01	8.66-02	2.26-01	-0.761	A	2,3,4,5
27		$^{4}P-^{2}D^{\circ}$										
				[337.15]	115 711-412 311	4-6	2.63 - 04	6.72 - 07	2.98 - 06	-5.571	D+	2,3,4
				[336.23]	114 978-412 395	2-4	1.29 - 04	4.38 - 07	9.70 - 07	-6.057	D	2,3,4
				[338.37]	116 778-412 311	6-6	1.12-02	1.93 - 05	1.29 - 04	-3.936	$\mathrm{B}+$	2,3,4
				[337.06]	115 711-412 395	4-4	3.67 - 03	6.24 - 06	2.77 - 05	-4.603	$\mathrm{B} +$	2,3,4
				[338.28]	116 778-412 395	6–4	5.68-04	6.50 - 07	4.34-06	-5.409	C	2,3,4
28		$^{4}P-^{2}P^{\circ}$										
				[286.20]	115 711-465 111	4-4	7.65 - 03	9.40-06	3.54-05	-4.425	C+	2,3,4
				[285.68]	114 978-465 017	2-2	2.89 - 03	3.54-06	6.65-06	-5.150	C	2,3,4
				[287.08]	116 778-465 111	6-4	2.72-03	2.24-06	1.27-05	-4.872	C	2,3,4
				[286.28]	115 711-465 017	4-2	6.42 - 04	3.94 - 07	1.49-06	-5.802	$\mathrm{B}+$	2,3,4
				[285.61]	114 978–465 111	2-4	1.68 - 04	4.12 - 07	7.74 - 07	-6.084	E+	2,3,4
29		$^2D-^4S^{\circ}$										
				[617.8]	205 412-367 290	6-4	3.30-05	1.26-07	1.54-06	-6.121	D	2,3,4
				[617.9]	205 448-367 290	4-4	2.70-06	1.55 - 08	1.26-07	-7.208	D	2,3,4
30		$^2D-^2D^{\circ}$		483.28	205 426–412 345	10-10	2.90+01	1.02-01	1.62+00	0.009	A	2,3,4,5
				483.328	205 412-412 311	6-6	2.71+01	9.48-02	9.05-01	-0.245	A	2,3,4,5
				483.216	205 448-412 395	4-4	2.54+01	8.89 - 02	5.66-01	-0.449	A	2,3,4,5
				483.131	205 412-412 395	6-4	3.38+00	7.88 - 03	7.52 - 02	-1.325	$\mathrm{B} +$	2,3,4,5
				483.412	205 448-412 311	4–6	2.10+00	1.11-02	7.04 - 02	-1.353	B+	2,3,4,5
31		$^{2}D-^{2}P^{\circ}$		385.13	205 426–465 080	10-6	4.98+01	6.65-02	8.43-01	-0.177	A	2,3,4,5
				385.061	205 412-465 111	6-4	4.39+01	6.51-02	4.95-01	-0.408	A	2,3,4,5
				385.254	205 448-465 017	4-2	5.06+01	5.63 - 02	2.86 - 01	-0.647	A	2,3,4,5
				385.115	205 448-465 111	4-4	5.47 + 00	1.22 - 02	6.17-02	-1.312	B+	2,3,4,5
32		$^2S-^4S^{\circ}$										
				[971.9]	264 400–367 290	2-4	8.71-06	2.47-07	1.58-06	-6.306	D+	2,3,4
33		2 S $-^2$ P $^{\circ}$		498.31	264 400–465 080	2-6	8.51+00	9.51-02	3.12-01	-0.721	A	2,3,4,5
				498.229	264 400-465 111	2-4	9.31+00	6.93-02	2.27-01	-0.858	A	2,3,4,5
				498.462	264 400–465 017	2–2	6.92+00	2.58-02	8.46-02	-1.287	B +	2,3,4,5
34		$^{2}P-^{4}S^{\circ}$										
				[1 218.0]	285 189-367 290	4-4	3.41-04	7.59-06	1.22-04	-4.518	C	2,3,4
				[1 198.7]	283 869–367 290	2-4			3.18-05			2,3,4
35		$^{2}P-^{2}D^{\circ}$		783.7	284 749–412 345	6-10	6.26+00	9.61-02	1.49+00	-0.239	B+	2,3,4,5
				786.65	285 189–412 311	4-6	6.17+00	8.59-02	8.89-01	-0.464	B+	2,3,4,5
				778.05	283 869–412 395	2-4			5.10-01			2,3,4,5
				786.13	285 189–412 395	4-4			8.91-02			2,3,4,5
26		$^{2}P-^{2}P^{\circ}$										
36		-rr		554.54	284 749–465 080	6–6	2.80+01	1.29-01	1.41+00	-0.111	А	2,3,4,5
				555.796	285 189–465 111	4-4	2.38+01	1.10-01	8.06-01	-0.357	A	2,3,4,5

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				552.035	283 869-465 017	2–2	2.01+01	9.17-02	3.33-01	-0.737	A	2,3,4,5
				556.087	285 189-465 017	4-2	8.97 + 00	2.08-02	1.52 - 01	-1.080	A	2,3,4,5
				551.748	283 869–465 111	2–4	3.70+00	3.38 - 02	1.23-01	-1.170	A	2,3,4,5
37	$2s2p^2 - 2s^23p$	$^{2}D-^{2}P^{\circ}$				10-6						
				124.532	205 412-1 008 420	6-4	3.22+01	4.99-03	1.23-02	-1.524	D+	2
				124.537	205 448-1 008 420	4-4	3.53+00	8.21-04	1.35-03	-2.484	E+	2
38		2 S $-^2$ P $^{\circ}$				2–6						
				134.405	264 400-1 008 420	2–4	5.19+00	2.81-03	2.49-03	-2.250	D	2
39	$2s2p^2 - 2s2p(^3P^{\circ})3s$	$^4P-^4P^{\circ}$		103.91	116 122–1 078 523	12–12	5.95+02	9.64-02	3.96-01	0.063	C	2
				103.893	116 778-1 079 310	6-6	4.19+02	6.77-02	1.39-01	-0.391	C+	2
				103.921	115 711-1 077 980	4-4	7.91 + 01	1.28 - 02	1.75 - 02	-1.291	D+	2
				103.921	114 978-1 077 250	2-2	9.86+01	1.60-02	1.09-02	-1.495	D+	2
				104.036	116 778-1 077 980	6-4	2.67 + 02	2.89-02	5.93-02	-0.761	C	2
				104.000	115 711-1 077 250	4-2	4.92 + 02	3.99-02	5.47-02	-0.797	C	2
				103.778	115 711-1 079 310	4-6	1.80 + 02	4.35-02	5.95-02	-0.759	C	2
				103.842	114 978-1 077 980	2–4		8.00-02				2
10		$^{2}D-^{2}P^{\circ}$		111.27	205 426–1 104 153	10-6	3.18+02	3.55-02	1.30-01	-0.450	C	1
				111.209	205 412-1 104 620	6–4	2.87+02	3.55-02	7.80-02	-0.672	С	LS
				111.387	205 448-1 103 220	4-2		2.95-02				LS
				111.213	205 448–1 104 620	4-4		5.91-03				LS
1		$^{2}S-^{2}P^{\circ}$		119.08	264 400–1104 153	2-6	9.83+01	6.27-02	4.92-02	-0.902	C	1
				119.016	264 400-1 104 620	2-4	9.84±01	4.18-02	3 28-02	-1 078	C	LS
				119.215	264 400–1 103 220	2–2		2.09-02				LS
-2		$^{2}P-^{2}P^{\circ}$		122.04	284 749–1 104 153	6-6	2.86+01	6.38-03	1.54-02	-1.417	D	1
				122.036	285 189–1 104 620	4-4	2.38+01	5.32-03	8.55-03	-1.672	D+	LS
				122.048	283 869-1 103 220	2-2		4.26-03				LS
				122.245	285 189–1 103 220	4–2		1.06-03				LS
				121.840	283 869–1 104 620	2–4		2.13-03				LS
13	$2s2p^2 - 2s2p(^3P^{\circ})3d$	$^{4}P-^{4}D^{\circ}$				12–20						1
				93.486	116 778-1 186 460	6–8	4.05+03	7.07-01	1.31+00	0.628	B+	LS
				93.434	115 711–1 185 980	4-6		5.57-01				LS
				93.393	114 978-1 185 720	2-4		4.43-01				LS
				93.528	116 778–1 185 980	6–6		1.59-01				LS
				93.457	115 711–1 185 720	4–4		2.83-01				LS
				93.550	116 778–1 185 720	6–4		1.77 - 02				LS
4		$^4P-^4P^{\circ}$		92.89	116 122–1 192 647	12–12	2.17+03	2.80-01	1.03+00	0.526	C+	1
				92.976	116 778–1 192 330	6–6	1.51+03	1.96-01	3.60-01	0.070	В	LS
				92.839	115 711–1 192 850	4-4		3.74-02				LS
				92.746	114 978–1 193 190	2–2		4.68-02				LS
				92.740	116 778–1 193 190	6–4		8.41 - 02				LS
				92.809	115 711–1 193 190	4–2		1.17-01				LS
				92.883	115 711–1 192 330	4–6		1.26-01				LS
		2- 2 2		92.775	114 978–1 192 850	2–4		2.34-01				LS
15		$^{2}D-^{2}D^{\circ}$		101.84	205 426–1 187 386	10–10		1.69-01				1
				101.783	205 412–1 187 890	6–6	1.02+03	1.58-01	3.18-01	-0.023	В	LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

101918	No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
10.194 205 412-1 186.00 6-4 10-90.0 10-00.0 22-00.0 1.100 0 1.8					101 018	205 448_1 186 630	1_1	9.76±02	1 52 _ 01	2.04_01	_0.216	C+	15
10.187 205 483-1 187 890 4-6 7.30-01 7.00-02 2.88-02 -1.167 C 1.8 10.187 205 442-1 210-070 10-14 2.88+03 5.35-01 7.00-00 7.084 0.486 8 1.8 10.188 205 422-1 217 190 4-6 2.88+03 5.10-01 1.00+00 0.486 8 1.8 10.189 205 442-1 217 190 4-6 2.01+01 2.58+03 5.10-01 1.00+00 0.385 0.1 1.5 10.189 205 442-1 217 190 4-6 2.01+01 2.58+03 5.10-01 1.00+00 0.385 0.1 1.5 10.189 205 442-1 217 190 4-6 2.01+01 2.58+03 3.50-01 7.01-02 -0.815 C 1.8 10.189 205 442-1 217 190 4-6 2.01+01													
1													
99.421	46		$^{2}D-^{2}F^{\circ}$										
Part	70		<i>D</i> -1										
99.552													
			2_ 2_ %										
	47		² D− ² P		98.81	205 426–1 217 443	10–6	2.71+01	2.38-03	7.75-03	-1.623	D	1
18 18 18 18 18 18 18 18						205 412-1 217 190	6–4						
104.95					98.765	205 448–1 217 950	4–2						LS
104.955					98.839	205 448–1 217 190	4–4	2.71 + 00	3.97-04	5.17-04	-2.799	E+	LS
104.871 264400-1 217 950 2-2 1.42+03 2.34-01 1.62-01 -0.330 C+ 1.8	48		$^{2}S-^{2}P^{\circ}$		104.93	264 400–1 217 443	2-6	1.42+03	7.02-01	4.85-01	0.147	В	1
P-2D' 110.79 287 49-1 187 386 6-10 3.32+02 1.02-01 2.23-01 0.0213 C-1 1.02-0					104.955	264 400-1 217 190	2-4	1.42+03	4.68-01	3.23-01	-0.029	В	LS
110.779													LS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49		$^{2}P-^{2}D^{\circ}$		110.79	284 749–1 187 386	6-10	3.32+02	1.02-01	2.23-01	-0.213	C+	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					110 779	285 189_1 187 890	4_6	3 32+02	9 15-02	1 33-01	-0.437	$C\pm$	LS
110.933													
50 \$^{2}P^{-2}P^{+}\$ \$107.22 \$284.749-1_217.443 \$6-6 \$2.13+02 \$3.68-02 \$7.78-02 \$-0.656 \$C \$1\$ \$107.296 \$285.189-1_217.190 \$4-4 \$1.77+02 \$3.66-02 \$4.32-02 \$-0.912 \$C \$LS \$107.057 \$283.869-1_217.950 \$4-2 \$7.11+01 \$6.13-03 \$8.65-03 \$-1.610 \$D+1 \$LS \$107.194 \$283.869-1_217.190 \$2-4 \$3.57+01 \$1.23-02 \$8.68-03 \$-1.600 \$D+1 \$LS \$107.144 \$283.869-1_217.190 \$2-4 \$3.57+01 \$1.23-02 \$8.68-03 \$-1.600 \$D+1 \$LS \$107.144 \$283.869-1_217.190 \$2-4 \$3.57+01 \$1.23-02 \$8.68-03 \$-1.600 \$D+1 \$LS \$107.144 \$283.869-1_217.190 \$2-4 \$3.57+01 \$1.23-02 \$8.68-03 \$-1.600 \$D+1 \$LS \$1.07.144 \$283.869-1_217.190 \$2-4 \$3.57+01 \$1.23-02 \$8.68-03 \$-1.600 \$D+1 \$LS \$1.07.144 \$283.869-1_217.190 \$2-4 \$3.57+01 \$1.23-02 \$8.68-03 \$-1.600 \$D+1 \$LS \$1.07.144 \$283.869-1_217.190 \$2-4 \$2.54+02 \$2.58+02 \$2.58-02 \$-0.588 \$C \$1.07.144 \$													
107.296			2- 2- 8										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50		$^{2}P-^{2}P^{*}$		107.22	284 749–1 217 443	6–6	2.13+02	3.68-02	7.78-02	-0.656	С	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						285 189–1 217 190	4-4	1.77 + 02	3.06-02	4.32 - 02	-0.912	C	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					107.057	283 869-1 217 950	2–2	1.43 + 02	2.45 - 02	1.73 - 02	-1.310	C	LS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					107.209	285 189–1 217 950	4-2	7.11 + 01	6.13 - 03	8.65 - 03	-1.610	D+	LS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					107.144	283 869–1 217 190	2–4	3.57 + 01	1.23-02	8.68-03	-1.609	D+	LS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	$2s2p^2 - 2s2p(^1P^{\circ})3s$	$^{2}D-^{2}P^{\circ}$		100.72	205 426–1 198 290	10-6	2.83+02	2.58-02	8.55-02	-0.588	C	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					100.717	205 412-1 198 290	6–4	2.54+02	2.58-02	5.13-02	-0.810	С	LS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52.		$^{2}S-^{2}P^{\circ}$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			~ -										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53		$^{2}P-^{2}P^{\circ}$		109.46	284 749–1 198 290	6-6	4.07+2	7.31-02	1.58-01	-0.358	C	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					109.517	285 189–1 198 290	4-4	3.39+2	6.09-02	8.78-02	-0.613	C+	LS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					109.359	283 869-1 198 290	2-2	2.72 + 2	4.88-02	3.51-02	-1.011	C	LS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
92.003 205 412-1 292 330 6-8 1.77+03 2.99-01 5.43-01 0.254 B LS 92.006 205 448-1 292 330 4-6 1.65+03 3.14-01 3.80-01 0.099 B LS 92.003 205 412-1 292 330 6-6 1.18+02 1.50-02 2.73-02 -1.046 C LS 55 2D-2D° 91.06 205 426-1 303 546 10-10 3.52+02 4.38-02 1.31-01 -0.359 C 1 91.058 205 412-1 303 610 6-6 3.29+02 4.09-02 7.36-02 -0.610 C LS [91.08] 205 448-1 303 450 4-4 3.17+02 3.94-02 4.73-02 -0.802 C LS [91.07] 205 412-1 303 450 6-4 3.52+01 2.92-03 5.25-03 -1.756 D+ LS													
92.006 205 448-1 292 330 4-6 1.65+03 3.14-01 3.80-01 0.099 B LS 92.003 205 412-1 292 330 6-6 1.18+02 1.50-02 2.73-02 -1.046 C LS 55 2D-2D° 91.06 205 426-1 303 546 10-10 3.52+02 4.38-02 1.31-01 -0.359 C 1 91.058 205 412-1 303 610 6-6 3.29+02 4.09-02 7.36-02 -0.610 C LS [91.08] 205 448-1 303 450 4-4 3.17+02 3.94-02 4.73-02 -0.802 C LS [91.07] 205 412-1 303 450 6-4 3.52+01 2.92-03 5.25-03 -1.756 D+ LS	54	$2s2p^2 - 2s2p(^1P^{\circ})3d$	$^{2}D-^{2}F^{\circ}$		92.00	205 426–1 292 330	10–14	1.77+03	3.14-01	9.51-01	0.497	В	1
92.006 205 448-1 292 330 4-6 1.65+03 3.14-01 3.80-01 0.099 B LS 92.003 205 412-1 292 330 6-6 1.18+02 1.50-02 2.73-02 -1.046 C LS 55 2D-2D° 91.06 205 426-1 303 546 10-10 3.52+02 4.38-02 1.31-01 -0.359 C 1 91.058 205 412-1 303 610 6-6 3.29+02 4.09-02 7.36-02 -0.610 C LS [91.08] 205 448-1 303 450 4-4 3.17+02 3.94-02 4.73-02 -0.802 C LS [91.07] 205 412-1 303 450 6-4 3.52+01 2.92-03 5.25-03 -1.756 D+ LS					92.003	205 412-1 292 330	6-8	1.77+03	2.99-01	5.43-01	0.254	В	LS
91.06 205 426–1 303 546 10–10 3.52+02 4.38–02 1.31–01 -0.359 C 1 91.058 205 412–1 303 610 6–6 3.29+02 4.09–02 7.36–02 -0.610 C LS [91.08] 205 448–1 303 450 4–4 3.17+02 3.94–02 4.73–02 -0.802 C LS [91.07] 205 412–1 303 450 6–4 3.52+01 2.92–03 5.25–03 -1.756 D+ LS					92.006	205 448-1 292 330	4-6	1.65 + 03	3.14-01	3.80-01	0.099	В	LS
91.058 205 412–1 303 610 6–6 3.29+02 4.09–02 7.36–02 –0.610 C LS [91.08] 205 448–1 303 450 4–4 3.17+02 3.94–02 4.73–02 –0.802 C LS [91.07] 205 412–1 303 450 6–4 3.52+01 2.92–03 5.25–03 –1.756 D+ LS					92.003	205 412-1 292 330	6–6	1.18+02	1.50-02	2.73-02	-1.046	C	LS
[91.08] 205 448-1 303 450 4-4 3.17+02 3.94-02 4.73-02 -0.802 C LS [91.07] 205 412-1 303 450 6-4 3.52+01 2.92-03 5.25-03 -1.756 D+ LS	55		$^{2}D-^{2}D^{\circ}$		91.06	205 426–1 303 546	10–10	3.52+02	4.38-02	1.31-01	-0.359	C	1
[91.07] 205 412–1 303 450 6–4 3.52+01 2.92–03 5.25–03 –1.756 D+ LS					91.058	205 412–1 303 610	6–6	3.29+02	4.09-02	7.36-02	-0.610	С	LS
[91.07] 205 412–1 303 450 6–4 3.52+01 2.92–03 5.25–03 –1.756 D+ LS					[91.08]	205 448-1 303 450	4-4	3.17+02	3.94-02	4.73-02	-0.802	C	LS
						205 412-1 303 450	6-4	3.52+01	2.92-03	5.25-03	-1.756	D+	LS
					91.061	205 448-1 303 610	4-6						LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

10	No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	E_i – E_k (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
90,825	56		$^{2}D-^{2}P^{\circ}$		90.82	205 426–1 306 470	1 0-6	1.31+01	9.70-04	2.90-03	-2.013	D	1
57 9.825 9.825 205 48-1 306 470 4-4 1.31+00 1.62-04 1.94-04 -0.188 E + 1.81 58 28 29 29 29 29 29 29 2					90.822	205 412-1 306 470	6-4	1.18+01	9.70-04	1.74-03	-2.235	D	LS
57 \$25-\$p^2					90.825	205 448-1 306 470	4-2	1.31+01	8.08-04	9.66-04	-2.491	E +	LS
Second S					90.825	205 448-1 306 470	4–4	1.31+00	1.62-04	1.94-04	-3.188	E +	LS
	57		$^{2}S-^{2}P^{\circ}$		95.96	264 400–1 306 470	2–6	4.20+02	1.74-01	1.10-01	-0.458	C	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					95.963	264 400–1 306 470	2–2	4.20+02	5.80-02	3.66-02	-0.936	С	LS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	58		$^{2}P-^{2}D^{\circ}$		98.15	284 749–1 303 546	6–10	2.78+03	6.69-01	1.30+00	0.604	В	1
$ \begin{bmatrix} 98.21 \end{bmatrix} $					98.191	285 189-1 303 610	4-6	2.78+03	6.02 - 01	7.78 - 01	0.382	В	LS
97.97					[98.08]	283 869-1 303 450	2-4	2.32+03	6.70 - 01	4.33 - 01	0.127	В	LS
97.916 285 189-1 306 470 4-4 4.77+02 6.86-02 8.85-02 -0.562 C+1 1.55					[98.21]	285 189–1 303 450	4–4	4.63 + 02	6.69-02	8.65-02	-0.573	C+	LS
	59		$^{2}P-^{2}P^{\circ}$		97.87	284 749–1 306 470	6–6	5.73+02	8.23-02	1.59-01	-0.306	C	1
					97.916	285 189-1 306 470	4-4	4.77 + 02	6.86-02	8.85-02	-0.562	C+	LS
10 10 10 10 10 10 10 10					97.790	283 869-1 306 470	2-2	3.83 + 02	5.49-02	3.53-02	-0.959	C	LS
12-20					97.916	285 189-1 306 470	4-2	1.91 + 02	1.37 - 02	1.77 - 02	-1.261	C	LS
81.855					97.790	283 869–1 306 470	2–4	9.59+01	2.75-02	1.77 - 02	-1.260	C	LS
61	60	$2s2p^2 - 2p^2(^3P)3p$	$^4P-^4D^{\circ}$				12-20						1
81.430					81.855	116 778–1 338 450	6-8	3.24+02	4.34-02	7.02-02	-0.584	C	LS
81.359	61		$^{4}P-^{4}P^{\circ}$				12-12						1
62					81.430	116 778-1 344 830	6-6	3.33 + 02	3.31-02	5.32-02	-0.702	C	LS
80.246 116 778-1 362 950 6-4 2.77+02 1.78-02 2.82-02 -0.971 C LS 80.177 115 711-1 362 950 4-4 1.86+02 1.79-02 1.89-02 -1.145 C LS 80.130 114 978-1 362 950 2-4 9.30+01 1.79-02 9.44-03 -1.446 D+ LS 87.465 205 412-1 348 720 10-10 8.65+01 9.92-03 2.86-02 -1.003 D+ LS 87.465 205 412-1 348 720 6-6 8.07+01 9.26-03 1.60-02 -1.255 D+ LS 87.465 205 412-1 348 720 6-4 8.64+00 6.61-04 1.14-03 -2.402 D LS 87.465 205 412-1 348 720 6-4 8.64+00 6.61-04 1.14-03 -2.402 D LS 87.465 205 412-1 348 720 4-6 5.77+00 9.92-04 1.14-03 -2.401 D LS 87.465 205 412-1 348 720 4-6 5.77+00 9.92-04 1.14-03 -2.401 D LS 87.468 205 448-1 348 720 4-6 5.77+00 9.92-04 1.14-03 -2.401 D LS 87.468 205 448-1 348 720 4-6 4.38+02 9.67-02 1.80-01 -0.236 C 1 87.468 205 448-1 348 720 4-6 4.38+02 9.67-02 1.80-01 -0.458 C LS 87.469 285 189-1 348 720 4-6 4.38+02 9.67-02 1.09-01 -0.458 C LS 87.461 285 189-1 348 720 4-6 4.38+02 9.67-02 1.09-01 -0.458 C LS 87.465 285 189-1 348 720 4-6 4.38+02 3.90-02 1.09-01 -0.458 C LS 87.467 285 189-1 348 720 4-6 2.38+02 3.90-02 1.09-01 -0.409 C LS 87.468 205 412-1 377 820 6-6 1.71+01 1.86-03 3.13-03 -1.952 D LS 87.469 205 412-1 377 820 6-6 1.71+01 1.86-03 3.13-03 -1.952 D LS 87.469 205 412-1 378 2800 10-10 4.29+02 4.57-02 1.27-01 -0.340 C LS 87.469 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 87.469 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.794 C LS 87.460 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.794 C LS 87.470 205 448-1 392 800 6-4 4.30+01 3.05-03 5.07-03 -1.738 D + LS 87.480 205 412-1 392 800 6-4 4.30+01 3.05-03 5.07-03 -1.738 D + LS 87.490 205 412-1 392 800 6-4 4.30+01					81.359	115 711–1 344 830	4–6	1.43 + 02	2.13-02	2.28-02	-1.070	C	LS
80.177 115 711-1 362 950 4-4 1.86+02 1.79-02 1.89-02 -1.145 C LS 80.130 114 978-1 362 950 2-4 9.30+01 1.79-02 9.44-03 -1.446 D+ LS 81.30 114 978-1 362 950 2-4 9.30+01 1.79-02 9.44-03 -1.446 D+ LS 83.130 114 978-1 362 950 2-4 9.30+01 1.79-02 9.44-03 -1.446 D+ LS 85.260 285 189-1 348 720 4-4 7.79+01 8.65+01 9.92-03 2.86-02 -1.003 D+ 1 86.540 9.26-03 1.60-02 -1.255 D+ LS 87.465 205 412-1 348 720 4-4 7.79+01 8.93-03 1.03-02 -1.447 D+ LS 87.468 205 448-1 348 720 4-6 5.77+00 9.92-04 1.14-03 -2.401 D LS 87.468 205 448-1 348 720 4-6 5.77+00 9.92-04 1.14-03 -2.401 D LS 87.468 205 448-1 348 720 4-6 5.77+00 9.92-04 1.14-03 -2.401 D LS 87.468 205 448-1 348 720 4-6 4.38+02 9.67-02 1.80-01 -0.236 C 1 87.468 285 189-1 348 720 4-6 4.38+02 8.70-02 1.80-01 -0.458 C LS 87.408 285 189-1 348 720 4-4 7.29+01 9.66-03 1.20-02 -1.141 D+ LS 87.408 285 189-1 348 720 4-4 7.29+01 9.66-03 1.20-02 -1.141 D+ LS 87.408 285 189-1 348 720 4-4 7.29+01 9.66-03 1.20-02 -1.141 D+ LS 87.408 285 189-1 348 720 4-4 7.29+01 9.66-03 1.20-02 -1.141 D+ LS 87.408 285 189-1 348 720 4-4 7.29+01 9.66-03 1.20-02 -1.141 D+ LS 87.408 285 189-1 348 720 4-6 2.38+02 3.90-02 4.38-02 -0.652 C LS 87.409 285 189-1 348 720 4-6 2.38+02 3.90-02 4.38-02 -0.652 C LS 87.409 285 189-1 348 720 4-6 2.38+02 3.90-02 4.38-02 -0.652 C LS 87.409 285 189-1 348 720 4-6 2.38+02 3.90-02 4.38-02 -0.652 C LS 87.408 285 189-1 348 720 4-6 2.38+02 3.90-02 4.38-02 -0.652 C LS 87.408 285 189-1 348 720 4-6 2.38+02 3.90-02 4.38-02 -0.652 C LS 87.408 285 189-1 348 720 4-6 2.38+02 3.90-02 4.38-02 -0.652 C LS 87.408 285 189-1 348 720 4-6 2.38+02 3.90-02 4.38-02 -0.652	62		$^4P-^4S^{\circ}$		80.20	116 122–1 362 950	12-4	5.55+02	1.78-02	5.66-02	-0.670	C	1
80.130					80.246	116 778-1 362 950	6-4	2.77 + 02	1.78-02	2.82-02	-0.971	C	LS
63 2D-2D° 87.47 205 426-1 348 720 10-10 8.65+01 9.92-03 2.86-02 -1.003 D+ 1 87.465 205 412-1 348 720 6-6 8.07+01 9.26-03 1.60-02 -1.255 D+ LS 87.468 205 448-1 348 720 4-4 7.79+01 8.93-03 1.03-02 -1.447 D+ LS 87.468 205 448-1 348 720 4-6 8.64+00 6.61-04 1.14-03 -2.401 D LS 87.468 205 448-1 348 720 4-6 5.77+00 9.92-04 1.14-03 -2.401 D LS 87.468 205 448-1 348 720 4-6 5.77+00 9.92-04 1.14-03 -2.401 D LS 64 2P-2D° 93.99 284 749-1 348 720 6-10 4.38+02 9.67-02 1.80-01 -0.236 C 1 94.026 285 189-1 348 720 4-6 4.38+02 8.70-02 1.08-01 -0.458 C+ LS 93.910 283 869-1 348 720 2-4 3.66+02 9.68-02 5.99-02 -0.713 C LS 94.026 285 189-1 348 720 4-4 7.29+01 9.66-03 1.20-02 -1.413 D+ LS 65 2x2p²-2p²(¹D)3p ²D-2F° 85.28 205 426-1 378 094 10-14 2.55+02 3.90-02 1.09-01 -0.409 C 1 85.260 205 412-1 378 300 6-8 2.55+02 3.71-02 6.25-02 -0.652 C LS 85.297 205 448-1 377 820 4-6 2.38+02 3.90-02 1.09-01 -0.409 C LS 85.295 205 412-1 378 800 6-6 1.71+01 1.86-03 3.13-03 -1.952 D LS 66 2D-2D° 84.22 205 426-1 392 800 10-10 4.29+02 4.57-02 1.27-01 -0.340 C 1 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.221 205 448-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.221 205 448-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.218 205 412-1 392 800 6-6 4.01+02 4.30+01 3.05-03 5.07-03 -1.738 D+ LS					80.177	115 711-1 362 950	4-4	1.86 + 02	1.79 - 02	1.89 - 02	-1.145	C	LS
87.465					80.130	114 978-1 362 950	2-4	9.30+01	1.79-02	9.44-03	-1.446	D+	LS
87.468 205 448-1 348 720 4-4 7.79+01 8.93-03 1.03-02 -1.447 D+ LS 87.465 205 412-1 348 720 6-4 8.64+00 6.61-04 1.14-03 -2.402 D LS 87.468 205 448-1 348 720 4-6 5.77+00 9.92-04 1.14-03 -2.401 D LS 87.468 205 448-1 348 720 4-6 5.77+00 9.92-04 1.14-03 -2.401 D LS 87.468 205 448-1 348 720 4-6 5.77+00 9.92-04 1.14-03 -2.401 D LS 87.468 205 448-1 348 720 4-6 4.38+02 9.67-02 1.80-01 -0.236 C 1 94.026 285 189-1 348 720 4-6 4.38+02 8.70-02 1.08-01 -0.458 C+ LS 93.910 283 869-1 348 720 2-4 3.66+02 9.68-02 5.99-02 -0.713 C LS 94.026 285 189-1 348 720 4-4 7.29+01 9.66-03 1.20-02 -1.413 D+ LS 94.026 285 189-1 348 720 4-4 7.29+01 9.66-03 1.20-02 -1.413 D+ LS 94.026 285 189-1 348 720 4-4 7.29+01 9.66-03 1.20-02 -1.413 D+ LS 94.026 285 189-1 348 720 4-4 7.29+01 9.66-03 1.20-02 -1.413 D+ LS 94.026 285 189-1 348 720 4-4 7.29+01 9.66-03 1.20-02 -1.413 D+ LS 94.026 285 189-1 348 720 4-4 7.29+01 9.66-03 1.20-02 -1.413 D+ LS 94.026 285 189-1 348 720 4-4 7.29+01 9.66-03 1.20-02 -1.413 D+ LS 94.026 285 189-1 348 720 4-6 2.38+02 3.90-02 4.38-02 -0.652 C LS 85.295 205 412-1 377 820 4-6 2.38+02 3.90-02 4.38-02 -0.652 C LS 85.295 205 412-1 377 820 4-6 1.71+01 1.86-03 3.13-03 -1.952 D LS 85.295 205 412-1 377 820 4-6 1.71+01 1.86-03 3.13-03 -1.952 D LS 85.295 205 412-1 379 8200 4-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.218 205 412-1 392 800 4-4 3.86+02 4.11-02 4.56-02 -0.704 C LS 84.218 205 412-1 392 800 4-4 3.86+02 4.11-02 4.56-02 -0.704 C LS 84.218 205 412-1 392 800 4-4 3.86+02 4.11-02 4.56-02 -0.708 C LS 84.218 205 412-1 392 800 4-4 3.86+02 4.11-02 4.56-02 -0.708 C LS 84.218 205 412-1 392 800 4-4 4.30+01 3.05-03 5.07-03 -1.738 D+ LS 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.218 205 412-1 392	63		$^2D-^2D^{\circ}$		87.47	205 426–1 348 720	10–10	8.65+01	9.92-03	2.86-02	-1.003	D+	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					87.465	205 412-1 348 720	6-6	8.07 + 01	9.26-03	1.60-02	-1.255	D+	LS
87.468 205 448-1 348 720 4-6 5.77+00 9.92-04 1.14-03 -2.401 D LS 93.99 284 749-1 348 720 6-10 4.38+02 9.67-02 1.80-01 -0.236 C 1 94.026 285 189-1 348 720 4-6 4.38+02 8.70-02 1.08-01 -0.458 C+ LS 93.910 283 869-1 348 720 2-4 3.66+02 9.68-02 5.99-02 -0.713 C LS 94.026 285 189-1 348 720 4-4 7.29+01 9.66-03 1.20-02 -1.413 D+ LS 65 2s2p²-2p²(¹D)3p ²D-²F° 85.28 205 426-1 378 094 10-14 2.55+02 3.90-02 1.09-01 -0.409 C 1 85.260 205 412-1 378 300 6-8 2.55+02 3.71-02 6.25-02 -0.652 C LS 85.297 205 448-1 377 820 4-6 2.38+02 3.90-02 4.38-02 -0.807 C LS 85.295 205 412-1 378 200 6-6 1.71+01 1.86-03 3.13-03 -1.952 D LS 66 2D-²D° 84.22 205 426-1 392 800 10-10 4.29+02 4.57-02 1.27-01 -0.340 C 1 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.221 205 448-1 392 800 6-4 4.30+01 3.05-03 5.07-03 -1.738 D+ LS					87.468	205 448-1 348 720	4-4	7.79 + 01	8.93-03	1.03 - 02	-1.447	D+	LS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					87.465	205 412-1 348 720	6-4	8.64+00	6.61 - 04	1.14 - 03	-2.402	D	LS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					87.468	205 448-1 348 720	4–6	5.77 + 00	9.92-04	1.14-03	-2.401	D	LS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64		$^{2}P-^{2}D^{\circ}$		93.99	284 749–1 348 720	6–10	4.38+02	9.67-02	1.80-01	-0.236	C	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					94.026	285 189-1 348 720	4-6	4.38+02	8.70-02	1.08-01	-0.458	C+	LS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					93.910	283 869-1 348 720	2-4	3.66+02	9.68 - 02	5.99-02	-0.713	C	LS
85.260 205 412-1 378 300 6-8 2.55+02 3.71-02 6.25-02 -0.652 C LS 85.297 205 448-1 377 820 4-6 2.38+02 3.90-02 4.38-02 -0.807 C LS 85.295 205 412-1 377 820 6-6 1.71+01 1.86-03 3.13-03 -1.952 D LS 66 2D-2D° 84.22 205 426-1 392 800 10-10 4.29+02 4.57-02 1.27-01 -0.340 C 1 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.221 205 448-1 392 800 4-4 3.86+02 4.11-02 4.56-02 -0.784 C LS 84.218 205 412-1 392 800 6-4 4.30+01 3.05-03 5.07-03 -1.738 D+ LS					94.026	285 189–1 348 720	4–4	7.29 + 01	9.66-03	1.20-02	-1.413	D+	LS
85.297 205 448-1 377 820 4-6 2.38+02 3.90-02 4.38-02 -0.807 C LS 85.295 205 412-1 377 820 6-6 1.71+01 1.86-03 3.13-03 -1.952 D LS 66 2D-2D° 84.22 205 426-1 392 800 10-10 4.29+02 4.57-02 1.27-01 -0.340 C 1 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.221 205 448-1 392 800 4-4 3.86+02 4.11-02 4.56-02 -0.784 C LS 84.218 205 412-1 392 800 6-4 4.30+01 3.05-03 5.07-03 -1.738 D+ LS	65	$2s2p^2 - 2p^2(^1D)3p$	$^{2}D-^{2}F^{\circ}$		85.28	205 426–1 378 094	10–14	2.55+02	3.90-02	1.09-01	-0.409	C	1
85.295 205 412-1 377 820 6-6 1.71+01 1.86-03 3.13-03 -1.952 D LS 66 2D-2D° 84.22 205 426-1 392 800 10-10 4.29+02 4.57-02 1.27-01 -0.340 C 1 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.221 205 448-1 392 800 4-4 3.86+02 4.11-02 4.56-02 -0.784 C LS 84.218 205 412-1 392 800 6-4 4.30+01 3.05-03 5.07-03 -1.738 D+ LS						205 412-1 378 300	6-8						LS
66 2D-2D° 84.22 205 426-1 392 800 10-10 4.29+02 4.57-02 1.27-01 -0.340 C 1 84.218 205 412-1 392 800 6-6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.221 205 448-1 392 800 4-4 3.86+02 4.11-02 4.56-02 -0.784 C LS 84.218 205 412-1 392 800 6-4 4.30+01 3.05-03 5.07-03 -1.738 D+ LS						205 448-1 377 820	4-6						LS
84.218 205 412–1 392 800 6–6 4.01+02 4.26-02 7.09-02 -0.592 C LS 84.221 205 448–1 392 800 4–4 3.86+02 4.11-02 4.56-02 -0.784 C LS 84.218 205 412–1 392 800 6–4 4.30+01 3.05-03 5.07-03 -1.738 D+ LS					85.295	205 412–1 377 820	6–6	1.71+01	1.86-03	3.13-03	-1.952	D	LS
84.221 205 448-1 392 800 4-4 3.86+02 4.11-02 4.56-02 -0.784 C LS 84.218 205 412-1 392 800 6-4 4.30+01 3.05-03 5.07-03 -1.738 D+ LS	66		$^{2}D-^{2}D^{\circ}$		84.22	205 426–1 392 800	10–10	4.29+02	4.57-02	1.27-01	-0.340	C	1
84.218 205 412–1 392 800 6–4 4.30+01 3.05–03 5.07–03 –1.738 D+ LS					84.218	205 412-1 392 800	6–6	4.01+02	4.26-02	7.09-02	-0.592	C	LS
					84.221	205 448-1 392 800	4-4	3.86+02	4.11 - 02	4.56-02	-0.784	C	LS
84.221 205 448-1 392 800 4-6 2.87+01 4.57-03 5.07-03 -1.738 D+ LS					84.218	205 412-1 392 800	6-4	4.30+01	3.05 - 03	5.07-03	-1.738	D+	LS
					84.221	205 448-1 392 800	4-6	2.87 + 01	4.57 - 03	5.07-03	-1.738	D+	LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
67		$^{2}P-^{2}D^{\circ}$		90.25	284 749–1 392 800	6–10	3.42+02	6.96-02	1.24-01	-0.379	С	1
				90.284	285 189–1 392 800	4–6	3.42+02	6.26-02	7.44-02	-0.601	C	LS
				90.177	283 869–1 392 800	2–4			4.13-02			LS
				90.284	285 189–1 392 800	4-4			8.26-03			LS
68	$2s2p^2 - 2s2p(^3P^{\circ})4s$	$^{4}P-^{4}P^{\circ}$				12–12						1
00	232p 232p(1) is	1 1		76.564	116 770 1 400 070		0.04 - 01	7.77 02	1 10 .02	1 221	D.	
				76.564 76.502	116 778–1 422 870 115 711–1 422 870	6–6 4–6			1.18-02 5.04-03			LS LS
69		$^{2}D-^{2}P^{\circ}$		70.502	113 / 11 1 422 070	10-6	3.00101	5.00 05	5.04 05	1.077	Di	1
09		D- F										
				[81.49]	205 412–1 432 600	6–4			2.04-02			LS
				[81.49]	205 448–1 432 600	4–4	2.13+01	2.12-03	2.27-03	-2.072	D	LS
70		$^{2}S-^{2}P^{\circ}$				2–6						1
				[85.60]	264 400–1 432 600	2-4	2.04+01	4.48-03	2.53-03	-2.048	D	LS
71		$^{2}P-^{2}P^{\circ}$				6–6						1
				[87.15]	285 189–1 432 600	4-4	5 30±01	6.14_03	7.05-03	_1.610	D+	LS
				[87.05]	283 869–1 432 600	2–4			1.41-03			LS
72	$2s2p^2 - 2s2p(^3P^{\circ})4d$	$^{4}P-^{4}D^{\circ}$				12–20						1
	,			74.268	116 778–1 463 250		1 40 + 02	154 01	2.26-01	0.024	C^{\perp}	LS
				74.255	115 711–1 462 420	6–8 4–6			1.18-01			LS
				74.233	114 978–1 462 380				4.69-02			LS
				74.217		2–4			5.06-02			
				74.314	116 778–1 462 420 115 711–1 462 380	6–6 4–4			6.00-02			LS LS
				74.237	113 /11-1 402 300	4-4	7.43+02	0.14-02	0.00-02	-0.010		
		4- 4-9		74.316	116 778–1 462 380	6–4	6.96+01	3.84-03	5.64-03	-1.638	D+	LS
73		$^{4}P-^{4}P^{\circ}$				12–12						1
				74.180	116 778-1 464 850	6-6	5.30+02	4.37-02	6.40-02	-0.581	C	LS
				74.121	115 711-1 464 850	4-6			2.74-02			LS
74		$^{2}D-^{2}D^{\circ}$				10–10						1
				79.451	205 412–1 464 050	6–6	2.81±02	2.66_02	4.17-02	_0.707	C	LS
				79.451	205 448–1 464 050	4–6			2.98-03			LS
75		$^{2}D-^{2}F^{\circ}$		78.94	205 426–1 472 229	10–14			3.73-01			1
13		D- F										
				78.907	205 412–1 472 730	6–8			2.14-01			LS
				78.982	205 448–1 471 560	4–6			1.49-01			LS
				78.980	205 412–1 471 560	6–6	7.29+01	6.82-03	1.06-02	-1.388	D+	LS
76		$^{2}D-^{2}P^{\circ}$		78.83	205 426–1 474 050	10–6	3.78+01	2.11-03	5.48-03	-1.676	D	1
				[78.80]	205 412-1 473 810	6–4	3.40+01	2.11-03	3.29-03	-1.898	D	LS
				[78.80]	205 448-1 474 530	4-2	3.78+01	1.76 - 03	1.83 - 03	-2.152	D	LS
				[78.84]	205 448-1 473 810	4-4	3.78+00	3.52 - 04	3.65 - 04	-2.851	E+	LS
77		$^{2}S-^{2}P^{\circ}$		82.67	264 400–1 474 050	2-6	4.05+02	1.25-01	6.78-02	-0.602	C	1
				[82.69]	264 400–1 473 810	2–4	4.05 ± 02	8 3002	4.52-02	_0.780	C	LS
				[82.64]	264 400–1 474 530	2-4			2.26-02			LS
78		$^{2}P-^{2}D^{\circ}$				6–10						1
, 0		ı D		0.4.0=0	207.400 - 151.27		2.46	4.00 00	4.50 0:	0 =0 =		
				84.828	285 189–1 464 050	4–6	2.49 + 02	4.03 - 02	4.50-02	-0.793	C	LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{\rm vac} \ ({\rm \mathring{A}})$ or $\sigma \ ({\rm cm}^{-1})^{\rm a}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
79	· · ·	$^{2}P-^{2}P^{\circ}$		84.08	284 749–1 474 050	6-6	9.77+01		1.72-02			
				[84.13]	285 189–1 473 810	4–4	8.12+01	8.62-03	9.55-03	-1.462	D+	LS
				[83.99]	283 869-1 474 530	2-2	6.53 + 01	6.91-03	3.82-03	-1.859	D	LS
				[84.08]	285 189-1 474 530	4-2			1.92-03			LS
				[84.04]	283 869–1 473 810	2–4			1.91-03			LS
80	$2s2p^2 - 2s2p(^1P^{\circ})4s$	$^{2}D-^{2}P^{\circ}$		74.99	205 426–1 538 950	10-6	5.51+01	2.79-03	6.88-03	-1.554	D	1
				[74.99]	205 412-1 538 950	6-4	4.96+01	2.79-03	4.13-03	-1.776	D	LS
				[74.99]	205 448-1 538 950	4–2	5.50+01	2.32 - 03	2.29 - 03	-2.032	D	LS
				[74.99]	205 448–1 538 950	4–4	5.52+00	4.65-04	4.59-04	-2.730	E+	LS
81		$^{2}P-^{2}P^{\circ}$		79.73	284 749–1 538 950	6–6	8.27+01	7.88-03	1.24-02	-1.325	D	1
				[79.76]	285 189–1 538 950	4–4			6.90-03			LS
				[79.68]	283 869–1 538 950	2–2	5.53 + 01	5.26 - 03	2.76 - 03	-1.978	D	LS
				[79.76]	285 189–1 538 950	4–2	2.75 + 01	1.31 - 03	1.38 - 03	-2.281	D	LS
				[79.68]	283 869–1 538 950	2–4	1.38+01	2.63-03	1.38-03	-2.279	D	LS
82	$2s2p^2 - 2s2p(^1P^{\circ})4d$	$^{2}D-^{2}F^{\circ}$		72.87	205 426–1 577 810	10–14	3.09+02	3.44-02	8.26-02	-0.463	C	1
				[72.86]	205 412-1 577 810	6-8	3.09+02	3.28-02	4.72-02	-0.706	C	LS
				[72.87]	205 448-1 577 810	4-6	2.88 + 02	3.44-02	3.30-02	-0.861	C	LS
				[72.86]	205 412–1 577 810	6–6	2.06+01	1.64-03	2.36-03	-2.007	D	LS
83	$2s2p^2 - 2s2p(^3P^{\circ})5d$	$^4P-^4D^{\circ}$		67.88	116 122–1 589 270	12-20	6.90+02	7.95-02	2.13-01	-0.020	C	1
				67.912	116 778-1 589 270	6-8	6.89+02	6.35-02	8.52-02	-0.419	C+	LS
				67.863	115 711-1 589 270	4-6	4.84 + 02	5.01 - 02	4.48 - 02	-0.698	C	LS
				67.829	114 978-1 589 270	2-4	2.89+02	3.98 - 02	1.78 - 02	-1.099	C	LS
				67.912	116 778-1 589 270	6-6	2.07 + 02	1.43 - 02	1.92-02	-1.067	C	LS
				67.863	115 711-1 589 270	4-4	3.68+02	2.54 - 02	2.27-02	-0.993	C	LS
				67.829	114 978-1 589 270	2-2	5.77 + 02	3.98-02	1.78 - 02	-1.099	C	LS
				67.912	116 778-1 589 270	6-4	3.45 + 01	1.59 - 03	2.13-03	-2.020	D	LS
				67.863	115 711–1 589 270	4–2	1.15 + 02	3.97-03	3.55-03	-1.799	D	LS
84		$^4P-^4P^{\circ}$		67.85	1 16 122–1 590 050	12-12	3.73+02	2.57-02	6.89-02	-0.511	D+	1
				67.876	116 778-1 590 050	6–6	2.61+02	1.80-02	2.41-02	-0.967	C	LS
				67.827	115 711-1 590 050	4-4	4.97 + 01	3.43 - 03	3.06 - 03	-1.863	D	LS
				67.793	114 978-1 590 050	2-2	6.23 + 01	4.29 - 03	1.91 - 03	-2.067	D	LS
				67.876	116 778-1 590 050	6-4	1.67 + 02	7.71 - 03	1.03 - 02	-1.335	D+	LS
				67.827	115 711–1 590 050	4-2	3.10+02	1.07 - 02	9.56-03	-1.369	D+	LS
				67.827	115 711-1 590 050	4-6	1.12+02	1.16-02	1.04 - 02	-1.333	D+	LS
				67.793	114 978–1 590 050	2–4	1.55 + 02	2.14-02	9.55-03	-1.369	D+	LS
85		$^{2}D-^{2}F^{\circ}$		72.04	205 426–1 593 449	10–14	6.94+02	7.56-02	1.79-01	-0.121	C	1
				72.020	205 412-1 593 920	6-8	6.94+02	7.20-02	1.02-01	-0.365	C+	LS
				72.079	205 448–1 592 820	4–6	6.47 + 02	7.56 - 02	7.18 - 02	-0.519	C	LS
				72.077	205 412–1 592 820	6–6	4.62+01	3.60-03	5.13-03	-1.666	D+	LS
86	$2s2p^2 - 2p^2(^3P)4p$	$^{4}P-^{4}D^{\circ}$				12-20						1
				65.388	116 778–1 646 110	6-8	2.28+02	1.95-02	2.52-02	-0.932	C	LS
				65.342	115 711–1 646 110	4-6	1.60+02	1.54 - 02	1.33 - 02	-1.210	D+	LS
				65.311	114 978-1 646 110	2-4	9.54+01	1.22-02	5.25-03	-1.613	D+	LS
				65.388	116 778-1 646 110	6-6	6.85 + 01	4.39-03	5.67-03	-1.579	D+	LS
				65.342	115 711-1 646 110	4-4	1.22+02	7.81-03	6.72-03	-1.505	D+	LS
				65.388	116 778-1 646 110	6-4	1.14+01	4.88-04	6.30-04	-2.533	E+	LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{ m vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
87	$2s2p^2 - 2s2p(^3P^{\circ})6d$	$^{4}P-^{4}D^{\circ}$		64.88	116 122–1 657 520	12–20	3.36+02	3.54-02	9.07-02	-0.372	D+	1
				64.904	116 778-1 657 520	6-8	3.36+02	2.83-02	3.63-02	-0.770	C	LS
				64.859	115 711-1 657 520	4-6	2.36+02	2.23-02	1.90-02	-1.050	C	LS
				64.828	114 978-1 657 520	2-4	1.40+02	1.77-02	7.56-03	-1.451	D+	LS
				64.904	116 778-1 657 520	6-6	1.01+02	6.37-03	8.17-03	-1.418	D+	LS
				64.859	115 711-1 657 520	4-4	1.79+02	1.13-02	9.65-03	-1.345	D+	LS
				64.828	114 978-1 657 520	2-2	2.81 + 02	1.77-02	7.56-03	-1.451	D+	LS
				64.904	116 778-1 657 520	6-4	1.68+01	7.08 - 04	9.08-04	-2.372	E+	LS
				64.859	115 711–1 657 520	4–2	5.61+01	1.77-03	1.51-03	-2.150	D	LS
88	$2p^3 - 2s2p(^3P^\circ)3p$	$^{2}D^{\circ}-^{2}P$		139.88	412 345–1 127 223	10-6	2.41+01	4.24-03	1.95-02	-1.373	D+	1
				139.837	412 311–1 127 430	6-4	2.17+01	4.24-03	1.17-02	-1.594	D+	LS
				139.975	412 395-1 126 810	4-2	2.40+01	3.53 - 03	6.51 - 03	-1.850	D+	LS
				139.853	412 395–1 127 430	4–4	2.41 + 00	7.06-04	1.30-03	-2.549	D	LS
89		$^{2}D^{\circ}-^{2}D$		134.54	412 345–1 155 620	10–10	1.21+01	3.28-03	1.45-02	-1.484	D+	1
				134.432	412 311-1 156 180	6-6	1.13+01	3.07-03	8.15-03	-1.735	D+	LS
				134.701	412 395-1 154 780	4-4	1.08+01	2.95-03	5.23-03	-1.928	D+	LS
				134.686	412 311-1 154 780	6-4	1.21 + 00	2.19-04	5.83-04	-2.881	E+	LS
				134.447	412 395–1 156 180	4–6	8.09-01	3.29-04	5.82-04	-2.881	E+	LS
90		$^{2}P^{\circ}-^{2}D$		144.81	465 080–1 155 620	6–10	8.33+00	4.36-03	1.25-02	-1.582	D+	1
				144.703	465 111–1 156 180	4-6	8.35+00	3.93-03	7.49-03	-1.804	D+	LS
				144.977	465 017-1 154 780	2-4	6.92 + 00	4.36-03	4.16-03	-2.059	D	LS
				144.997	465 111–1 154 780	4-4	1.38+00	4.36-04	8.32-04	-2.758	E+	LS
91		$^{2}P^{\circ}-^{2}S$		141.39	465 080–1 172 340	6–2	6.10+01	6.09-03	1.70-02	-1.437	D+	1
				141.397	465 111-1 172 340	4-2	4.06+01	6.09-03	1.13-02	-1.613	D+	LS
				141.378	465 017–1 172 340	2–2	2.03+01	6.09-03	5.67-03	-1.914	D+	LS
92	$2p^3 - 2s2p(^1P^\circ)3p$	$^{2}D^{\circ}-^{2}P$		118.86	412 345–1 253 637	10-6	9.74+01	1.24-02	4.85-02	-0.907	C	1
				118.840	412 311-1 253 780	6–4	8.78+01	1.24-02	2.91-02	-1.128	C	LS
				118.912	412 395–1 253 350	4–2			1.61-02			LS
				118.852	412 395–1 253 780	4-4	9.73 + 00	2.06-03	3.22-03	-2.084	D	LS
93		$^{2}\mathbf{P}^{\circ}-^{2}\mathbf{P}$		126.81	465 080–1 253 637	6-6	2.90+01	6.98-03	1.75-02	-1.378	D+	1
				126.796	465 111–1 253 780	4-4	2.41+01	5.82-03	9.72-03	-1.633	D+	LS
				126.850	465 017-1 253 350	2-2	1.93 + 01	4.66-03	3.89-03	-2.031	D	LS
				126.865	465 111-1 253 350	4-2	9.61 + 00	1.16-03	1.94-03	-2.333	D	LS
				126.781	465 017–1 253 780	2–4	4.83 + 00	2.33-03	1.94-03	-2.332	D	LS
94	$2p^3 - 2p^2(^3P)3s$	$^4S^{\circ}-^4P$				4–12						1
				108.193	367 290–1 291 560	4-6	3.15+02	8.29-02	1.18-01	-0.479	C+	LS
				108.373	367 290–1 291 300	4–4			7.88-02			LS
95	$2p^3 - 2p^2(^1D)3s$	$^{2}D^{\circ}-^{2}D$		108.78	412 345–1 331 638	10–10	4.11+02	7.29-02	2.61-01	-0.137	C+	1
				108.736	412 311–1 331 970	6–6	3.84+02	6.81-02	1.46-01	-0.389	C+	LS
				108.730	412 395–1 331 140	4–4			9.40-02			LS
				108.834	412 311–1 331 140	6–4			1.04-02			LS
				108.746	412 395–1 331 970	4–6			1.04-02			LS
96		$^{2}P^{\circ}-^{2}D$		115.40	465 080–1 331 638	6–10	1.24+02	4.12-02	9.39-02	-0.607	C	1
				115.359	465 111–1 331 970	4–6	1.24+02	3.71-02	5.64-02	-0.829	C	LS
				110.00)	105 111 1 551 770	4-0	1.24702	5.71-02	J.04-02	0.029	_	ப

Table 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				115.457 115.470	465 017–1 331 140 465 111–1 331 140	2–4 4–4		4.12-02 4.12-03				LS LS
97	$2p^3 - 2p^2(^3P)3d$	$^4S^{\circ}-^4P$		96.89	367 290–1 399 363	4–12	3.62+03	1.53+00	1.95+00	0.787	В	1
				96.922	367 290-1 399 050	4-6	3.62+03	7.65-01	9.76-01	0.486	$\mathrm{B}+$	LS
				96.872	367 290-1 399 580	4-4	3.63+03	5.10-01	6.51-01	0.310	В	LS
				96.845	367 290–1 399 870	4–2	3.63+03	2.55-01	3.25-01	0.009	В	LS
98		$^{2}D^{\circ}-^{2}F$		102.41	412 345–1 388 769	10–14	4.48+02	9.86-02	3.32-01	-0.006	C+	1
				[102.39]	412 311-1 388 970	6-8	4.48 + 02	9.39-02	1.90-01	-0.249	C+	LS
				[102.45]	412 395-1 388 500	4-6	4.17 + 02	9.85 - 02	1.33 - 01	-0.405	C+	LS
				[102.44]	412 311–1 388 500	6–6	2.98+01	4.69-03	9.49-03	-1.551	D+	LS
99		$^{2}D^{\circ}-^{2}D$		102.24	412 345–1 390 450	10-10	1.13+03	1.78-01	5.98-01	0.250	C+	1
				[102.24]	412 311-1 390 450	6-6	1.06+03	1.66-01	3.35-01	-0.002	В	LS
				[102.24]	412 395-1 390 450	4-4	1.02+03	1.60-01	2.15-01	-0.194	C+	LS
				[102.24]	412 311–1 390 450	6-4		1.18 - 02				LS
				[102.24]	412 395–1 390 450	4–6	7.57 + 01	1.78 - 02	2.40-02	-1.148	C	LS
100		$^{2}P^{\circ}-^{2}D$		108.06	465 080–1 390 450	6–10	8.53+02	2.49-01	5.31-01	0.174	C+	1
				[108.07]	465 111-1 390 450	4-6	8.53 + 02	2.24-01	3.19-01	-0.048	В	LS
				[108.06]	465 017-1 390 450	2-4	7.11 + 02	2.49 - 01	1.77 - 01	-0.303	C+	LS
				[108.07]	465 111–1 390 450	4–4	1.42 + 02	2.49 - 02	3.54-02	-1.002	C	LS
101	$2p^3 - 2p^2(^1D)3d$	$^{2}D^{\circ}-^{2}D$		99.67	412 345–1 415 630	10–10	1.30+03	1.94-01	6.37-01	0.288	C+	1
				99.669	412 311–1 415 630	6-6	1.22+03	1.81-01	3.56-01	0.036	В	LS
				99.678	412 395–1 415 630	4-4	1.17+03	1.75 - 01	2.30-01	-0.155	C+	LS
				99.669	412 311–1 415 630	6-4	1.30+02	1.29 - 02	2.54 - 02	-1.111	C	LS
				99.678	412 395–1 415 630	4–6	8.68+01	1.94-02	2.55-02	-1.110	C	LS
102		$^{2}D^{\circ}-^{2}F$		98.38	412 345–1 428 766	10–14	4.11+03	8.35-01	2.70+00	0.922	B+	1
				98.378	412 311-1 428 800	6-8	4.11 + 03	7.95 - 01	1.54+00	0.679	$\mathrm{B}+$	LS
				98.394	412 395–1 428 720	4-6	3.84+03	8.35 - 01	1.08+00	0.524	B+	LS
				98.386	412 311–1 428 720	6–6	2.74+02	3.97 - 02	7.72-02	-0.623	C	LS
103		$^{2}D^{\circ}-^{2}P$		98.03	412 345–1 432 453	10-6	3.76+02	3.25-02	1.05-01	-0.488	C	1
				98.010	412 311-1 432 610	6-4	3.39+02	3.25-02	6.29-02	-0.710	C	LS
				98.064	412 395–1 432 140	4-2	3.76+02	2.71 - 02	3.50 - 02	-0.965	C	LS
				98.019	412 395–1 432 610	4-4	3.76+01	5.42 - 03	7.00-03	-1.664	D+	LS
104		$^{2}P^{\circ}-^{2}D$		105.20	465 080–1 415 630	6–10	1.18+03	3.27-01	6.79-01	0.293	В	1
				105.206	465 111–1 415 630	4-6	1.18+03	2.94-01	4.07-01	0.070	В	LS
				105.195	465 017-1 415 630	2-4	9.86 + 02	3.27 - 01	2.26-01	-0.184	C+	LS
				105.206	465 111–1 415 630	4–4	1.97 + 02	3.27 - 02	4.53 - 02	-0.883	C	LS
105		$^{2}\text{P}^{\circ}-^{2}\text{P}$		103.37	465 080–1 432 453	6-6	1.30+03	2.08-01	4.24-01	0.096	C+	1
				103.359	465 111-1 432 610	4-4	1.08+03	1.73-01	2.35-01	-0.160	C+	LS
				103.399	465 017-1 432 140	2-2	8.67 + 02	1.39-01	9.46-02	-0.556	C+	LS
				103.410	465 111-1 432 140	4-2	4.32 + 02	3.46-02	4.71 - 02	-0.859	C	LS
				103.349	465 017–1 432 610	2–4	2.16+02	6.93-02	4.72-02	-0.858	C	LS
106	$2p^3 - 2s2p(^3P^{\circ})4p$	$^{2}D^{\circ}-^{2}P$		97.02	412 345–1 443 017	10-6	2.67+02	2.26-02	7.23-02	-0.646	C	1
				97.006	412 311–1 443 170	6–4	2.40+02	2.26-02	4.33-02	-0.868	C	LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	$\lambda_{\rm vac} \ ({\rm \mathring{A}})$ or $\sigma \ ({\rm cm}^{-1})^a$	$E_i - E_k$ (cm ⁻¹)	a = a	A_{ki} (10^8 s^{-1})	f	S (a.u.)	log of	Acc	Source
NO.	array	Wiuit.	(A)			$g_i - g_k$		f_{ik}				
				97.058 97.014	412 395–1 442 710 412 395–1 443 170	4–2 4–4			2.42-02 4.82-03			LS LS
				97.014	412 393-1 443 170	4-4	2.07 +01	3.77-03	4.02-03	-1.622	D	Lo
107		$^{2}D^{\circ}-^{2}D$		96.11	412 345–1 452 850	10–10	5.33+00	7.38-04	2.34-03	-2.132	E+	1
				96.058	412 311–1 453 350	6-6	4.98+00	6.89-04	1.31-03	-2.384	D	LS
				96.181	412 395–1 452 100	4-4	4.79+00	6.64 - 04	8.41 - 04	-2.576	E+	LS
				96.173	412 311–1 452 100	6-4	5.32-01	4.92 - 05	9.35-05	-3.530	E	LS
				96.066	412 395–1 453 350	4–6	3.56-01	7.38 - 05	9.34-05	-3.530	E	LS
108		$^{2}P^{\circ}-^{2}P$		102.26	465 080–1 443 017	6–6	3.86+02	6.06-02	1.22-01	-0.439	C	1
				102.243	465 111–1 443 170	4-4	3.22+02	5.05-02	6.80-02	-0.695	C	LS
				102.282	465 017-1 442 710	2-2	2.57 + 02	4.03 - 02	2.71 - 02	-1.094	C	LS
				102.291	465 111-1 442 710	4-2	1.29 + 02	1.01 - 02	1.36 - 02	-1.394	D+	LS
				102.233	465 017–1 443 170	2-4	6.45 + 01	2.02 - 02	1.36-02	-1.394	D+	LS
109		$^{2}P^{\circ}-^{2}D$		101.24	465 080–1 452 850	6-10	1.30+02	3.32-02	6.64-02	-0.701	C	1
				101.190	465 111–1 453 350	4–6	1.30+02	2.99-02	3.98-02	-0.922	С	LS
				101.309	465 017–1 452 100	2–4			2.21-02			LS
				101.318	465 111–1 452 100	4-4			4.43-03			LS
110	$2p^3 - 2p^2(^3P)4d$	$^4S^{\circ}-^4P$				4–12						1
				76.862	367 290–1 668 320	4–6	1 37+03	1.82_01	1.84-01	-0.138	C+	LS
				76.827	367 290–1 668 920	4-4			1.22-01			LS
111	3s-3p	$^{2}S-^{2}P^{\circ}$				2–6						2
				1 752.23	951 350–1 008 420	2–4	2.61+00	2.40-01	2.77+00	-0.319	B+	2
112	$2s^23s - 2s2p(^3P^{\circ})3s$	$^2S-^2P^{\circ}$		654.4	951 350–1 104 153	2–6	1.69+00	3.26-02	1.40-01	-1.186	C	1
				652.44	951 350–1 104 620	2–4	1.71+00	2.18-02	9.36-02	-1.361	C±	LS
				658.46	951 350–1 103 220	2–2			4.68-02			LS
113	$2s^23s - 2s2p(^3P^{\circ})3d$	$^{2}S-^{2}P^{\circ}$		375.81	951 350–1 217 443	2–6	5 65 + 00	2 50 .02	8.88-02	1 144	C	1
113	28 38-282p(F)3u	3- F			931 330–1 217 443	2-0	3.03+00	3.39-02	0.00-02	-1.144	C	1
				376.166	951 350–1 217 190	2–4			5.92 - 02			LS
				375.094	951 350–1 217 950	2–2	5.69+00	1.20-02	2.96-02	-1.620	С	LS
114	$2s^23s - 2s2p(^1P^{\circ})3s$	$^{2}S-^{2}P^{\circ}$		404.96	951 350–1 198 290	2–6	4.88+01	3.60-01	9.60-01	-0.143	В	1
				404.957	951 350-1 198 290	2-4	4.88+01	2.40-01	6.40-01	-0.319	В	LS
				404.957	951 350–1 198 290	2–2	4.88 + 01	1.20-01	3.20-01	-0.620	В	LS
115	$2s^23s - 2s2p(^1P^{\circ})3d$	$^{2}S-^{2}P^{\circ}$		281.59	951 350– <i>1 306 470</i>	2–6	2.94+01	1.05-01	1.94-01	-0.678	C+	1
				281.595	951 350–1 306 470	2-4	2.94+01	6.98-02	1.29-01	-0.855	C±	LS
				281.595	951 350–1 306 470	2–2			6.47-02			LS
116	$2s^23s - 2s2p(^3P^\circ)4s$	$^{2}S-^{2}P^{\circ}$				2–6						1
	* ` ` `			[207.79]	951 350–1 432 600	2–4	1.30+00	1.68-03	2.30-03	-2.474	D	LS
117	3p - 3d	$^{2}\text{P}^{\circ}-^{2}\text{D}$				6–10						2
	*			1.012.0	1 000 420 1 060 700		1.06 - 00	1.52 01	2.06 : 00	0.212	D.	
				1 912.8 1 917.2	1 008 420–1 060 700 1 008 420–1 060 580	4–6 4–4			3.86+00 $4.28-01$			2
	_			1 71/.4	1 000 420-1 000 380	4-4	5.00-01	1.70-02	4.20-01	-1.10/	ъ	4
118	$2s^23p - 2s2p(^3P^{\circ})3p$	$^{2}P^{\circ}-^{2}P$				6–6						1
				840.27	1 008 420-1 127 430	4-4	7.97-01	8.44-03	9.34-02	-1.472	C+	LS
				844.67	1 008 420-1 126 810	4-2			1.87-02			LS

Table 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
119		$^{2}P^{\circ}-^{2}D$				6–10						1
				676.77	1 008 420–1 156 180	4-6	3.25+00	3.35-02	2.99-01	-0.873	В	LS
				683.25	1 008 420–1 154 780	4–4	5.27-01	3.69-03	3.32-02	-1.831	C	LS
120		$^{2}P^{\circ}-^{2}S$				6–2						1
				610.05	1 008 420–1 172 340	4–2	1.58+00	4.41-03	3.54-02	-1.754	C	LS
121	$2s^23p - 2s2p(^1P^{\circ})3p$	$^{2}P^{\circ}-^{2}D$				6-10						1
				410.526	1 008 420-1 252 010	4–6			7.24-01			LS
				411.100	1 008 420–1 251 670	4–4	5.88+00	1.49-02	8.07-02	-1.225	С	LS
122		$^{2}P^{\circ}-^{2}P$				6–6						1
				407.564	1 008 420-1 253 780	4–4			5.74-01			LS
		2p° 2g		408.280	1 008 420–1 253 350	4–2	1./0+01	2.13-02	1.15-01	-1.070	C+	LS
123		$^{2}P^{\circ}-^{2}S$				6–2						1
				399.265	1 008 420–1 258 880	4–2	7.05+01	8.43-02	4.43-01	-0.472	В	LS
124	3p-4s	$^{2}P^{\circ}-^{2}S$				6–2						1
				349.052	1 008 420–1 294 910	4–2	2.76+01	2.52-02	1.16-01	-0.997	C+	LS
125	$2s^23p - 2p^2(^1D)3s$	$^{2}P^{\circ}-^{2}D$				6–10						1
				309.071	1 008 420–1 331 970	4–6			7.20-02			LS
		2-° 2-		309.866	1 008 420–1 331 140	4–4	1.37+00	1.97-03	8.04-03	-2.103	D+	LS
126	3p-4d	$^{2}\text{P}^{\circ}-^{2}\text{D}$				6–10						1
				305.427 305.446	1 008 420–1 335 830 1 008 420–1 335 810	4–6 4–4			1.28+00 $1.42-01$			LS LS
127	$2s^23p - 2p^2(^1D)3d$	$^{2}P^{\circ}-^{2}P$				6–6						1
	20 07 27 (2)00			235.743	1 008 420–1 432 610	4–4	2.03±00	1 60_03	5.25-03	_2 170	D+	LS
				236.005	1 008 420–1 432 010	4–4			1.05-03			LS
128	$2s^23p - 2s2p(^3P^{\circ})4p$	$^{2}P^{\circ}-^{2}D$				6-10						1
				224.754	1 008 420–1 453 350	4-6	5.33-01	6.05-04	1.79-03	-2.616	D	LS
				225.388	1 008 420–1 452 100	4–4	8.80-02	6.70-05	1.99-04	-3.572	E+	LS
129	3p-5d	$^{2}P^{\circ}-^{2}D$				6–10						1
				220.668	1 008 420–1 461 590	4–6			2.87-01			LS
		2 % 2		220.702	1 008 420–1 461 520	4–4	1.51+01	1.10-02	3.20-02	-1.357	С	LS
130	3 <i>p</i> – 6 <i>d</i>	$^{2}\text{P}^{\circ}-^{2}\text{D}$				6–10						1
				191.924 191.924	1 008 420–1 529 460 1 008 420–1 529 460	4–6 4–4			1.11-01 1.24-02			LS LS
131	3 <i>p</i> -7 <i>d</i>	$^{2}P^{\circ}-^{2}D$		1911921	1 000 120 1027 100	6–10	0.00 . 00		1.2. 02	11,00	2,	1
131	Sp-ru	1 - D		179 044	1 009 420 1 570 090		2 22 + 01	2 27 02	5 56 02	1 022	DΤ	LS
				178.044 178.044	1 008 420–1 570 080 1 008 420–1 570 080	4–6 4–4			5.56-02 6.19-03			LS
132	$2s^23p - 2s2p(^3P^{\circ})5p$	$^{2}P^{\circ}-^{2}P$				6–6						1
				175.460	1 008 420–1 578 350	4-4	1.06+00	4.91-04	1.13-03	-2.707	D	LS
				175.460	1 008 420–1 578 350	4–2	4.26-01	9.82-05	2.27-04	-3.406	E+	LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	E_i – E_k (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
133		$^{2}P^{\circ}-^{2}D$				6–10						1
				173.816	1 008 420-1 583 740	4–6	1.12+00	7.62-04	1.74-03	-2.516	D	LS
				173.816	1 008 420–1 583 740	4-4	1.87-01	8.47-05	1.94-04	-3.470	E+	LS
134	3p-8d	$^{2}P^{\circ}-^{2}D$				6-10						1
				170.074	1 008 420-1 596 400	4–6	2.11+01	1.37-02	3.07-02	-1.261	D	LS
				170.074	1 008 420–1 596 400	4-4	3.51 + 00	1.52-03	3.40-03	-2.216	E	LS
135	$2s^23d - 2s2p(^3P^{\circ})3s$	$^{2}D-^{2}P^{\circ}$	2 298	2 299	1 060 652–1 104 153	10-6	8.75-02	4.16-03	3.15-01	-1.381	C+	1
			2 276.2	2 276.9	1 060 700-1 104 620	6–4	8.11-02	4.20-03	1.89-01	-1.599	C+	LS
			2 344.5	2 345.2	1 060 580-1 103 220	4–2	8.25 - 02	3.40 - 03	1.05 - 01	-1.866	C+	LS
			2 270.0	2 270.7	1 060 580–1 104 620	4–4	9.08-03	7.02 - 04	2.10-02	-2.552	C	LS
136	$2s^23d - 2s2p(^3P^{\circ})3d$	$^{2}D-^{2}D^{\circ}$		789.1	1 060 652–1 187 386	10-10	3.58-02	3.35-04	8.69-03	-2.475	D	1
				786.23	1 060 700-1 187 890	6–6	3.38-02	3.13-04	4.86-03	-2.726	D	LS
				793.34	1 060 580–1 186 630	4-4	3.18 - 02	3.00 - 04	3.13 - 03	-2.921	D	LS
				794.09	1 060 700-1 186 630	6-4		2.22 - 05				LS
				785.48	1 060 580–1 187 890	4–6	2.42-03	3.36-05	3.48-04	-3.872	E+	LS
137	$2s^23d - 2s2p(^1P^\circ)3d$	$^{2}D-^{2}F^{\circ}$		431.63	1 060 652–1 292 330	10–14	3.14-01	1.23-03	1.75-02	-1.910	D+	1
				431.723	1 060 700-1 292 330	6-8	3.14-01	1.17-03	9.98-03	-2.154	D+	LS
				431.499	1 060 580-1 292 330	4-6	2.94 - 01	1.23 - 03	6.99-03	-2.308	D+	LS
				431.723	1 060 700–1 292 330	6–6	2.09-02	5.85 - 05	4.99-04	-3.455	E+	LS
138		$^{2}D-^{2}D^{\circ}$		411.70	1 060 652–1 303 546	10–10	4.88+01	1.24-01	1.68+00	0.093	В	1
				411.675	1 060 700-1 303 610	6-6	4.57+01	1.16-01	9.43-01	-0.157	$\mathrm{B}+$	LS
				[411.74]	1 060 580-1 303 450	4-4	4.37 + 01	1.11 - 01	6.02 - 01	-0.353	В	LS
				[411.95]	1 060 700-1 303 450	6-4	4.86+00	8.25 - 03	6.71 - 02	-1.305	C	LS
				411.472	1 060 580–1 303 610	4–6	3.26+00	1.24 - 02	6.72-02	-1.305	C	LS
139		$^{2}D-^{2}P^{\circ}$		406.81	1 060 652–1 306 470	10-6	1.61+00	2.39-03	3.20-02	-1.622	D+	1
				406.884	1 060 700-1 306 470	6–4	1.44+00	2.39-03	1.92-02	-1.843	C	LS
				406.686	1 060 580–1 306 470	4–2	1.61+00	1.99 - 03	1.07 - 02	-2.099	D+	LS
				406.686	1 060 580–1 306 470	4–4	1.61-01	3.99-04	2.14-03	-2.797	D	LS
140	$2s^23d - 2p^2(^1D)3p$	$^{2}D-^{2}F^{\circ}$		315.02	1 060 652–1 378 094	10–14	8.83+00	1.84-02	1.91-01	-0.735	C+	1
				314.861	1 060 700-1 378 300	6-8	8.83 + 00	1.75 - 02	1.09-01	-0.979	C+	LS
				315.219	1 060 580–1 377 820	4-6	8.23+00	1.84 - 02	7.64 - 02	-1.133	C	LS
				315.338	1 060 700–1 377 820	6–6	5.87-01	8.75 - 04	5.45 - 03	-2.280	D+	LS
141		$^{2}D-^{2}D^{\circ}$		301.07	1 060 652–1 392 800	10-10	4.86-01	6.60-04	6.54-03	-2.180	D	1
				301.114	1 060 700-1 392 800	6–6	4.53-01	6.16-04	3.66-03	-2.432	D	LS
				301.005	1 060 580-1 392 800	4-4	4.37 - 01	5.94-04	2.35 - 03	-2.624	D	LS
				301.114	1 060 700–1 392 800	6-4	4.86 - 02	4.40 - 05	2.62 - 04	-3.578	E+	LS
				301.005	1 060 580–1 392 800	4–6	3.24-02	6.60-05	2.62-04	-3.578	E+	LS
142	$2s^23d - 2s2p(^3P^\circ)4d$	$^{2}D-^{2}D^{\circ}$				10–10						1
				247.924	1 060 700-1 464 050	6–6	4.05-01	3.73 - 04	1.83-03	-2.650	D	LS
				247.850	1 060 580–1 464 050	4–6	2.89-02	3.99-05	1.30-04	-3.797	E	LS
143		$^{2}D-^{2}F^{\circ}$		242.97	1 060 652–1 472 229	10–14	1.36+01	1.69-02	1.35-01	-0.772	C	1
				242.701	1 060 700–1 472 730	6–8	1.37+01	1.61-02	7.72-02	-1.015	С	LS
				243.321	1 060 580–1 471 560	4–6		1.69-02				LS

Table 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	E_i – E_k (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				243.392	1 060 700–1 471 560	6–6	9.03-01	8.02-04	3.86-03	-2.318	D	LS
144	$2s^23d - 2s2p(^1P^{\circ})4d$	$^{2}D-^{2}F^{\circ}$		193.36	1 060 652–1 577 810	10–14	8.06+00	6.32-03	4.03-02	-1.199	C	1
				[193.38]	1 060 700-1 577 810	6-8	8.05+00	6.02-03	2.30-02	-1.442	C	LS
				[193.34]	1 060 580-1 577 810	4-6	7.53+00	6.33 - 03	1.61 - 02	-1.597	D+	LS
				[193.38]	1 060 700–1 577 810	6–6	5.37-01	3.01-04	1.15-03	-2.743	D	LS
145	$2s2p(^{3}P^{\circ})3s - 2s2p(^{3}P^{\circ})3p$	$^{2}P^{\circ}-^{2}P$	4 333	4 335	1 104 153–1 127 223	6–6	1.60-01	4.50-02	3.85+00	-0.569	B+	1
			4 382.8	4 384.0	1 104 620-1 127 430	4-4	1.29-01	3.71-02	2.14+00	-0.829	$\mathrm{B}+$	LS
			4 237.9	4 239.1	1 103 220-1 126 810	2-2	1.14 - 01	3.07 - 02	8.57-01	-1.212	В	LS
			4 505.3	4 506.5	1 104 620-1 126 810	4-2	4.74 - 02	7.21 - 03	4.28 - 01	-1.540	В	LS
			4 129.4	4 130.5	1 103 220–1 127 430	2-4	3.07 - 02	1.57-02	4.27-01	-1.503	В	LS
146		$^{2}P^{\circ}-^{2}D$		1 943	1 104 153–1 155 620	6-10	2.03+00	1.92-01	7.36+00	0.061	B+	1
				1 939.5	1 104 620–1 156 180	4-6	2.05+00	1.73-01	4.42+00	-0.160	$\mathrm{B}+$	LS
				1 939.5	1 103 220-1 154 780	2-4	1.70+00	1.92 - 01	2.45+00	-0.416	$\mathrm{B} +$	LS
				1 993.6	1 104 620–1 154 780	4–4	3.14-01	1.87-02	4.91-01	-1.126	В	LS
147		$^{2}P^{\circ}-^{2}S$		1 466.6	1 104 153–1 172 340	6–2	5.27+00	5.67-02	1.64+00	-0.468	В	1
				1 476.67	1 104 620-1 172 340	4-2	3.44+00	5.63-02	1.09+00	-0.647	B+	LS
				1 446.76	1 103 220–1 172 340	2–2	1.83 + 00	5.74-02	5.47-01	-0.940	В	LS
148	$2s2p(^{3}P^{\circ})3s - 2s2p(^{1}P^{\circ})3p$	$^{2}P^{\circ}-^{2}D$		677.0	1 104 153–1 251 874	6–10	3.42+00	3.92-02	5.24-01	-0.629	C+	1
				678.47	1 104 620-1 252 010	4–6	3.40+00	3.52-02	3.14-01	-0.851	В	LS
				673.63	1 103 220-1 251 670	2-4	2.89+00	3.93-02	1.74-01	-1.105	C+	LS
				680.04	1 104 620–1 251 670	4–4	5.63-01	3.90-03	3.49-02	-1.807	C	LS
149		$^{2}P^{\circ}-^{2}P$		669.0	1 104 153–1 253 637	6–6	1.84-01	1.24-03	1.63-02	-2.128	D+	1
				670.42	1 104 620-1 253 780	4-4	1.53-01	1.03-03	9.09-03	-2.385	D+	LS
				666.09	1 103 220-1 253 350	2-2	1.24 - 01	8.26 - 04	3.62 - 03	-2.782	D	LS
				672.36	1 104 620-1 253 350	4-2	6.02 - 02	2.04 - 04	1.81 - 03	-3.088	D	LS
				664.19	1 103 220–1 253 780	2–4	3.13-02	4.14-04	1.81-03	-3.082	D	LS
150		$^{2}P^{\circ}-^{2}S$		646.3	1 104 153–1 258 880	6–2	9.98+00	2.08-02	2.66-01	-0.904	C+	1
				648.26	1 104 620-1 258 880	4-2	6.60+00	2.08 - 02	1.78 - 01	-1.080	C+	LS
				642.43	1 103 220–1 258 880	2–2	3.38+00	2.09-02	8.84-02	-1.379	C+	LS
151	$2s2p(^{3}P^{\circ})3s - 2p^{2}(^{3}P)3s$	$^4P^{\circ}-^4P$				12–12						1
				471.143	1 079 310-1 291 560	6-6	2.78+01	9.24-02	8.60-01	-0.256	В	LS
				471.587	1 077 980-1290 030	4-4	5.28+00	1.76-02	1.09-01	-1.152	C+	LS
				474.563	1 079 310-1 290 030	6-4	1.75+01	3.93-02	3.68-01	-0.627	В	LS
				468.209	1 077 980-1 291 560	4-6	1.21+01	5.98-02	3.69-01	-0.621	В	LS
				469.969	1 077 250–1 290 030	2-4	1.66+01	1.10-01	3.40 - 01	-0.658	В	LS
152	$2s2p(^{3}P^{\circ})3s - 2p^{2}(^{1}D)3s$	$^{2}P^{\circ}-^{2}D$		439.59	1 104 153–1 331 638	6–10	2.29-01	1.11-03	9.60-03	-2.177	D	1
				439.850	1 104 620–1 331 970	4-6	2.28-01	9.93-04	5.75-03	-2.401	D+	LS
				438.750	1 103 220-1 331 140	2–4		1.11-03				LS
				441.462	1 104 620–1 331 140	4–4		1.10-04				LS
153	$2s2p(^{3}P^{\circ})3s-2s^{2}4d$	$^{2}P^{\circ}-^{2}D$		431.65	1 104 153–1 335 822	6–10	6.72+00	3.13-02	2.67-01	-0.726	C+	1

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				432.507	1 104 620–1 335 830	4–6	6.68+00	2.81-02	1.60-01	-0.949	C+	LS
				429.941	1 103 220-1 335 810	2-4	5.67 + 00	3.14 - 02	8.89-02	-1.202	C+	LS
				432.545	1 104 620-1 335 810	4-4	1.11+00	3.12-03	1.78 - 02	-1.904	C	LS
154	$2s2p(^{3}P^{\circ})3s - 2p^{2}(^{3}P)3d$	$^4P^{\circ}-^4P$		311.68	1078 523–1 399 363	12–12	9.84-01	1.43-03	1.77-02	-1.765	D	1
				312.754	1 079 310–1 399 050	6–6	6.82-01	1.00-03	6 18-03	-2 222	D+	LS
				310.945	1 077 980–1 399 580	4-4		1.92-04				LS
				309.962	1 077 250–1 399 870	2–2		2.40-04				LS
				312.237	1 079 310–1 399 580	6–4		4.29-04				LS
				310.665	1 077 980–1 399 870	4–2		5.99-04				LS
				311.459	1 077 980–1 399 050	4-6		6.46-04				LS
				311.439	1 077 980=1 399 030	2-4		1.20-03				LS
		2 0 2										
155		$^{2}P^{\circ}-^{2}D$		349.29	1 104 153–1 390 450	6–10	2.22-01	6.78-04	4.68-03	-2.391	D	1
				[349.86]	1 104 620-1 390 450	4-6	2.21-01	6.09-04	2.81-03	-2.613	D	LS
				[348.15]	1 103 220-1 390 450	2-4	1.87 - 01	6.80 - 04	1.56 - 03	-2.866	D	LS
				[349.86]	1 104 620–1 390 450	4-4	3.69-02	6.77 - 05	3.12-04	-3.567	E+	LS
156	$2s2p(^{3}P^{\circ})3s - 2p^{2}(^{1}D)3d$	$^{2}P^{\circ}-^{2}P$		304.60	1 104 153–1 432 453	6–6	2.38+01	3.31-02	1.99-01	-0.702	C	1
				204 997	1 104 620 1 422 610	4 4	1.07 + 01	2.75-02	1 10 01	0.050	$C \perp$	1.0
				304.887	1 104 620–1 432 610	4–4						LS
				304.025	1 103 220–1 432 140	2–2		2.21-02				LS
				305.325	1 104 620–1 432 140	4–2		5.49-03				LS
				303.591	1 103 220–1 432 610	2–4	4.02+00	1.11-02	2.22-02	-1.654	C	LS
157	$2s2p(^{3}P^{\circ})3s - 2s2p(^{3}P^{\circ})4p$	$^{2}P^{\circ}-^{2}P$		295.10	1 104 153–1 443 017	6–6	2.91+01	3.81-02	2.22-01	-0.641	С	1
				295.377	1 104 620-1 443 170	4-4	2.42+01	3.17-02	1.23-01	-0.897	C+	LS
				294.559	1 103 220-1 442 710	2-2	1.95 + 01	2.54-02	4.93-02	-1.294	C	LS
				295.779	1 104 620-1 442 710	4-2	9.65 + 00	6.33-03	2.47-02	-1.597	C	LS
				294.161	1 103 220-1 443 170	2-4	4.89+00	1.27 - 02	2.46-02	-1.595	C	LS
158		$^{2}P^{\circ}-^{2}D$		286.78	1 104 153–1 452 850	6–10	5.79+01	1.19-01	6.74-01	-0.146	В	1
				286.755	1 104 620-1 453 350	4-6	5.79+01	1.07-01	4.04-01	-0.369	В	LS
				286.632	1 103 220-1 452 100	2-4	4.83 + 01	1.19-01	2.25-01	-0.623	C+	LS
				287.786	1 104 620-1 452 100	4-4	9.58+00	1.19-02	4.51-02	-1.322	C	LS
159	$2s2p(^{3}P^{\circ})3s-2s^{2}5d$	$^{2}P^{\circ}-^{2}D$		279.79	1 104 153–1 461 562	6–10	1.54+00	3.00-03	1.66-02	-1.745	D+	1
				280.136	1 104 620-1 461 590	4–6	1.53+00	2.70-03	9.96-03	-1.967	D+	LS
				279.096	1 103 220-1 461 520	2–4		3.01-03				LS
				280.191	1 104 620–1 461 520	4-4		3.00-04				LS
160	$2s2p(^{3}P^{\circ})3s-2s^{2}6d$	$^{2}P^{\circ}-^{2}D$		235.12	1 104 153–1 529 460	6–10	1.17+00	1.61-03	7.50-03	-2.015	D	1
				235.383	1 104 620-1 529 460	4–6	1.16+00	1.45-03	4.49-03	-2.237	D	LS
				234.610	1 103 220-1 529 460	2-4	9.82 - 01	1.62-03	2.50-03	-2.489	D	LS
				235.383	1 104 620–1 529 460	4-4	1.94 - 01	1.61 - 04	4.99-04	-3.191	E+	LS
161	$2s2p(^{3}P^{\circ})3s - 2s2p(^{3}P^{\circ})5p$	$^{2}P^{\circ}-^{2}P$		210.88	1 104 153–1 578 350	6–6	3.57+01	2.38-02	9.91-02	-0.845	С	1
				211.091	1 104 620–1 578 350	4-4	2 96±01	1.98-02	5 50-02	_1 101	C	LS
				211.091	1 104 020-1 578 350	2-2		1.59-02				LS
				210.469	1 103 220-1 378 350	4–2		3.96-03				LS
				211.091	1 104 020-1 578 350	2-4		7.94-03				LS
				∠10.409	1 103 440-1 378 330	∠–4	J.70±00	1.94-03	1.10-02	-1./99	+ע	L3

Table 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
162		$^{2}\text{P}^{\circ}-^{2}\text{D}$		208.51	1 104 153–1 583 740	6–10	3.56+01	3.87-02	1.59-01	-0.634	С	1
				208.716	1 104 620-1 583 740	4–6	3.55+01	3.48-02	9.56-02	-0.856	C+	LS
				208.108	1 103 220-1 583 740	2-4	2.99+01	3.88-02	5.32-02	-1.110	C	LS
				208.716	1 104 620-1 583 740	4-4	5.93+00	3.87-03	1.06-02	-1.810	D+	LS
163	$2s2p(^{3}P^{\circ})3p - 2s2p(^{3}P^{\circ})3d$	$^{2}P-^{2}D^{\circ}$		1 662.2	1 127 223–1 187 386	6–10	2.30+00	1.59-01	5.22+00	-0.020	B+	1
				1 653.99	1 127 430–1 187 890	4–6	2.34+00	1.44-01	3.14+00	-0.240	B+	LS
				1 671.68	1 126 810-1 186 630	2-4	1.89 + 00	1.58-01	1.74+00	-0.500	B+	LS
				1 689.19	1 127 430–1 186 630	4-4			3.49-01			LS
164		$^{2}P-^{2}P^{\circ}$		1 108.4	1 127 223–1 217 443	6–6	4.42+00	8.14-02	1.78+00	-0.311	В	1
				1 114.08	1 127 430–1 217 190	4-4	3.63+00	6.75-02	9.90-01	-0.569	B+	LS
				1 097.21	1 126 810-1 217 950	2-2	3.04+00	5.48-02	3.96-01	-0.960	В	LS
				1 104.73	1 127 430–1 217 950	4–2			1.98-01			LS
				1 106.44	1 126 810–1 217 190	2–4			1.98-01			LS
165		$^2D-^2D^{\circ}$	3 147	3 148	1 155 620–1 187 386	10–10	9.75-02	1.45-02	1.50+00	-0.839	В	1
			3 152.7	3 153.6	1 156 180–1 187 890	6–6	9.05-02	1.35-02	8.41-01	-1.092	В	LS
			3 138.8	3 139.7	1 154 780–1 186 630	4–4			5.42-01			LS
			3 283.1	3 284.1	1 156 180–1 186 630	6–4			6.01-02			LS
			3 019.4	3 020.2	1 154 780–1 187 890	4–6			6.01-02			LS
166		$^{2}D-^{2}F^{\circ}$		1 817	1 155 620–1 210 670	10–14			1.12+01			1
				1 816.2	1 156 180–1 211 240	6–8	2.71±00	1.70_01	6.42+00	0.031	٨	LS
				1 813.9 1 861.2	1 154 780–1 209 910 1 156 180–1 209 910	4–6 6–6			4.49+00 $3.21-01$			LS LS
167		$^{2}D-^{2}P^{\circ}$		1 617.5	1 155 620–1 217 443	10–6			3.89-01			1
				1 (20 00	1 156 100 1 217 100	<i>c</i> 1						T. C.
				1 639.08	1 156 180–1 217 190	6–4			2.33-01			LS
				1 583.03	1 154 780–1 217 950	4–2			1.30-01			LS
				1 602.31	1 154 780–1 217 190	4–4	3.20-02	1.23-03	2.60-02	-2.308	C	LS
168		$^{2}\mathrm{S}-^{2}\mathrm{P}^{\circ}$	2 216	2 217	1 172 340– <i>1 217 443</i>	2–6	8.74-01	1.93-01	2.82+00	-0.413	B+	1
			2 229.0	2 229.7	1 172 340-1 217 190	2-4			1.88+00			LS
			2 191.8	2 192.5	1 172 340–1 217 950	2–2	9.06-01	6.53 - 02	9.43-01	-0.884	B+	LS
169	$2s2p(^{3}P^{\circ})3p - 2s2p(^{1}P^{\circ})3s$	$^{2}P-^{2}P^{\circ}$		1 407.1	1 127 223–1 198 290	6–6	4.38-02	1.30-03	3.62-02	-2.108	D+	1
				1 411.23	1 127 430–1 198 290	4-4	3.62-02	1.08-03	2.01-02	-2.365	C	LS
				1 398.99	1 126 810–1 198 290	2–2			8.04-03			LS
				1 411.23	1 127 430–1 198 290	4–2			4.01-03			LS
				1 398.99	1 126 810–1 198 290	2-4			4.03-03			LS
170		$^{2}D-^{2}P^{\circ}$	2 343	2 344	1 155 620–1 198 290	10-6	8.98-03	4.44-04	3.42-02	-2.353	D+	1
			2 374.0	2 374.7	1 156 180–1 198 290	6–4	7 77-03	4 38 - 04	2.05-02	-2 580	C	LS
			2 297.6	2 298.3	1 154 780–1 198 290	4-2			1.14-02			LS
			2 297.6	2 298.3	1 154 780–1 198 290	4-2			2.28-03			LS
171		$^{2}S-^{2}P^{\circ}$	3 852	3 854	1 172 340–1 198 290	2–6			2.78-02			1
		*										
			3 852.5	3 853.6	1 172 340-1 198 290	2–4			1.85-02			LS
			3 852.5	3 853.6	1 172 340–1 198 290	2–2	1.64-03	3.65-04	9.26-03	-3.137	D+	LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	E_i – E_k (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
72	$2s2p(^{3}P^{\circ})3p - 2s2p(^{1}P^{\circ})3d$	$^{2}P-^{2}D^{\circ}$		567.1	1 127 223–1 303 546	6–10	3.96-01	3.18-03	3.56-02	-1.719	D+	1
				567.60	1 127 430–1 303 610	4–6	3 95-01	2 86-03	2.14-02	-1 942	C	LS
				[566.1]	1 126 810–1 303 450	2–4			1.19-02			LS
				[568.1]	1 127 430–1 303 450	4-4			2.38-03			LS
173		$^{2}D-^{2}F^{\circ}$		731.5	1 155 620–1 292 330	10–14			6.59-03			1
175		Б		734.48	1 156 180–1 292 330	6–8			3.77-03			LS
				727.01	1 154 780–1 292 330	4–6			2.63-03			LS
				734.48	1 156 180–1 292 330	6–6			1.89-04			LS
174		$^{2}D-^{2}D^{\circ}$										
174		υ– υ		676.0	1 155 620–1 303 546	10–10			1.64-01			1
				678.29	1 156 180–1 303 610	6–6			9.19-02			LS
				[672.6]	1 154 780–1 303 450	4–4			5.91-02			LS
				[679.0]	1 156 180–1 303 450	6–4			6.57-03			LS
				671.91	1 154 780–1 303 610	4–6	7.31-02	7.42-04	6.57-03	-2.528	D+	LS
175		$^{2}D-^{2}P^{\circ}$		662.9	1 155 620–1 306 470	10–6	1.48-01	5.84-04	1.28-02	-2.234	D+	1
				665.38	1 156 180-1 306 470	6-4	1.32 - 01	5.82 - 04	7.65 - 03	-2.457	D+	LS
				659.24	1 154 780-1 306 470	4-2	1.50 - 01	4.90 - 04	4.25 - 03	-2.708	D	LS
				659.24	1 154 780–1 306 470	4–4	1.50-02	9.80-05	8.51-04	-3.407	E+	LS
176		$^2S-^2P^{\circ}$		745.5	1 172 340– <i>I 306 470</i>	2–6	6.12-01	1.53-02	7.51-02	-1.514	C	1
				745.55	1 172 340-1 306 470	2-4	6.12-01	1.02-02	5.01-02	-1.690	С	LS
				745.55	1 172 340–1 306 470	2–2			2.50-02			LS
177	$2s2p(^{3}P^{\circ})3p - 2p^{2}(^{3}P)3p$	$^{2}P-^{2}D^{\circ}$		451.47	1 127 223–1 348 720	6–10	3.12+00	1.59-02	1.42-01	-1.020	С	1
				451.896	1 127 430–1 348 720	4–6	3.11+00	1.43-02	8.51-02	-1.243	C+	LS
				450.633	1 126 810-1 348 720	2-4	2.61 + 00	1.59-02	4.72-02	-1.498	C	LS
				451.896	1 127 430–1 348 720	4–4	5.19-01	1.59-03	9.46-03	-2.197	D+	LS
178		$^{2}D-^{2}D^{\circ}$		517.87	1 155 620–1 348 720	10-10	2.30+01	9.27-02	1.58+00	-0.033	В	1
				519.373	1 156 180–1 348 720	6-6	2.13+01	8.62-02	8.84-01	-0.286	В	LS
				515.623	1 154 780-1 348 720	4-4	2.10+01	8.38-02	5.69-01	-0.475	В	LS
				519.373	1 156 180-1 348 720	6-4	2.28 + 00	6.16-03	6.32-02	-1.432	C	LS
				515.623	1 154 780–1 348 720	4–6	1.56+00	9.31-03	6.32-02	-1.429	C	LS
179	$2s2p(^{3}P^{\circ})3p - 2p^{2}(^{1}D)3p$	$^{2}D-^{2}F^{\circ}$		449.49	1 155 620–1 378 094	10–14	1.97-01	8.34-04	1.23-02	-2.079	D+	1
				450.207	1 156 180–1 378 300	6-8	1.96-01	7.93-04	7.05-03	-2.323	D+	LS
				448.350	1 154 780–1 377 820	4-6	1.85 - 01	8.36-04	4.94 - 03	-2.476	D	LS
				451.182	1 156 180–1 377 820	6–6	1.30-02	3.96-05	3.53-04	-3.624	E+	LS
180		$^{2}D-^{2}D^{\circ}$		421.62	1 155 620–1 392 800	10–10	2.78+00	7.42-03	1.03-01	-1.130	C	1
				422.619	1 156 180–1 392 800	6–6	2.58+00	6.91-03	5.77-02	-1.382	C	LS
				420.133	1 154 780-1 392 800	4-4			3.71-02			LS
				422.619	1 156 180-1 392 800	6-4			4.12-03			LS
				420.133	1 154 780–1 392 800	4–6			4.12-03			LS
181	$2s2p(^{3}P^{\circ})3p - 2s2p(^{3}P^{\circ})4s$	$^{2}P-^{2}P^{\circ}$				6–6						1
				[327.69]	1 127 430–1 432 600	4-4	1.83+01	2.95-02	1.27-01	-0.928	C+	LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	E_i – E_k (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				[327.02]	1 126 810–1 432 600	2–4	3.68+00	1.18-02	2.54-02	-1.627	С	LS
182		$^{2}D-^{2}P^{\circ}$				1 0-6						1
				[361.77]	1 156 180–1 432 600	6–4	2.68+01	3.50-02	2.50-01	-0.678	В	LS
		2- 2-9		[359.94]	1 154 780–1 432 600	4–4	3.02+00	5.86-03	2.78 - 02	-1.630	C	LS
183		$^{2}S-^{2}P^{\circ}$				2–6						1
				[384.23]	1 172 340–1 432 600	2–4	1.48+01	6.54-02	1.65-01	-0.883	C+	LS
184	$2s2p(^{3}P^{\circ})3p - 2s2p(^{3}P^{\circ})4d$	$^{2}P-^{2}D^{\circ}$				6–10						1
				297.071	1 127 430–1 464 050	4-6	1.18+02	2.34-01	9.15-01	-0.029	B+	LS
185		$^{2}P-^{2}P^{\circ}$		288.33	1 127 223–1 474 050	6-6	4.19+01	5.22-02	2.97-01	-0.504	C+	1
				[288.70]	1 127 430–1 473 810	4-4	3.47+01	4.34-02	1.65-01	-0.760	C+	LS
				[287.59]	1 126 810-1 474 530	2–2	2.81 + 01	3.49-02	6.61-02	-1.156	C	LS
				[288.10]	1 127 430–1 474 530	4–2		8.71-03				LS
				[288.18]	1 126 810–1 473 810	2–4	6.99+00	1.74-02	3.30-02	-1.458	С	LS
186		$^{2}D-^{2}D^{\circ}$				10-10						1
				324.812	1 156 180–1 464 050	6-6	3.94+01	6.23-02	4.00-01	-0.427	В	LS
				323.342	1 154 780–1 464 050	4–6	2.85 + 00	6.70-03	2.85-02	-1.572	C	LS
187		$^{2}D-^{2}F^{\circ}$		315.85	1 155 620–1 472 229	10-14	1.33+02	2.78-01	2.89+00	0.444	B+	1
				315.906	1 156 180–1 472 730	6-8	1.33+02	2.65-01	1.65+00	0.201	B+	LS
				315.676	1 154 780–1 471 560	4-6	1.24+02	2.78 - 01	1.16+00	0.046	$\mathrm{B} +$	LS
				317.078	1 156 180–1 471 560	6–6	8.76+00	1.32 - 02	8.27-02	-1.101	C+	LS
188		$^{2}D-^{2}P^{\circ}$		314.04	1 155 620–1 474 050	10-6	4.02+00	3.57-03	3.69-02	-1.447	D+	1
				[314.83]	1 156 180–1 473 810	6-4	3.59+00	3.56-03	2.21-02	-1.670	C	LS
				[312.74]	1 154 780–1 474 530	4–2	4.08+00	2.99-03	1.23-02	-1.922	D+	LS
				[313.45]	1 154 780–1 473 810	4–4	4.05 - 01	5.96-04	2.46-03	-2.623	D	LS
189		$^{2}S-^{2}P^{\circ}$		331.44	1 172 340– <i>1 474 050</i>	2–6	7.61+01	3.76-01	8.21-01	-0.124	В	1
				[331.71]	1 172 340–1 473 810	2–4	7.58+01	2.50-01	5.46-01	-0.301	В	LS
				[330.92]	1 172 340–1 474 530	2–2	7.67 + 01	1.26-01	2.75 - 01	-0.599	В	LS
190	$2s2p(^{3}P^{\circ})3p - 2s2p(^{1}P^{\circ})4d$	$^{2}D-^{2}F^{\circ}$		236.86	1 155 620–1 577 810	10–14	7.29+00	8.58-03	6.69-02	-1.067	C	1
				[237.18]	1 156 180–1 577 810	6-8	7.26+00	8.16-03	3.82-02	-1.310	C	LS
				[236.39]	1 154 780–1 577 810	4-6	6.84+00	8.60-03	2.68-02	-1.463	C	LS
				[237.18]	1 156 180–1 577 810	6–6	4.84 - 01	4.08 - 04	1.91-03	-2.611	D	LS
191	$2s2p(^{3}P^{\circ})3p - 2s2p(^{3}P^{\circ})5d$	$^{2}D-^{2}F^{\circ}$		228.40	1 155 620–1 593 449	10–14	7.43+01	8.14-02	6.12-01	-0.089	В	1
				228.446	1 156 180–1 593 920	6-8	7.43 + 01	7.75-02	3.50-01	-0.333	В	LS
				228.290	1 154 780–1 592 820	4-6	6.95 + 01	8.14-02	2.45-01	-0.487	C+	LS
				229.022	1 156 180–1 592 820	6–6	4.91+00	3.86-03	1.75 - 02	-1.635	C	LS
192	$2s2p(^{3}P^{\circ})3d - 2s2p(^{1}P^{\circ})3p$	$^{2}D^{\circ}-^{2}D$		1 550.7	1 187 386–1 251 874	10–10	6.10-02	2.20-03	1.12-01	-1.658	C	1
				1 559.58	1 187 890–1 252 010	6–6	5.59-02	2.04-03	6.28-02	-1.912	C	LS
				1 537.52	1 186 630-1 251 670	4-4	5.64-02	2.00-03	4.05 - 02	-2.097	C	LS
				1 567.89	1 187 890-1 251 670	6-4	5.90-03	1.45 - 04	4 49 - 03	-3.060	D	LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				1 529.52	1 186 630–1 252 010	4–6	4.24-03	2.23-04	4.49-03	-3.050	D	LS
193		$^{2}D^{\circ}-^{2}P$		1 509.4	1 187 386–1 253 637	10-6	5.50-03	1.13-04	5.60-03	-2.947	D	1
				1 517.68	1 187 890–1 253 780	6–4	4.87-03	1.12-04	3.36-03	-3.173	D	LS
				1 498.80	1 186 630-1 253 350	4-2	5.62 - 03	9.46 - 05	1.87 - 03	-3.422	D	LS
				1 489.20	1 186 630–1 253 780	4–4	5.71 - 04	1.90-05	3.73-04	-4.119	E+	LS
194		$^{2}F^{\circ}-^{2}D$	2 426	2 427	1 210 670–1 251 874	14-10	1.02-02	6.42-04	7.18-02	-2.046	C	1
			2 452.0	2 452.8	1 211 240-1 252 010	8-6	9.39-03	6.35 - 04	4.10-02	-2.294	C	LS
			2 393.9	2 394.6	1 209 910–1 251 670	6–4	1.06 - 02	6.07 - 04	2.87 - 02	-2.439	C	LS
			2 374.6	2 375.3	1 209 910–1 252 010	6–6	5.17-04	4.37-05	2.05-03	-3.581	D	LS
195		$^{2}P^{\circ}-^{2}D$	2 904	2 904	1 217 443–1 251 874	6–10	1.85-02	3.90-03	2.24-01	-1.631	C+	1
			2 871.1	2 871.9	1 217 190–1 252 010	4-6	1.91-02	3.55-03	1.34-01	-1.848	C+	LS
			2 964.7	2 965.6	1 217 950–1 251 670	2–4	1.45 - 02	3.82 - 03	7.46 - 02	-2.117	C	LS
			2 899.4	2 900.2	1 217 190–1 251 670	4–4	3.10-03	3.91-04	1.49-02	-2.806	D+	LS
196		$^{2}P^{\circ}-^{2}P$	2 762	2 763	1 217 443–1 253 637	6–6	1.85-02	2.11-03	1.15-01	-1.898	C	1
			2 732.2	2 733.0	1 217 190-1 253 780	4-4	1.59-02	1.78-03	6.41-02	-2.148	C	LS
			2 824.0	2 824.9	1 217 950-1 253 350	2-2	1.15-02	1.38-03	2.57-02	-2.559	C	LS
			2 764.7	2 765.5	1 217 190-1 253 350	4-2	6.14-03	3.52-04	1.28-02	-2.851	D+	LS
			2 790.1	2 791.0	1 217 950–1 253 780	2-4	2.98-03	6.97-04	1.28-02	-2.856	D+	LS
197		$^{2}P^{\circ}-^{2}S$	2 413	2 413	1 217 443–1 258 880	6–2	4.02-03	1.17-04	5.58-03	-3.154	D	1
			2 397.9	2 398.7	1 217 190–1 258 880	4–2	2.74-03	1.18-04	3.73-03	-3.326	D	LS
			2 442.5	2 443.2	1 217 950–1 258 880	2–2	1.29-03	1.15-04	1.85-03	-3.638	D	LS
198	$2s2p(^{3}P^{\circ})3d - 2p^{2}(^{3}P)3s$	$^{4}D^{\circ}-^{4}P$				20–12						1
				951.47	1 186 460–1 291 560	8-6	1.71-01	1.74-03	4.36-02	-1.856	C	LS
				961.08	1 185 980-1 290 030	6-4	1.31 - 01	1.21 - 03	2.30 - 02	-2.139	C	LS
				947.15	1 185 980-1 291 560	6-6	3.91-02	5.26-04	9.84-03	-2.501	D+	LS
				958.68	1 185 720-1 290 030	4-4	6.70-02	9.23-04	1.17-02	-2.433	D+	LS
				944.82	1 185 720–1 291 560	4–6	4.37-03	8.78-05	1.09-03	-3.454	E+	LS
199		$^4P^{\circ}-^4P$				12-12						1
				1 007.76	1 192 330–1 291 560	6–6	3.55-02	5.41-04	1.08-02	-2.489	D+	LS
				1 029.02	1 192 850-1 290 030	4-4	6.36-03	1.01 - 04	1.37 - 03	-3.394	D	LS
				1 023.54	1 192 330-1 290 030	6-4	2.18-02	2.28 - 04	4.61 - 03	-2.864	D	LS
				1 013.07	1 192 850–1 291 560	4-6	1.50 - 02	3.46 - 04	4.62 - 03	-2.859	D	LS
				1 032.63	1 193 190–1 290 030	2–4	1.96-02	6.28-04	4.27-03	-2.901	D	LS
200	$2s2p(^{3}P^{\circ})3d-2s^{2}4s$	$^{2}P^{\circ}-^{2}S$		1 290.9	<i>1 217 443</i> –1 294 910	6–2	6.32-02	5.26-04	1.34-02	-2.501	D+	1
				1 286.67	1 217 190-1 294 910	4-2	4.25 - 02	5.28-04	8.95-03	-2.675	D+	LS
				1 299.38	1 217 950–1 294 910	2–2	2.07 - 02	5.23-04	4.47-03	-2.980	D	LS
201	$2s2p(^{3}P^{\circ})3d - 2p^{2}(^{1}D)3s$	$^{2}D^{\circ}-^{2}D$		693.2	1 187 386–1 331 638	10–10	1.95-01	1.41-03	3.21-02	-1.851	D+	1
				694.06	1 187 890–1 331 970	6–6	1.81-01	1.31-03	1.80-02	-2.105	C	LS
				691.99	1 186 630-1 331 140	4-4	1.77-01	1.27-03	1.16-02	-2.294	D+	LS
				698.08	1 187 890–1 331 140	6-4		9.33-05				LS
				688.04	1 186 630-1 331 970	4-6		1.42 - 04				LS
202		$^{2}F^{\circ}-^{2}D$		826.7	1 210 670–1 331 638	14-10	4.88-01	3.57-03	1.36-01	-1.301	C	1

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	E_i – E_k (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				828.29	1 211 240–1 331 970	8–6	4.63-01	3.57-03	7.79-02	-1.544	С	LS
				824.88	1 209 910-1 331 140	6-4	4.91-01	3.34-03	5.44-02	-1.698	C	LS
				819.27	1 209 910–1 331 970	6–6	2.39-02	2.40 - 04	3.88-03	-2.842	D	LS
203		$^{2}P^{\circ}-^{2}D$		875.7	1 217 443–1 331 638	6-10	3.37-01	6.47-03	1.12-01	-1.411	C	1
				871.23	1 217 190-1 331 970	4-6	3.43-01	5.85-03	6.71-02	-1.631	C	LS
				883.47	1 217 950-1 3311 40	2-4	2.74 - 01	6.41 - 03	3.73 - 02	-1.892	C	LS
				877.58	1 217 190–1 331 140	4-4	5.59-02	6.45 - 04	7.45 - 03	-2.588	D+	LS
204	$2s2p(^{3}P^{\circ})3d-2s^{2}4d$	$^2F^{\circ}-^2D$		799.0	1 210 670–1 335 822	14-10	1.18-02	8.05-05	2.96-03	-2.948	D	1
				802.63	1 211 240-1 335 830	8-6	1.11-02	8.01-05	1.69-03	-3.193	D	LS
				794.28	1 209 910-1 335 810	6-4	1.20 - 02	7.56-05	1.19-03	-3.343	D	LS
				794.16	1 209 910–1 335 830	6–6	5.71 - 04	5.40-06	8.47 - 05	-4.489	E	LS
205	$2s2p(^{3}P^{\circ})3d - 2p^{2}(^{3}P)3d$	$^4D^{\circ}-^4P$				20–12						1
				470.389	1 186 460–1 399 050	8–6	3.12+01	7.76-02	9.61-01	-0.207	B+	LS
				468.165	1 185 980-1 399 580	6-4	2.49+01	5.46-02	5.05-01	-0.485	В	LS
				466.962	1 185 720-1 399 870	4-2	1.99+01	3.26-02	2.00-01	-0.885	C+	LS
				469.329	1 185 980-1 399 050	6-6	7.06+00	2.33 - 02	2.16-01	-0.854	C+	LS
				467.596	1 185 720-1 399 580	4-4	1.27 + 01	4.16 - 02	2.56-01	-0.779	В	LS
				468.757	1 185 720–1 399 050	4–6	7.87 - 01	3.89-03	2.40-02	-1.808	C	LS
206		$^{2}D^{\circ}-^{2}F$		496.57	1 187 386–1 388 769	10–14	5.15-02	2.67-04	4.36-03	-2.573	D	1
				[497.32]	1 187 890–1 388 970	6-8	5.14-02	2.54-04	2.50-03	-2.817	D	LS
				[495.37]	1 186 630-1 388 500	4-6	4.84 - 02	2.67-04	1.74-03	-2.971	D	LS
				[498.48]	1 187 890–1 388 500	6–6	3.38-03	1.26 - 05	1.24-04	-4.121	E	LS
207		$^{2}D^{\circ}-^{2}D$		492.46	1 187 386–1 390 450	10-10	5.08-01	1.85-03	3.00-02	-1.733	D+	1
				[493.68]	1 187 890–1 390 450	6–6	4.71-01	1.72-03	1.68-02	-1.986	C	LS
				[490.63]	1 186 630-1 390 450	4-4	4.63 - 01	1.67-03	1.08 - 02	-2.175	D+	LS
				[493.68]	1 187 890-1 390 450	6-4	5.05 - 02	1.23-04	1.20-03	-3.132	D	LS
				[490.63]	1 186 630–1 390 450	4-6	3.42-02	1.85 - 04	1.20-03	-3.131	D	LS
208		$^4P^{\circ}-^4P$		483.75	1 192 647–1 399 363	12–12	1.09+01	3.82-02	7.30-01	-0.339	C+	1
				483.746	1 192 330–1 399 050	6–6	7.61+00	2.67-02	2.55-01	-0.795	В	LS
				483.723	1 192 850-1 399 580	4-4		5.09-03				LS
				483.840	1 193 190-1 399 870	2-2	1.82 + 00	6.37-03	2.03-02	-1.895	C	LS
				482.509	1 192 330-1 399 580	6-4	4.94+00	1.15 - 02	1.10-01	-1.161	C+	LS
				483.045	1 192 850-1 399 870	4-2	9.09+00	1.59-02	1.01 - 01	-1.197	C+	LS
				484.966	1 192 850-1 399 050	4-6	3.25+00	1.72 - 02	1.10-01	-1.162	C+	LS
				484.520	1 193 190–1 399 580	2–4	4.52+00	3.18 - 02	1.01 - 01	-1.197	C+	LS
209		$^2F^{\circ}-^2F$		561.49	1 210 670–1 388 769	14–14	1.13+01	5.36-02	1.39+00	-0.125	В	1
				[562.6]	1 211 240-1 388 970	8-8	9.95+00	4.72-02	6.99-01	-0.423	В	LS
				[559.94]	1 209 910-1 388 500	6-6	1.22+01	5.74 - 02	6.35 - 01	-0.463	В	LS
				[564.1]	1 211 240-1 388 500	8-6	4.86 - 01	1.74 - 03	2.59 - 02	-1.856	C	LS
				[558.47]	1 209 910–1 388 970	6-8	3.77-01	2.35 - 03	2.59-02	-1.851	C	LS
210		$^2F^{\circ}-^2D$		556.24	1 210 670–1 390 450	14-10	1.75+01	5.81-02	1.49+00	-0.090	В	1
				[558.01]	1 211 240-1 390 450	8-6	1.65+01	5.79-02	8.51-01	-0.334	В	LS
				[553.89]	1 209 910-1 390 450	6-4		5.45-02				LS
				[553.89]	1 209 910-1 390 450	6-6	8.46-01	3.89-03	4.26-02	-1.632	C	LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
211		$^{2}P^{\circ}-^{2}D$		578.0	1 217 443–1 390 450	6–10	2.50-02	2.09-04	2.38-03	-2.902	E+	1
				[577.2]	1 217 190-1 390 450	4-6	2.51-02	1.88 - 04	1.43-03	-3.124	D	LS
				[579.7]	1 217 950-1 390 450	2-4	2.06-02	2.08 - 04	7.94-04	-3.381	E+	LS
				[577.2]	1 217 190–1 390 450	4–4	4.18 - 03	2.09-05	1.59-04	-4.078	E	LS
212	$2s2p(^{3}P^{\circ})3d - 2p^{2}(^{1}D)3d$	$^2D^{\circ}-^2D$		438.13	1 187 386–1 415 630	10–10	7.31-01	2.10-03	3.04-02	-1.678	D+	1
				439.097	1 187 890–1 415 630	6-6	6.78-01	1.96-03	1.70-02	-1.930	C	LS
				436.681	1 186 630-1 415 630	4-4	6.65 - 01	1.90 - 03	1.09 - 02	-2.119	D+	LS
				439.097	1 187 890-1 415 630	6-4	7.27 - 02	1.40 - 04	1.21 - 03	-3.076	D	LS
				436.681	1 186 630–1 415 630	4–6	4.92-02	2.11-04	1.21-03	-3.074	D	LS
213		$^{2}D^{\circ}-^{2}F$		414.29	1 187 386–1 428 766	10–14	3.38+00	1.22-02	1.66-01	-0.914	C	1
				415.093	1 187 890–1 428 800	6-8	3.37+00	1.16-02	9.51-02	-1.157	C+	LS
				413.070	1 186 630-1 428 720	4–6	3.18+00	1.22 - 02	6.64 - 02	-1.312	C	LS
				415.231	1 187 890–1 428 720	6–6	2.23-01	5.77-04	4.73-03	-2.461	D	LS
214		$^{2}D^{\circ}-^{2}P$		408.05	1 187 386–1 432 453	10-6	7.43-01	1.11-03	1.49-02	-1.955	D+	1
				408.630	1 187 890-1 432 610	6–4	6.65-01	1.11-03	8.96-03	-2.177	D+	LS
				407.315	1 186 630-1 432 140	4-2	7.48-01	9.30-04	4.99-03	-2.429	D	LS
				406.537	1 186 630–1 432 610	4-4	7.51 - 02	1.86-04	9.96-04	-3.128	E+	LS
215		$^2F^{\circ}-^2D$		487.90	1 210 670–1 415 630	14-10	2.33+00	5.95-03	1.34-01	-1.079	C	1
				489.261	1 211 240–1 415 630	8-6	2.20+00	5.93-03	7.64-02	-1.324	C	LS
				486.098	1 209 910-1 415 630	6-4	2.36+00	5.57 - 03	5.35 - 02	-1.476	C	LS
				486.098	1 209 910–1 415 630	6–6	1.12-01	3.98-04	3.82-03	-2.622	D	LS
216		$^{2}F^{\circ}-^{2}F$		458.51	1 210 670–1 428 766	14–14	2.25+00	7.09-03	1.50-01	-1.003	C	1
				459.643	1 211 240–1 428 800	8-8			7.57-02			LS
				457.018	1 209 910–1 428 720	6–6	2.43+00	7.60 - 03	6.86 - 02	-1.341	C	LS
				459.812	1 211 240–1 428 720	8-6	9.72 - 02	2.31 - 04	2.80 - 03	-2.733	D	LS
				456.850	1 209 910–1 428 800	6–8	7.43 - 02	3.10-04	2.80-03	-2.730	D	LS
217		$^{2}\text{P}^{\circ}-^{2}\text{P}$		465.09	1 217 443–1 432 453	6–6	3.61+00	1.17-02	1.08-01	-1.154	C	1
				464.209	1 217 190-1 432 610	4-4	3.03+00	9.78-03	5.98-02	-1.408	C	LS
				466.875	1 217 950-1 432 140	2-2	2.38+00	7.78 - 03	2.39 - 02	-1.808	C	LS
				465.224	1 217 190-1 432 140	4-2	1.20+00	1.95 - 03	1.19 - 02	-2.108	D+	LS
				465.853	1 217 950–1 432 610	2–4	5.99-01	3.90-03	1.20-02	-2.108	D+	LS
218	$2s2p(^{3}P^{\circ})3d - 2s2p(^{3}P^{\circ})4p$	$^{2}D^{\circ}-^{2}P$		391.19	1 187 386–1 443 017	10–6	1.41+01	1.94-02	2.50-01	-0.712	C+	1
				391.727	1 187 890–1 443 170	6–4	1.26+01	1.94-02	1.50-01	-0.934	C+	LS
				390.503	1 186 630–1 442 710	4-2	1.42 + 01	1.62 - 02	8.33 - 02	-1.188	C+	LS
				389.803	1 186 630–1 443 170	4–4	1.43+00	3.25-03	1.67-02	-1.886	D+	LS
219		$^2D^{\circ}-^2D$		376.70	1 187 386–1 452 850	10-10	2.76+00	5.88-03	7.29-02	-1.231	C	1
				376.705	1 187 890–1 453 350	6-6	2.58+00	5.49-03	4.09-02	-1.482	C	LS
				376.690	1 186 630-1 452 100	4-4	2.49+00	5.29-03	2.62-02	-1.674	C	LS
				378.487	1 187 890–1 452 100	6-4	2.72 - 01	3.90-04	2.92-03	-2.631	D	LS
				374.925	1 186 630–1 453 350	4–6	1.87-01	5.91-04	2.92-03	-2.626	D	LS
220		$^2F^{\circ}-^2D$		412.92	1 210 670–1 452 850	14-10	1.02+01	1.86-02	3.53-01	-0.584	C+	1
				413.035	1 211 240–1 453 350	8-6	9.70+00	1.86-02	2.02-01	-0.827	C+	LS

Table 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				412.899	1 209 910-1 452 100	6–4	1.02+01	1.73-02	1.41-01	-0.984	C+	LS
				410.779	1 209 910–1 453 350	6–6	4.90-01	1.24-03	1.01 - 02	-2.128	D+	LS
221		$^{2}P^{\circ}-^{2}P$		443.31	1 217 443–1 443 017	6–6	3.75+00	1.11-02	9.68-02	-1.177	C	1
				442.517	1 217 190–1 443 170	4-4	3.14+00	9.23-03	5.38-02	-1.433	С	LS
				444.919	1 217 950-1 442 710	2-2	2.47 + 00	7.34-03	2.15-02	-1.833	C	LS
				443.420	1 217 190-1 442 710	4-2	1.25 + 00	1.84-03	1.07-02	-2.133	D+	LS
				444.010	1 217 950–1 443 170	2–4	6.23-01	3.68-03	1.08-02	-2.133	D+	LS
222		$^{2}P^{\circ}-^{2}D$		424.80	1 217 443–1 452 850	6–10	5.50-01	2.48-03	2.08-02	-1.827	D+	1
				423.442	1 217 190-1 453 350	4-6	5.56-01	2.24-03	1.25-02	-2.048	D+	LS
				427.077	1 217 950-1 452 100	2-4	4.52 - 01	2.47 - 03	6.95 - 03	-2.306	D+	LS
				425.695	1 217 190–1 452 100	4–4	9.13-02	2.48-04	1.39-03	-3.003	D	LS
223	$2s2p(^{3}P^{\circ})3d-2s^{2}5d$	$^{2}D^{\circ}-^{2}D$		364.73	1 187 386–1 461 562	10–10	9.85-02	1.96-04	2.36-03	-2.708	E+	1
				365.364	1 187 890–1 461 590	6-6	9.14-02	1.83 - 04	1.32-03	-2.959	D	LS
				363.782	1 186 630–1 461 520	4–4	8.92 - 02	1.77 - 04	8.48 - 04	-3.150	E+	LS
				365.457	1 187 890–1 461 520	6–4	9.81 - 03	1.31 - 05	9.46 - 05	-4.105	E	LS
				363.689	1 186 630-1 461 590	4-6	6.62 - 03	1.97 - 05	9.43 - 05	-4.103	E	L
224		$^{2}P^{\circ}-^{2}D$		409.64	1 217 443–1 461 562	6–10	6.01-01	2.52-03	2.04-02	-1.820	D+	1
				409.165	1 217 190-1 461 590	4-6	6.03-01	2.27-03	1.22-02	-2.042	D+	LS
				410.560	1 217 950-1 461 520	2-4	4.99-01	2.52-03	6.81-03	-2.298	D+	LS
				409.283	1 217 190–1 461 520	4-4			1.36-03			LS
225	$2s2p(^{3}P^{\circ})3d-2s2p(^{1}P^{\circ})4p$	$^{2}F^{\circ}-^{2}D$		284.72	1 210 670–1 561 890	14–10	2.95-01	2.56-04	3.37-03	-2.446	D	1
				[285.19]	1 211 240-1 561 890	8-6	2.80-01	2.56-04	1.92-03	-2.689	D	LS
				[284.11]	1 209 910-1 561 890	6-4			1.35-03			LS
				[284.11]	1 209 910–1 561 890	6-6	1.41 - 02	1.71-05	9.60-05	-3.989	E	LS
226		$^{2}P^{\circ}-^{2}D$		290.32	1 217 443–1 561 890	6-10	3.79+00	7.97-03	4.57-02	-1.320	C	1
				[290.11]	1 217 190-1 561 890	4-6	3.79+00	7.18-03	2.74-02	-1.542	C	LS
				[290.75]	1 217 950-1 561 890	2-4	3.14+00	7.96-03	1.52-02	-1.798	D+	LS
				[290.11]	1 217 190–1 561 890	4-4	6.32-01	7.97-04	3.04-03	-2.496	D	LS
227	$2s2p(^{3}P^{\circ})3d-2s2p(^{3}P^{\circ})5p$	$^{2}D^{\circ}-^{2}P$		255.78	1 187 386–1 578 350	10–6	6.65+00	3.92-03	3.30-02	-1.407	D+	1
				256.108	1 187 890–1 578 350	6–4	5.96+00	3.91-03	1.98-02	-1.630	С	LS
				255.284	1 186 630-1 578 350	4-2	6.69+00	3.27-03	1.10-02	-1.883	D+	LS
				255.284	1 186 630–1 578 350	4-4	6.70-01	6.55-04	2.20-03	-2.582	D	LS
228		$^{2}D^{\circ}-^{2}D$		252.30	1 187 386–1 583 740	10-10	5.01-01	4.78-04	3.97-03	-2.321	D	1
				252.621	1 187 890–1 583 740	6-6	4.66-01	4.46-04	2.23-03	-2.573	D	LS
				251.819	1 186 630-1 583 740	4-4	4.53 - 01	4.31 - 04	1.43 - 03	-2.763	D	LS
				252.621	1 187 890-1 583 740	6-4	5.00 - 02	3.19 - 05	1.59 - 04	-3.718	E	LS
				251.819	1 186 630–1 583 740	4–6	3.36-02	4.79-05	1.59-04	-3.718	Е	LS
229		$^{2}F^{\circ}-^{2}D$		268.05	1 210 670–1 583 740	14-10	6.39+00	4.92-03	6.08-02	-1.162	C	1
				268.456	1 211 240–1 583 740	8-6	6.06+00	4.91-03	3.47-02	-1.406	C	LS
				267.501	1 209 910-1 583 740	6-4	6.43 + 00	4.60-03	2.43-02	-1.559	C	LS
				267.501	1 209 910-1 583 740	6-6			1.73-03			LS
230		$^{2}P^{\circ}-^{2}P$		277.08	1 217 443–1 578 350	6–6	2.20+00	2.53-03	1.38-02	-1.819	D	1
		. 1		277.00	1 21/ 173 1 3/0 330	0 0	2.20 FUU	2.55 -05	1.50 -02	1.01)		

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

	Transition		λ_{air}	λ_{vac} (Å)	E_i-E_k		A_{ki}		S			
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	$(10^8 \ s^{-1})$	f_{ik}	(a.u.)	log gf	Acc.	Source
				276.886	1 217 190–1 578 350	4-4	1.84+00	2.11-03	7.69-03	-2.074	D+	LS
				277.469	1 217 950–1 578 350	2–2	1.46+00	1.68 - 03	3.07 - 03	-2.474	D	LS
				276.886	1 217 190–1 578 350	4–2	7.34 - 01	4.22 - 04	1.54 - 03	-2.773	D	LS
				277.469	1 217 950–1 578 350	2–4	3.65-01	8.42-04	1.54-03	-2.774	D	LS
231		$^{2}P^{\circ}-^{2}D$		273.00	1 217 443–1 583 740	6–10	8.82-01	1.64-03	8.86-03	-2.007	D	1
				272.814	1 217 190–1 583 740	4–6			5.32-03			LS
				273.381	1 217 950–1 583 740	2–4			2.95 - 03			LS
				272.814	1 217 190–1 583 740	4–4	1.47-01	1.64-04	5.89-04	-3.183	E+	LS
232	$2s2p(^{1}P^{\circ})3s - 2s2p(^{1}P^{\circ})3p$	$^{2}P^{\circ}-^{2}D$		1 866	1 198 290–1 251 874	6–10	1.88+00	1.64-01	6.04+00	-0.007	B+	1
				1 861.5	1 198 290–1 252 010	4–6	1.90+00	1.48-01	3.63+00	-0.228	B+	LS
				1 873.4	1 198 290-1 251 670	2-4	1.55 + 00	1.63-01	2.01+00	-0.487	B+	LS
				1 873.4	1 198 290–1 251 670	4-4	3.10-01	1.63 - 02	4.02 - 01	-1.186	В	LS
233		$^{2}P^{\circ}-^{2}P$		1 807	1 198 290–1 253 637	6-6	2.30+00	1.12-01	4.01+00	-0.173	B+	1
				1 802.1	1 198 290–1 253 780	4-4	1.93+00	9.39-02	2.23+00	-0.425	B+	LS
				1 816.2	1 198 290-1 253 350	2-2	1.51+00	7.46 - 02	8.92 - 01	-0.826	В	LS
				1 816.2	1 198 290–1 253 350	4-2	7.52 - 01	1.86 - 02	4.45 - 01	-1.128	В	LS
				1 802.1	1 198 290–1 253 780	2–4	3.86-01	3.76 - 02	4.46-01	-1.124	В	LS
234		$^{2}P^{\circ}-^{2}S$		1 650.4	1 198 290–1 258 880	6–2	2.70+00	3.67-02	1.20+00	-0.657	В	1
				1 650.44	1 198 290-1 258 880	4–2	1.80+00	3.67-02	7.98-01	-0.833	В	LS
				1 650.44	1 198 290–1 258 880	2–2			3.99-01			LS
235	$2s2p(^{1}P^{\circ})3s-2s^{2}4s$	$^{2}P^{\circ}-^{2}S$		1 035.0	1 198 290–1 294 910	6–2	8.69-01	4.65-03	9.51-02	-1.554	C	1
				1 034.98	1 198 290–1 294 910	4–2	5.79-01	4.65-03	6.34-02	-1.730	С	LS
				1 034.98	1 198 290–1 2949 10	2–2			3.17-02			LS
236	$2s2p(^{1}P^{\circ})3s - 2p^{2}(^{1}D)3s$	$^{2}P^{\circ}-^{2}D$		749.9	1 198 290–1 331 638	6–10	1.32+01	1.85-01	2.75+00	0.045	B+	1
				748.06	1 198 290–1 331 970	4–6	1.33+01	1.67-01	1.65+00	-0.175	B+	LS
				752.73	1 198 290-1 331 140	2–4			9.17-01			LS
				752.73	1 198 290-1 331 140	4-4	2.18+00	1.85 - 02	1.83-01	-1.131	C+	LS
237	$2s2p(^{1}P^{\circ})3s-2s^{2}4d$	$^{2}P^{\circ}-^{2}D$		727.1	1 198 290–1 335 822	6–10	2.97-02	3.92-04	5.63-03	-2.629	D	1
				727.06	1 198 290–1 335 830	4–6	2.97-02	3.53-04	3.38-03	-2.850	D	LS
				727.17	1 198 290–1 335 810	2–4			1.88-03			LS
				727.17	1 198 290–1 335 810	4-4			3.75-04			LS
238	$2s2p(^{1}P^{\circ})3s - 2p^{2}(^{3}P)3d$	$^{2}P^{\circ}-^{2}D$		520.40	1 198 290–1 390 450	6–10	1.09-01	7.34-04	7.55-03	-2.356	D	1
	•			[520,40]	1 109 200 1 200 450	1.6	1.00 .01	6.61 04	1.52 02	2 579	D	1.0
				[520.40]	1 198 290–1 390 450	4–6			4.53-03 2.52-03			LS LS
				[520.40] [520.40]	1 198 290–1 390 450 1 198 290–1 390 450	2–4 4–4			5.03-04			LS LS
239	$2s2p(^{1}P^{\circ})3s - 2p^{2}(^{1}D)3d$	$^{2}P^{\circ}-^{2}D$		460.11	1 198 290–1 415 630	6–10			7.03-04			1
	\mathcal{L}_{P} (\mathcal{D})3 α											
				460.109	1 198 290–1 415 630	4–6			4.22-03			LS
				460.109	1 198 290–1 415 630	2–4			2.34-03			LS
				460.109	1 198 290–1 415 630	4–4	2.44-02	7.73-05	4.68-04	-3.510	E+	LS
240	$2s2p(^{1}P^{\circ})3s - 2s2p(^{3}P^{\circ})4p$	$^{2}P^{\circ}-^{2}D$		392.83	1 198 290–1 452 850	6–10	1.96-01	7.55-04	5.86-03	-2.344	D	1

Table 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	E_i – E_k (cm ⁻¹)	$g_i - g_k$	$A_{ki} \\ (10^8 \ s^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				392.065	1 198 290–1 453 350	4-6	1.97-01	6.81-04	3.52-03	-2.565	D	LS
				393.996	1 198 290–1 452 100	2-4		7.53 - 04				LS
				393.996	1 198 290–1 452 100	4–4	3.24 - 02	7.53 - 05	3.91-04	-3.521	E+	LS
241	$2s2p(^{1}P^{\circ})3s-2s^{2}5d$	$^{2}P^{\circ}-^{2}D$		379.84	1 198 290–1 461 562	6–10	1.49-01	5.36-04	4.02-03	-2.493	D	1
				379.795	1 198 290–1 461 590	4-6	1.49-01	4.82 - 04	2.41-03	-2.715	D	LS
				379.896	1 198 290–1 461 520	2-4		5.36-04				LS
				379.896	1 198 290–1 461 520	4–4	2.48 - 02	5.36-05	2.68-04	-3.669	E+	LS
242	$2s2p(^{1}P^{\circ})3s - 2s2p(^{1}P^{\circ})4p$	$^{2}P^{\circ}-^{2}D$		275.03	1 198 290–1 561 890	6–10	6.52+01	1.23-01	6.69-01	-0.132	В	1
				[275.03]	1 198 290–1 561 890	4-6	6.53+01	1.11-01	4.02-01	-0.353	В	LS
				[275.03]	1 198 290-1 561 890	2-4	5.42+01	1.23-01	2.23-01	-0.609	C+	LS
				[275.03]	1 198 290–1 561 890	4-4	1.08+01	1.23 - 02	4.45-02	-1.308	C	LS
243	$2s2p(^{1}P^{\circ})3s - 2s2p(^{3}P^{\circ})5p$	$^{2}P^{\circ}-^{2}P$		263.12	1 198 290–1 578 350	6–6	1.77+00	1.83-03	9.53-03	-1.959	D	1
	252p(1)3p			262.446			1 17 00	4.50.00		2 2 4 2	ъ.	
				263.116	1 198 290–1 578 350	4–4		1.53-03				LS
				263.116 263.116	1 198 290–1 578 350 1 198 290–1 578 350	2–2 4–2		1.22-03 3.06-04				LS LS
				263.116	1 198 290–1 578 350	2-4		6.11-04				LS
244		$^{2}P^{\circ}-^{2}D$		259.44	1 198 290–1 583 740	6–10		1.10-03				1
					1 100 200 1 502 540							
				259.437	1 198 290–1 583 740	4–6		9.93-04				LS
				259.437 259.437	1 198 290–1 583 740 1 198 290–1 583 740	2–4 4–4		1.10-03 1.10-04				LS LS
245	$2s2p(^{1}P^{\circ})3p - 2s2p(^{1}P^{\circ})3d$	$^{2}D-^{2}F^{\circ}$	2 471	2 472	1 251 874–1 292 330	10–14		9.12-02				1
	232p(1)3u		2 450 4	2 400 2			5 04 04	0.66.00		0.201		
			2 479.4	2 480.2	1 252 010–1 292 330	6–8		8.66-02				LS
			2 458.7 2 479.4	2 459.4 2 480.2	1 251 670–1 292 330 1 252 010–1 292 330	4–6 6–6		9.17-02 4.33-03				LS LS
246		$^{2}D-^{2}D^{\circ}$	2 477.4	1 935	1 251 874–1 303 546	10–10		2.69-02				1
210		ББ										
				1 938.0	1 252 010–1 303 610	6–6		2.51-02				LS
				[1 931]	1 251 670–1 303 450	4–4		2.43-02 $1.78-03$				LS
				[1 944] 1 925.3	1 252 010–1 303 450 1 251 670–1 303 610	6–4 4–6		2.70-03				LS LS
247		$^{2}D-^{2}P^{\circ}$		1 832	1 251 874–1 306 470	10–6		1.16-03				1
				1 836.2	1 252 010–1 306 470	6–4		1.16-03				LS
				1 824.8 1 824.8	1 251 670–1 306 470 1 251 670–1 306 470	4–2 4–4		9.69-04 1.94-04				LS LS
				1 024.0	1 231 070–1 300 470	4-4	3.69-03	1.94-04	4.00-03	-3.110	D	L3
248		$^{2}P-^{2}D^{\circ}$	2 003	2 004	1 253 637–1 303 546	6–10	1.06+00	1.07-01	4.22+00	-0.192	B+	1
			2 006.2	2 006.8	1 253 780–1 303 610	4–6		9.59-02				LS
			F0.0103	[1 996]	1 253 350–1 303 450	2–4		1.07-01				LS
		0 7 -	[2 013]	[2 013]	1 253 780–1 303 450	4–4		1.06-02				LS
249		$^{2}P-^{2}P^{\circ}$		1 893	1 253 637–1 306 470	6–6	1.88-01	1.01-02	3.77-01	-1.218	C+	1
				1 897.9	1 253 780–1 306 470	4-4		8.38 - 03				LS
				4 000 5	1 252 250 1 206 450	2 2	1 27 01	(7/ 02	0.20 02	1.070	α	TC
				1 882.5	1 253 350–1 306 470	2–2		6.76-03				LS
				1 882.5 1 897.9 1 882.5	1 253 350–1 306 470 1 253 780–1 306 470 1 253 350–1 306 470	2–2 4–2 2–4	6.22-02	1.68-03 3.38-03	4.20-02	-2.173	C	LS LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
250		$^{2}S-^{2}P^{\circ}$	2 101	2 101	1 258 880–1 306 470	2-6	3.83-02	7.61-03	1.05-01	-1.818	С	1
			2 100.6	2 101.3	1 258 880-1 306 470	2–4	3.83-02	5.07-03	7.01-02	_1 994	C	LS
			2 100.6	2 101.3	1 258 880–1 306 470	2–2			3.51-02			LS
251	$2s2p(^{1}P^{\circ})3p - 2p^{2}(^{3}P)3p$	$^{2}D-^{2}D^{\circ}$		1 032.6	1 251 874–1 348 720	10–10	1.85-01	2.96-03	1.01-01	-1.529	C	1
				1 034.02	1 252 010–1 348 720	6–6	1.72-01	2.76-03	5.64-02	-1.781	С	LS
				1 030.40	1 251 670-1 348 720	4-4	1.68-01	2.67-03	3.62-02	-1.971	С	LS
				1 034.02	1 252 010-1 348 720	6-4	1.84-02	1.97-04	4.02-03	-2.927	D	LS
				1 030.40	1 251 670–1 348 720	4–6	1.24-02	2.97-04	4.03-03	-2.925	D	LS
252		$^{2}P-^{2}D^{\circ}$		1 051.7	1 253 637–1 348 720	6-10	3.68+00	1.02-01	2.11+00	-0.213	В	1
				1 053.30	1 253 780–1 348 720	4-6	3.66+00	9.14-02	1.27+00	-0.437	B+	LS
				1 048.55	1 253 350-1 348 720	2-4	3.09+00	1.02 - 01	7.04 - 01	-0.690	В	LS
				1 053.30	1 253 780–1 348 720	4-4	6.13-01	1.02-02	1.41-01	-1.389	C+	LS
253	$2s2p(^{1}P^{\circ})3p - 2p^{2}(^{1}D)3p$	$^{2}D-^{2}F^{\circ}$		792.3	1 251 874–1 378 094	10–14	8.05+00	1.06-01	2.77+00	0.025	B+	1
				791.83	1 252 010–1 378 300	6–8	8.06±00	1.01_01	1.58+00	_0.218	ВΤ	LS
				792.71	1 251 670–1 377 820	4–6			1.11+00			LS
				794.85	1 252 010–1 377 820	6–6			7.90-02			LS
254		$^{2}D-^{2}D^{\circ}$		709.6	1 251 874–1 392 800	10–10			8.84-01			1
				710.20	1 252 010 1 202 000		4.67.00	2.52.02	4.05 .01	0.674	D	1.0
				710.28	1 252 010–1 392 800	6–6			4.95-01			LS
				708.57	1 251 670–1 392 800	4–4			3.18-01			LS
				710.28	1 252 010–1 392 800	6–4			3.54-02			LS
				708.57	1 251 670–1 392 800	4–6	3.36-01	3.79-03	3.54-02	-1.819	C	LS
255		$^{2}P-^{2}D^{\circ}$		718.6	1 253 637–1 392 800	6–10	1.85+00	2.38-02	3.38-01	-0.845	C+	1
				719.32	1 253 780-1 392 800	4-6	1.84+00	2.14-02	2.03 - 01	-1.068	C+	LS
				717.10	1 253 350-1 392 800	2-4	1.55+00	2.39 - 02	1.13 - 01	-1.321	C+	LS
				719.32	1 253 780–1 392 800	4-4	3.07 - 01	2.38 - 03	2.25-02	-2.021	C	LS
256	$2s2p(^{1}P^{\circ})3p - 2s2p(^{3}P^{\circ})4s$	$^{2}D-^{2}P^{\circ}$				10–6						1
				[553.74]	1 252 010-1 432 600	6-4	2.23+00	6.84-03	7.48-02	-1.387	C	LS
				[552.70]	1 251 670–1 432 600	4-4	2.49-01	1.14-03	8.30-03	-2.341	D+	LS
257		$^{2}P-^{2}P^{\circ}$				6–6						1
				[559.22]	1 253 780-1 432 600	4-4	1 90-01	8 92 - 04	6.57-03	-2 448	D+	LS
				[557.88]	1 253 350–1 432 600	2–4			1.32-03			LS
258		$^{2}S-^{2}P^{\circ}$				2-6						1
				[575.6]	1 258 880–1 432 600	2-4	5.04+00	5.01-02	1.90-01	-0.999	C+	LS
259	$2s2p(^{1}P^{\circ})3p - 2s2p(^{3}P^{\circ})4d$	$^{2}D-^{2}D^{\circ}$				10–10						1
				471.609	1 252 010–1 464 050	6–6	2.25+00	7.50-03	6.99-02	-1.347	C	LS
				470.854	1 251 670-1 464 050	4-6			4.99-03			LS
260		$^{2}D-^{2}F^{\circ}$		453.81	1 251 874–1 472 229	10–14	7.76-01	3.36-03	5.01-02	-1.474	С	1
				453.063	1 252 010–1 472 730	6–8			2.86-02			LS
				454.773	1 251 670–1 471 560	4–6	7.20-01	5.35-03	2.01-02	-1.873	C	LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$A_{ki} \\ (10^8 \ s^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				455.477	1 252 010–1 471 560	6–6	5.11-02	1.59-04	1.43-03	-3.020	D	LS
261		$^{2}D-^{2}P^{\circ}$		450.09	1 251 874–1 474 050	10-6	1.19+00	2.17-03	3.22-02	-1.664	D+	1
				[450.86]	1 252 010–1 473 810	6–4	1.07 + 00	2.17-03	1.93-02	-1.885	C	LS
				[448.71]	1 251 670–1 474 530	4-2	1.21+00	1.82 - 03	1.08 - 02	-2.138	D+	LS
				[450.17]	1 251 670–1 473 810	4–4	1.19-01	3.62-04	2.15-03	-2.839	D	LS
262		$^{2}P-^{2}D^{\circ}$				6–10						1
				475.579	1 253 780–1 464 050	4–6	1.75-01	8.88-04	5.56-03	-2.450	D+	LS
263		$^{2}P-^{2}P^{\circ}$		453.69	1 253 637–1 474 050	6–6	2.19+00	6.76-03	6.06-02	-1.392	C	1
				[454.48]	1 253 780–1 473 810	4-4	1.81+00	5.62-03	3.36-02	-1.648	C	LS
				[452.12]	1 253 350-1 474 530	2-2			1.35 - 02			LS
				[453.00]	1 253 780-1 474 530	4-2	7.35 - 01	1.13 - 03	6.74 - 03	-2.345	D+	LS
				[453.60]	1 253 350–1 473 810	2–4	3.65-01	2.25-03	6.72-03	-2.347	D+	LS
264		$^{2}S-^{2}P^{\circ}$		464.75	1 258 880–1 474 050	2–6	1.56+00	1.52-02	4.64-02	-1.517	C	1
				[465.27]	1 258 880-1 473 810	2-4	1.56+00	1.01 - 02	3.09-02	-1.695	C	LS
				[463.71]	1 258 880–1 474 530	2–2	1.57 + 00	5.07-03	1.55-02	-1.994	D+	LS
265	$2s2p(^{1}P^{\circ})3p - 2s2p(^{1}P^{\circ})4s$	$^{2}D-^{2}P^{\circ}$		348.34	1 251 874–1 538 950	10–6	4.47+01	4.88-02	5.60-01	-0.312	C+	1
				[348.51]	1 252 010-1 538 950	6–4	4.02+01	4.88-02	3.36-01	-0.533	В	LS
				[348.09]	1 251 670-1 538 950	4-2	4.48+01	4.07-02	1.87-01	-0.788	C+	LS
				[348.09]	1 251 670–1 538 950	4–4	4.48+00	8.14-03	3.73-02	-1.487	C	LS
266		$^{2}P-^{2}P^{\circ}$		350.49	1 253 637–1 538 950	6–6	4.09+01	7.52-02	5.21-01	-0.346	C+	1
				[350.67]	1 253 780-1 538 950	4-4	3.40+01	6.27-02	2.90-01	-0.601	В	LS
				[350.14]	1 253 350-1 538 950	2-2	2.73 + 01	5.02-02	1.16-01	-0.998	C+	LS
				[350.67]	1 253 780-1 538 950	4-2	1.36+01	1.25-02	5.77-02	-1.301	C	LS
				[350.14]	1 253 350–1 538 950	2–4	6.83+00	2.51-02	5.79-02	-1.299	C	LS
267		$^2S - ^2P^{\circ}$		357.05	1 258 880–1 538 950	2–6	2.83+01	1.62-01	3.81-01	-0.489	C+	1
				[357.05]	1 258 880-1 538 950	2-4	2.83+01	1.08-01	2.54-01	-0.666	В	LS
				[357.05]	1 258 880–1 538 950	2–2	2.83+01	5.41-02	1.27-01	-0.966	C+	LS
268	$2s2p(^{1}P^{\circ})3p - 2s2p(^{1}P^{\circ})4d$	$^{2}D-^{2}F^{\circ}$		306.81	1 251 874–1 577 810	10–14	1.30+02	2.57-01	2.60+00	0.410	B+	1
				[306.94]	1 252 010–1 577 810	6–8	1 30+02	2 45-01	1.49+00	0.167	R+	LS
				[306.62]	1 251 670–1 577 810	4–6			1.04+00			LS
				[306.94]	1 252 010–1 577 810	6–6			7.40-02			LS
269	$2s2p(^{1}P^{\circ})3p - 2s2p(^{3}P^{\circ})5d$	$^{2}D-^{2}F^{\circ}$		292.76	1 251 874–1 593 449	10–14	6.06+00	1.09-02	1.05-01	-0.963	C	1
				292.475	1 252 010–1 593 920	6–8	6.08+00	1.04-02	6.01-02	-1.205	C	LS
				293.126	1 251 670–1 592 820	4-6			4.21-02			LS
				293.419	1 252 010–1 5928 20	6–6			3.00-03			LS
270	$2p^2(^3P)3s$ $-2p^2(^3P)3p$	$^4P-^4D^{\circ}$				12–20						1
			2 132.0	2 132.7	1 291 560–1 338 450	6-8	1.83+00	1.66-01	6.99+00	-0.002	A	LS
271		$^4P-^4P^{\circ}$				12–12						1
				1 877.2	1 291 560–1 344 830	6–6	1.85+00	9.80-02	3.63+00	-0.231	B+	LS

J. Phys. Chem. Ref. Data, Vol. 37, No. 1, 2008

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹and 5=Safronova *et al.* ⁸¹)—Continued

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 824.8	1 290 030–1 344 830	4–6	8.65-01	6.48-02	1.56+00	-0.586	B+	LS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	272		$^4P-^4S^{\circ}$				12-4						1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 400.76	1 291 560-1 362 950	6–4	3.63+00	7.11-02	1.97+00	-0.370	B+	LS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													LS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	273		$^4P-^4P^{\circ}$				12–12						1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					761.56	1 291 560-1 422 870	6-6	1.39-01	1.21-03	1.82-02	-2.139	C	LS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													LS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	274		$^{4}P-^{4}D^{\circ}$				12–20						1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					582.45	1 291 560-1 463 250	6–8	1.90-02	1.29-04	1.48-03	-3.111	D	LS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					580.08	1 290 030-1 462 420	4-6	1.35 - 02	1.02 - 04	7.79-04	-3.389	E+	LS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					585.27	1 291 560–1 462 420	6-6	5.61 - 03	2.88 - 05	3.33-04	-3.762	E+	LS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													LS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					585.41	1 291 560–1 462 380	6–4	9.34+04	3.20-06	3.70-05	-4.717	Е	LS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	275		$^{4}P-^{4}D^{\circ}$				12–20						1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					282.048	1 291 560-1 646 110	6–8	7.11+01	1.13-01	6.30-01	-0.169	В	LS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					280.836	1 290 030-1 646 110	4-6	5.04+01	8.94-02	3.31-01	-0.447	В	LS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					282.048	1 291 560–1 646 110	6-6	2.13+01	2.54 - 02	1.42 - 01	-0.817	C+	LS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													LS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					282.048	1 291 560–1 646 110	6–4	3.56+00	2.83-03	1.58-02	-1.770	D+	LS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	276		$^{4}P-^{4}D^{\circ}$				12–20						1
$\begin{array}{c} 273.254 \\ 272.116 \\ 273.254 \\ 272.116 \\ 1 \ 290 \ 030-1 \ 657 \ 520 \\ 273.254 \\ 1 \ 291 \ 560-1 \ 657 \ 520 \\ 273.254 \\ 1 \ 291 \ 560-1 \ 657 \ 520 \\ 273.254 \\ 1 \ 291 \ 560-1 \ 657 \ 520 \\ 272.116 \\ 1 \ 290 \ 030-1 \ 657 \ 520 \\ 292 \ 030-1 \ 657 \ 520 \\ 292 \ 030-1 \ 657 \ 520 \\ 292 \ 030-1 \ 037 \ 030-1 \\ 292 \ 030-1 \ 037 \ 030-1 \\ 292 \ 030-1 \ 037 \ 030-1 \\ 292 \ 030-1 \ 037 \ 030-1 \\ 292 \ 030-1 \ 031 \ 030-1 \\ 292 \ 030-1 \ 030-1 \ 030-1 \\ 292 \ 030-1 \ 030-1 \ 030-1 \ 030-1 \\ 292 \ 030-1 \ 030$					273.254	1 291 560-1 657 520	6-8	5.89-01	8.79-04	4.74-03	-2.278	D	LS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					272.116		4-6	4.17 - 01	6.95 - 04	2.49-03	-2.556	D	LS
$ \begin{array}{c} 273.254 \\ 272.116 $													LS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													LS
277 $2s2p(^{1}P^{\circ})3d-2p^{2}(^{1}D)3s$ $^{2}F^{\circ}-^{2}D$ 2543 2544 $1292330-1331638$ $14-10$ $1.56-02$ $1.08-03$ $1.27-01$ -1.820 0.08 0.0													LS LS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1 270 030-1 037 320	4 -2	7.74-02	3.32-03	1.70-04	-3.030	L	LO
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	277		$^{2}F^{\circ}-^{2}D$	2 543	2 544	1 292 330–1 331 638	14–10	1.56-02	1.08-03	1.27-01	-1.820	С	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				2 521.9	2 522.7	1 292 330–1 331 970	8-6	1.52 - 02	1.09 - 03	7.24 - 02	-2.059	C	LS
278													LS
3 525.1 3 526.1 1 303 610-1 331 970 6-6 1.72-04 3.21-05 2.24-03 -3.715 1 [3 610] [3 611] 1 303 450-1 331 140 4-4 1.54-04 3.02-05 1.44-03 -3.918 1 3 631.4 3 632.4 1 303 610-1 331 140 6-4 1.69-05 2.23-06 1.60-04 -4.874 1 [3 505] [3 506] 1 303 450-1 331 970 4-6 1.25-05 3.46-06 1.60-04 -4.859 1 279 2P°-2D 3 972 3 973 1 306 470-1 331 638 6-10 7.70-03 3.04-03 2.38-01 -1.739 6 3 920.5 3 921.6 1 306 470-1 331 970 4-6 8.01-03 2.77-03 1.43-01 -1.955 6 4 052.4 4 053.5 1 306 470-1 331 140 2-4 6.05-03 2.98-03 7.95-02 -2.225 6				2 521.9	2 522.7	1 292 330–1 331 970	6–6	7.64-04	7.29-05	3.63-03	-3.359	D	LS
$ \begin{bmatrix} [3 610] & [3 611] & 1 303 450-1 331 140 & 4-4 & 1.54-04 & 3.02-05 & 1.44-03 & -3.918 & 1.00 & 1$	278		$^{2}D^{\circ}-^{2}D$	3 559			10–10						1
3 631.4 3 632.4 1 303 610-1 331 140 6-4 1.69-05 2.23-06 1.60-04 -4.874 1 [3 505] [3 506] 1 303 450-1 331 970 4-6 1.25-05 3.46-06 1.60-04 -4.859 1 279 2P°-2D 3 972 3 973 1 306 470-1 331 638 6-10 7.70-03 3.04-03 2.38-01 -1.739 6 3 920.5 3 921.6 1 306 470-1 331 970 4-6 8.01-03 2.77-03 1.43-01 -1.955 6 4 052.4 4 053.5 1 306 470-1 331 140 2-4 6.05-03 2.98-03 7.95-02 -2.225 6													LS
$ \begin{bmatrix} 3 505 \end{bmatrix} \begin{bmatrix} 3 506 \end{bmatrix} \begin{bmatrix} 1 303 450-1 331 970 \\ 1 303 450-1 331 970 \end{bmatrix} 4-6 \begin{bmatrix} 1.25-05 \\ 1.25-05 \end{bmatrix} 3.46-06 \begin{bmatrix} 1.60-04 \\ 1.60-04 \end{bmatrix} -4.859 \begin{bmatrix} 1.25-05 \\ 1.25-04 \end{bmatrix} -4.859 $													LS
279													LS LS
3 920.5 3 921.6 1 306 470–1 331 970 4–6 8.01–03 2.77–03 1.43–01 –1.955 (4 052.4 4 053.5 1 306 470–1 331 140 2–4 6.05–03 2.98–03 7.95–02 –2.225 (6 0.5–03 2.98–03 7.95–02 –2.225 (7 0.5–03 2.98–03 2.98–03 7.95–02 –2.225 (7 0.5–03 2.98–03 2.98–03 2.98–03 (7 0.5–03 2.98–03 2.98–03 2.98–03 (7 0.5–03 2.98–03 2.98–03 2.98–03 (7 0.5–03 2.98–03 2.98–03 2.98–03 (7 0.5–03 2.98–03 2.98–03 2.98–03 2.98–03 2.98–03 (7 0.5–03 2.98–0			2 % 2										
4 052.4 4 053.5 1 306 470-1 331 140 2-4 6.05-03 2.98-03 7.95-02 -2.225	279		^{2}P $ ^{2}D$										1
													LS
4 052.4 4 053.5 1 306 470-1 331 140 4-4 1.21-03 2.98-04 1.59-02 -2.924													LS LS
$280 2s2p(^{1}P^{\circ})3d-2s^{2}4d ^{2}F^{\circ}-^{2}D 2299 \qquad 2299 \qquad 1292 330-1335 822 \qquad 14-10 2.37-01 1.34-02 1.42+00 -0.727 1335 13$	280	$2s2p(^{1}P^{\circ})3d-2s^{2}4d$	$^{2}F^{\circ}-^{2}D$										1

Table 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
			2 298.1	2 298.9	1 292 330–1 335 830	8-6	2.26-01	1.34-02	8.11-01	-0.970	В	LS
			2 299.2	2 299.9	1 292 330-1 335 810	6-4	2.36 - 01	1.25 - 02	5.68 - 01	-1.125	В	LS
			2 298.1	2 298.9	1 292 330–1 335 830	6–6	1.13-02	8.92-04	4.05 - 02	-2.271	C	LS
281		$^{2}P^{\circ}-^{2}D$	3 406	3 407	1 306 470–1 335 822	6–10	9.84-01	2.85-01	1.92+01	0.233	A	1
			3 405.0	3 406.0	1 306 470-1 335 830	4–6	9.85-01	2.57-01	1.15+01	0.012	A	LS
			3 407.3	3 408.3	1 306 470-1 335 810	2-4	8.18 - 01	2.85 - 01	6.40+00	-0.244	A	LS
			3 407.3	3 408.3	1 306 470–1 335 810	4–4	1.64-01	2.85 - 02	1.28+00	-0.943	B+	LS
282	$2s2p(^{1}P^{\circ})3d - 2p^{2}(^{3}P)3d$	$^{2}F^{\circ}-^{2}F$		1 036.9	1 292 330–1 388 769	14–14	7.63-01	1.23-02	5.88-01	-0.764	C+	1
				[1 034.8]	1 292 330-1 388 970	8-8	6.79-01	1.09-02	2.97-01	-1.059	В	LS
				[1 039.8]	1 292 330-1 388 500	6-6		1.31-02				LS
				[1 039.8]	1 292 330-1 388 500	8–6		4.00-04				LS
				[1 034.8]	1 292 330–1 388 970	6–8		5.36-04				LS
283		$^{2}D^{\circ}-^{2}F$		1 173.4	1 303 546–1 388 769	10–1 4	1.55-01	4.48-03	1.73-01	-1.349	C	1
				[1 171.5]	1 303 610–1 388 970	6–8	1 56-01	4.27-03	9.88-02	-1 591	C+	LS
				[1 175.8]	1 303 450–1 388 500	4-6		4.47-03				LS
				[1 178.0]	1 303 610–1 388 500	6–6		2.13-04				LS
284		$^{2}D^{\circ}-^{2}D$		1 150.7	1 303 546–1 390 450	10–10	1.43-01	2.84-03	1.08-01	-1.547	C	1
				[1 151.5]	1 303 610–1 390 450	6–6	1 33 _ 01	2.65-03	6.03_02	_1 700	C	LS
				[1 149.4]	1 303 450–1 390 450	4-4		2.56-03				LS
					1 303 430–1 390 450			1.89-04				LS
				[1 151.5] [1 149.4]	1 303 450–1 390 450	6–4 4–6		2.84-04				LS
285		$^{2}P^{\circ}-^{2}D$		1 190.8	1 306 470–1 390 450	6–10		1.24-03				1
				[1 190.8]	1 306 470–1 390 450	1.6	2 51 .02	1.12-03	1.76 02	2 240	C	LS
						4–6		1.12-03				
				[1 190.8] [1 190.8]	1 306 470–1 390 450 1 306 470–1 390 450	2–4 4–4		1.24-03				LS LS
286	$2s2p(^{1}P^{\circ})3d - 2p^{2}(^{1}D)3d$	$^{2}F^{\circ}-^{2}D$		811.0	1 292 330–1 415 630	14–10		1.19-03				1
				011.02	1 202 220 1 415 620	9.6	1.61.01	1 10 02	2.54 .02	2.021	C	1.0
				811.03 811.03	1 292 330–1 415 630	8–6		1.19-03				LS
				811.03	1 292 330–1 415 630 1 292 330–1 415 630	6–4 6–6		1.11-03 $7.96-05$				LS LS
					1 292 330–1 413 030	0–0	8.07-03	7.90-03	1.28-03	-3.321	D	L3
287		$^{2}F^{\circ}-^{2}F$		732.9	1 292 330–1 428 766	14–14	8.08+00	6.51-02	2.20+00	-0.040	В	1
				732.76	1 292 330–1 428 800	8-8	7.14+00	5.75 - 02	1.11+00	-0.337	B+	LS
				733.19	1 292 330–1 428 720	6–6	8.64+00	6.96 - 02	1.01 + 00	-0.379	B+	LS
				733.19	1 292 330–1 428 720	8-6	3.52 - 01	2.13 - 03	4.11 - 02	-1.769	C	LS
				732.76	1 292 330–1 428 800	6–8	2.65 - 01	2.84 - 03	4.11-02	-1.769	C	LS
288		$^2D^{\circ}-^2D$		892.2	1 303 546–1 415 630	10–10	5.61+00	6.69-02	1.97+00	-0.175	В	1
				892.70	1 303 610–1 415 630	6-6	5.22+00	6.24-02	1.10+00	-0.427	B+	LS
				[891.4]	1 303 450-1 415 630	4-4	5.06+00	6.03 - 02	7.08 - 01	-0.618	В	LS
				892.70	1 303 610–1 415 630	6-4	5.60 - 01	4.46 - 03	7.86 - 02	-1.573	C	LS
				[891.4]	1 303 450–1 415 630	4–6	3.75-01	6.70-03	7.86-02	-1.572	C	LS
289		$^{2}\text{D}^{\circ}$ – ^{2}F		798.6	1 303 546–1 428 766	10–14	1.04+00	1.39-02	3.65-01	-0.857	C+	1
				798.79	1 303 610-1 428 800	6–8	1.03+00	1.32-02	2.08-01	-1.101	C+	LS
				[798.3]	1 303 450–1 428 720	4–6		1.39-02				LS
				799.30	1 303 610–1 428 720	6–6		6.61-04				LS
				177.30	1 303 010-1 720 720	0-0	0.70-02	5.01-04	1.04-02	2.702	וע	ப

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
290		$^{2}D^{\circ}-^{2}P$		775.8	1 303 546–1 432 453	10-6	1.31+00	7.11-03	1.81-01	-1.148	С	1
				775.19	1 303 610-1 432 610	6-4	1.18+00	7.11-03	1.09-01	-1.370	C+	LS
				[777.1]	1 303 450-1 432 140	4-2	1.31+00	5.91-03	6.05-02	-1.626	C	LS
				[774.2]	1 303 450–1 432 610	4–4	1.32-01	1.19-03	1.21-02	-2.322	D+	LS
291		$^{2}P^{\circ}-^{2}D$		916.1	1 306 470–1 415 630	6–10	1.51-01	3.17-03	5.73-02	-1.721	C	1
				916.09	1 306 470–1 415 630	4-6			3.44-02			LS
				916.09	1 306 470–1 415 630	2–4			1.91 - 02			LS
				916.09	1 306 470–1 415 630	4–4	2.52-02	3.17-04	3.82-03	-2.897	D	LS
292		$^{2}P^{\circ}-^{2}P$		793.8	1 306 470–1 432 453	6–6	1.33+00	1.26-02	1.97-01	-1.121	C	1
				792.77	1 306 470–1 432 610	4-4	1.11+00	1.05 - 02	1.10-01	-1.377	C+	LS
				795.73	1 306 470-1 432 140	2-2	8.82 - 01	8.37 - 03	4.39 - 02	-1.776	C	LS
				795.73	1 306 470-1 432 140	4-2	4.40 - 01	2.09 - 03	2.19-02	-2.078	C	LS
				792.77	1 306 470–1 432 610	2–4	2.23-01	4.20-03	2.19-02	-2.076	C	LS
293	$2s2p(^{1}P^{\circ})3d-2s2p(^{3}P^{\circ})4p$	$^{2}\text{F}^{\circ}$ – ^{2}D		623.0	1 292 330–1 452 850	14–10	5.09-02	2.12-04	6.08-03	-2.528	D	1
				621.04	1 292 330–1 453 350	8-6	4.89-02	2.12-04	3.47-03	-2.771	D	LS
				625.90	1 292 330–1 452 100	6–4			2.44-03			LS
				621.04	1 292 330–1 453 350	6–6			1.74-04			LS
294		$^{2}\text{D}^{\circ}$ – ^{2}P		717.0	1 303 546–1 443 017	10-6	2.08+00	9.60-03	2.27-01	-1.018	C+	1
				716.54	1 303 610–1 443 170	6–4	1.87+00	9.60-03	1.36-01	-1.240	C+	LS
				[718.1]	1 303 450-1 442 710	4-2			7.56-02			LS
				[715.7]	1 303 450–1 443 170	4-4	2.08-01	1.60-03	1.51-02	-2.194	D+	LS
295		$^2D^{\circ}-^2D$		669.8	1 303 546–1 452 850	10-10	1.26-01	8.46-04	1.87-02	-2.073	D+	1
				667.82	1 303 610-1 453 350	6-6	1.18-01	7.92-04	1.04-02	-2.323	D+	LS
				[672.7]	1 303 450-1 452 100	4-4	1.12 - 01	7.58 - 04	6.71 - 03	-2.518	D+	LS
				673.45	1 303 610-1 452 100	6–4	1.24 - 02	5.61 - 05	7.46 - 04	-3.473	E+	LS
				[667.1]	1 303 450–1 453 350	4–6	8.49-03	8.50-05	7.47 - 04	-3.469	E+	LS
296		$^{2}\text{P}^{\circ}-^{2}\text{P}$		732.4	1 306 470–1 443 017	6–6	1.78+00	1.43-02	2.07-01	-1.067	C	1
				731.53	1 306 470-1 443 170	4-4	1.48 + 00	1.19-02	1.15-01	-1.322	C+	LS
				734.00	1 306 470-1 442 710	2–2	1.18+00	9.51 - 03	4.60 - 02	-1.721	C	LS
				734.00	1 306 470-1 442 710	4–2	5.89 - 01	2.38 - 03	2.30-02	-2.021	C	LS
				731.53	1 306 470–1 443 170	2–4	2.97-01	4.77-03	2.30-02	-2.020	C	LS
297		$^{2}\text{P}^{\circ}-^{2}\text{D}$		683.2	1 306 470–1 452 850	6–10	5.37-01	6.26-03	8.45-02	-1.425	C	1
				680.83	1 306 470-1 453 350	4-6	5.42-01	5.65-03	5.07-02	-1.646	C	LS
				686.67	1 306 470-1 452 100	2-4	4.41 - 01	6.23 - 03	2.82 - 02	-1.904	C	LS
				686.67	1 306 470–1 452 100	4–4	8.81-02	6.23-04	5.63-03	-2.603	D+	LS
298	$2s2p(^{1}P^{\circ})3d-2s^{2}5d$	$^{2}F^{\circ}-^{2}D$		590.9	1 292 330–1 461 562	14-10	8.24-02	3.08-04	8.40-03	-2.365	D	1
				590.81	1 292 330-1 461 590	8-6	7.85 - 02	3.08 - 04	4.79-03	-2.608	D	LS
				591.05	1 292 330–1 461 520	6–4	8.25 - 02	2.88 - 04	3.36-03	-2.762	D	LS
				590.81	1 292 330–1 461 590	6–6	3.94-03	2.06-05	2.40-04	-3.908	E+	LS
299		$^{2}D^{\circ}-^{2}D$		632.8	1 303 546–1 461 562	10–10	2.95-02	1.77-04	3.69-03	-2.752	D	1
				632.99	1 303 610–1 461 590	6-6	2.75 - 02	1.65 - 04	2.06-03	-3.004	D	LS
				[632.6]	1 303 450–1 461 520	4-4	2.67 - 02	1.60 - 04	1.33 - 03	-3.194	D	LS
				633.27	1 303 610–1 461 520	6–4	2.94-03	1.18 - 05	1.48 - 04	-4.150	E	LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				[632.4]	1 303 450-1 461 590	4-6	1.97-03	1.77-05	1.47-04	-4.150	Е	LS
300		$^{2}P^{\circ}-^{2}D$		644.8	1 306 470–1 461 562	6-10	2.91+01	3.02-01	3.85+00	0.258	B+	1
				644.66	1 306 470–1 461 590	4-6	2.91+01	2.72-01	2.31+00	0.037	B+	LS
				644.95	1 306 470-1 461 520	2-4	2.42 + 01	3.02 - 01	1.28+00	-0.219	B +	LS
				644.95	1 306 470–1 461 520	4–4	4.84+00	3.02-02	2.56-01	-0.918	В	LS
301	$2s2p(^{1}P^{\circ})3d-2s^{2}6d$	$^{2}\text{P}^{\circ}-^{2}\text{D}$		448.45	1 306 470–1 529 460	6–10	1.62+01	8.14-02	7.21-01	-0.311	В	1
				448.451	1 306 470-1 529 460	4-6	1.62+01	7.33 - 02	4.33-01	-0.533	В	LS
				448.451	1 306 470–1 529 460	2–4	1.35 + 01	8.14 - 02	2.40-01	-0.788	C+	LS
				448.451	1 306 470–1 529 460	4–4	2.70+00	8.14-03	4.81-02	-1.487	C	LS
302	$2s2p(^{1}P^{\circ})3d - 2s2p(^{1}P^{\circ})4p$	$^{2}\text{F}^{\circ}$ $-^{2}\text{D}$		370.97	1 292 330–1 561 890	14–10	1.13+01	1.66-02	2.84-01	-0.634	C+	1
				[370.98]	1 292 330–1 561 890	8-6	1.07 + 01	1.66-02	1.62-01	-0.877	C+	LS
				[370.98]	1 292 330-1 561 890	6-4	1.13+01	1.55 - 02	1.14-01	-1.032	C+	LS
				[370.98]	1 292 330–1 561 890	6–6	5.33-01	1.10-03	8.06-03	-2.180	D+	LS
303		$^{2}D^{\circ}-^{2}D$		387.08	1 303 546–1 561 890	10-10	2.53+00	5.69-03	7.25-02	-1.245	C	1
				[387.18]	1 303 610-1 561 890	6-6	2.36+00	5.31-03	4.06-02	-1.497	C	LS
				[386.94]	1 303 450-1 561 890	4-4	2.28+00	5.12-03	2.61 - 02	-1.689	C	LS
				[387.18]	1 303 610-1 561 890	6-4	2.53 - 01	3.79 - 04	2.90 - 03	-2.643	D	LS
				[386.94]	1 303 450–1 561 890	4–6	1.69-01	5.69-04	2.90-03	-2.643	D	LS
304		$^{2}\text{P}^{\circ}-^{2}\text{D}$		391.51	1 306 470–1 561 890	6-10	1.69+01	6.49-02	5.02-01	-0.410	C+	1
				[391.51]	1 306 470–1 561 890	4–6			3.01-01			LS
				[391.51]	1 306 470–1 561 890	2–4			1.67 - 01			LS
				[391.51]	1 306 470–1 561 890	4–4	2.82+00	6.48-03	3.34-02	-1.586	С	LS
305	$2s2p(^{1}P^{\circ})3d-2s^{2}7d$	$^{2}\text{P}^{\circ}-^{2}\text{D}$		379.35	1 306 470–1 570 080	6–10	8.37+00	3.01-02	2.26-01	-0.743	D+	1
				379.348	1 306 470–1 570 080	4-6	8.37 + 00	2.71 - 02	1.35 - 01	-0.965	C	LS
				379.348	1 306 470-1 570 080	2-4	6.98+00	3.01 - 02	7.52 - 02	-1.220	D+	LS
				379.348	1 306 470–1 570 080	4–4	1.40+00	3.01-03	1.50-02	-1.919	E+	LS
306	$2s2p(^{1}P^{\circ})3d - 2s2p(^{3}P^{\circ})5p$	$^2F^{\circ}-^2D$		343.16	1 292 330–1 583 740	14–10	1.60-01	2.02-04	3.19-03	-2.549	D	1
				343.159	1 292 330-1 583 740	8-6	1.53-01	2.02-04	1.83-03	-2.792	D	LS
				343.159	1 292 330-1 583 740	6-4	1.60 - 01	1.88 - 04	1.27-03	-2.948	D	LS
				343.159	1 292 330–1 583 740	6–6	7.65 - 03	1.35-05	9.15-05	-4.092	E	LS
307		$^{2}\text{D}^{\circ}$ – ^{2}P		363.90	1 303 546–1 578 350	10-6	6.21-01	7.40-04	8.87-03	-2.131	D	1
				363.980	1 303 610–1 578 350	6-4	5.59-01	7.40-04	5.32-03	-2.353	D+	LS
				[363.77]	1 303 450-1 578 350	4-2	6.22 - 01	6.17 - 04	2.96-03	-2.608	D	LS
				[363.77]	1 303 450-1 578 350	4-4	6.20 - 02	1.23 - 04	5.89-04	-3.308	E+	LS
308		$^{2}D^{\circ}-^{2}D$		356.90	1 303 546–1 583 740	10–10	1.81 - 01	3.46-04	4.06-03	-2.461	D	1
				356.977	1 303 610–1 583 740	6-6	1.69-01	3.23-04	2.28-03	-2.713	D	LS
				[356.77]	1 303 450–1 583 740	4-4	1.63 - 01	3.11-04	1.46-03	-2.905	D	LS
				356.977	1 303 610–1 583 740	6–4			1.62-04			LS
				[356.77]	1 303 450–1 583 740	4–6	1.21-02	3.46-05	1.63-04	-3.859	E	LS
309		$^{2}P^{\circ}-^{2}P$		367.81	1 306 470–1 578 350	6–6	9.04-01	1.83-03	1.33-02	-1.959	D	1
				367.809	1 306 470-1 578 350	4-4	7.54-01	1.53-03	7.41 - 03	-2.213	D+	LS
				367.809	1 306 470–1 578 350	2–2	6.02-01	1.22-03	2.95-03	-2.613	D	LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	E_i – E_k (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				367.809 367.809	1 306 470–1 578 350 1 306 470–1 578 350	4–2 2–4			1.48-03 1.48-03			LS LS
310	$2s2p(^{1}P^{\circ})3d-2s^{2}8d$	$^{2}P^{\circ}-^{2}D$		344.91	1 306 470–1 596 400	6–10	1.19+01	3.54-02	2.41-01	-0.673	D+	1
				344.911	1 306 470–1 596 400	4–6			1.44-01			LS
				344.911 344.911	1 306 470–1 596 400 1 306 470–1 596 400	2–4 4–4			8.04-02 $1.61-02$			LS LS
311	$2s^24s - 2s2p(^1P^{\circ})3d$	$^{2}S-^{2}P^{\circ}$	8 650	8 651	1 294 910– <i>I 306 470</i>	2–6			1.16+01			1
			8 648	8 651	1 294 910–1 306 470	2–4	6.06-02	1.36-01	7.75+00	-0.565	A	LS
			8 648	8 651	1 294 910–1 306 470	2–2			3.88+00			LS
312	$2s^24s - 2s2p(^3P^{\circ})4s$	$^2S-^2P^{\circ}$				2-6						1
				[726.3]	1 294 910–1 432 600	2–4	8.09-02	1.28-03	6.12-03	-2.592	D+	LS
313	$2s^24s - 2s2p(^3P^{\circ})4d$	$^{2}S-^{2}P^{\circ}$		558.22	1 294 910– <i>1 474 050</i>	2-6	8.41-01	1.18-02	4.33-02	-1.627	C	1
				[558.97]	1 294 910–1 473 810	2–4			2.89-02			LS
				[556.73]	1 294 910–1 474 530	2–2	8.48-01	3.94-03	1.44-02	-2.103	D+	LS
314	$2s^24s - 2s2p(^1P^{\circ})4s$	$^{2}\mathrm{S}-^{2}\mathrm{P}^{\circ}$		409.77	1 294 910– <i>I 538 950</i>	2–6	2.54+01	1.92-01	5.18-01	-0.416	В	1
				[409.77]	1 294 910–1 538 950	2–4			3.45-01			LS
315	$2p^2(^{1}D)3s$ $-2p^2(^{3}P)3p$	$^{2}D-^{2}D^{\circ}$	5 850	[409.77] 5 854	1 294 910–1 538 950 1 331 638–1 348 720	2–2 10–10			1.73-01 1.79+00			LS 1
	2p (1)3p		5 968	5 970	1 331 970–1 348 720	6–6	1.50_02	8 51 _03	1.00+00	_1 202	R⊥	LS
			5 687	5 688	1 331 370-1 348 720	4–4			6.45-01			LS
			5 968	5 970	1 331 970–1 348 720	6–4			7.17-02			LS
	2/1- >-	2_ 2_0	5 687	5 688	1 331 140–1 348 720	4–6			7.17-02			LS
316	$2p^2(^{1}D)3s$ $-2p^2(^{1}D)3p$	$^{2}D-^{2}F^{\circ}$	2 152	2 153	1 331 638–1 378 094	10–14	1.97+00	1.92-01	1.36+01	0.283	B+	1
			2 157.8	2 158.4	1 331 970–1 378 300	6–8			7.76+00			LS
			2 141.6 2 180.3	2 142.2 2 181.0	1 331 140–1 377 820 1 331 970–1 377 820	4–6 6–6			5.44+00 3.89-01			LS LS
317		$^{2}D-^{2}D^{\circ}$		1 635.0	1 331 638–1 392 800	10–10	3.02+00	1.21-01	6.51+00	0.083	B+	1
				1 643.93	1 331 970–1 392 800	6–6	2.76+00	1.12-01	3.64+00	-0.173	B+	LS
				1 621.80	1 331 140–1 392 800	4–4			2.35+00			LS
				1 643.93 1 621.80	1 331 970–1 392 800 1 331 140–1 392 800	6–4 4–6			2.61-01 $2.61-01$			LS LS
318	$2p^2(^1D)3s - 2s2p(^3P^{\circ})4s$	$^{2}D-^{2}P^{\circ}$				10–6						1
	-			[993.7]	1 331 970–1 432 600	6–4	2.81-01	2.77-03	5.44-02	-1.779	С	LS
				[985.6]	1 331 140–1 432 600	4-4			6.04-03			LS
319	$2p^2(^1D)3s - 2s2p(^3P^\circ)4d$	$^{2}D-^{2}D^{\circ}$				10–10						1
				757.12	1 331 970–1 464 050	6–6			4.25-02			LS
				752.39	1 331 140–1 464 050	4–6	2.40-02	3.06-04	3.03-03	-2.912	D	LS
320		$^{2}D-^{2}F^{\circ}$		711.3	1 331 638–1 472 229	10–14	9.81-01	1.04-02	2.44-01	-0.983	C+	1
				710.43	1 331 970–1 472 730	6–8	9.85-01	9.94-03	1.39-01	-1.224	C+	LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

NI-	Transition	M1-	λ _{air}	$\lambda_{\text{vac}} (\mathring{A})$	$E_i - E_k$		A_{ki}	c	S	1a = . C	Α	C
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	$(10^8 \ s^{-1})$	f_{ik}	(a.u.)	log gf	Acc.	Source
				712.15 716.38	1 331 140–1 471 560	4–6			9.75-02 6.98-03			LS
					1 331 970–1 471 560	6–6						LS
321		$^{2}D-^{2}P^{\circ}$		702.2	1 331 638–1 474 050	10–6	8.52-02	3.78 - 04	8.73-03	-2.423	D	1
				[705.0]	1 331 970-1 473 810	6-4	7.57-02	3.76-04	5.24-03	-2.647	D+	LS
				[697.4]	1 331 140–1 474 530	4–2			2.91 - 03			LS
				[700.9]	1 331 140–1 473 810	4–4	8.57-03	6.31 - 05	5.82-04	-3.598	E+	LS
322	2p ² (¹ D)3s- 2s2p(¹ P°)4d	$^{2}D-^{2}F^{\circ}$		406.22	1 331 638–1 577 810	10–14	6.25+00	2.17-02	2.90-01	-0.664	C+	1
				[406.77]	1 331970–1577 810	6-8	6.23+00	2.06-02	1.66-01	-0.908	C+	LS
				[405.40]	1 331 140–1 577 810	4-6	5.87 + 00	2.17-02	1.16-01	-1.061	C+	LS
				[406.77]	1 331 970–1 577 810	6–6	4.15-01	1.03 - 03	8.28-03	-2.209	D+	LS
323	$2s^24d - 2p^2(^3P)3p$	$^{2}D-^{2}D^{\circ}$	7 750	7 753	1 335 822–1 348 720	10-10	8.02-05	7.23-05	1.84-02	-3.141	D+	1
			7 756	7 758	1 335 830–1 348 720	6-6	7.47 - 05	6.74 - 05	1.03 - 02	-3.393	D+	LS
			7 744	7 746	1 335 810–1 348 720	4–4			6.64-03			LS
			7 756	7 758	1 335 830–1 348 720	6–4			7.37-04			LS
			7 744	7 746	1 335 810–1 348 720	4–6	5.36-06	7.23-06	7.37-04	-4.539	E+	LS
324	$2s^24d - 2p^2(^1D)3p$	$^{2}D-^{2}F^{\circ}$	2 365	2 366	1 335 822–1 378 094	10–14	3.16-03	3.72-04	2.90-02	-2.429	D+	1
			2 353.9	2 354.6	1 335 830–1 378 300	6-8			1.66-02			LS
			2 379.7	2 380.4	1 335 810–1 377 820	4–6			1.16-02			LS
			2 380.8	2 381.5	1 335 830–1 377 820	6–6	2.07-04	1.76-05	8.28-04	-3.976	E+	LS
325		$^{2}D-^{2}D^{\circ}$		1 755.1	1 335 822–1 392 800	10–10	2.37-02	1.09-03	6.32-02	-1.963	C	1
				1 755.31	1 335 830-1 392 800	6-6	2.21 - 02	1.02-03	3.54-02	-2.213	C	LS
				1 754.69	1 335 810-1 392 800	4-4	2.13 - 02	9.85 - 04	2.28 - 02	-2.405	C	LS
				1 755.31	1 335 830–1 392 800	6–4	2.37 - 03	7.29 - 05	2.53-03	-3.359	D	LS
				1 754.69	1 335 810–1 392 800	4–6	1.57-03	1.09 - 04	2.52-03	-3.361	D	LS
326	$2s^24d - 2s2p(^3P^{\circ})4s$	$^{2}D-^{2}P^{\circ}$				10-6						1
				[1 033.4]	1 335 830–1 432 600	6-4	5.21 - 01	5.56-03	1.13-01	-1.477	C+	LS
				[1 033.2]	1 335 810–1 432 600	4–4	5.79-02	9.26-04	1.26-02	-2.431	D+	LS
327	$2s^24d - 2s2p(^3P^{\circ})4d$	$^{2}D-^{2}F^{\circ}$		733.1	1 335 822–1 472 229	10–14	4.42+00	4.98-02	1.20+00	-0.303	В	1
				730.46	1 335 830–1 472 730	6-8	4.46+00	4.76 - 02	6.87-01	-0.544	В	LS
				736.65	1 335 810–1 471 560	4–6			4.81 - 01			LS
				736.76	1 335 830–1 471 560	6–6	2.90-01	2.36-03	3.43-02	-1.849	С	LS
328	$2s^24d - 2s2p(^1P^{\circ})4s$	$^{2}D-^{2}P^{\circ}$		492.30	1 335 822–1 538 950	10-6	1.91-01	4.16-04	6.74-03	-2.381	D	1
				[492.32]	1 335 830–1 538 950	6-4	1.72 - 01	4.16-04	4.05 - 03	-2.603	D	LS
				[492.27]	1 335 810–1 538 950	4–2	1.91 - 01	3.47 - 04	2.25 - 03	-2.858	D	LS
				[492.27]	1 335 810–1 538 950	4–4	1.91-02	6.93-05	4.49-04	-3.557	E+	LS
329	$2s^24d - 2s2p(^1P^{\circ})4d$	$^{2}D-^{2}F^{\circ}$		413.24	1 335 822–1 577 810	10–14	4.93+01	1.77-01	2.40+00	0.248	B+	1
				[413.26]	1 335 830–1 577 810	6-8	4.92 + 01	1.68 - 01	1.37+00	0.003	$\mathrm{B} +$	LS
				[413.22]	1 335 810–1 577 810	4-6	4.61 + 01	1.77 - 01	9.63-01	-0.150	B+	LS
				[413.26]	1 335 830–1 577 810	6–6	3.29+00	8.42-03	6.87-02	-1.297	C	LS
330	$2s^24d - 2s2p(^3P^\circ)5d$	$^{2}D-^{2}F^{\circ}$		388.16	1 335 822–1 593 449	10–14	4.15-01	1.31-03	1.68-02	-1.883	D+	1
				387.462	1 335 830–1 593 920	6-8	4.17-01	1.25-03	9.57-03	-2.125	D+	LS
				389.090	1 335 810–1 592 820	4–6	3.85 - 01	1.31 - 03	6.71 - 03	-2.281	D+	LS
				389.120	1 335 830–1 592 820	6–6	2.74 - 02	6.22 - 05	4.78 - 04	-3.428	E+	LS

J. Phys. Chem. Ref. Data, Vol. 37, No. 1, 2008

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
331	$2p^2(^3P)3p$ $-2p^2(^3P)3d$	$^4P^{\circ}-^4P$				12–12						1
				1 844.3	1 344 830–1 399 050	6–6	1.02+00	5.22-02	1.90+00	-0.504	B+	LS
				1 826.5	1 344 830-1 399 580	6-4	6.78-01	2.26-02	8.15-01	-0.868	В	LS
332		$^{2}\text{D}^{\circ}$ – ^{2}F	2 496	2 497	1 348 720–1 388 769	10–14	9.16-01	1.20-01	9.86+00	0.079	B+	1
			[2 484]	[2 484]	1 348 720–1 388 970	6-8	9.32-01	1.15-01	5.64+00	-0.161	B+	LS
			[2 513]	[2 514]	1 348 720-1 388 500	4-6	8.37 - 01	1.19-01	3.94+00	-0.322	B+	LS
			[2 513]	[2 514]	1 348 720–1 388 500	6–6	6.00 - 02	5.68 - 03	2.82 - 01	-1.468	В	LS
333		$^{2}D^{\circ}-^{2}D$	2 396	2 396	1 348 720–1 390 450	10-10	1.86-01	1.60-02	1.26+00	-0.796	В	1
			[2 396]	[2 396]	1 348 720-1 390 450	6–6	1.73-01	1.49-02	7.05-01	-1.049	В	LS
			[2 396]	[2 396]	1 348 720-1 390 450	4-4	1.67 - 01	1.44 - 02	4.54-01	-1.240	В	LS
			[2 396]	[2 396]	1 348 720-1 390 450	6-4	1.85 - 02	1.06 - 03	5.02-02	-2.197	C	LS
			[2 396]	[2 396]	1 348 720–1 390 450	4–6	1.24-02	1.60-03	5.05-02	-2.194	C	LS
334		$^4S^{\circ}-^4P$	2 745	2 746	1 362 950– <i>1 399 363</i>	4–12	3.86-01	1.31-01	4.73+00	-0.281	B+	1
			2 769.3	2 770.1	1 362 950-1 399 050	4-6	3.76-01	6.49-02	2.37+00	-0.586	$\mathrm{B} +$	LS
			2 729.2	2 730.0	1 362 950–1 399 580	4-4	3.93 - 01	4.39 - 02	1.58+00	-0.755	$\mathrm{B}+$	LS
			2 707.8	2 708.6	1 362 950–1 399 870	4–2	4.02 - 01	2.21 - 02	7.88 - 01	-1.054	В	LS
335	$2p^2(^3P)3p$ $-2p^2(^1D)3d$	$^2D^{\circ} - ^2D$		1 494.5	1 348 720–1 415 630	10–10	9.22-01	3.09-02	1.52+00	-0.510	В	1
				1 494.54	1 348 720–1 415 630	6–6	8 60-01	2 88 - 02	8.50-01	-0.762	B	LS
				1 494.54	1 348 720–1 415 630	4-4			5.47-01			LS
				1 494.54	1 348 720–1 415 630	6–4			6.08-02			LS
				1 494.54	1 348 720–1 415 630	4–6			6.08-02			LS
336		$^{2}D^{\circ}-^{2}F$		1 249.3	1 348 720–1 428 766	10–14	3.64-02	1.19-03	4.91-02	-1.924	C	1
				1 248.75	1 348 720-1 428 800	6–8	3.66-02	1.14-03	2.81-02	-2.165	C	LS
				1 250.00	1 348 720-1 428 720	4-6	3.39-02	1.19-03	1.96-02	-2.322	C	LS
				1 250.00	1 348 720–1 428 720	6–6	2.43-03	5.69-05	1.40-03	-3.467	D	LS
337		$^{2}D^{\circ}-^{2}P$		1 194.3	1 348 720–1 432 453	10-6	5.85-01	7.50-03	2.95-01	-1.125	C+	1
				1 192.04	1 348 720-1 432 610	6-4	5.30-01	7.52-03	1.77-01	-1.346	C+	LS
				1 198.75	1 348 720-1 432 140	4-2	5.78 - 01	6.23-03	9.83-02	-1.603	C+	LS
				1 192.04	1 348 720–1 432 610	4-4	5.87 - 02	1.25 - 03	1.96-02	-2.301	C	LS
338	$2p^2(^3P)3p - 2s2p(^3P^{\circ})4p$	$^2D^{\circ} - ^2P$		1 060.5	1 348 720–1 443 017	10-6	1.45+00	1.47-02	5.13-01	-0.833	C+	1
				1 058.76	1 348 720–1 443 170	6–4	1.31+00	1.47-02	3.07-01	-1.055	В	LS
				1 063.94	1 348 720–1 442 710	4–2			1.71-01			LS
				1 058.76	1 348 720–1 443 170	4-4	1.46-01	2.45 - 03	3.42-02	-2.009	C	LS
339		$^{2}D^{\circ}-^{2}D$		960.3	1 348 720–1 452 850	10–10	8.93-02	1.23-03	3.90-02	-1.910	D+	1
				955.75	1 348 720–1 453 350	6–6	8.47-02	1.16-03	2.19-02	-2.157	С	LS
				967.31	1 348 720-1 452 100	4-4	7.84 - 02	1.10-03	1.40-02	-2.357	D+	LS
				967.31	1 348 720-1 452 100	6-4	8.73 - 03	8.16-05	1.56-03	-3.310	D	LS
				955.75	1 348 720–1 453 350	4–6	6.04-03	1.24-04	1.56-03	-3.305	D	LS
340	$2p^2(^3P)3p - 2s2p(^3P^{\circ})5p$	$^{2}D^{\circ}-^{2}P$		435.48	1 348 720–1 578 350	10-6	1.34+00	2.28-03	3.27-02	-1.642	D+	1
	-			435.483	1 348 720–1 578 350	6–4	1.20+00	2.28-03	1.96-02	-1.864	C	LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				435.483	1 348 720–1 578 350	4–2			1.09-02			LS
				435.483	1 348 720–1 578 350	4–4	1.34-01	3.80-04	2.18-03	-2.818	D	LS
341	$2p^2(^3P)3p$ $-2p^2(^3P)4d$	$^{4}D^{\circ}-^{4}P$				20–12						1
				303.150	1 338 450–1 668 320	8-6	2.54+00	2.62-03	2.09-02	-1.679	C	LS
342		$^4P^{\circ}-^4P$				12–12						1
				309.129	1 344 830–1 668 320	6–6	4.43+01	6.35-02	3.88-01	-0.419	В	LS
				308.556	1 344 830–1 668 920	6–4	2.87+01	2.73-02	1.66-01	-0.786	C+	LS
343		$^4S^{\circ}-^4P$				4–12						1
				327.472	1 362 950-1 668 320	4-6	8.87 + 01	2.14-01	9.23-01	-0.068	$\mathrm{B} +$	LS
				326.829	1 362 950–1 668 920	4–4	8.93+01	1.43-01	6.15-01	-0.243	В	LS
344	$2p^2(^{1}D)3p$ $-2p^2(^{3}P)3d$	$^{2}F^{\circ}-^{2}F$	9 370	9 368	1 378 094–1 388 769	14–14	1.80-03	2.38-03	1.03+00	-1.477	В	1
			[9 370]	[9 372]	1 378 300–1 388 970	8-8	1.59-03	2.10-03	5.18-01	-1.775	В	LS
			[9 361]	[9 363]	1 377 820–1 388 500	6-6	1.93 - 03	2.54-03	4.70 - 01	-1.817	В	LS
			[9 801]	[9 804]	1 378 300–1 388 500	8–6			1.92-02			LS
			[8 966]	[8 969]	1 377 820–1 388 970	6–8	6.72-05	1.08-04	1.91-02	-3.188	С	LS
345		$^{2}F^{\circ}-^{2}D$	8 090	8 093	1 378 094–1 390 450	14–10	8.91-04	6.25-04	2.33-01	-2.058	C+	1
			[8 228]	[8 230]	1 378 300–1 390 450	8–6			1.33-01			LS
			[7 915]	[7 918]	1 377 820–1 390 450	6–4			9.32-02			LS
			[7 915]	[7 918]	1 377 820–1 390 450	6–6	4.53-05	4.26-05	6.66-03	-3.592	D+	LS
346	$2p^2(^1D)3p$ $-2p^2(^1D)3d$	$^{2}F^{\circ}-^{2}D$	2 663	2 664	1 378 094–1 415 630	14–10	1.34-01	1.02-02	1.25+00	-0.845	В	1
			2 678.0	2 678.8	1 378 300–1 415 630	8-6			7.13-01			LS
			2 644.0	2 644.8	1 377 820–1 415 630	6–4			4.99-01			LS
			2 644.0	2 644.8	1 377 820–1 415 630	6–6	6.51-03	6.83-04	3.57-02	-2.387	C	LS
347		$^{2}F^{\circ}-^{2}F$		1 973	1 378 094–1 428 766	14–14	5.65-01	3.30-02	3.00+00	-0.335	B+	1
				1 980.2	1 378 300–1 428 800	8-8	4.95 - 01	2.91 - 02	1.52+00	-0.633	$\mathrm{B} +$	LS
				1 964.6	1 377 820–1 428 720	6–6	6.12-01					
				1 983.3 1 961.6	1 378 300–1 428 720 1 377 820–1 428 800	8–6 6–8			5.59-02 5.62-02			LS LS
348		$^{2}\text{D}^{\circ}-^{2}\text{D}$	4 379	4 380	1 392 800–1 415 630	10–10			1.94+00			1
340		D – D										
			4 379.0	4 380.2	1 392 800–1 415 630 1 392 800–1 415 630	6–6			1.09+00			LS
			4 379.0 4 379.0	4 380.2 4 380.2	1 392 800–1 415 630	4–4 6–4			6.98-01 $7.77-02$			LS LS
			4 379.0	4 380.2	1 392 800–1 415 630	4–6			7.79-02			LS
349		$^{2}D^{\circ}-^{2}F$	2 780	2 780	1 392 800–1 428 766	10–14	5.91-01	9.59-02	8.78+00	-0.018	B+	1
			2 777.0	2 777.8	1 392 800–1 428 800	6–8	5.93-01	9.14-02	5.01+00	-0.261	B+	LS
			2 783.1	2 784.0	1 392 800–1 428 720	4–6			3.51+00			LS
			2 783.1	2 784.0	1 392 800–1 428 720	6–6	3.92-02	4.56-03	2.51-01	-1.563	В	LS
350		$^{2}D^{\circ}-^{2}P$	2 521	2 522	1 392 800–1 432 453	10-6	1.77-01	1.02-02	8.43-01	-0.991	В	1
			2 511.2	2 511.9	1 392 800–1 432 610	6-4	1.62-01	1.02-02	5.06-01	-1.213	В	LS
			2 541.2	2 541.9	1 392 800–1 432 140	4–2			2.81-01			LS
			2 511.2	2 511.9	1 392 800–1 432 610	4–4	1.80-02	1.70 - 03	5.62-02	-2.167	C	LS

J. Phys. Chem. Ref. Data, Vol. 37, No. 1, 2008

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
351	$2p^2(^1D)3p - 2s2p(^3P^{\circ})4p$	$^2F^{\circ}-^2D$		1 337.7	1 378 094–1 452 850	14–10	9.73-02	1.86-03	1.15-01	-1.584	С	1
				1 332.45	1 378 300-1 453 350	8-6	9.37-02	1.87-03	6.56-02	-1.825	С	LS
				1 346.26	1 377 820–1 452 100	6–4	9.55-02	1.73-03	4.60-02	-1.984	C	LS
				1 323.98	1 377 820–1 453 350	6–6			3.30-03			LS
352		$^{2}D^{\circ}-^{2}P$		1 991	1 392 800–1 443 017	10-6	5.06-02	1.81-03	1.18-01	-1.742	C	1
				1 985.3	1 392 800–1 443 170	6-4	4.59-02	1.81-03	7.10-02	-1.964	C	LS
			2 003.0	2 003.6	1 392 800-1 442 710	4-2	4.98 - 02	1.50-03	3.96-02	-2.222	C	LS
				1 985.3	1 392 800–1 443 170	4-4	5.11-03	3.02-04	7.90-03	-2.918	D+	LS
353		$^{2}D^{\circ}-^{2}D$		1 665.3	1 392 800–1 452 850	10-10	2.40-02	9.98-04	5.47-02	-2.001	C	1
				1 651.53	1 392 800-1 453 350	6-6	2.30-02	9.39-04	3.06-02	-2.249	C	LS
				1 686.34	1 392 800-1 452 100	4-4	2.08 - 02	8.87 - 04	1.97 - 02	-2.450	C	LS
				1 686.34	1 392 800-1 452 100	6-4	2.31 - 03	6.57 - 05	2.19 - 03	-3.404	D	LS
				1 651.53	1 392 800–1 453 350	4-6	1.65 - 03	1.01 - 04	2.20-03	-3.394	D	LS
354	$2p^2(^1D)3p - 2s^25d$	$^{2}F^{\circ}-^{2}D$		1 198.1	1 378 094–1 461 562	14-10	4.51-02	6.93-04	3.83-02	-2.013	C	1
				1 200.62	1 378 300-1 461 590	8-6	4.27-02	6.92-04	2.19-02	-2.257	C	LS
				1 194.74	1 377 820-1 461 520	6-4	4.55 - 02	6.49-04	1.53-02	-2.410	D+	LS
				1 193.74	1 377 820-1 461 590	6-6	2.17-03	4.64-05	1.09-03	-3.555	E+	LS
355	$2p^2(^1D)3p - 2s2p(^3P^{\circ})5p$	$^{2}\text{F}^{\circ}$ – ^{2}D		486.27	1 378 094–1 583 740	14–10	2.25-01	5.69-04	1.27-02	-2.099	D+	1
				486.760	1 378 300–1 583 740	8–6	2.13-01	5.68-04	7.28-03	-2.343	D+	LS
				485.625	1 377 820–1 583 740	6–4			5.10-03			LS
				485.625	1 377 820–1 583 740	6–6			3.65-04			LS
356		$^{2}D^{\circ}-^{2}P$		538.94	1 392 800–1 578 350	10-6	6.51-01	1.70-03	3.02-02	-1.770	D+	1
				538.938	1 392 800–1 578 350	6–4	5.86-01	1.70-03	1.81-02	-1.991	C	LS
				538.938	1 392 800–1 578 350	4–2			1.01-02			LS
				538.938	1 392 800–1 578 350	4-4			2.01-03			LS
357		$^{2}D^{\circ}-^{2}D$		523.72	1 392 800–1 583 740	10-10	2.31-01	9.51-04	1.64-02	-2.022	D+	1
				523.725	1 392 800–1 583 740	6–6	2.16-01	8.87-04	9.18-03	-2.274	D+	LS
				523.725	1 392 800–1 583 740	4-4			5.90-03			LS
				523.725	1 392 800–1 583 740	6–4			6.56-04			LS
				523.725	1 392 800–1 583 740	4-6			6.56-04			LS
358	$2p^2(^3P)3d$ $-2p^2(^1D)3p$	$^{2}F-^{2}D^{\circ}$		4 031 cm ⁻¹	1 388 769–1 392 800	14–10	1.03-05	6.76-05	7.72-02	-3.024	C	1
				[3 830] cm ⁻¹	1 388 970–1 392 800	8-6	8.36-06	6.41-05	4.41-02	-3.290	С	LS
				[4 300] cm ⁻¹	1 388 500-1 392 800	6-4	1.24-05	6.72-05	3.09-02	-3.394	C	LS
				$[4\ 300]\ cm^{-1}$	1 388 500–1 392 800	6–6			2.20-03			LS
359		$^{2}D-^{2}D^{\circ}$		2 350 cm ⁻¹	1 390 450–1 392 800	10-10	2.15-05	5.84-04	8.18-01	-2.234	В	1
				[2 350] cm ⁻¹	1 390 450–1 392 800	6–6	2.01-05	5.45-04	4.58-01	-2.485	В	LS
				[2 350] cm ⁻¹	1 390 450–1 392 800	4-4			2.95-01			LS
				[2 350] cm ⁻¹	1 390 450–1 392 800	6–4			3.27 - 02			LS
				[2 350] cm ⁻¹	1 390 450–1 392 800	4–6			3.27-02			LS
360	$2p^2(^3P)3d-$	$^{2}D-^{2}P^{\circ}$				10-6						1

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
			[2 372] [2 372]	[2 372] [2 372]	1 390 450–1 432 600 1 390 450–1 432 600	6–4 4–4		9.25-04 1.54-04				LS LS
361		$^{4}P-^{4}P^{\circ}$	[2 372]	[2 372]	1 370 430-1 432 000	12–12	1.02-03	1.54-04	4.01-03	-3.210	D	1
			4 197.0	4 198.2	1 399 050–1 422 870	6–6	2.26-03	5.96-04	4 94-02	-2.447	C	LS
			4 292.5	4 293.7	1 399 580–1 422 870	4–6		3.75-04				LS
362	$2p^2(^3P)3d - 2s2p(^3P^\circ)4d$	$^{2}F-^{2}D^{\circ}$				14–10						1
				[1 331.9] [1 323.6]	1 388 970–1 464 050 1 388 500–1 464 050	8–6 6–6		4.87-03 3.27-04				LS LS
363		$^{2}F-^{2}F^{\circ}$		1 198.2	1 388 769–1 472 229	14–14	5.34-02	1.15-03	6.35-02	-1.793	С	1
				[1 193.9]	1 388 970–1 472 730	8-8	4.77-02	1.02-03	3.21-02	-2.088	С	LS
				[1 204.0]	1 388 500-1 471 560	6–6	5.61 - 02	1.22-03	2.90-02	-2.135	C	LS
				[1 210.8]	1 388 970-1 471 560	8-6		3.72-05				LS
				[1 187.2]	1 388 500–1 472 730	6–8		5.05-05				LS
364		$^2D-^2D^{\circ}$				10–10						1
				[1 358.7]	1 390 450-1 464 050	6–6	4.19-02	1.16-03	3.11-02	-2.157	С	LS
				[1 358.7]	1 390 450–1 464 050	4–6		1.24-04				LS
365		$^{2}D-^{2}F^{\circ}$		1 222.8	1 390 450–1 472 229	10–14	1.16+00	3.63-02	1.46+00	-0.440	В	1
				[1 215.4]	1 390 450–1 472 730	6-8	1.18+00	3.48-02	8.35-01	-0.680	В	LS
				[1 232.9]	1 390 450-1 471 560	4-6	1.05 + 00	3.60 - 02	5.84 - 01	-0.842	В	LS
				[1 232.9]	1 390 450–1 471 560	6–6	7.50-02	1.71-03	4.16-02	-1.989	C	LS
366		$^{2}D-^{2}P^{\circ}$		1 196.2	1 390 450–1 474 050	10-6	1.21+00	1.55-02	6.12-01	-0.810	В	1
				[1 199.6]	1 390 450-1 473 810	6-4	1.08+00	1.55-02	3.67-01	-1.032	В	LS
				[1 189.3]	1 390 450-1 474 530	4-2	1.23 + 00	1.30-02	2.04-01	-1.284	C+	LS
				[1 199.6]	1 390 450–1 473 810	4–4	1.20-01	2.59-03	4.09-02	-1.985	C	LS
367		$^4P-^4D^{\circ}$				12-20						1
				1 557.63	1 399 050-1 463 250	6-8	1.52-01	7.35-03	2.26-01	-1.356	C+	LS
				1 591.34	1 399 580-1 462 420	4-6	9.94-02	5.66-03	1.19-01	-1.645	C+	LS
				1 599.74	1 399 870-1 462 380	2-4	5.83 - 02	4.47-03	4.71-02	-2.049	C	LS
				1 578.03	1 399 050-1 462 420	6-6	4.37-02	1.63-03	5.08-02	-2.010	C	LS
				1 592.36	1 399 580-1 462 380	4-4	7.58 - 02	2.88-03	6.04-02	-1.939	C	LS
				1 579.03	1 399 050–1 462 380	6–4	7.26-03	1.81-04	5.65-03	-2.964	D+	LS
368		$^{4}P-^{4}P^{\circ}$				12–12						1
				1 519.76	1 399 050–1 464 850	6-6		1.40-03				LS
				1 532.10	1 399 580–1 464 850	4–6	1.69-02	8.91-04	1.80-02	-2.448	С	LS
369	$2p^2(^3P)3d - 2s2p(^1P^{\circ})4d$	$^{2}D-^{2}F^{\circ}$		533.73	1 390 450–1 577 810	10–14	3.37-02	2.01-04	3.54-03	-2.697	D	1
				[533.73]	1 390 450-1 577 810	6-8	3.37-02	1.92-04	2.02-03	-2.939	D	LS
				[533.73]	1 390 450-1 577 810	4-6		2.01-04				LS
				[533.73]	1 390 450–1 577 810	6–6		9.59-06				LS
370	$2p^2(^3P)3d - 2s2p(^3P^{\circ})5d$	$^{2}D-^{2}F^{\circ}$		492.61	1 390 450–1 593 449	10–14	8.96-02	4.57-04	7.41-03	-2.340	D	1
				[491.47]	1 390 450-1 593 920	6–8	9.03-02	4.36-04	4.23-03	-2.582	D	LS
				[494.14]	1 390 450–1 592 820	4–6		4.55-04				LS
				[./]	- 570 .50 1 572 020	. 0	0.27 02		2.70 03	2.,40	_	

J. Phys. Chem. Ref. Data, Vol. 37, No. 1, 2008

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{\rm vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				[494.14]	1 390 450–1 592 820	6–6	5.93-03	2.17-05	2.12-04	-3.885	E+	LS
371		$^{4}P-^{4}D^{\circ}$		526.57	1 399 363–1 589 270	12-20	6.19-02	4.29-04	8.93-03	-2.288	D	1
				525.707	1 399 050–1 589 270	6–8	6.23-02	3.44-04	3.57-03	-2.685	D	LS
				527.176	1 399 580–1 589 270	4–6		2.70-04				LS
				527.983	1 399 870–1 589 270	2–4		2.14-04				LS
				525.707	1 399 050–1 589 270	6–6		7.74-05				LS
				527.176	1 399 580–1 589 270	4-4		1.37-04				LS
				527.983	1 399 870–1 589 270	2–2		2.14-04				LS
				525.707	1 399 050-1 589 270	6-4		8.60-06				LS
				527.176	1 399 580–1 589 270	4–2		2.14-05				LS
372		$^4P-^4P^{\circ}$		524.42	1 399 363–1 590 050	12-12	4.50-02	1.86-04	3.84-03	-2.651	E+	1
				523.560	1 399 050–1 590 050	6-6	3.16-02	1.30-04	1.34-03	-3.108	D	LS
				525.017	1 399 580–1 590 050	4-4	5.98 - 03	2.47 - 05	1.71 - 04	-4.005	Е	LS
				525.818	1 399 870–1 590 050	2–2		3.09 - 05				LS
				523.560	1 399 050–1 590 050	6–4		5.58 - 05				LS
				525.017	1 399 580–1 590 050	4–2		7.73 - 05				LS
				525.017	1 399 580–1 590 050	4–6		8.35 - 05				LS
				525.818	1 399 870–1 590 050	2–4	1.86-02	1.54 - 04	5.33-04	-3.511	E+	LS
373	$2p^2(^3P)3d$ $-2p^2(^3P)4p$	$^{4}P - ^{4}D^{\circ}$				12–20						1
				404.760	1 399 050–1 646 110	6-8	9.59-01	3.14-03	2.51-02	-1.725	C	LS
				405.630	1 399 580-1 646 110	4-6	6.68 - 01	2.47 - 03	1.32 - 02	-2.005	D+	LS
				406.108	1 399 870-1 646 110	2-4	3.96-01	1.96-03	5.24-03	-2.407	D+	LS
				404.760	1 399 050-1 646 110	6-6	2.88 - 01	7.07 - 04	5.65-03	-2.372	D+	LS
				405.630	1 399 580-1 646 110	4-4	5.07 - 01	1.25 - 03	6.68 - 03	-2.301	D+	LS
				404.760	1 399 050–1 646 110	6–4	4.79-02	7.85-05	6.28-04	-3.327	E+	LS
374	$2p^2(^3P)3d - 2s2p(^3P^{\circ})6d$	$^{4}P-^{4}D^{\circ}$		387.36	1 399 363–1 657 520	12–20	2.17-01	8.14-04	1.25-02	-2.010	D	1
				386.892	1 399 050–1 657 520	6–8	2.18-01	6.52-04	4.98-03	-2.408	D	LS
				387.687	1 399 580–1 657 520	4-6		5.13-04				LS
				388.123	1 399 870-1 657 520	2-4	8.99-02	4.06-04	1.04-03	-3.090	E+	LS
				386.892	1 399 050-1 657 520	6-6	6.55 - 02	1.47-04	1.12-03	-3.055	D	LS
				387.687	1 399 580-1 657 520	4-4	1.15-01	2.60-04	1.33-03	-2.983	D	LS
				388.123	1 399 870-1 657 520	2-2		4.06-04				LS
				386.892	1 399 050-1 657 520	6-4	1.09 - 02	1.63-05	1.25-04	-4.010	E	LS
				387.687	1 399 580-1 657 520	4–2	3.61 - 02	4.07 - 05	2.08 - 04	-3.788	E+	LS
375	$2p^2(^1D)3d - 2s2p(^3P^{\circ})4s$	$^{2}D-^{2}P^{\circ}$				10-6						1
			[5 891]	[5 893]	1 415 630–1 432 600	6–4	2.79-04	9.67-05	1.13-02	-3.236	D+	LS
			[5 891]	[5 893]	1 415 630–1 432 600	4-4	3.09-05	1.61-05	1.25-03	-4.191	D	LS
376		$^{2}P-^{2}P^{\circ}$				6–6						1
				[460]	1 432 140–1 432 600	2–4	4.18-07	5.92-04	8.47-01	-2.927	В	LS
377	$2p^2(^1D)3d - 2s2p(^3P^\circ)4d$	$^{2}D-^{2}D^{\circ}$				10–10						1
			2 064.6	2 065.3	1 415 630–1 464 050	6–6	2.55-03	1.63-04	6.65-03	-3.010	D+	LS
			2 064.6	2 065.3	1 415 630–1 464 050	4–6	1.81 - 04	1.74-05	4.73-04	-4.157	E+	LS
378		$^{2}D-^{2}F^{\circ}$		1 766.8	1 415 630–1 472 229	10–14	1.14-01	7.46-03	4.34-01	-1.127	C+	1

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				1 751.31	1 415 630–1 472 730	6-8	1.17-01	7.17-03	2.48-01	-1.366	В	LS
				1 787.9	1 415 630–1 471 560	4-6			1.74 - 01			LS
				1 787.9	1 415 630–1 471 560	6–6	7.32-03	3.51 - 04	1.24-02	-2.677	D+	LS
379		$^{2}D-^{2}P^{\circ}$		1 711.7	1 415 630–1 474 050	10-6	3.82-02	1.01-03	5.67-02	-1.996	C	1
				[1 718.8]	1 415 630-1 473 810	6-4	3.39-02	1.00-03	3.40-02	-2.222	C	LS
				[1 697.8]	1 415 630-1 474 530	4–2	3.92 - 02	8.47 - 04	1.89 - 02	-2.470	C	LS
				[1 718.8]	1 415 630–1 473 810	4-4	3.77-03	1.67 - 04	3.78 - 03	-3.175	D	LS
380		$^2F-^2D^{\circ}$				14-10						1
			2 836.0	2 836.9	1 428 800-1 464 050	8-6	5.79-02	5.24-03	3.92-01	-1.378	В	LS
			2 829.6	2 830.5	1 428 720–1 464 050	6-6	2.91-03	3.50-04	1.96-02	-2.678	C	LS
381		$^2F-^2F^{\circ}$	2 300	2 301	1 428 766–1 472 229	14–14	1.35-02	1.07-03	1.14-01	-1.824	C	1
			2 275.6	2 276.3	1 428 800-1 472 730	8-8	1.23-02	9.58-04	5.74-02	-2.116	С	LS
			2 333.6	2 334.3	1 428 720-1 471 560	6–6	1.38-02	1.13-03	5.21-02	-2.169	C	LS
			2 337.9	2 338.6	1 428 800-1 471 560	8-6	5.61 - 04	3.45 - 05	2.12-03	-3.559	D	LS
			2 271.5	2 272.2	1 428 720–1 472 730	6-8	4.59-04	4.74 - 05	2.13-03	-3.546	D	LS
382		$^{2}P-^{2}D^{\circ}$				6–10						1
			3 179.7	3 180.7	1 432 610–1 464 050	4–6	5.32-01	1.21-01	5.07+00	-0.315	B+	LS
383		$^{2}P-^{2}P^{\circ}$	2 403	2 404	1 432 453–1 474 050	6–6	5.89-01	5.10-02	2.42+00	-0.514	В	1
			[2 426]	[2 427]	1 432 610-1 473 810	4-4	4.77-01	4.21-02	1.35+00	-0.774	$\mathrm{B} +$	LS
			[2 358]	[2 359]	1 432 140–1 474 530	2-2	4.16 - 01	3.47 - 02	5.39-01	-1.159	В	LS
			[2 385]	[2 385]	1 432 610–1 474 530	4-2	2.01-01	8.58 - 03	2.70-01	-1.464	В	LS
			[2 399]	[2 400]	1 432 140–1 473 810	2–4	9.84-02	1.70 - 02	2.69-01	-1.469	В	LS
384	$2p^2(^{1}D)3d - 2s2p(^{1}P^{\circ})4s$	$^{2}D-^{2}P^{\circ}$		810.9	1 415 630–1 538 950	10-6	6.35-02	3.76-04	1.00-02	-2.425	D	1
				[810.9]	1 415 630–1 538 950	6–4	5.72-02	3.76-04	6.02-03	-2.647	D+	LS
				[810.9]	1 415 630–1 538 950	4–2			3.34-03			LS
				[810.9]	1 415 630–1 538 950	4-4			6.70-04			LS
385		$^{2}P-^{2}P^{\circ}$		939.0	1 432 453–1 538 950	6-6	1.68-01	2.22-03	4.12-02	-1.875	D+	1
				[940.4]	1 432 610–1 538 950	4-4	1.40_01	1.85_03	2.29-02	_2 131	C	LS
				[936.2]	1 432 140–1 538 950	2–2			9.12-03			LS
				[940.4]	1 432 610–1 538 950	4-2			4.57-03			LS
				[936.2]	1 432 140–1 538 950	2-4			4.57-03			LS
386	$2p^2(^1D)3d - 2s2p(^1P^\circ)4d$	$^{2}D-^{2}F^{\circ}$		616.6	1 415 630–1 577 810	10–14	6.74-01	5.38-03	1.09-01	-1.269	C	1
	1 ()			[616.6]	1 415 (20 1 577 010	6.0	674 01	5 12 02	6.24 .02	1.510	<i>C</i>	T. C.
				[616.6] [616.6]	1 415 630–1 577 810 1 415 630–1 577 810	6–8			6.24-02 $4.37-02$			LS LS
				[616.6]	1 415 630–1 577 810	4–6 6–6			4.37 - 02 $3.12 - 03$			LS
387		$^{2}F-^{2}F^{\circ}$		670.9	1 428 766–1 577 810	14–14			1.09-02			1
551		1 - 1										
				[671.1]	1 428 800–1 577 810	8–8			5.51-03			LS
				[670.7]	1 428 720–1 577 810	6–6			5.01-03			LS
				[671.1] [670.7]	1 428 800–1 577 810 1 428 720–1 577 810	8–6 6–8			2.05-04 2.04-04			LS LS
				[0/0./]	1 420 /20-1 3// 810	0-8	1./1-03	1.54-05	2.04-04	-4.034	E+	ഥാ
388	$2p^2(^{1}D)3d - 2s2p(^{3}P^{\circ})5d$	$^{2}D-^{2}F^{\circ}$		562.4	1 415 630–1 593 449	10–14	2.30-01	1.53-03	2.83-02	-1.815	D+	1

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				560.884 564.37 564.37	1 415 630–1 593 920 1 415 630–1 592 820 1 415 630–1 592 820	6–8 4–6 6–6	2.12-01	1.46-03 1.52-03 7.25-05	1.13-02	-2.216	D+	LS LS LS
389	$2s2p(^{3}P^{\circ})4s - 2s2p(^{3}P^{\circ})4p$	$^{2}P^{\circ}-^{2}P$				6–6						1
			[9 458] [9 888]	[9 461] [9 891]	1 432 600–1 443 170 1 432 600–1 442 710	4–4 4–2		3.81-02 7.30-03				LS LS
390		$^{2}P^{\circ}-^{2}D$				6–10						1
			[4 818] [5 127]	[4 819] [5 128]	1 432 600–1 453 350 1 432 600–1 452 100	4–6 4–4		2.48-01 2.59-02				LS LS
391	$2s2p(^{3}P^{\circ})4s-2s^{2}5d$	$^{2}P^{\circ}-^{2}D$				6–10						1
			[3 449] [3 457]	[3 449] [3 458]	1 432 600–1 461 590 1 432 600–1 461 520	4–6 4–4		3.59-02 3.98-03				LS LS
392	$2s2p(^{3}P^{\circ})4s-2s^{2}6d$	$^{2}P^{\circ}-^{2}D$				6–10						1
				[1 032.4] [1 032.4]	1 432 600–1 529 460 1 432 600–1 529 460	4-6 4-4		4.39-04 4.87-05				LS LS
393	$2s2p(^{3}P^{\circ})4s - 2s2p(^{1}P^{\circ})4p$	$^{2}P^{\circ}-^{2}D$				6–10						1
				[773.5] [773.5]	1 432 600–1 561 890 1 432 600–1 561 890	4–6 4–4		1.93-02 2.14-03				LS LS
394	$2s2p(^{3}P^{\circ})4s - 2s2p(^{3}P^{\circ})5p$	$^{2}P^{\circ}-^{2}P$				6–6						1
				[686.1] [686.1]	1 432 600–1 578 350 1 432 600–1 578 350	4–4 4–2		1.00-01 2.00-02				LS LS
395		$^{2}P^{\circ}-^{2}D$				6–10						1
				[661.6] [661.6]	1 432 600–1 583 740 1 432 600–1 583 740	4–6 4–4		9.05-02 1.01-02				LS LS
396	$2s2p(^{3}P^{\circ})4s - 2p^{2}(^{3}P)4d$	$^4P^{\circ}-^4P$				12–12						1
				407.415 406.421	1 422 870–1 668 320 1 422 870–1 668 920	6–6 6–4		7.49-04 3.22-04				LS LS
397	$2s2p(^{3}P^{\circ})4p - 2s2p(^{3}P^{\circ})4d$	$^{2}P-^{2}D^{\circ}$.001121	1.22 070 1 000 920	6–10	1,50 01	3.22 0.	2.00	2,,,,,	2	1
			4 787.9	4 789.3	1 443 170–1 464 050	4-6	2.89-01	1.49-01	9.40+00	-0.225	A	LS
398		$^{2}P-^{2}P^{\circ}$	3 221	3 222	1 443 017–1 474 050	6–6	5.00-01	7.78-02	4.95+00	-0.331	B+	1
198			[3 263] [3 142] [3 188] [3 215]	[3 264] [3 143] [3 189] [3 215]	1 443 170–1 473 810 1 442 710–1 474 530 1 443 170–1 474 530 1 442 710–1 473 810	4-4 2-2 4-2 2-4	3.59-01 1.72-01	6.40-02 5.31-02 1.31-02 2.60-02	1.10+00 5.50-01	-0.974 -1.281	B+ B	LS LS LS
399		$^{2}D-^{2}D^{\circ}$	[3 213]	[3 213]	1 772 /10-1 7/3 010	10–10	0.39-02	2.00-02	5.50-01	-1.204	ט	1
			9 343 8 366	9 346 8 368	1 453 350–1 464 050 1 452 100–1 464 050	6–6 4–6		2.51-02 3.00-03				LS LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
400		$^{2}D-^{2}F^{\circ}$	5 159	5 160	1 452 850–1 472 229	10–14	4.38-01	2.45-01	4.17+01	0.389	A	1
			5 158.5	5 160.0	1 453 350-1 472 730	6-8	4.40-01	2.34-01	2.39+01	0.147	Α	LS
			5 137.3	5 138.7	1 452 100-1 471 560	4-6	4.14-01	2.46-01	1.66+01	-0.007	Α	LS
			5 490.0	5 491.5	1 453 350–1 471 560	6–6	2.43-02	1.10-02	1.19+00	-1.180	B+	LS
401		$^{2}D-^{2}P^{\circ}$	4 716	4 717	1 452 850–1 474 050	10-6	1.55-02	3.11-03	4.83-01	-1.507	C+	1
			[4 886]	[4 888]	1 453 350–1 473 810	6–4			2.90-01			LS
			[4 457]	[4 458]	1 452 100–1 474 530	4–2			1.61-01			LS
			[4 605]	[4 606]	1 452 100–1 473 810	4–4	1.67-03	5.31-04	3.22-02	-2.673	С	LS
402	$2s2p(^{3}P^{\circ})4p - 2s2p(^{1}P^{\circ})4s$	$^{2}P-^{2}P^{\circ}$		1 042.4	1 443 017–1 538 950	6–6	9.32-03	1.52-04	3.13-03	-3.040	E+	1
				[1 044.1]	1 443 170–1 538 950	4-4	7.71-03	1.26-04	1.73-03	-3.298	D	LS
				[1 039.1]	1 442 710-1 538 950	2-2	6.30 - 03	1.02 - 04	6.98 - 04	-3.690	E+	LS
				[1 044.1]	1 443 170-1 538 950	4-2	3.10-03	2.53 - 05	3.48 - 04	-3.995	E+	LS
				[1 039.1]	1 442 710–1 538 950	2–4	1.57-03	5.08-05	3.48-04	-3.993	E+	LS
403		$^{2}D-^{2}P^{\circ}$		1 161.4	1 452 850–1 538 950	10-6	1.80-01	2.18-03	8.35-02	-1.662	C	1
				[1 168.2]	1 453 350-1 538 950	6-4	1.59-01	2.17-03	5.01-02	-1.885	C	LS
				[1 151.4]	1 452 100-1 538 950	4-2	1.85 - 01	1.84-03	2.79-02	-2.133	C	LS
				[1 151.4]	1 452 100–1 538 950	4-4			5.56-03			LS
404	$2s2p(^{3}P^{\circ})4p-2s2p(^{1}P^{\circ})4d$	$^{2}D-^{2}F^{\circ}$		800.3	1 452 850–1 577 810	10–14	5.31-01	7.14-03	1.88-01	-1.146	C+	1
				[803.5]	1 453 350–1 577 810	6–8	5.25-01	6.77-03	1.07-01	-1.391	C+	LS
				[795.5]	1 452 100–1 577 810	4–6			7.52-02			LS
				[803.5]	1 453 350–1 577 810	6–6			5.38-03			LS
405	$2s2p(^{3}P^{\circ})4p - 2s2p(^{3}P^{\circ})5d$	$^{2}D-^{2}F^{\circ}$		711.2	1 452 850–1 593 449	10–14	2.59+01	2.75-01	6.45+00	0.439	B+	1
				711.39	1 453 350–1 593 920	6–8	2.59+01	2.62-01	3.68+00	0.196	B+	LS
				710.63	1 452 100-1 592 820	4-6	2.43+01	2.76-01	2.58+00	0.043	B+	LS
				717.00	1 453 350–1 592 820	6-6			1.84-01	-1.108	C+	LS
406	$2s^25d - 2s2p(^3P^{\circ})4d$	$^{2}D-^{2}D^{\circ}$				10-10						1
				2 460 cm ⁻¹	1 461 590-1 464 050	6–6	1.19-06	2.96-05	2.38-02	-3.751	C	LS
				$2\ 530\ cm^{-1}$	1 461 520–1 464 050	4–6			1.70-03			LS
407		$^{2}D-^{2}F^{\circ}$	9 370	9 375	1 461 562–1 472 229	10–14	1.85-02	3.42-02	1.06+01	-0.466	B+	1
			8 974	8 977	1 461 590–1 472 730	6-8	2.11-02	3.40-02	6.03+00	-0.690	A	LS
			9 957	9 960	1 461 520-1 471 560	4-6	1.44 - 02	3.22-02	4.22+00	-0.890	B +	LS
			10 027	10 030	1 461 590–1 471 560	6–6	1.01 - 03	1.52-03	3.01-01	-2.040	В	LS
408		$^{2}D-^{2}P^{\circ}$	8 010	8 008	1 461 562–1 474 050	10-6	4.02-04	2.32-04	6.11-02	-2.635	C	1
			[8 181]	[8 183]	1 461 590-1 473 810	6–4	3.39-04	2.27-04	3.67-02	-2.866	C	LS
			[7 684]	[7 686]	1 461 520–1 474 530	4-2	4.54 - 04	2.01 - 04	2.03 - 02	-3.095	C	LS
			[8 134]	[8 137]	1 461 520–1 473 810	4–4	3.83-05	3.80-05	4.07-03	-3.818	D	LS
409	$2s^25d - 2s2p(^{1}P^{\circ})4d$	$^{2}D-^{2}F^{\circ}$		860.2	1 461 562–1 577 810	10–14	5.71-01	8.87-03	2.51-01	-1.052	C+	1
				[860.4]	1 461 590–1 577 810	6-8	5.70-01	8.44-03	1.43-01	-1.296	C+	LS
				[859.9]	1 461 520–1 577 810	4-6	5.33 - 01	8.87 - 03	1.00 - 01	-1.450	C+	LS
				[860.4]	1 461 590–1 577 810	6–6	3.80-02	4.22-04	7.17-03	-2.597	D+	LS
410	$2s^25d - 2s2p(^3P^\circ)5d$	$^{2}D-^{2}F^{\circ}$		758.2	1 461 562–1 593 449	10–14	1.52-02	1.83-04	4.57-03	-2.738	D	1

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				755 60	1 461 500 1 502 020							
				755.69 761.61	1 461 590–1 593 920 1 461 520–1 592 820	6–8 4–6			2.61-03 1.83-03			LS LS
				762.02	1 461 590–1 592 820	6–6			1.31-04			LS
411	2-2-(3p°)44-2-264	${}^{2}F^{\circ}-{}^{2}D$										
411	$2s2p(^{3}P^{\circ})4d-2s^{2}6d$	°F – °D		1 747.3	1 472 229–1 529 460	14–10	1.38-01	4.51-03	3.63-01	-1.200	C+	1
				1 762.74	1 472 730–1 529 460	8-6			2.08-01			LS
				1 727.12	1 471 560–1 529 460	6–4			1.45 - 01			LS
				1 727.12	1 471 560–1 529 460	6–6	6.80-03	3.04-04	1.04-02	-2.739	D+	LS
412		$^{2}P^{\circ}-^{2}D$		1 805	1 474 050–1 529 460	6–10	1.03-02	8.38-04	2.99-02	-2.299	D+	1
				[1 797]	1 473 810–1 529 460	4-6	1.04-02	7.58-04	1.79-02	-2.518	C	LS
				[1 821]	1 474 530–1 529 460	2-4	8.36-03	8.31 - 04	9.96-03	-2.779	D+	LS
				[1 797]	1 473 810–1 529 460	4–4	1.74-03	8.42-05	1.99-03	-3.473	D	LS
113	$2s2p(^{3}P^{\circ})4d-2s2p(^{1}P^{\circ})4p$	$^{2}D^{\circ}-^{2}D$				10–10						1
				[1 022.1]	1 464 050-1 561 890	6–6	1.46-01	2.29-03	4.62-02	-1.862	C	LS
				[1 022.1]	1 464 050–1 561 890	6–4	1.57 - 02	1.64-04	3.31 - 03	-3.007	D	LS
414		$^{2}F^{\circ}-^{2}D$		1 115.3	1 472 229–1 561 890	14-10	6.64-02	8.85-04	4.55-02	-1.907	C	1
				[1 121.6]	1 472 730–1 561 890	8-6	6.22-02	8.80-04	2.60-02	-2.152	C	LS
				[1 107.1]	1 471 560-1 561 890	6–4			1.82-02			LS
				[1 107.1]	1 471 560–1 561 890	6–6			1.30-03			LS
115		$^{2}P^{\circ}-^{2}D$		1 138.4	1 474 050–1 561 890	6-10	6.30-03	2.04-04	4.59-03	-2.912	D	1
				[1 135.3]	1 473 810–1 561 890	4-6	6.35-03	1.84-04	2.75-03	-3.133	D	LS
				[1 144.7]	1 474 530–1 561 890	2–4			1.53-03			LS
				[1 135.3]	1 473 810–1 561 890	4-4			3.05 - 04			LS
416	$2s2p(^{3}P^{\circ})4d-2s^{2}7d$	$^{2}F^{\circ}-^{2}D$		1 022.0	1 472 229–1 570 080	14-10	6.01-02	6.73-04	3.17-02	-2.026	E+	1
				1 027.22	1 472 730–1 570 080	8-6	5.64-02	6.69-04	1.81-02	-2.271	D	LS
				1 015.02	1 471 560-1 570 080	6–4	6.14-02	6.32-04	1.27-02	-2.421	E+	LS
				1 015.02	1 471 560–1 570 080	6–6			9.06-04			LS
417	$2s2p(^{3}P^{\circ})4d-2s2p(^{3}P^{\circ})5p$	$^2D^{\circ} - ^2P$				10-6						1
				874.89	1 464 050–1 578 350	6–4	7.83+00	5.99-02	1.04+00	-0.444	B+	LS
418		$^{2}D^{\circ}-^{2}D$				10-10						1
				835.49	1 464 050–1 583 740	6–6	9 29 - 01	9 72 - 03	1.60-01	-1 234	C+	LS
				835.49	1 464 050–1 583 740	6–4			1.15-02			LS
419		$^{2}F^{\circ}-^{2}D$		896.8	1 472 229–1 583 740	14-10	8.93+00	7.69-02	3.18+00	0.032	B+	1
				900.82	1 472 730–1 583 740	8–6	8 40+00	7.66-02	1.82+00	-0.213	R+	LS
				891.42	1 471 560–1 583 740	6–4			1.27 + 00			LS
				891.42	1 471 560–1 583 740	6–6			9.09-02			LS
420		$^{2}P^{\circ}-^{2}P$		958.8	1 474 050–1 578 350	6–6			6.85-01			1
				[956.6]	1 473 810–1 578 350	4-4			3.80-01			LS
				[963.2]	1 474 530–1 578 350	2–2 4 2			1.52-01			LS
				[956.6] [963.2]	1 473 810–1 578 350 1 474 530–1 578 350	4–2 2–4			7.61-02 $7.61-02$			LS LS
		2 0 2										
421		$^{2}P^{\circ}-^{2}D$		911.7	1 474 050–1 583 740	6–10	4.87 - 01	1.01 - 02	1.82-01	-1.218	C	1

Table 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	E_i – E_k (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				[909.7]	1 473 810–1 583 740	4-6	4.90-01	9.12-03	1.09-01	-1.438	C+	LS
				[915.7]	1 474 530–1 583 740	2-4	4.02 - 01	1.01 - 02	6.09 - 02	-1.695	C	LS
				[909.7]	1 473 810–1 583 740	4–4	8.14-02	1.01 - 03	1.21-02	-2.394	D+	LS
422	$2s2p(^{3}P^{\circ})4d-2s^{2}8d$	$^{2}P^{\circ}-^{2}D$		817.3	1 474 050–1 596 400	6–10	2.78-01	4.63-03	7.48-02	-1.556	D	1
				[815.7]	1 473 810–1 596 400	4-6	2.79-01	4.18-03	4.49-02	-1.777	D	LS
				[820.5]	1 474 530-1 596 400	2-4	2.28 - 01	4.61 - 03	2.49 - 02	-2.035	D	LS
				[815.7]	1 473 810–1 596 400	4–4	4.65 - 02	4.64-04	4.98-03	-2.731	E	LS
423	$2s2p(^{3}P^{\circ})4d-2p^{2}(^{3}P)4d$	$^4D^{\circ}-^4P$				20–12						1
				487.638	1 463 250–1 668 320	8–6	2.25+01	6.02-02	7.73-01	-0.317	В	LS
				484.262	1 462 420–1 668 920	6–4			4.06-01			LS
				485.673	1 462 420–1 668 320	6–6			1.74-01			LS
				484.168	1 462 380–1 668 920	4-4			2.06-01			LS
				485.578	1 462 380-1 668 320	4–6			1.93-02			LS
424		$^{4}P^{\circ}-^{4}P$				12–12						1
				491.473	1 464 850–1 668 320	6–6	7.26±00	2 63 _ 02	2.55-01	_0.802	R	LS
				490.028	1 464 850–1 668 920	6–4			1.09-01			LS
425	$2s^26d - 2s2p(^1P^{\circ})4s$	$^{2}D-^{2}P^{\circ}$	10 530	10 537	1 529 460–1 538 950	10–6	7.76-03	7.75-03	2.69+00	-1.111	B+	1
	_		[10.525]	[10.527]	1 520 460 1 529 050	6 1	6.00 .02	7.75 02	1.61 : 00	1 222	D I	1.0
			[10 535]	[10 537]	1 529 460–1 538 950 1 529 460–1 538 950	6–4			1.61+00			LS
			[10 535] [10 535]	[10 537] [10 537]	1 529 460–1 538 950	4–2 4–4			8.96-01 1.79-01			LS LS
426	$6 2s^26d - 2s2p(^1P^{\circ})4d$	$^{2}D-^{2}F^{\circ}$	2 068	2 068	1 529 460–1 577 810	10–14			9.73-01			1
	1 . /											1.0
			[2 068]	[2 068]	1 529 460–1 577 810	6–8			5.56-01			LS
			[2 068] [2 068]	[2 068] [2 068]	1 529 460–1 577 810 1 529 460–1 577 810	4–6			3.89-01 2.78-02			LS LS
			[2 008]	[2 008]	1 329 400-1 377 810	6–6	1.00-02	0.80-04	2.78-02	-2.389	C	LS
427	$2s^26d - 2s2p(^3P^\circ)5d$	$^{2}D-^{2}F^{\circ}$		1 562.8	1 529 460–1 593 449	10–14	7.97-02	4.09-03	2.10-01	-1.388	C+	1
				1 551.35	1 529 460–1 593 920	6-8			1.20-01			LS
				1 578.28	1 529 460–1 592 820	4–6			8.42 - 02			LS
				1 578.28	1 529 460–1 592 820	6–6	5.17-03	1.93-04	6.02-03	-2.936	D+	LS
428	$2s2p(^{1}P^{\circ})4s - 2s2p(^{1}P^{\circ})4p$	$^{2}\text{P}^{\circ}-^{2}\text{D}$	4 358	4 359	1 538 950–1 561 890	6–10	6.57-01	3.12-01	2.69+01	0.272	A	1
			[4 358]	[4 359]	1 538 950-1 561 890	4–6	6.58-01	2.81-01	1.61+01	0.051	A	LS
			[4 358]	[4 359]	1 538 950-1 561 890	2-4	5.48 - 01	3.12-01	8.96+00	-0.205	A	LS
			[4 358]	[4 359]	1 538 950–1 561 890	4-4	1.10-01	3.12-02	1.79+00	-0.904	$\mathrm{B}+$	LS
429	$2s2p(^{1}P^{\circ})4s - 2s^{2}7d$	$^{2}P^{\circ}-^{2}D$	3 211	3 212	1 538 950–1 570 080	6-10	8.78-02	2.26-02	1.44+00	-0.868	C+	1
			[3 211]	[3 212]	1 538 950–1 570 080	4–6	8.79-02	2.04-02	8.63-01	-1.088	C+	LS
			[3 211]	[3 212]	1 538 950-1 570 080	2-4			4.78-01			LS
			[3 211]	[3 212]	1 538 950-1 570 080	4-4			9.56-02			LS
430	$2s2p(^{1}P^{\circ})4s - 2s2p(^{3}P^{\circ})5p$	$^{2}P^{\circ}-^{2}P$	2 537	2 538	1 538 950–1 578 350	6–6			3.07-01			1
	A . / A		[0.525]	[0.500]	1 520 050 1 570 252	4 4	5.00 00	5 10 00	1.70 01	1 (00	.	
			[2 537]	[2 538]	1 538 950–1 578 350	4–4			1.70-01			LS
			[2 537]	[2 538]	1 538 950–1 578 350	2–2			6.82-02			LS
			[2 537]	[2 538]	1 538 950–1 578 350	4–2			3.41-02			LS
			[2 537]	[2 538]	1 538 950–1 578 350	2–4	1.00-02	2.04-03	3.41-02	-2.389	C	LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.* ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \ s^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
431		$^{2}P^{\circ}-^{2}D$	2 232	2 233	1 538 950–1 583 740	6–10	1.87-01	2.33-02	1.03+00	-0.854	В	1
			[2 232]	[2 233]	1 538 950-1 583 740	4–6	1.86-01	2.09-02	6.14-01	-1.078	В	LS
			[2 232]	[2 233]	1 538 950-1 583 740	2-4		2.33-02				LS
			[2 232]	[2 233]	1 538 950–1 583 740	4-4	3.12-02	2.33-03	6.85-02	-2.031	C	LS
432	$2s2p(^{1}P^{\circ})4s-2s^{2}8d$	$^{2}P^{\circ}-^{2}D$		1 740.6	1 538 950–1 596 400	6–10	5.77-02	4.37-03	1.50-01	-1.581	D+	1
				[1 740.6]	1 538 950–1 596 400	4–6	5.77-02	3.93-03	9.01-02	-1.804	D+	LS
				[1 740.6]	1 538 950–1 596 400	2–4		4.37 - 03				LS
				[1 740.6]	1 538 950–1 596 400	4–4	9.62-03	4.37-04	1.00-02	-2.757	E+	LS
433	$2s2p(^{1}P^{\circ})4p - 2s2p(^{1}P^{\circ})4d$	$^{2}D-^{2}F^{\circ}$	6 280	6 281	1 561 890–1 577 810	10–14	2.47-01	2.05-01	4.24+01	0.312	A	1
			[6 280]	[6 281]	1 561 890–1 577 810	6-8	2.47-01	1.95-01	2.42+01	0.068	A	LS
			[6 280]	[6 281]	1 561 890-1 577 810	4-6	2.31 - 01	2.05 - 01	1.70+01	-0.086	A	LS
			[6 280]	[6 281]	1 561 890–1 577 810	6–6	1.65 - 02	9.76-03	1.21+00	-1.232	B+	LS
434	$2s2p(^{1}P^{\circ})4p - 2s2p(^{3}P^{\circ})5d$	$^{2}D-^{2}F^{\circ}$	3 168	3 169	1 561 890–1 593 449	10–14	1.08-02	2.27-03	2.37-01	-1.644	C+	1
			[3 121]	[3 122]	1 561 890–1 593 920	6–8	1.13-02	2.20-03	1.36-01	-1.879	C+	LS
			[3 232]	[3 233]	1 561 890-1 592 820	4–6	9.49-03	2.23-03	9.49-02	-2.050	C+	LS
			[3 232]	[3 233]	1 561 890–1 592 820	6-6	6.76-04	1.06-04	6.77-03	-3.197	D+	LS
435	$2s^27d - 2s2p(^1P^{\circ})4d$	$^{2}D-^{2}F^{\circ}$	12 930	12 937	1 570 080–1 577 810	10–14	5.64-02	1.98-01	8.44+01	0.297	B+	1
	* * *		[12 933]	[12 937]	1 570 080–1 577 810	6-8	5.65-02	1.89-01	4.83+01	0.055	$\mathrm{B}+$	LS
			[12 933]	[12 937]	1 570 080-1 577 810	4-6	5.26-02	1.98-01	3.37 + 01	-0.101	$\mathrm{B} +$	LS
			[12 933]	[12 937]	1 570 080–1 577 810	6–6	3.76-03	9.44-03	2.41+00	-1.247	В	LS
436	$2s^27d - 2s2p(^3P^{\circ})5d$	$^{2}D-^{2}F^{\circ}$	4 278	4 279	1 570 080–1 593 449	10–14	1.01-01	3.87-02	5.45+00	-0.412	В	1
			4 193.4	4 194.6	1 570 080–1 593 920	6-8		3.76-02				LS
			4 396.3	4 397.5	1 570 080–1 592 820	4–6	8.67 - 02	3.77 - 02	2.18+00	-0.822	В	LS
			4 396.3	4 397.5	1 570 080–1 592 820	6–6	6.17-03	1.79 - 03	1.55-01	-1.969	C	LS
437	$2s2p(^{1}P^{\circ})4d-2s2p(^{3}P^{\circ})5p$	$^{2}\text{F}^{\circ}$ – ^{2}D	16 860	16 863	1 577 810–1 583 740	14–10	2.95-04	8.97-04	6.97-01	-1.901	В	1
			[16 859]	[16 863]	1 577 810–1 583 740	8-6	2.81-04	8.97-04	3.98-01	-2.144	В	LS
			[16 859]	[16 863]	1 577 810-1 583 740	6-4	2.95 - 04	8.38-04	2.79-01	-2.299	В	LS
			[16 859]	[16 863]	1 577 810–1 583 740	6–6	1.40-05	5.98-05	1.99-02	-3.445	C	LS
438	$2s2p(^{1}P^{\circ})4d-2s^{2}8d$	$^{2}F^{\circ}-^{2}D$	5 378	5 379	1 577 810–1 596 400	14-10	2.04-01	6.33-02	1.57+01	-0.052	B+	1
			[5 378]	[5 379]	1 577 810–1 596 400	8-6	1.95-01	6.33-02	8.97+00	-0.296	$\mathrm{B} +$	LS
			[5 378]	[5 379]	1 577 810–1 596 400	6-4	2.04 - 01	5.91 - 02	6.28+00	-0.450	B +	LS
			[5 378]	[5 379]	1 577 810–1 596 400	6–6	9.73-03	4.22-03	4.48 - 01	-1.597	C	LS
439	$2s2p(^{3}P^{\circ})5p - 2s2p(^{3}P^{\circ})5d$	$^{2}D-^{2}F^{\circ}$	10 300	10 300	1 583 740–1 593 449	10–14	1.71-01	3.81-01	1.29-06	0.581	A	1
			9 820	9 823	1 583 740–1 593 920	6-8	1.98-01	3.81-01	7.39+01	0.359	A	LS
			11 010	11 013	1 583 740–1 592 820	4-6	1.31 - 01	3.57-01	5.18+01	0.155	A	LS
			11 010	11 013	1 583 740–1 592 820	6-6	9.35-03	1.70-02	3.70+00	-0.991	B+	LS
440	$2s2p(^{3}P^{\circ})5d-2s^{2}8d$	$^2F^{\circ}-^2D$		2 951 cm ⁻¹	1593 449–1 596 400	14-10	8.13-04	9.94-03	1.55+01	-0.856	B+	1
				2 480 cm ⁻¹	1 593 920-1 596 400	8-6	4.56-04	8.34-03	8.86+00	-1.176	$\mathrm{B}+$	LS
				3 580 cm ⁻¹	1 592 820–1 596 400	6–4	1.44 - 03	1.12-02	6.18+00	-1.173	$\mathrm{B}+$	LS
				3 580 cm ⁻¹	1 592 820–1 596 400	6–6	6.86-05	8.03-04	4.43-01	-2.317	C	LS

TABLE 28. Transition probabilities of allowed lines for Na VII (references for this table are as follows: 1=Fernley *et al.*, ²⁵ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Merkelis *et al.*, ⁶⁴ 4=Galavis *et al.*, ⁴¹ and 5=Safronova *et al.*, ⁸¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} $(10^8 \ s^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
441	$2p^2(^3P)4p$ $-2p^2(^3P)4d$	$^4D^{\circ}-^4P$				20–12						1
			4 501.2	4 502.5	1 646 110-1 668 320	8-6	3.01-03	6.87-04	8.15-02	-2.260	C+	LS
			4 382.8	4 384.0	1 646 110-1 668 920	6-4	2.57-03	4.94-04	4.28-02	-2.528	C	LS
			4 501.2	4 502.5	1 646 110-1 668 320	6-6	6.78 - 04	2.06-04	1.83-02	-2.908	C	LS
			4 382.8	4 384.0	1 646 110-1 668 920	4-4	1.30-03	3.76-04	2.17-02	-2.823	C	LS
			4 501.2	4 502.5	1 646 110–1 668 320	4–6	7.52-05	3.43 - 05	2.03-03	-3.863	D	LS
442	$2s2p(^{3}P^{\circ})6d - 2p^{2}(^{3}P)4d$	$^4D^{\circ} - ^4P$				20–12						1
			9 257	9 259	1 657 520–1 668 320	8-6	6.58-03	6.34-03	1.55+00	-1.295	B+	LS
			8 770	8 772	1 657 520-1 668 920	6-4	6.09-03	4.68-03	8.11-01	-1.552	В	LS
			9 257	9 259	1 657 520-1 668 320	6-6	1.48 - 03	1.90-03	3.48 - 01	-1.943	В	LS
			8 770	8 772	1 657 520-1 668 920	4-4	3.09-03	3.57-03	4.12-01	-1.845	В	LS
			9 257	9 259	1 657 520-1 668 320	4-6	1.64 - 04	3.17 - 04	3.87 - 02	-2.897	C	LS
			8 770	8 772	1 657 520–1 668 920	2–4	4.81 - 04	1.11-03	6.41-02	-2.654	C	LS

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

10.7.3. Forbidden Transitions for Na VII

The MCHF results of Tachiev and Froese Fischer⁹⁴ and the results of Galavis *et al.*⁴¹ were used. As part of the Iron Project, Galavis *et al.*⁴¹ used the SUPERSTRUCTURE code with CI, relativistic effects, and semiempirical energy corrections.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in both of the references, 41,94 as described in the general introduction.

10.7.4. References for Forbidden Transitions for Na VII

- ⁴¹M. E. Galavis, C. Mendoza, and C. Zeippen, Astron. Astrophys., Suppl. Ser. 131, 499 (1998).
- ⁸⁷G. Tachiev and C. Froese Fischer, J. Phys. B **33**, 2419 (2000).
- ⁹⁴G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, *ab initio*, downloaded on May 6, 2002). See Tachiev and Froese Fischer (Ref. 87).

TABLE 29. Wavelength finding list for forbidden lines for Na VII

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
242.535	3	856.33	2	1 067 cm ⁻¹	4	1 897.3	10
243.800	3	864.22	2	1 105.78	5	$2\ 139\ cm^{-1}$	1
598.48	7	872.30	2	1 274.58	9		
677.41	6	880.50	2	1 695.26	8		
$733 \ cm^{-1}$	4	886.22	2	$1~800~cm^{-1}$	4		

Table 30. Transition probabilities of forbidden lines for Na VII (references for this table are as follows: 1=Tachiev and Froese Fischer⁹⁴ and 2=Galavis *et al.*.⁴¹)

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	g_i-g_k	Type	A_{ki} (s ⁻¹)	<i>S</i> (a.u.)	Acc.	Source
1	2p-2p	$^{2}\text{P}^{\circ}-^{2}\text{P}^{\circ}$									
				2 139 cm ⁻¹	0-2 139	2-4	M1	8.77 - 02	1.33+00	A	1,2
				$2\ 139\ cm^{-1}$	0–2 139	2–4	E2	1.54 - 07	1.23 - 01	B +	1
2	$2s^22p - 2s2p^2$	$^{2}P^{\circ}-^{4}P$									
				[880.5]	2 139-115 711	4-4	M2	3.16 - 03	4.49 - 01	B +	1
				[886.2]	2 139-114 978	4-2	M2	1.53 - 02	1.13+00	B +	1
				[872.3]	2 139-116 778	4-6	M2	7.00 - 02	1.42+01	A	1
				[864.2]	0-115 711	2-4	M2	5.70 - 02	7.38+00	A	1
				[856.3]	0-116 778	2-6	M2	2.31 - 02	4.27 + 00	B +	1

Table 30. Transition probabilities of forbidden lines for Na VII (references for this table are as follows: 1=Tachiev and Froese Fischer⁹⁴ and 2=Galavis *et al.*.⁴¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	$A_{ki} $ (s ⁻¹)	<i>S</i> (a.u.)	Acc.	Source
3	$2s^22p-2p^3$	$^{2}\text{P}^{\circ}-^{2}\text{D}^{\circ}$									
	• •			242.535	0-412 311	2-6	E2	2.85 + 03	1.28 - 02	В	2
				243.800	2 139–412 311	4-6	E2	9.78 + 03	4.51 - 02	$\mathrm{B} +$	2
4	$2s2p^2 - 2s2p^2$	${}^{4}P - {}^{4}P$									
	•			1 067 cm ⁻¹	115 711–116 778	4-6	M1	1.98 - 02	3.62+00	A	1,2
				1 067 cm ⁻¹	115 711–116 778	4-6	E2	4.92 - 09	1.91 - 01	B +	1
				733 cm ⁻¹	114 978-115 711	2-4	M1	8.82 - 03	3.32+00	A	1,2
				733 cm ⁻¹	114 978-115 711	2-4	E2	8.95 - 11	1.51 - 02	В	1
				$1~800~{\rm cm}^{-1}$	114 978-116 778	2-6	E2	4.83 - 08	1.37-01	A	1,2
5		$^{4}P - ^{2}D$									
				[1 105.8]	114 978–205 412	2-6	E2	5.91-04	5.24-06	D+	2
6		$^{4}P - ^{2}S$									
				[677.4]	116 778–264 400	6–2	E2	2.57-02	6.56-06	D+	2
7		$^{4}P - ^{2}P$									
				[598.5]	116 778–283 869	6–2	E2	2.52-03	3.45-07	D	2
8		$^{2}D-^{2}S$									
0		D- 3		1 695.26	205 412–264 400	6–2	E2	1.41+01	3.52-01	B+	2
9		$^{2}D-^{2}P$									
9		-DP		1 274.58	205 412–283 869	6–2	E2	2.58-02	1.55-04	С	2
				1 274.30	203 112 203 007	0 2	22	2.55 02	1.55 04	Č	-
10	$2p^3 - 2p^3$	$^{2}D^{\circ}-^{2}P^{\circ}$		1.005.0			770	204.00	1.00.0:	ъ.	
				1 897.3	412 311–465 017	6–2	E2	3.84+00	1.69-01	B+	2

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

10.8. Na vIII

Beryllium isoelectronic sequence

Ground State: $1s^22s^2$

Ionization energy: 264.25 eV=2 131 300 cm⁻¹

10.8.1. Allowed Transitions for Na VIII

In general the transition rates for this beryllium-like spectrum have proven accurate, including the results of the OP. Most of the compiled data below have been taken from this source. The apparent high-quality (based on good agreement) data from the other references 19,80,82,94 were available primarily for the lower-lying transitions. Wherever available we have used the data of Tachiev and Froese Fischer, which result from extensive MCHF calculations with Breit-Pauli corrections to order α^2 . Only OP results were available for transitions from energy levels above the 3d.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in two or more references, 19,80,82,94,113 as described in the general introduction. For this purpose the spin-allowed (non-OP) and intercombination data were treated separately and each of these was in turn divided into two upper-level energy groups below and above 1 370 000 cm⁻¹. Estimated accuracies were substantially better for the lower energy groups, and none of the high-lying intercombination lines had estimated accura-

cies sufficiently good to be included in this compilation. OP lines constituted a fifth group. The energy level labeled 2s2p $^1P_1^{\rm o}$ energy level appears to be of highly mixed character in LS coupling because transitions from it agreed much less well among different authors than did other levels. Thus transitions involving this energy level were assigned lower accuracy.

10.8.2. References for Allowed Transitions for Na VIII

¹⁹L. J. Curtis, S. T. Maniak, R. W. Ghrist, R. E. Irving, D. G. Ellis, M. Henderson, M. H. Kacher, E. Träbert, J. Granzow, P. Bengstsson, and L. Engstroem, Phys. Rev. A 51, 4575 (1995).

⁸⁰U. I. Safronova, A. Derevianko, M. S. Safronova, and W. R. Johnson, J. Phys. B **32**, 3527 (1999).

⁸²U. I. Safronova, W. R. Johnson, M. S. Safronova, and A. Derevianko, Phys. Scr. **59**, 286 (1999).

⁸⁶G. Tachiev and C. Froese Fischer, J. Phys. B **32**, 5805 (1999).

94G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, *ab initio*, downloaded on May 6, 2002). See Tachiev and Froese Fischer (Ref. 86).

¹¹¹J. A. Tully, M. J. Seaton, and K. A. Berrington, J. Phys. B 23, 3811 (1990).

¹¹³J. A. Tully, M. J. Seaton, and K. A. Berrington, http://

legacy.gsfc.nasa.gov/topbase, downloaded on Aug. 8, 1995 (Opacity Project). See Tully et al. (Ref. 111).

TABLE 31. Wavelength finding list for allowed lines for Na VIII—Continued

TADIE 31	Wavelength	finding	list for	allowed	linee	for Na VIII	

E 31. Wavelength finding list	for allowed lines for Na VIII	Wavelength (vac) (Å)	Mult. No.	
Wassalawadh	M14	75.385	18	
Wavelength (vac) (Å)	Mult. No.	75.427	18	
(vac) (A)	INO.	75.518	18	
		76.123	17	
53.704	33	76.124	17	
53.750	33	76.124	17	
54.380	7	76.173	17	
55.324	31	76.217	17	
55.346	31		17	
55.395	31	76.266		
57.046	56	77.266	3	
57.073	56	80.756	22	
57.119	56	81.210	21	
57.230	34	83.240	15	
58.045	29	83.288	15	
58.070	29	83.291	15	
58.124	29	83.391	15	
58.953	26	83.400	15	
59.009	26	83.402	15	
59.101	32	84.050	20	
59.193	25	85.826	41	
59.204	25	85.861	41	
59.249	25	85.887	41	
59.759	6	85.935	41	
		85.992	41	
59.962	53	86.040	41	
59.992	53	86.381	40	
60.002	53	86.428	40	
60.043	53	86.443	40	
60.053	53	86.479	40	
60.073	52	86.534	40	
61.088	55	86.549	40	
61.347	54	86.761	44	
62.276	30	87.211	43	
63.114	28	89.759	13	
63.695	27	89.818	13	
64.206	23	89.948	13	
64.236	23	90.252	42	
64.302	23	90.536	16	
66.062	5	93.119	37	
66.321	47	93.119	37	
66.358	47		37	
66.370	47	93.243	37	
66.420	47	93.270		
66.433	47	93.339	37	
66.498	46	93.393	37	
67.672	49	93.669	45	
68.193	48	93.898	38	
69.120	24	98.080	14	
70.120	4	102.042	39	
71.583	50	107.171	35	
71.799	51	117.911	36	
74.954	19	149.671	66	
74.964	19	153.754	88	
75.005	19	155.994	136	
75.044	19	156.006	76	
75.096	19	156.201	136	

TABLE 31. Wavelength finding list for allowed lines for Na VIII—Continued

TABLE 31. Wavelength finding list for allowed lines for Na VIII—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
156.597	136	258.355	99
161.132	137	261.172	120
161.371	137	261.363	120
167.978	63	266.354	122
168.057	63	266.553	122
170.007	102	267.008	122
170.509	102	267.208	122
172.316	64	268.269	121
173.572	65	271.348	125
177.175	103	274.514	124
179.134	129	275.080	151
180.268	75	275.232	151
180.470	130	275.794	151
180.999	130	276.549	126
184.230	131	279.799	128
184.322	131	280.355	152
186.794	133	280.867	152
186.888	133	281.144	152
187.115	133	283.294	123
187.210	133	290.664	143
187.406	132	296.086	145
187.473	74	296.261	145
191.004	135	296.912	145
193.558	134	301.250	144
196.826	85	301.923	144
196.841	85	302.206	147
196.934	85	302.234	144
196.949	85	302.416	144
196.997	85	302.801	147
198.594	153	303.095	144
198.673	153	307.078	84
198.965	153	307.399	146
203.595	87	308.613	146
203.616	86	309.234	146
207.147	154	312.647	148
209.727	155	315.308	166
236.499	101	318.563	150
236.737	98	324.507	173
237.710	98	333.934	149
240.651	97	364.844	160
240.912	97	378.143	192
241.657	97	379.010	96
243.540	62	379.983	192
243.825	117	381.913	165
246.348	127	388.229	193
249.057	100	395.248	61
252.602	119	395.795	61
252.691	73	396.816	61
252.781	119	411.171	2
253.145	119	415.041	172
253.325	119	426.379	9
253.428	116	429.319	9
254.278	118	433.473	95
254.369	119	492.327	8
20	118	.>=.5=1	12

TABLE 31. Wavelength finding list for allowed lines for Na VIII—Continued

TABLE 31. Wavelength finding list for allowed lines for Na VIII—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
493.998	8	650.75	202
495.791	8	651.93	202
496.251	8	658.24	168
497.849	8	659.28	203
499.770	8	659.46	168
502.993	114	659.50	207
521.159	115	665.96	167
522.493	140	670.38	212
524.274	140	671.41	171
525.238	140	671.64	170
533.960	71	678.29	204
536.797	158	680.13	216
538.184	157	682.45	209
538.996	157	683.71	209
548.908	141	686.34	208
549.179	159	702.94	211
554.477	70	715.31	162
558.067	187	720.72	69
558.909	187	726.74	169
560.664	186	789.81	1
561.703	185	823.66	81
562.94	187	847.91	11
564.72	186	968.34	184
567.41	142	1 016.05	198
569.57	164	1 018.95	198
580.32	189	1 038.21	206
581.23	189	1 085.54	199
583.12	188	1 089.56	222
586.54	191	1 155.79	10
602.45	83	1 175.06	10
603.30	80	1 186.69	10
604.58	80	1 220.26	210
604.72	80	1 238.39	105
606.97	80	1 275.75	78
607.11	80	1 333.80	77
607.56	80	1 334.49	77
611.32	190	1 336.68	77
612.20	60	1 365.30	77
613.61	200	1 366.03	77
616.42	59	1 380.38	77
623.07	59	1 589.83	217
624.80	82	1 618.91	215
626.19	59	1 626.02	215
629.66	79	1 658.37	91
630.15	79	1 661.68	91
632.46	79	1 677.01	214
632.61	79	1 684.07	91
633.10	79	1 707.36	91
633.26	79	1 734.61	91
633.41	79	1 805.5	94
634.92	139	1 843.1	57
637.55	139	1 866.7	107
638.98	139	1 868.8	68
644.54	201	1 879.0	107
648.30	163	1 896.5	90

TABLE 31. Wavelength finding list for allowed lines for Na VIII—Continued

TABLE 31. Wavelength finding list for allowed lines for Na VIII—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.
1 902.2	107	3 341.3	175
1 909.5	107	3 886.9	182
1 925.7	90	3 922.0	109
1 933.5	107	3 949.9	109
1 992.0	90	3 953.0	109
1 996.0	107	4 068.9	109
Wavelength (air) (Å)	Mult. No.	4 102.2 4 673.8 5 185.3	109 195 177
		5 261.7	177
2 063.1	93	5 642	177
2 176.5	106	5 706	176
2 181.8	106	6 030	161
2 186.1	106	6 033	156
2 217.6	106	6 156	176
2 227.5	106	6 462	181
2 261.7	106	6 952	174
2 300.3	106	7 319	194
2 463.5	108	7 472	194
2 485.0	108	8 056	179
2 512.4	89	8 242	179
2 515.6	89	8 871	183
2 519.4	89	8 910	180
2 525.8	108	9 387	178
2 553.5	112	9 898	196
2 567.3	89	9 948	205
2 626.6	89	13 172	221
2 686.7	89	14 584	92
2 763.9	104	15 333	219
3 010.3	111	15 996	219
3 017.5	110	17 089	197
3 026.2	67	17 570	218
3 029.8	67	18 411	138
3 049.8	110		
3 102.8	113	Wavenumber	Mult.
3 111.5	110	(cm ⁻¹)	No.
3 137.8	110	4 320	213
3 178.7	58	680	220

Table 32. Transition probabilities of allowed lines for Na VIII (references for this table are as follows: $1=\text{Tully } et \ al.$, 113 2=Tachiev and Froese Fischer, 94 $3=\text{Curtis } et \ al.$, 19 $4=\text{Safronova } et \ al.$, 80 and $5=\text{Safronova } et \ al.$

No.	Transition array	Mult.	$egin{array}{lll} \lambda_{air} & \lambda_{vac} \ (\mathring{A}) \ & or \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
1	$2s^2 - 2s2p$	$^{1}S-^{3}P^{\circ}$									
			[789.8]	0–126 612	1–3	3.63-04	1.02-05	2.65-05	-4.991	D	2,5
2		$^{1}S-^{1}P^{\circ}$	411.171	0-243 208	1–3	4.40+01	3.35-01	4.53-01	-0.475	B+	2,5
3	$2s^2-2s3p$	$^{1}S-^{1}P^{\circ}$	77.266	0-1 294 230	1–3	1.87+03	5.02-01	1.28-01	-0.299	A	2,3,4
4	$2s^2 - 2p3s$	$^{1}S-^{1}P^{\circ}$	70.120	0–1 426 125	1–3	7.17+01	1.59-02	3.66-03	-1.799	C	4
5	$2s^2-2p3d$	$^{1}S-^{1}P^{\circ}$	66.062	0–1 513 730	1–3	1.66+02	3.26-02	7.09-03	-1.487	C	4
6	$2s^2 - 2s4p$	$^{1}S-^{1}P^{\circ}$	59.759	0-1 673 390	1–3	8.47+02	1.36-01	2.68-02	-0.866	D+	1

Table 32. Transition probabilities of allowed lines for Na VIII (references for this table are as follows: 1=Tully *et al.*, ¹¹³ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ and 5=Safronova *et al.*, ⁸²)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
7	$2s^2 - 2s5p$	$^{1}S-^{1}P^{\circ}$		54.380	0–1 838 910	1–3	4.44+02	5.91-02	1.06-02	-1.228	D	1
8	$2s2p-2p^2$	$^{3}P^{\circ}-^{3}P$		496.07	127 423–329 006	9_9	3.55+01	1.31-01	1.92+00	0.072	A	2,5
				496.251	128 218-329 729	5–5	2.66+01	9.81-02	8.02-01	-0.309	A+	2,5
				495.791	126 612-328 310	3–3			1.60-01			2,5
				499.770	128 218-328 310	5-3			2.67-01			2,5
				497.849	126 612-327 476	3-1	3.51 + 01	4.35-02	2.14-01	-0.884	Α	2,5
				492.327	126 612-329 729	3-5			2.68-01			2,5
				493.998	125 880–328 310	1–3	1.20+01	1.32-01	2.14-01	-0.879	A	2,5
9		$^{3}P^{\circ}-^{1}D$										
				[426.38]	126 612-361 145	3-5	2.64 - 03	1.20 - 05	5.05 - 05	-4.444	E+	2,5
				[429.32]	128 218–361 145	5–5	4.21-02	1.16-04	8.22-04	-3.237	D+	2,5
10		$^{1}\text{P}^{\circ}$ $ ^{3}\text{P}$										
				[1 175.1]	243 208-328 310	3–3	5.36 - 05	1.11 - 06	1.29 - 05	-5.478	E+	2,5
				[1 186.7]	243 208-327 476	3-1	6.40 - 04	4.51 - 06	5.28 - 05	-4.869	E+	2,5
				[1 155.8]	243 208–329 729	3–5	1.92-03	6.40-05	7.31-04	-3.717	D+	2,5
11		$^{1}P^{\circ}-^{1}D$		847.91	243 208–361 145	3–5	6.66+00	1.20-01	1.00+00	-0.444	A+	2,5
12		$^{1}P^{\circ}-^{1}S$		492.786	243 208–446 136	3-1	6.59+01	8.00-02	3.89-01	-0.620	A	2,5
13	2s2p-2s3s	$^{3}P^{\circ}-^{3}S$		89.88	127 423–1 239 974	9–3	8.96+02	3.62-02	9.63-02	-0.487	A	2,4
				89.948	128 218-1 239 974	5-3	4.98+02	3.63-02	5.37-02	-0.741	Α	2,4
				89.818	126 612-1 239 974	3–3			3.20-02			2,4
				89.759	125 880–1 239 974	1–3			1.06-02			2,4
14		$^{1}P^{\circ}-^{1}S$		98.080	243 208–1 262 780	3–1	2.98+02	1.43-02	1.39-02	-1.368	B+	2,4
15	2s2p-2s3d	$^{3}P^{\circ}-^{3}D$		83.34	127 423–1 327 315	9–15	4.00+03	6.94-01	1.71+00	0.796	A	2,4
				83.391	128 218-1 327 388	5–7	3.99+03	5.83-01	8.00-01	0.465	A+	2,4
				83.288	126 612-1 327 265	3-5	3.00+03	5.20 - 01	4.28 - 01	0.193	A	2,4
				83.240	125 880-1 327 226	1-3	2.23+03	6.94 - 01	1.90 - 01	-0.159	A	2,4
				83.400	128 218-1 327 265	5-5	9.99 + 02	1.04 - 01	1.43 - 01	-0.284	A	2,4
				83.291	126 612-1 327 226	3–3	1.67 + 03	1.74 - 01	1.43 - 01	-0.282	A	2,4
				83.402	128 218–1 327 226	5–3	1.11+02	6.95-03	9.54-03	-1.459	A	2,4
16		$^{1}P^{\circ}-^{1}D$		90.536	243 208-1 347 740	3–5	2.54+03	5.21-01	4.66-01	0.194	A	2,4
17	2s2p-2p3p	$^{3}P^{\circ}-^{3}D$		76.14	127 423–1 440 846	9–15	4.90+02	7.10-02	1.60-01	-0.194	C+	4
				76.123	128 218-1 441 880	5-7	4.94+02	6.01-02	7.53-02	-0.522	В	4
				76.124	126 612-1 440 260	3-5	3.81 + 02	5.52-02	4.15 - 02	-0.781	C+	4
				76.131	125 880-1 439 410	1-3	2.81 + 02	7.32-02	1.84-02	-1.135	C+	4
				76.217	128 218-1 440 260	5-5	1.09 + 02	9.53-03	1.20-02	-1.322	C	4
				76.173	126 612-1 439 410	3-3	1.88 + 02	1.63-02	1.23-02	-1.311	C	4
				76.266	128 218-1 439 410	5–3			7.78 - 04			4
18		$^{3}P^{\circ}-^{3}S$		75.47	127 423–1 452 400	9–3	8.78+02	2.50-02	5.59-02	-0.648	C+	4
				75.518	128 218-1 452 400	5–3	4.07+02	2.09-02	2.60-02	-0.981	C+	4
				75.427	126 612-1 452 400	3-3	3.42+02	2.92-02	2.17-02	-1.057	C+	4
				75.385	125 880–1 452 400	1–3			8.20-03			4
19		$^{3}P^{\circ}-^{3}P$				9_9						4
				75.044	128 218-1 460 770	5–5	7.07 + 02	5.97-02	7.37-02	-0.525	В	4
				75.005	126 612-1 459 850	3–3			1.19-02			4
				75.096	128 218–1 459 850	5–3			2.96-02			4

J. Phys. Chem. Ref. Data, Vol. 37, No. 1, 2008

TABLE 32. Transition probabilities of allowed lines for Na VIII (references for this table are as follows: 1=Tully *et al.*, ¹¹³ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ and 5=Safronova *et al.*, ⁸²)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				74.954	126 612–1 460 770	3–5			2.23-02			4
20		${}^{1}P^{\circ} - {}^{1}P$		74.964	125 880–1 459 850	1–3			1.64-02			4
20				84.050	243 208–1 432 980	3–3			9.72-02			4
21		$^{1}P^{\circ}-^{1}D$		81.210	243 208–1 474 580	3–5			2.00-01			4
22		$^{1}\text{P}^{\circ} - ^{1}\text{S}$		80.756	243 208–1 481 510	3–1	6.26+02	2.04-02	1.63-02	-1.213	D	1
23	2s2p-2s4d	$^{3}P^{\circ}-^{3}D$		64.27	127 423–1 683 370	9–15	1.28+03	1.32-01	2.52-01	0.075	D+	1
				64.302	128 218-1 683 370	5–7	1.28+03	1.11-01	1.17-01	-0.256	C	LS
				64.236	126 612-1 683 370	3-5	9.64+02	9.94 - 02	6.31 - 02	-0.525	D+	LS
				64.206	125 880-1 683 370	1-3	7.17+02	1.33 - 01	2.81 - 02	-0.876	D+	LS
				64.302	128 218-1 683 370	5-5	3.21+02	1.99 - 02	2.11 - 02	-1.002	D	LS
				64.236	126 612-1 683 370	3-3	5.35+02	3.31 - 02	2.10-02	-1.003	D	LS
				64.302	128 218-1 683 370	5–3	3.55+01	1.32-03	1.40-03	-2.180	E	LS
24		$^{1}P^{\circ}-^{1}D$		69.120	243 208–1 689 970	3–5	9.72+02	1.16-01	7.92-02	-0.458	C	1
25	2s2p-2p4p	$^{3}P^{\circ}-^{3}D$				9–15						1
				59.204	128 218-1 817 290	5–7	3.79+02	2.79-02	2.72-02	-0.855	D+	LS
				59.193	126 612-1 816 010	3–5			1.46-02			LS
				59.249	128 218-1 816 010	5–5			4.85-03			LS
26		$^{3}P^{\circ}-^{3}P$				9_9						1
				59.009	128 218-1 822 880	5–5	3.35+02	1.75-02	1.70-02	-1.058	D	LS
				58.953	126 612–1 822 880	3–5			5.68-03			LS
27		$^{1}P^{\circ}-^{1}P$		63.695	243 208–1 813 190	3–3	4.59+02	2.79-02	1.76-02	-1.077	D	1
28		$^{1}P^{\circ}-^{1}D$		63.114	243 208–1 827 640	3–5	5.04+02	5.02-02	3.13-02	-0.822	D+	1
29	2s2p-2s5d?	${}^{3}P^{\circ} - {}^{3}D$?		[58.1]	127 423–1 848 670	9–15	5.38+02	4.53-02	7.80-02	-0.390	D	1
				58.124	128 218-1 848 670	5–7	5.37+02	3.81-02	3.65-02	-0.720	D+	LS
				58.070	126 612-1 848 670	3-5	4.04+02	3.40 - 02	1.95 - 02	-0.991	D	LS
				58.045	125 880-1 848 670	1-3	3.00+02	4.54 - 02	8.68 - 03	-1.343	D	LS
				58.124	128 218-1 848 670	5-5	1.34+02	6.80 - 03	6.51 - 03	-1.469	E+	LS
				58.070	126 612-1 848 670	3-3	2.24+02	1.13 - 02	6.48 - 03	-1.470	E+	LS
				58.124	128 218-1 848 670	5–3	1.49+01	4.53-04	4.33-04	-2.645	E	LS
30		$^{1}P^{\circ}-^{1}D$		62.276	243 208-1 848 960	3–5	5.28+02	5.12-02	3.15-02	-0.814	D+	1
31	2s2p-2s6d?	${}^{3}P^{\circ} - {}^{3}D$?		[55.4]	127 423–1 933 430	9–15	3.33+02	2.55-02	4.18-02	-0.639	D	1
				55.395	128 218-1 933 430	5-7	3.32+02	2.14-02	1.95-02	-0.971	D	LS
				55.346	126 612-1 933 430	3-5	2.50+02	1.91-02	1.04-02	-1.242	D	LS
				55.324	125 880-1 933 430	1-3	1.85 + 02	2.55-02	4.64-03	-1.593	E+	LS
				55.395	128 218-1 933 430	5-5	8.30+01	3.82-03	3.48-03	-1.719	E+	LS
				55.346	126 612-1 933 430	3–3	1.39+02	6.37-03	3.48-03	-1.719	E+	LS
				55.395	128 218-1 933 430	5–3	9.24+00	2.55-04	2.33-04	-2.894	E	LS
32		$^{1}P^{\circ}-^{1}D$		59.101	243 208–1 935 230	3–5	2.53+02	2.21-02	1.29-02	-1.178	D	1
33	2s2p-2p5p	$^{3}P^{\circ}-^{3}P$				9_9						1
				53.750	128 218-1 988 680	5–5	1.78±02	7.72_03	6.83-03	_1 413	D	LS
				53.704	126 612–1 988 680	3–5			2.28-03			LS
34		$^{1}P^{\circ}-^{1}D$		57.230	243 208–1 990 540	3–5			1.87-02			1
J - T		1 – D		31.230	∠ 1 3 200−1 330 340	5-5	7.07702	5.51-02	1.07-02	-1.003	ע	1

Table 32. Transition probabilities of allowed lines for Na VIII (references for this table are as follows: 1=Tully *et al.*, ¹¹³ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ and 5=Safronova *et al.*, ⁸²)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
35	$2p^2-2s3p$	$^{1}D-^{1}P^{\circ}$		107.171	361 145–1 294 230	5–3	1.17+02	1.21-02	2.13-02	-1.218	C+	2,4
36		$^{1}S-^{1}P^{\circ}$		117.911	446 136–1 294 230	1–3	3.66+00	2.29-03	8.89-04	-2.640	C	2,4
37	$2p^2 - 2p3s$	$^{3}P-^{3}P^{\circ}$		93.25	329 006–1 401 342	9_9	6.98+02	9.10-02	2.52-01	-0.087	C+	4
				93.243	329 729–1 402 200	5–5	5.24+02	6.84-02	1.05-01	-0.466	В	4
				93.270	328 310–1 400 470	3–3			2.07-02			4
				93.393	329 729–1 400 470	5–3			3.49-02			4
				93.339	328 310-1 399 670	3–1			2.78-02			4
				93.119	328 310-1 402 200	3–5			3.54-02			4
				93.197	327 476–1 400 470	1–3	2.33+02	9.09-02	2.79-02	-1.041	C+	4
38		$^{1}D-^{1}P^{\circ}$		93.898	361 145–1 426 125	5–3	5.15+02	4.08-02	6.31-02	-0.690	В	4
39		$^{1}S-^{1}P^{\circ}$		102.042	446 136–1 426 125	1–3	1.99+02	9.31-02	3.13-02	-1.031	C+	4
40	$2p^2-2p3d$	$^{3}P - ^{3}D^{\circ}$		86.46	329 006–1 485 645	9–15	4.86+03	9.07-01	2.32+00	0.912	B+	4
				86.479	329 729-1 486 080	5–7	4.88+03	7.65-01	1.09+00	0.583	B+	4
				86.428	328 310–1 485 340	3–5		7.51-01		0.353		4
				86.381	327 476–1 485 140	1–3		1.00+00		0.000		4
				86.534	329 729–1 485 340	5–5			1.30-01			4
				86.443	328 310–1 485 140	3–3			1.73-01			4
				86.549	329 729–1 485 140	5–3			6.95-03			4
41		$^{3}P-^{3}P^{\circ}$		85.96	329 006–1 492 308	9_9	2.60+03	2.88-01	7.34-01	0.414	В	4
				86.040	329 729–1 491 980	5–5	2.33+03	2.59-01	3.66-01	0.112	B+	4
				85.887	328 310-1 492 630	3-3	8.74 + 02	9.67-02	8.20-02	-0.537	В	4
				85.992	329 729-1 492 630	5–3	1.14+03	7.56-02	1.07 - 01	-0.423	В	4
				85.861	328 310-1 492 980	3-1	2.58+03	9.51-02	8.07 - 02	-0.545	В	4
				85.935	328 310-1 491 980	3-5	2.74+02	5.06-02	4.29 - 02	-0.819	C+	4
				85.826	327 476–1 492 630	1–3	5.87 + 02	1.95-01	5.50-02	-0.710	В	4
42		$^{1}D-^{1}D^{\circ}$		90.252	361 145–1 469 150	5–5	1.35+03	1.65-01	2.45-01	-0.084	В	4
43		$^{1}D-^{1}F^{\circ}$		87.211	361 145–1 507 790	5–7	5.65+03	9.02-01	1.30+00	0.654	B+	4
44		$^{1}D-^{1}P^{\circ}$		86.761	361 145–1 513 730	5–3	1.80+02	1.22-02	1.74-02	-1.215	C+	4
45		$^{1}S-^{1}P^{\circ}$		93.669	446 136–1 513 730	1–3	3.14+03	1.24+00	3.82-01	0.093	B+	4
46	$2p^2-2p4d$	$^{3}P-^{3}D^{\circ}$				9–15						1
				66.498	329 729–1 833 530	5–7	1.72+03	1.60-01	1.75-01	-0.097	C	LS
47		$^{3}P-^{3}P^{\circ}$				9_9						1
				66.433	329 729–1 835 010	5–5	5.43+02	3.59-02	3.93-02	-0.746	D+	LS
				66.358	328 310-1 835 290	3-3	1.82 + 02	1.20-02	7.86-03	-1.444	D	LS
				66.420	329 729-1 835 290	5-3	3.02+02	1.20-02	1.31-02	-1.222	D	LS
				66.370	328 310-1 835 010	3-5	1.81 + 02	1.99-02	1.30-02	-1.224	D	LS
				66.321	327 476–1 835 290	1–3	2.42+02	4.79-02	1.05 - 02	-1.320	D	LS
48		$^{1}D-^{1}D^{\circ}$		68.193	361 145–1 827 570	5–5	5.72+02	3.99-02	4.48-02	-0.700	D+	1
49		$^{1}D-^{1}F^{\circ}$		67.672	361 145–1 838 860	5–7	1.76+03	1.69-01	1.88-01	-0.073	C	1
50		$^{1}S-^{1}P^{\circ}$		71.583	446 136–1 843 110	1–3	7.55+02	1.74-01	4.10-02	-0.759	D+	1
51	$2p^2-2s5p$	$^{1}S-^{1}P^{\circ}$		71.799	446 136–1 838 910	1–3	3.46+02	8.03-02	1.90-02	-1.095	D	1
52	$2p^2-2p5d$	$^{3}P-^{3}D^{\circ}$				9–15						1
	* *											

TABLE 32. Transition probabilities of allowed lines for Na VIII (references for this table are as follows: 1=Tully *et al.*, ¹¹³ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ and 5=Safronova *et al.*, ⁸²)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				60.073	329 729–1 994 370	5–7	8.15+02	6.17-02	6.10-02	-0.511	D+	LS
53		$^{3}P - ^{3}P^{\circ}$				9_9						1
				60.053	329 729–1 994 930	5–5	3.09+02	1.67-02	1.65-02	-1.078	D	LS
				59.992	328 310-1 995 200	3-3	1.03+02	5.57-03	3.30-03	-1.777	E+	LS
				60.043	329 729–1 995 200	5–3	1.72+02	5.57-03	5.51 - 03	-1.555	E+	LS
				60.002	328 310–1 994 930	3–5	1.03+02	9.29 - 03	5.51 - 03	-1.555	E+	LS
				59.962	327 476–1 995 200	1–3	1.38+02	2.23-02	4.40-03	-1.652	E+	LS
54		$^{1}D-^{1}D^{\circ}$		61.347	361 145–1 991 220	5–5	2.66+02	1.50-02	1.51-02	-1.125	D	1
55		$^{1}D-^{1}F^{\circ}$		61.088	361 145–1 998 130	5–7	1.01+03	7.90-02	7.94-02	-0.403	C	1
56	$2p^2-2p6d$	$^{3}P-^{3}D^{\circ}$		57.10	329 006–2 080 460	9–15	4.50+02	3.67-02	6.20-02	-0.481	D	1
				57.119	329 729–2 080 460	5–7	4.50+02	3.08-02	2.90-02	-0.812	D+	LS
				57.073	328 310-2 080 460	3-5	3.38+02	2.75-02	1.55-02	-1.084	D	LS
				57.046	327 476-2 080 460	1-3	2.51+02	3.67-02	6.89-03	-1.435	D	LS
				57.119	329 729-2 080 460	5-5	1.12+02	5.49 - 03	5.16-03	-1.561	E+	LS
				57.073	328 310–2 080 460	3–3	1.88+02	9.16-03	5.16-03	-1.561	E+	LS
				57.119	329 729–2 080 460	5–3	1.25+01	3.66-04	3.44-04	-2.738	Е	LS
57	2s3s-2s3p	$^{3}S-^{1}P^{\circ}$										
				[1 843]	1 239 974–1 294 230	3–3	1.70-02	8.67-04	1.58-02	-2.585	С	2
58		$^{1}S-^{1}P^{\circ}$	3 178.7	3 179.7	1 262 780–1 294 230	1–3	3.10-01	1.41-01	1.48+00	-0.851	A	2
59	2s3s-2p3s	$^{3}S - ^{3}P^{\circ}$		619.7	1 239 974–1 401 342	3–9	7.73+00	1.34-01	8.18-01	-0.396	C+	1
				616.42	1 239 974-1 402 200	3-5	7.86+00	7.46 - 02	4.54 - 01	-0.650	C+	LS
				623.07	1 239 974-1 400 470	3–3	7.61+00	4.43 - 02	2.73 - 01	-0.876	C+	LS
				626.19	1 239 974–1 399 670	3–1	7.50+00	1.47-02	9.09-02	-1.356	C	LS
60		$^{1}S-^{1}P^{\circ}$		612.20	1 262 780–1 426 125	1–3	1.99+01	3.35-01	6.75-01	-0.475	В	1
61	2s3s-2p3d	$^{3}S - ^{3}P^{\circ}$		396.30	1 239 974–1 492 308	3–9	6.91-01	4.88-03	1.91-02	-1.834	D	1
				396.816	1 239 974-1 491 980	3–5	6.89-01	2.71-03	1.06-02	-2.090	D	LS
				395.795	1 239 974-1 492 630	3-3	6.94-01	1.63-03	6.37-03	-2.311	E+	LS
				395.248	1 239 974-1 492 980	3–1	6.96-01	5.43-04	2.12-03	-2.788	E+	LS
62	2s3s-2s4p	$^{1}S-^{1}P^{\circ}$		243.540	1 262 780–1 673 390	1–3	1.04+02	2.77-01	2.22-01	-0.558	C	1
63	2s3s-2p4d	$^{3}S - ^{3}P^{\circ}$				3–9						1
				168.057	1 239 974-1 835 010	3–5	2.99+01	2.11-02	3.50-02	-1.199	D+	LS
				167.978	1 239 974–1 835 290	3–3	3.00+01	1.27-02	2.11-02	-1.419	D	LS
64		$^{1}S-^{1}P^{\circ}$		172.316	1 262 780–1 843 110	1–3	1.67+01	2.23-02	1.27-02	-1.652	D	1
65	2s3s-2s5p	$^{1}S-^{1}P^{\circ}$		173.572	1 262 780–1 838 910	1–3	3.82+01	5.18-02	2.96-02	-1.286	D+	1
66	2s3s-2s6p	$^{1}S-^{1}P^{\circ}$		149.671	1 262 780–1 930 910	1–3	3.55+01	3.58-02	1.76-02	-1.446	D	1
67	2s3p - 2s3d	$^{1}P^{\circ}-^{3}D$										
	r		[3 026]	[3 027]	1 294 230-1 327 265	3–5	2.47-03	5.66-04	1.69-02	-2.770	С	2
			[3 030]	[3 031]	1 294 230–1 327 226	3–3		1.69-04				2
68		$^{1}P^{\circ}-^{1}D$	r1	1 868.8	1 294 230–1 347 740	3–5		1.42-01				2
	2021-2020	$^{1}P^{\circ}-^{1}P$				3–3						1
69	2s3p-2p3p			720.72	1 294 230–1 432 980			1.08-01				
70		$^{1}P^{\circ}-^{1}D$		554.477	1 294 230–1 474 580	3–5	1.61 + 00	1.24 - 02	6.79 - 02	-1.429	C	1

Table 32. Transition probabilities of allowed lines for Na VIII (references for this table are as follows: 1=Tully *et al.*, ¹¹³ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ and 5=Safronova *et al.*, ⁸²)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
71		$^{1}P^{\circ}-^{1}S$		533.960	1 294 230–1 481 510	3–1	7.93+00	1.13-02	5.96-02	-1.470	D+	1
72	2s3p-2s4s	$^{1}P^{\circ}-^{1}S$		275.794	1 294 230–1 656 820	3–1	1.23+02	4.68-02	1.27-01	-0.853	C	1
73	2s3p-2s4d	$^{1}P^{\circ}-^{1}D$		252.691	1 294 230–1 689 970	3–5	2.51+02	4.00-01	9.98-01	0.079	В	1
74	2s3p-2p4p	$^{1}P^{\circ}-^{1}D$		187.473	1 294 230–1 827 640	3–5	8.23+00	7.23-03	1.34-02	-1.664	D	1
75	2s3p-2s5d	$^{1}P^{\circ}-^{1}D$		180.268	1 294 230–1 848 960	3–5	1.37+02	1.11-01	1.98-01	-0.478	C	1
76	2s3p-2s6d	$^{1}P^{\circ}-^{1}D$		156.006	1 294 230–1 935 230	3–5	8.12+01	4.94-02	7.61-02	-0.829	C	1
77	2s3d-2p3s	$^{3}D-^{3}P^{\circ}$		1 350.8	1 327 315–1 401 342	15–9	1.11-01	1.83-03	1.22-01	-1.561	D+	1
				1 336.68	1 327 388-1 402 200	7–5			5.70-02			LS
				1 366.03	1 327 265–1 400 470	5–3	8.04 - 02	1.35 - 03	3.04 - 02	-2.171	D+	LS
				1 380.38	1 327 226-1 399 670	3-1	1.04 - 01	9.93 - 04	1.35 - 02	-2.526	D	LS
				1 334.49	1 327 265-1 402 200	5-5	1.73 - 02	4.62 - 04	1.01 - 02	-2.636	D	LS
				1 365.30	1 327 226-1 400 470	3-3	2.69-02	7.53 - 04	1.02 - 02	-2.646	D	LS
				1 333.80	1 327 226–1 402 200	3–5			6.77-04			LS
78		$^{1}D-^{1}P^{\circ}$		1 275.75	1 347 740–1 426 125	5–3	3.32-01	4.86-03	1.02-01	-1.614	C	1
79	2s3d-2p3d	$^{3}D-^{3}D^{\circ}$		631.6	1 327 315–1 485 645	15–15	1.05+01	6.27-02	1.95+00	-0.027	C+	1
				630.15	1 327 388-1 486 080	7–7	9.37+00	5.58-02	8.10-01	-0.408	В	LS
				632.61	1 327 265–1 485 340	5–5			4.53-01			LS
				633.26	1 327 226–1 485 140	3–3			2.93-01			LS
				633.10	1 327 388–1 485 340	7–5 5–2			1.02-01			LS
				633.41	1 327 265–1 485 140	5–3			9.77-02			LS
				629.66	1 327 265–1 486 080	5–7			1.02 - 01			LS
				632.46	1 327 226–1 485 340	3–5	1.56+00	1.56-02	9.74-02	-1.330	С	LS
80		$^{3}D-^{3}P^{\circ}$		606.1	1 327 315–1 492 308	15–9	1.20+01	3.98-02	1.19+00	-0.224	C+	1
				607.56	1 327 388-1 491 980	7–5	1.00+01	3.97 - 02	5.56 - 01	-0.556	C+	LS
				604.72	1 327 265-1 492 630	5-3	9.09+00	2.99 - 02	2.98 - 01	-0.825	C+	LS
				603.30	1 327 226-1 492 980	3-1	1.22 + 01	2.22-02	1.32-01	-1.177	C	LS
				607.11	1 327 265-1 491 980	5–5			9.91-02			LS
				604.58	1 327 226-1 492 630	3–3			9.91-02			LS
				606.97	1 327 226–1 491 980	3–5			6.59-03			LS
81		$^{1}D-^{1}D^{\circ}$		823.66	1 347 740–1 469 150	5–5	4.18+00	4.25-02	5.76-01	-0.673	C+	1
82		$^{1}D-^{1}F^{\circ}$		624.80	1 347 740–1 507 790	5–7	1.73+00	1.42-02	1.46-01	-1.149	C	1
83		$^{1}D-^{1}P^{\circ}$		602.45	1 347 740–1 513 730	5–3	1.27+01	4.14-02	4.11-01	-0.684	C+	1
84	2s3d-2s4p	$^{1}D - ^{1}P^{\circ}$		307.078	1 347 740–1 673 390	5–3	2.83+01	2.40-02	1.21-01	-0.921	C	1
85	2s3d-2p4d	$^3D - ^3P^{\circ}$				15–9						1
				196.997	1 327 388–1 835 010	7–5	5.25+00	2.18-03	9.90-03	-1.816	D	LS
				196.841	1 327 265–1 835 290	5–3			5.28-03			LS
				196.949	1 327 265–1 835 290	5–5 5–5			1.76-03			LS
				196.826	1 327 226–1 835 290	3–3			1.77-03			LS
				196.934	1 327 226–1 835 010	3–5	0.24-02	0.05-05	1.18-04	-5./41	E	LS
86		$^{1}D-^{1}F^{\circ}$		203.616	1 347 740–1 838 860	5–7	1.36+01	1.18-02	3.95-02	-1.229	D+	1
87	2s3d-2s5p	$^{1}D-^{1}P^{\circ}$		203.595	1 347 740–1 838 910	5–3	9.41+00	3.51-03	1.18-02	-1.756	D	1
88	2s3d-2p5d	$^{1}D-^{1}F^{\circ}$		153.754	1 347 740–1 998 130	5–7	1.02+01	5.08-03	1.29-02	-1.595	D	1

Table 32. Transition probabilities of allowed lines for Na VIII (references for this table are as follows: 1=Tully *et al.*, ¹¹³ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ and 5=Safronova *et al.*, ⁸²)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\begin{array}{c} \lambda_{vac} \ (\mathring{A}) \\ or \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
89	2p3s-2p3p	$^{3}P^{\circ}-^{3}D$	2 531	2 531	1 401 342–1 440 846	9–15	8.82-01	1.41-01	1.06+01	0.103	B+	1
			2 519.4	2 520.2	1 402 200-1 441 880	5–7	8.93-01	1.19-01	4.94+00	-0.225	B+	LS
			2 512.4	2 513.2	1 400 470-1 440 260	3-5	6.78 - 01	1.07 - 01	2.66+00	-0.493	$\mathrm{B} +$	LS
			2 515.6	2 516.4	1 399 670–1 439 410	1–3			1.18+00			LS
			2 626.6	2 627.4	1 402 200–1 440 260	5–5			8.87-01			LS
			2 567.3	2 568.1	1 400 470–1 439 410	3–3			8.85-01			LS
00		$^{3}P^{\circ}-^{3}S$	2 686.7	2 687.4	1 402 200–1 439 410	5–3			5.88-02			LS
90		3P -3S		1 959	1 401 342–1 452 400	9–3			2.08+00			1
				1 992.0	1 402 200–1 452 400	5–3			1.16+00			LS
				1 925.7	1 400 470–1 452 400	3–3			6.94 - 01 $2.31 - 01$			LS
91		$^{3}P^{\circ}-^{3}P$		1 896.5	1 399 670–1 452 400	1–3 9–9	2.29-01	3.70-02	2.31-01	-1.432	C	LS 1
91		r - r		1 707 26	1 402 200 1 460 770		2.42.00	1.06 .01	2.00 - 00	0.276	D.	
				1 707.36 1 684.07	1 402 200–1 460 770 1 400 470–1 459 850	5–5 3–3			2.98+00 $5.95-01$			LS LS
				1 734.61	1 400 470=1 459 850	5–3			9.94-01			LS
				1 658.37	1 400 470–1 460 770	3–5			9.93-01			LS
				1 661.68	1 399 670–1 459 850	1–3			7.93-01			LS
92		$^{1}P^{\circ}-^{1}P$	14 584	14 588	1 426 125–1 432 980	3–3	3.45-03	1.10-02	1.58+00	-1.481	В	1
93		$^{1}P^{\circ}-^{1}D$	2 063.1	2 063.8	1 426 125–1 474 580	3–5	2.03+00	2.16-01	4.40+00	-0.188	B+	1
94		$^{1}P^{\circ}-^{1}S$		1 805.5	1 426 125–1 481 510	3–1	4.17+00	6.80-02	1.21+00	-0.690	В	1
95	2p3s - 2s4s	$^{1}P^{\circ}-^{1}S$		433.473	1 426 125–1 656 820	3–1	2.46+00	2.31-03	9.89-03	-2.159	D	1
96	2p3s-2s4d	$^{1}P^{\circ}-^{1}D$		379.010	1 426 125–1 689 970	3–5	1.78+01	6.40-02	2.40-01	-0.717	C+	1
97	2p3s-2p4p	$^{3}P^{\circ}-^{3}D$				9–15						1
				240.912	1 402 200-1 817 290	5–7	1.14+02	1.39-01	5.51-01	-0.158	C+	LS
				240.651	1 400 470-1 816 010	3-5			2.95-01			LS
				241.657	1 402 200–1 816 010	5–5	2.82+01	2.47-02	9.83-02	-0.908	C	LS
98		$^{3}P^{\circ}-^{3}P$				9–9						1
				237.710	1 402 200-1 822 880	5-5	7.40+01	6.27 - 02	2.45 - 01	-0.504	C+	LS
				236.737	1 400 470–1 822 880	3–5	2.50+01	3.50-02	8.18-02	-0.979	C	LS
99		$^{1}P^{\circ}-^{1}P$		258.355	1 426 125–1 813 190	3–3	1.09+02	1.09-01	2.78-01	-0.485	C+	1
100		$^{1}P^{\circ}-^{1}D$		249.057	1 426 125–1 827 640	3–5	9.42+01	1.46-01	3.59-01	-0.359	C+	1
101	2p3s-2s5d	$^{1}P^{\circ}-^{1}D$		236.499	1 426 125–1 848 960	3–5	1.03+01	1.44-02	3.36-02	-1.365	D+	1
102	2p3s-2p5p	$^{3}P^{\circ}-^{3}P$				9_9						1
				170.509	1 402 200–1 988 680	5–5	4.45+01	1.94-02	5.44-02	-1.013	D+	LS
				170.007	1 400 470–1 988 680	3–5	1.50+01	1.08 - 02	1.81 - 02	-1.489	D	LS
103		$^{1}P^{\circ}-^{1}D$		177.175	1 426 125–1 990 540	3–5	5.62+01	4.41-02	7.72-02	-0.878	C	1
104	2p3p-2p3d	$^{1}P-^{1}D^{\circ}$	2 763.9	2 764.7	1 432 980–1 469 150	3–5	4.31-01	8.23-02	2.25+00	-0.607	B+	1
105		$^{1}P-^{1}P^{\circ}$		1 238.39	1 432 980–1 513 730	3–3	3.47+00	7.98-02	9.76-01	-0.621	В	1
106		$^{3}D - ^{3}D^{\circ}$	2 231	2 232	1 440 846–1 485 645	15–15	2.33-01	1.74-02	1.92+00	-0.583	C+	1
			2 261.7	2 262.4	1 441 880–1 486 080	7–7	1.99-01	1.53-02	7.98-01	-0.970	В	LS
			2 217.6	2 218.3	1 440 260–1 485 340	5–5	1.65-01	1.22-02	4.45-01	-1.215	C+	LS

Table 32. Transition probabilities of allowed lines for Na VIII (references for this table are as follows: 1=Tully *et al.*, ¹¹³ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ and 5=Safronova *et al.*, ⁸²)—Continued

Ma	Transition	N / 1.	λ _{air}	$\lambda_{\text{vac}} (\mathring{A})$	$E_i - E_k$		A_{ki} (10^8 s^{-1})	r	S	1a = C	Α -	C
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10° s ¹)	f_{ik}	(a.u.)	log gf	Acc.	Source
			2 186.1	2 186.7	1 439 410–1 485 140	3–3			2.87-01			LS
			2 300.3	2 301.0	1 441 880–1 485 340	7–5			9.97-02			LS
			2 227.5	2 228.2	1 440 260–1 485 140 1 440 260–1 486 080	5–3 5–7			9.61-02 $9.99-02$			LS LS
			2 181.8 2 176.5	2 182.5 2 177.2	1 439 410–1 485 340	5–7 3–5			9.99 - 02 $9.59 - 02$			LS
107		$^{3}D-^{3}P^{\circ}$	2 170.5	1 943	1 440 846–1 492 308	15–9			1.05+00			1
107		D- F										
				1 996.0 1 909.5	1 441 880–1 491 980 1 440 260–1 492 630	7–5 5–3			4.88-01 $2.62-01$			LS LS
				1 866.7	1 439 410–1 492 980	3–3			1.16-01			LS
				1 933.5	1 440 260–1 491 980	5–5			8.72-02			LS
				1 879.0	1 439 410–1 492 630	3–3			8.72-02			LS
				1 902.2	1 439 410–1 491 980	3–5			5.82-03			LS
108		$^{3}S-^{3}P^{\circ}$	2 505	2 506	1 452 400–1 492 308	3–9			4.16+00			1
100		5 1	2 525.8	2 526.5	1 452 400–1 491 980	3–5			2.31+00			LS
			2 485.0	2 485.7	1 452 400–1 491 980	3–3			1.39+00			LS
			2 463.5	2 464.3	1 452 400–1 492 980	3–3			4.62-01			LS
109		$^{3}P-^{3}D^{\circ}$	2 103.5	2 101.3	1 132 100 1 132 300	9–15	0.20 01	1.70 02	1.02 01	1.211	0 1	1
109		1 - D	2.040.0	2.051.0	1 460 770 1 406 000		1.52 .01	4.00 .02	2.25 - 00	0.602	D.	
			3 949.9	3 951.0	1 460 770–1 486 080	5–7			3.25+00			LS
			3 922.0	3 923.1	1 459 850–1 485 340	3–5			1.74+00			LS
			4 068.9	4 070.0	1 460 770–1 485 340	5–5			5.80-01			LS
			3 953.0 4 102.2	3 954.1 4 103.4	1 459 850–1 485 140 1 460 770–1 485 140	3–3 5–3			5.82-01 3.86-02			LS LS
110		$^{3}P-^{3}P^{\circ}$	4 102.2	4 103.4	1 400 770–1 465 140		3.76-03	3.72-04	3.80-02	-2.344	D⊤	
110		P-P				9–9						1
			3 203.2	3 204.1	1 460 770–1 491 980	5–5			7.07-01			LS
			3 049.8	3 050.6	1 459 850–1 492 630	3–3			1.42-01			LS
			3 137.8	3 138.7	1 460 770–1 492 630	5–3			2.36-01			LS
			3 017.5	3 018.4	1 459 850–1 492 980	3–1 3–5			1.89-01			LS
111		lp le°	3 111.5	3 112.4	1 459 850–1 491 980				2.36-01			LS
111		$^{1}D-^{1}F^{\circ}$	3 010.3	3 011.1	1 474 580–1 507 790	5–7			4.81+00			1
112		$^{1}D-^{1}P^{\circ}$	2 553.5	2 554.3	1 474 580–1 513 730	5–3	3.61-02	2.12-03	8.91-02	-1.975	С	1
113		$^{1}S-^{1}P^{\circ}$	3 102.8	3 103.7	1 481 510–1513 730	1–3	2.59-01	1.12-01	1.14+00	-0.951	В	1
114	2p3p-2s4p	$^{1}D-^{1}P^{\circ}$		502.993	1 474 580–1 673 390	5–3	1.32+00	3.01-03	2.49-02	-1.822	D+	1
115		$^{1}S-^{1}P^{\circ}$		521.159	1 481 510–1 673 390	1–3	2.08+00	2.54-02	4.36-02	-1.595	D+	1
116	2p3p-2p4d	$^{1}P-^{1}D^{\circ}$		253.428	1 432 980–1 827 570	3–5	2.27+02	3.64-01	9.11-01	0.038	В	1
117		$^{1}P-^{1}P^{\circ}$		243.825	1 432 980–1 843 110	3–3	3.69+01	3.29-02	7.92-02	-1.006	C	1
118		$^{3}D-^{3}D^{\circ}$				15–15						1
				255.330	1 441 880–1 833 530	7–7	6.18+01	6.04-02	3.55-01	-0.374	C+	LS
				254.278	1 440 260–1 833 530	5–7			4.48-02			
119		$^{3}D-^{3}P^{\circ}$				15–9						1
				254.369	1 441 880–1 835 010	7–5	5.40+00	3.74-03	2.19-02	-1.582	D	LS
				253.145	1 440 260–1 835 290	5–3			1.18-02			LS
				253.325	1 440 260–1 835 010	5–5		9.40-04				LS
				433.343	1 770 200-1 055 010	5-5	<i>5.11</i> – U.	J.TO UT	3.72-0.5	-2.320	L:	LO
				252.602	1 439 410–1 835 290	3–3			3.92-03			LS

TABLE 32. Transition probabilities of allowed lines for Na VIII (references for this table are as follows: 1=Tully *et al.*, ¹¹³ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ and 5=Safronova *et al.*, ⁸²)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
120		$^{3}S - ^{3}P^{\circ}$				3–9						1
				261.363	1 452 400–1 835 010	3–5	1.18+02	2.02-01	5.21-01	-0.218	C+	LS
				261.172	1 452 400–1 835 290	3–3	1.18+02	1.21-01	3.12-01	-0.440	C+	LS
121		$^{3}P - ^{3}D^{\circ}$				9–15						1
				268.269	1 460 770–1 833 530	5–7	2.16+02	3.26-01	1.44+00	0.212	В	LS
122		$^{3}P-^{3}P^{\circ}$				9_9						1
				267.208	1 460 770–1 835 010	5–5	6.85+01	7.33-02	3.22-01	-0.436	C+	LS
				266.354	1 459 850-1 835 290	3–3	2.30+01	2.45 - 02	6.44 - 02	-1.134	C	LS
				267.008	1 460 770-1 835 290	5-3	3.82+01	2.45 - 02	1.08 - 01	-0.912	C	LS
				266.553	1 459 850–1 835 010	3–5	2.30+01	4.08 - 02	1.07 - 01	-0.912	C	LS
123		$^{1}D-^{1}D^{\circ}$		283.294	1 474 580–1 827 570	5–5	7.98+01	9.60-02	4.48-01	-0.319	C+	1
124		$^{1}D-^{1}F^{\circ}$		274.514	1 474 580–1 838 860	5–7	2.27+02	3.59-01	1.62+00	0.254	В	1
125		$^{1}D-^{1}P^{\circ}$		271.348	1 474 580–1 843 110	5–3	5.62+00	3.72-03	1.66-02	-1.730	D	1
126		$^{1}S-^{1}P^{\circ}$		276.549	1 481 510–1 843 110	1–3	1.03+02	3.56-01	3.24-01	-0.449	C+	1
127	2p3p-2s5p	${}^{1}P - {}^{1}P^{\circ}$		246.348	1 432 980–1 838 910	3–3	6.12+01	5.57-02	1.36-01	-0.777	C	1
128		$^{1}S-^{1}P^{\circ}$		279.799	1 481 510–1 838 910	1–3	5.79+01	2.04-01	1.88-01	-0.690	C	1
129	2p3p-2p5d	$^{1}P-^{1}D^{\circ}$		179.134	1 432 980–1 991 220	3–5	1.19+02	9.52-02	1.68-01	-0.544	C	1
130		$^3D - ^3D^{\circ}$				15–15						1
				180.999	1 441 880–1 994 370	7–7	3.42+01	1.68-02	7.01-02	-0.930	C	LS
				180.470	1 440 260–1 994 370	5–7	4.33+00	2.96-03	8.79-03	-1.830	D	LS
131		$^{3}S - ^{3}P^{\circ}$				3–9						1
				184.322	1 452 400-1 994 930	3–5	7.99+01	6.78-02	1.23-01	-0.692	C	LS
				184.230	1 452 400–1 995 200	3–3	8.00+01	4.07 - 02	7.41 - 02	-0.913	C	LS
132		$^{3}P-^{3}D^{\circ}$				9–15						1
				187.406	1 460 770–1 994 370	5–7	1.09+02	8.04-02	2.48-01	-0.396	C+	LS
133		$^{3}P-^{3}P^{\circ}$				9–9						1
				187.210	1 460 770–1 994 930	5–5	3.98+01	2.09-02	6.44-02	-0.981	D+	LS
				186.794	1 459 850–1 995 200	3–3			1.29-02			LS
				187.115	1 460 770–1 995 200	5–3			2.14-02			LS
				186.888	1 459 850–1 994 930	3–5			2.14-02			LS
134		$^{1}D-^{1}D^{\circ}$		193.558	1 474 580–1 991 220	5–5	3.79+01	2.13-02	6.79-02	-0.973	C	1
135		$^{1}D-^{1}F^{\circ}$		191.004	1 474 580–1 998 130	5–7	1.20+02	9.21-02	2.90-01	-0.337	C+	1
136	2p3p-2p6d	$^3D - ^3D^{\circ}$		156.34	1 440 846–2 080 460	15–15	2.26+01	8.28-03	6.40-02	-0.906	D	1
				156.597	1 441 880–2 080 460	7–7	2.00+01	7.35-03	2.65-02	-1.289	D+	LS
				156.201	1 440 260-2 080 460	5–5			1.48-02			LS
				155.994	1 439 410–2 080 460	3–3			9.58-03			LS
				156.597	1 441 880–2 080 460	7–5	3.51+00	9.21-04	3.32-03	-2.191	E+	LS
				156.201	1 440 260–2 080 460	5-3	5.65+00	1.24-03	3.19-03	-2.208	E+	LS
				156.201	1 440 260–2 080 460	5–7	2.52+00	1.29 - 03	3.32-03	-2.190	E+	LS
				155.994	1 439 410–2 080 460	3–5	3.40+00	2.07-03	3.19-03	-2.207	E+	LS

Table 32. Transition probabilities of allowed lines for Na VIII (references for this table are as follows: 1=Tully *et al.*, ¹¹³ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ and 5=Safronova *et al.*, ⁸²)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
137		$^{3}P-^{3}D^{\circ}$				9–15						1
				161.371	1 460 770–2 080 460	5–7	6.06+01	3.31-02	8.79-02	-0.781	С	LS
				161.132	1 459 850-2 080 460	3-5			4.71-02			LS
				161.371	1 460 770-2 080 460	5-5	1.51+01	5.91-03	1.57-02	-1.529	D	LS
				161.132	1 459 850-2 080 460	3-3	2.53+01	9.86-03	1.57-02	-1.529	D	LS
				161.371	1 460 770–2 080 460	5–3	1.68+00	3.94-04	1.05-03	-2.706	E	LS
138	2p3d-2p3p	$^{1}D^{\circ}-^{1}D$	18 411	18 416	1 469 150–1 474 580	5–5	4.01-04	2.04-03	6.18-01	-1.991	В	1
139	2p3d-2s4s	$^{3}P^{\circ}-^{3}S$		636.2	1 492 308–1 649 480	9–3	3.38-01	6.84-04	1.29-02	-2.211	E+	1
				634.92	1 491 980–1 649 480	5–3			7.16-03			LS
				637.55	1 492 630–1 649 480	3–3			4.29 - 03			LS
				638.98	1 492 980–1 649 480	1–3	3.71-02	6.81 - 04	1.43-03	-3.167	Е	LS
140	2p3d-2s4d	$^{3}P^{\circ}-^{3}D$		523.39	1 492 308–1 683 370	9–15	1.71+00	1.17-02	1.82-01	-0.978	D+	1
				522.493	1 491 980–1 683 370	5–7	1.72+00	9.86-03	8.48 - 02	-1.307	C	LS
				524.274	1 492 630–1 683 370	3–5	1.28 + 00	8.77 - 03	4.54 - 02	-1.580	D+	LS
				525.238	1 492 980–1 683 370	1-3	9.43 - 01	1.17 - 02	2.02 - 02	-1.932	D	LS
				522.493	1 491 980-1 683 370	5-5	4.30 - 01	1.76 - 03	1.51 - 02	-2.056	D	LS
				524.274	1 492 630-1 683 370	3-3	7.09 - 01	2.92 - 03	1.51 - 02	-2.057	D	LS
				522.493	1 491 980–1 683 370	5–3	4.76-02	1.17 - 04	1.01 - 03	-3.233	E	LS
141		${}^{1}F^{\circ} - {}^{1}D$		548.908	1 507 790–1 689 970	7-5	6.01-01	1.94-03	2.45-02	-1.867	D+	1
142		$^{1}P^{\circ}-^{1}D$		567.41	1 513 730–1 689 970	3–5	1.78+00	1.43-02	8.01-02	-1.368	C	1
143	2p3d-2p4p	$^{1}D^{\circ}-^{1}P$		290.664	1 469 150–1 813 190	5–3	1.92+01	1.46-02	6.99-02	-1.137	C	1
144		$^{3}D^{\circ}-^{3}D$				15–15						1
				301.923	1 486 080-1 817 290	7–7	3.49+00	4.77-03	3.32-02	-1.476	D+	LS
				302.416	1 485 340-1 816 010	5–5	2.72 + 00	3.73-03	1.86-02	-1.729	D	LS
				303.095	1 486 080-1 816 010	7–5			4.16-03			LS
				301.250	1 485 340–1 817 290	5–7			4.16-03			LS
				302.234	1 485 140–1 816 010	3–7			4.00-03			LS
		3_ ° 3_		302.234	1 483 140-1 810 010		3.67-01	1.54-05	4.00-03	-2.390	ĿΤ	
145		$^{3}D^{\circ}-^{3}P$				15–9						1
				296.912	1 486 080-1 822 880	7–5	1.53 + 01	1.44 - 02	9.85 - 02	-0.997	C	LS
				296.261	1 485 340-1 822 880	5-5	2.74+00	3.61 - 03	1.76 - 02	-1.744	D	LS
				296.086	1 485 140–1 822 880	3–5	1.83-01	4.01 - 04	1.17-03	-2.920	E	LS
146		$^{3}P^{\circ}-^{3}D$				9–15						1
				307.399	1 491 980–1 817 290	5–7	7.97+00	1.58-02	7.99-02	-1.102	C	LS
				309.234	1 492 630-1 816 010	3-5	5.86+00	1.40 - 02	4.28 - 02	-1.377	D+	LS
				308.613	1 491 980–1 816 010	5–5	1.96+00	2.80-03	1.42-02	-1.854	D	LS
147		$^{3}P^{\circ}-^{3}P$				9–9						1
				302.206	1 491 980–1 822 880	5–5	1.62 ± 00	2 22 - 02	1.10-02	_1 055	D	LS
				302.206	1 491 980–1 822 880	3–5 3–5			3.68-03			LS
148		${}^{1}F^{\circ} - {}^{1}D$		312.647	1 507 790–1 827 640	7–5			1.71-01			1
149		$^{1}P^{\circ}-^{1}P$		333.934	1 513 730–1 813 190	3–3			8.41-02			1
150		$^{1}P^{\circ}-^{1}D$		318.563	1 513 730–1 827 640	3–5			6.51-02			1
151	2p3d-2s5d?	$^{3}D^{\circ}-^{3}D$?		[275.5]	1 485 645–1 848 670	15–15	1.70+00	1.94-03	2.64-02	-1.536	E+	1

TABLE 32. Transition probabilities of allowed lines for Na VIII (references for this table are as follows: 1=Tully *et al.*, ¹¹³ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ and 5=Safronova *et al.*, ⁸²)—Continued

	Transition		λ_{air}	λ_{vac} (Å)	$E_i - E_k$		A_{ki}		S			
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	$\log gf$	Acc.	Source
				275.794	1 486 080–1 848 670	7–7			1.09 - 02			LS
				275.232	1 485 340–1 848 670	5–5			6.12-03			LS
				275.080 275.794	1 485 140–1 848 670 1 486 080–1 848 670	3–3 7–5			3.94-03 1.37-03			LS LS
				275.232	1 485 340–1 848 670	5–3			1.31-03			LS
				275.232	1 485 340–1 848 670	5–7			1.37-03			LS
				275.080	1 485 140–1 848 670	3–5	2.56-01	4.84-04	1.31-03	-2.838	E	LS
152		${}^{3}P^{\circ} - {}^{3}D$?		[280.6]	1 492 308–1 848 670	9–15	1.39+01	2.74-02	2.27-01	-0.608	D+	1
				280.355	1 491 980–1 848 670	5–7	1.39+01	2.30-02	1.06-01	-0.939	C	LS
				280.867	1 492 630–1 848 670	3-5	1.04+01	2.05-02	5.69-02	-1.211	D+	LS
				281.144	1 492 980–1 848 670	1–3			2.53 - 02			LS
				280.355	1 491 980–1 848 670	5–5			1.90-02			LS
				280.867 280.355	1 492 630–1 848 670 1 491 980–1 848 670	3–3 5–3			1.89-02 1.26-03			LS LS
153	2p3d-2p5p	$^{3}D^{\circ}-^{3}P$		280.333	1 491 900-1 040 070	3–3 15–9	3.00-01	2.74-04	1.20-03	-2.603	E	1
100	2p3u 2p3p	Б 1		100.065	4 404 000 4 000 400		6 7 7 00	206.00		4 600	_	
				198.965 198.673	1 486 080–1 988 680 1 485 340–1 988 680	7–5			1.31-02 $2.34-03$			LS
				198.594	1 485 140–1 988 680	5–5 3–5			1.56-04			LS LS
154		$^{1}F^{\circ}-^{1}D$		207.147	1 507 790–1 990 540	7–5	8.05+00	3.70-03	1.77-02	-1.587	D	1
155		$^{1}P^{\circ}-^{1}D$		209.727	1 513 730–1 990 540	3–5	3.68+00	4.04-03	8.37-03	-1.916	D	1
156	2s4s-2s4p	$^{1}S-^{1}P^{\circ}$	6 033	6 035	1 656 820–1 673 390	1–3	2.15-01	3.52-01	6.99+00	-0.453	B+	1
157	2s4s-2p4d	$^{3}S-^{3}P^{\circ}$				3–9						1
				538.996	1 649 480–1 835 010	3-5	4.34+00	3.15-02	1.68-01	-1.025	C	LS
				538.184	1 649 480–1 835 290	3–3	4.35+00	1.89-02	1.00-01	-1.246	C	LS
158		$^{1}S-^{1}P^{\circ}$		536.797	1 656 820–1 843 110	1–3	1.51+01	1.96-01	3.46-01	-0.708	C+	1
159	2s4s-2s5p	$^{1}S-^{1}P^{\circ}$		549.179	1 656 820–1 838 910	1–3	4.34+00	5.89-02	1.06-01	-1.230	C	1
160	2s4s-2s6p	$^{1}S-^{1}P^{\circ}$		364.844	1 656 820–1 930 910	1–3	1.56+01	9.31-02	1.12-01	-1.031	C	1
161	2s4p-2s4d	$^{1}P^{\circ}-^{1}D$	6 030	6031	1 673 390–1 689 970	3–5	2.38-01	2.16-01	1.29+01	-0.188	A	1
162	2s4p-2p4p	$^{1}P^{\circ}-^{1}P$		715.31	1 673 390–1 813 190	3–3	1.05+01	8.03-02	5.67-01	-0.618	C+	1
163		$^{1}P^{\circ}-^{1}D$		648.30	1 673 390–1 827 640	3–5	3.69+00	3.87-02	2.48-01	-0.935	C+	1
164	2s4p-2s5d	$^{1}P^{\circ}-^{1}D$		569.57	1 673 390–1 848 960	3–5	4.93+01	4.00-01	2.25+00	0.079	B+	1
165	2s4p-2s6d	$^{1}P^{\circ}-^{1}D$		381.913	1 673 390–1 935 230	3–5	3.29+01	1.20-01	4.53-01	-0.444	C+	1
166	2s4p-2p5p	$^{1}P^{\circ}-^{1}D$		315.308	1 673 390–1 990 540	3–5	3.36+00	8.34-03	2.60-02	-1.602	D+	1
167	2s4d-2p4d	$^3D - ^3D^{\circ}$				15–15						1
				665.96	1 683 370–1 833 530	7–7			7.24-01			LS
		3_ 3_0		665.96	1 683 370–1 833 530	5–7	8.91-01	8.29-03	9.09-02	-1.382	С	LS
168		$^{3}D - ^{3}P^{\circ}$				15–9						1
				659.46	1 683 370–1 835 010	7–5			1.11+00			LS
				658.24	1 683 370–1 835 290	5–3			5.96-01			LS
				659.46	1 683 370–1 835 010	5–5			1.99-01			LS
				658.24 659.46	1 683 370–1 835 290	3–3			1.98-01			LS
				659.46	1 683 370–1 835 010	3–5	1.0/-01	2.03-03	1.32-02	-2.213	ע	LS

Table 32. Transition probabilities of allowed lines for Na VIII (references for this table are as follows: 1=Tully *et al.*, ¹¹³ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ and 5=Safronova *et al.*, ⁸²)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
169		$^{1}D-^{1}D^{\circ}$		726.74	1 689 970–1 827 570	5–5	6.02+00	4.77-02	5.71-01	-0.623	C+	1
170		$^{1}D-^{1}F^{\circ}$		671.64	1 689 970–1 838 860	5–7	4.83+00	4.57-02	5.05-01	-0.641	C+	1
171	2s4d-2s5p	$^{1}D-^{1}P^{\circ}$		671.41	1 689 970–1 838 910	5–3	2.18+01	8.84-02	9.77-01	-0.355	В	1
172	2s4d-2s6p	$^{1}D-^{1}P^{\circ}$		415.041	1 689 970–1 930 910	5–3	6.43+00	9.97-03	6.81-02	-1.302	C	1
173	2s4d-2p5d	$^{1}D-^{1}F^{\circ}$		324.507	1 689 970–1 998 130	5–7	2.09+00	4.61-03	2.46-02	-1.637	D+	1
174	2p4p-2p4d	$^{1}P-^{1}D^{\circ}$	6 952	6 954	1 813 190–1 827 570	3–5	1.18-01	1.43-01	9.82+00	-0.368	A	1
175		$^{1}P-^{1}P^{\circ}$	3 341.3	3 342.2	1 813 190–1 843 110	3–3	2.04-01	3.41-02	1.13+00	-0.990	В	1
176		$^{3}D-^{3}D^{\circ}$				15–15						1
			6 156	6 158	1 817 290–1 833 530	7–7	4.87-02	2.77-02	3.93+00	-0.712	B+	LS
			5 706	5 708	1 816 010–1 833 530	5–7	7.68-03	5.25-03	4.93-01	-1.581	C+	LS
177		$^{3}D - ^{3}P^{\circ}$				15–9						1
			5 642 5 185.3	5 643 5 186.7	1 817 290–1 835 010 1 816 010–1 835 290	7–5 5–3			1.10+00 5.92-01			LS LS
			5 261.7	5 263.2	1 816 010–1 835 290	5–5			1.98-01			LS
178		$^{3}P-^{3}D^{\circ}$				9–15						1
			9 387	9 390	1 822 880–1 833 530	5–7	4.89-02	9.04-02	1.40+01	-0.345	A	LS
179		$^{3}P-^{3}P^{\circ}$				9_9						1
			8 242	8 244	1 822 880–1 835 010	5–5	1.91-02	1.95-02	2.65+00	-1.011	B+	LS
			8 056	8 058	1 822 880–1 835 290	5–3	1.14-02	6.65-03	8.82-01	-1.478	В	LS
180		$^{1}D-^{1}F^{\circ}$	8 910	8 913	1 827 640–1 838 860	5–7	6.12-02	1.02-01	1.50+01	-0.292	A	1
181		$^{1}D-^{1}P^{\circ}$	6 462	6 464	1 827 640–1 843 110	5–3	1.30-02	4.90-03	5.21-01	-1.611	C+	1
182	2p4p-2s5p	$^{1}P-^{1}P^{\circ}$	3 886.9	3 888.0	1 813 190–1 838 910	3–3	3.84-01	8.71-02	3.34+00	-0.583	B+	1
183		$^{1}D-^{1}P^{\circ}$	8 871	8 873	1 827 640–1 838 910	5–3	1.09-04	7.75-05	1.13-02	-3.412	D	1
184	2p4p-2s6p	$^{1}D-^{1}P^{\circ}$		968.34	1 827 640–1 930 910	5–3	7.65-01	6.45-03	1.03-01	-1.491	C	1
185	2p4p-2p5d	$^{1}P-^{1}D^{\circ}$		561.703	1 813 190–1 991 220	3–5	4.39+01	3.46-01	1.92+00	0.016	B+	1
186		$^3D - ^3D^{\circ}$				15–15						1
				564.72	1 817 290–1 994 370	7–7	1.08+01	5.14-02	6.69-01	-0.444	В	LS
				560.664	1 816 010–1 994 370	5–7	1.38+00	9.09-03	8.39-02	-1.342	C	LS
187		$^{3}D - ^{3}P^{\circ}$				15–9						1
				562.94	1 817 290–1 994 930	7–5			8.04-02			LS
				558.067 558.909	1 816 010–1 995 200 1 816 010–1 994 930	5–3 5–5			4.31-02 $1.44-02$			LS LS
188		$^{3}P-^{3}D^{\circ}$				9–15						1
				583.12	1 822 880–1 994 370	5–7	4.32+01	3.08-01	2.96+00	0.188	B+	LS
189		$^{3}P-^{3}P^{\circ}$				9_9						1
				581.23	1 822 880–1 994 930	5–5	1 43+01	7 26-02	6.95-01	-0.440	R	LS
				580.32	1 822 880–1 994 930	5–3			2.31-01			LS
190		$^{1}D-^{1}D^{\circ}$		611.32	1 827 640–1 991 220	5–5	1.47+01	8.22-02	8.27-01	-0.386	В	1

J. Phys. Chem. Ref. Data, Vol. 37, No. 1, 2008

Table 32. Transition probabilities of allowed lines for Na VIII (references for this table are as follows: 1=Tully *et al.*, ¹¹³ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ and 5=Safronova *et al.*, ⁸²)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \; {\rm s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
191		$^{1}D-^{1}F^{\circ}$		586.54	1 827 640–1 998 130	5–7	4.92+01	3.55-01	3.43+00	0.249	B+	1
192	2p4p-2p6d	$^{3}D - ^{3}D^{\circ}$				15–15						1
				379.983	1 817 290–2 080 460	7–7	7.30+00	1.58-02	1.38-01	-0.956	С	LS
				378.143	1 816 010–2 080 460	5–5			7.78-02			LS
				379.983	1 817 290-2 080 460	7–5	1.29+00	1.99-03	1.74-02	-1.856	D	LS
				378.143	1 816 010-2 080 460	5-3	2.09+00	2.69-03	1.67-02	-1.871	D	LS
				378.143	1 816 010–2 080 460	5–7	9.30-01	2.79-03	1.74-02	-1.855	D	LS
193		$^{3}P - ^{3}D^{\circ}$				9–15						1
				388.229	1 822 880–2 080 460	5–7	2.62+01	8.29-02	5.30-01	-0.382	C+	LS
				388.229	1 822 880–2 080 460	5-5	6.55+00	1.48 - 02	9.46 - 02	-1.131	C	LS
				388.229	1 822 880–2 080 460	5–3	7.28-01	9.87-04	6.31-03	-2.307	E+	LS
194	2 <i>p</i> 4 <i>d</i> -2 <i>s</i> 5 <i>d</i> ?	${}^{3}P^{\circ} - {}^{3}D$?				9–15						1
			7 319	7 321	1 835 010–1 848 670	5–7			7.84+00			LS
			7 472	7 474	1 835 290–1 848 670	3–5			4.20+00			LS
			7 319	7 321	1 835 010–1 848 670	5–5	1.44 - 02	1.16-02	1.40+00	-1.237	В	LS
			7 472	7 474	1 835 290–1 848 670	3–3	2.27 - 02	1.90 - 02	1.40+00	-1.244	В	LS
			7 319	7 321	1 835 010–1 848 670	5–3	1.61-03	7.75-04	9.34-02	-2.412	C	LS
195		$^{1}D^{\circ}-^{1}D$	4 673.8	4 675.1	1 827 570–1 848 960	5–5	6.96-04	2.28-04	1.75-02	-2.943	D	1
196		${}^{1}F^{\circ} - {}^{1}D$	9 898	9 901	1 838 860–1 848 960	7–5	2.75-02	2.89-02	6.59+00	-0.694	B+	1
197		$^{1}P^{\circ}-^{1}D$	17 089	17 094	1 843 110–1 848 960	3–5	1.41-02	1.03-01	1.74+01	-0.510	A	1
198	2p4d-2s6d?	${}^{3}P^{\circ} - {}^{3}D$?				9–15						1
				1 016.05	1 835 010-1 933 430	5–7	2.70+00	5.84-02	9.77-01	-0.535	В	LS
				1 018.95	1 835 290-1 933 430	3-5	2.00+00	5.20-02	5.23-01	-0.807	C+	LS
				1 016.05	1 835 010-1 933 430	5–5	6.72-01	1.04-02	1.74-01	-1.284	C	LS
				1 018.95	1 835 290-1 933 430	3–3			1.74-01			LS
				1 016.05	1 835 010–1 933 430	5–3			1.16-02			LS
199		$^{1}P^{\circ}-^{1}D$		1 085.54	1 843 110–1 935 230	3–5	9.85+00	2.90-01	3.11+00	-0.060	B+	1
200	2 <i>p</i> 4 <i>d</i> -2 <i>p</i> 5 <i>p</i>	$^{1}D^{\circ}-^{1}D$		613.61	1 827 570–1 990 540	5–5	2.29-01	1.29-03	1.30-02	-2.190	D	1
201		$^{3}D^{\circ}-^{3}P$				15–9						1
				644.54	1 833 530–1 988 680	7–5	7.60+00	3.38-02	5.02-01	-0.626	C+	LS
202		$^{3}P^{\circ}-^{3}P$				9_9						1
				650.75	1 835 010–1 988 680	5–5	4 13+00	2 62 - 02	2.81-01	-0.883	C+	LS
				651.93	1 835 290–1 988 680	3–5			9.34-02			LS
203		${}^{1}F^{\circ} - {}^{1}D$		659.28	1 838 860–1 990 540	7–5	7.18+00	3.34-02	5.07-01	-0.631	C+	1
204		$^{1}P^{\circ}-^{1}D$		678.29	1 843 110–1 990 540	3–5	1.17+00	1.35-02	9.04-02	-1.393	С	1
205	2s5p-2s5d	$^{1}P^{\circ}-^{1}D$	9 948	9 950	1 838 910–1 848 960	3–5	7.40-02	1.83-01	1.80+01	-0.260	A	1
206	2s5p-2s6d	$^{1}P^{\circ}-^{1}D$		1 038.21	1 838 910–1 935 230	3–5			1.70+00			1
207	2s5p-2p5p	$^{1}P^{\circ}-^{1}D$		659.50	1 838 910–1 990 540	3–5			6.90-02			1
208	2s5d? - 2p5d	$^{3}D?-^{3}D^{\circ}$				15–15						1
	200a. 2pou	Σ. Β				10 10						•
				686.34	1 848 670–1 994 370	7–7	6.26+00	4.42 - 02	6.99-01	-0.509	В	LS
				686.34	1 848 670–1 994 370	5–7	7.84 - 01	7.75 - 03	8.76-02	-1.412	C	LS

Table 32. Transition probabilities of allowed lines for Na VIII (references for this table are as follows: 1=Tully *et al.*, ¹¹³ 2=Tachiev and Froese Fischer, ⁹⁴ 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ and 5=Safronova *et al.*, ⁸²)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
209		$^{3}D? - ^{3}P^{\circ}$				15–9						1
				683.71	1 848 670–1 994 930	7–5	3.20+00	1.60-02	2.52-01	-0.951	C+	LS
				682.45	1 848 670-1 995 200	5-3	2.86+00	1.20-02	1.35-01	-1.222	C	LS
				683.71	1 848 670-1 994 930	5-5	5.71-01	4.00-03	4.50-02	-1.699	D+	LS
				682.45	1 848 670-1 995 200	3-3	9.57-01	6.68-03	4.50-02	-1.698	D+	LS
				683.71	1 848 670–1 994 930	3–5	3.80-02	4.44-04	3.00-03	-2.875	E+	LS
210	2s5d-2s6p	$^{1}D-^{1}P^{\circ}$		1 220.26	1 848 960–1 930 910	5–3	7.00+00	9.38-02	1.88+00	-0.329	B+	1
211	2s5d-2p5d	$^{1}D-^{1}D^{\circ}$		702.94	1 848 960–1 991 220	5–5	7.57+00	5.61-02	6.49-01	-0.552	В	1
212		$^{1}D-^{1}F^{\circ}$		670.38	1 848 960–1 998 130	5–7	7.61+00	7.18-02	7.92-01	-0.445	В	1
213	2s6p-2s6d	$^{1}P^{\circ}-^{1}D$		4 320 cm ⁻¹	1 930 910–1 935 230	3–5	2.61-02	3.49-01	7.98+01	0.020	A	1
214	2s6p-2p5p	$^{1}P^{\circ}-^{1}D$		1 677.01	1 930 910–1 990 540	3–5	1.61+00	1.13-01	1.87+00	-0.470	B+	1
215	2s6d?-2p5d	$^3D? - ^3P^{\circ}$				15–9						1
				1 626.02	1 933 430–1 994 930	7–5	3.89-02	1 10-03	4.12-02	-2 114	D+	LS
				1 618.91	1 933 430–1 995 200	5–3			2.21-02			LS
				1 626.02	1 933 430–1 994 930	5–5			7.39-03			LS
				1 618.91	1 933 430–1 995 200	3–3			7.37-03			LS
				1 626.02	1 933 430–1 994 930	3–5			4.91-04			LS
216	2s6d?-2p6d	$^3D? - ^3D^{\circ}$		[680]	1 933 430–2 080 460	15–15	6.63+00	4.60-02	1.54+00	-0.161	C+	1
				680.13	1 933 430–2 080 460	7–7	5.88+00	4.08-02	6.39-01	-0.544	В	LS
				680.13	1 933 430-2 080 460	5-5	4.61+00	3.20 - 02	3.58 - 01	-0.796	C+	LS
				680.13	1 933 430-2 080 460	3-3	4.97 + 00	3.45 - 02	2.32 - 01	-0.985	C	LS
				680.13	1 933 430-2 080 460	7–5	1.03+00	5.12 - 03	8.02 - 02	-1.446	C	LS
				680.13	1 933 430-2 080 460	5-3	1.66+00	6.90 - 03	7.72 - 02	-1.462	C	LS
				680.13	1 933 430-2 080 460	5-7	7.38 - 01	7.17 - 03	8.03 - 02	-1.446	C	LS
				680.13	1 933 430–2 080 460	3–5	9.95-01	1.15-02	7.72-02	-1.462	C	LS
217	2s6d-2p5d	$^{1}D-^{1}F^{\circ}$		1 589.83	1 935 230–1 998 130	5–7	8.78-02	4.66-03	1.22-01	-1.633	C	1
218	2p5p-2p5d	$^{3}P-^{3}D^{\circ}$				9–15						1
			17 570	17 575	1 988 680–1 994 370	5–7	2.05-02	1.33-01	3.85+01	-0.177	A	LS
219		$^{3}P-^{3}P^{\circ}$				9_9						1
			15 996	16 000	1 988 680–1 994 930	5–5	7 87-03	3.02-02	7.95 + 00	-0.821	Α	LS
			15 333	15 337	1 988 680–1 995 200	5–3			2.65+00			LS
220		$^{1}D-^{1}D^{\circ}$		680 cm ⁻¹	1 990 540–1 991 220	5–5	7.68-06	2.49-03	6.03+00	-1.905	B+	1
221		$^{1}D-^{1}F^{\circ}$	13 172	13 175	1 990 540–1 998 130	5–7	3.35-02	1.22-01	2.65+01	-0.215	A	1
222	2p5p-2p6d	$^{3}P-^{3}D^{\circ}$				9–15						1
				1 089.56	1 988 680–2 080 460	5–7	1 22±01	3.03=01	5.43+00	0.180	R+	LS
				1 089.56	1 988 680–2 080 460	5–7 5–5			9.70-01			LS
					1 988 680–2 080 460	5–3			6.47 - 02			
				1 089.56	1 700 000-2 000 400	5–3	5.50-01	5.01-05	0.47-02	-1./44		L

^aWavelength (Å) are always given unless cm⁻¹ is indicated.

10.8.3. Forbidden Transitions for Na VIII

The MCHF results of Tachiev and Froese Fischer 94 and the second-order relativistic MBPT results of Safronova *et al.*⁸² were used for all the compiled transitions.

To estimate accuracies, we pooled the relative standard

deviation of the mean (RSDM) for each of the lines with transition rates published in both of the references, 82,94 as described in the general introduction.

10.8.4. References for Forbidden Transitions for Na VIII

⁹⁴G. Tachiev and C. Froese Fischer, http:// www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio), downloaded on May 6, 2002. See Tachiev and Froese Fuscher (Ref. 86).

TABLE 33. Wavelength finding list for forbidden lines for Na VIII

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
(vac) (A)	NO.	(vac) (A)	INO.	(vac) (A)	110.
779.36	2	848.71	7	857.66	4
779.92	1	852.31	4	869.64	4
Wavelength	Mult.	Wavelength	Mult.	Wavelength	Mult.
(air) (Å)	No.	(air) (Å)	No.	(air) (Å)	No.
3 044.6	6	3 182.2	6		
Wavenumber	Mult.	Wavenumber	Mult.	Wavenumber	Mult.
(cm ⁻¹)	No.	(cm ⁻¹)	No.	(cm ⁻¹)	No.
2 338	3	1 419	5	732	3
1 606	3	834	5		

TABLE 34. Transition probabilities of forbidden lines for Na VIII (references for this table are as follows: 1=Tachiev and Froese Fischer and $2=Safronova\ et\ al.^{82}$)

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	$A_{ki} $ (s ⁻¹)	S (a.u.)	Acc.	Source
1	$2s^2 - 2s2p$	$^{1}S - ^{3}P^{\circ}$									
•	25 252p	5 1		[779.9]	0-128 218	1-5	M2	8.60-02	8.32+00	A	1
	2 2 2 2	1a 3p									
2	$2s^2-2p^2$	$^{1}S-^{3}P$		[304.590]	0-328 310	1–3	M1	1.43+00	4.49-06	D	2
				[304.390]	0-328 310	1-3	IVI I	1.45+00	4.49-06	D	2
3	2s2p-2s2p	$^{3}\text{P}^{\circ}-^{3}\text{P}^{\circ}$									
				1 606 cm ⁻¹	126 612-128 218	3-5	M1	5.59 - 02	2.50+00	A+	1,2
				1 606 cm ⁻¹	126 612-128 218	3-5	E2	3.38 - 08	1.41 - 01	A	1
				732 cm^{-1}	125 880-126 612	1-3	M1	7.10 - 03	2.01+00	A+	1,2
				$2~338~{\rm cm}^{-1}$	125 880–128 218	1-5	E2	9.82 - 08	6.28 - 02	$\mathrm{B} +$	1
4		$^{3}\mathbf{P}^{\circ}-^{1}\mathbf{P}^{\circ}$									
•				[857.7]	126 612-243 208	3–3	M1	1.85 + 00	1.29-04	D+	1,2
				[857.7]	126 612-243 208	3-3	E2	2.60-02	3.23-05	D+	1
				[869.6]	128 218-243 208	5-3	M1	2.92+00	2.14 - 04	D+	1,2
				[869.6]	128 218-243 208	5-3	E2	1.20 - 02	1.59-05	D+	1
				[852.3]	125 880-243 208	1-3	M1	2.45+00	1.68 - 04	D+	1,2
5	$2p^2 - 2p^2$	$^{3}P - ^{3}P$									
5	$z_p - z_p$			1 419 cm ⁻¹	328 310-329 729	3–5	M1	3.93-02	2.55+00	A+	2
				834 cm ⁻¹	327 476-328 310	1-3	M1	1.06-02	2.03+00	A+	2
($^{3}P - ^{1}D$									
6		ъР- ·D	[2.045]	[2,046]	220 210 261 145	2.5	3.71	2.02.01	1.5002	C .	2
			[3 045]	[3 046]	328 310–361 145	3–5	M1	3.03-01	1.59-03	C+	2
			[3 182]	[3 183]	329 729–361 145	5–5	M1	8.12-01	4.85-03	В	2
7		${}^{3}P - {}^{1}S$									
				[848.7]	328 310–446 136	3–1	M1	2.05+01	4.65-04	C	2

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

⁸²U. I. Safronova, W. R. Johnson, M. S. Safronova, and A. Derevianko, Phys. Scr. **59**, 286 (1999).

⁸⁶G. Tachiev and C. Froese Fischer, J. Phys. B **32**, 5805 (1999).

10.9. Na IX

Lithium isoelectronic sequence Ground state: $1s^22s^2S_{1/2}$

Ionization energy: $299.864 \text{ eV} = 2418570 \text{ cm}^{-1}$

10.9.1. Allowed Transitions for Na IX

In general the transition rates from different sources for this lithiumlike spectrum have proven to be in good agreement, including the results of the OP. OP values do not include spin-orbit or other relativistic effects, which we do not, however, expect to be important in this alkali spectrum. Most of the compiled data below have been taken from this source. The high-quality (based on good overall agreement) data utilized from the other references. S9,127,129 were generally available for only the lower-lying transitions.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with

transition rates published in two or more references, ^{59,76,105,127,129} as described in the general introduction.

10.9.2. References for Allowed Transitions for Na IX

⁵⁹I. Martin, J. Karwowski, G. H. F. Diercksen, and C. Barrientos, Astron. Astrophys., Suppl. Ser. **100**, 595 (1993).

⁷⁴G. Peach, H. E. Saraph, and M. J. Seaton, J. Phys. B **21**, 3669 (1988).

⁷⁶G. Peach, H. E. Saraph, and M. J. Seaton, http://legacy.gsfc.nasa.gov/topbase, downloaded on Aug. 8, 1995 (Opacity Project). See Peach *et al.* (Ref. 74).

¹⁰⁵C. E. Theodosiou, L. J. Curtis, and M. El-Mekki, Phys. Rev. A 44, 7144 (1991).

¹²⁷Z.-C. Yan, M. Tambasco, and G. W. F. Drake, Phys. Rev. A 57, 1652 (1998).

¹²⁹H. L. Zhang, H. H. Sampson, and C. J. Fontes, At. Data Nucl. Data Tables **44**, 31 (1990).

TABLE 35. Wavelength finding list for allowed lines for Na IX

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
44.725	6	77.923	8	208.121	16	485.225	37
46.090	5	81.176	7	223.774	22	506.714	40
47.776	14	81.350	7	223.994	22	507.537	40
47.836	14	116.287	19	224.155	22	512.610	36
48.553	4	121.686	26	234.318	27	513.479	36
49.326	13	121.797	26	234.428	27	542.388	45
49.386	13	121.798	26	234.500	27	563.16	48
49.390	13	124.086	30	235.305	21	563.19	48
52.116	12	124.117	30	235.727	21	577.93	50
52.186	12	125.989	18	252.819	34	578.10	50
52.187	12	132.272	25	262.660	39	681.72	1
52.426	11	132.377	25	262.881	39	694.15	1
52.498	11	132.405	25	262.888	39	846.38	44
53.857	3	135.195	29	267.637	42	893.26	47
53.867	3	135.232	29	267.867	42	894.53	47
58.201	10	146.274	17	303.656	33	936.24	49
58.279	10	154.443	24	317.511	38	936.68	49
58.290	10	154.612	24	317.682	38	1 481.48	52
58.952	9	154.624	24	317.844	38	1 481.70	52
59.044	9	157.196	23	325.288	41	1 550.39	53
70.615	2	157.384	23	325.627	41	1 554.24	53
70.653	2	158.831	28	456.100	32		
77.764	8	158.881	28	484.449	37		
77.911	8	207.978	16	485.107	37		
Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.
2 488.0	15	6 213	31	7 208	20	17 237	35
2 536.0	15	6 833	20	12 373	43	18 243	35
6 088	31	7 105	20	17 207	35		
Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.		
3 310	46	1 880	51	1 280	54		
3 260	46	1 720	51	1 270	54		

Table 36. Transition probabilities of allowed lines for Na IX (references for this table are as follows: $1 = \text{Peach } et \ al.$, $7^6 \ 2 = \text{Yan } et \ al.$, $127 \ 3 = \text{Zhang } et \ al.$ $129 \ and 4 = \text{Martin } et \ al.$

No.	Transition array	Mult.	$\begin{array}{cc} & \lambda_{vac} \; (\mathring{A}) \\ \lambda_{air} \; (\mathring{A}) & or \; \sigma \; (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
1	2s-2p	$^{2}S-^{2}P^{\circ}$	685.8	0–145 813	2–6	6.48+00	1.37-01	6.18-01	-0.562	AA	2
			681.72	0-146 688	2-4	6.60+00	9.19-02	4.13-01	-0.736	AA	2
			694.15	0-144 062	2–2	6.23+00	4.50-02	2.06-01	-1.046	AA	2
2	2s-3p	2 S $-^2$ P $^{\circ}$	70.63	0–1 415 877	2-6	1.40+03	3.13-01	1.46-01	-0.203	A	1,3,4
			70.615	0-1 416 130	2-4	1.40+03	2.09-01	9.71-02	-0.379	A	1,3,4
			70.653	0–1 415 370	2–2	1.40+03	1.05-01	4.86-02	-0.678	A	1,3,4
3	2s-4p	$^{2}S-^{2}P^{\circ}$	53.86	0–1 856 660	2–6	6.39+02	8.34-02	2.96-02	-0.778	A	1,3,4
			53.857	0-1 856 770	2-4	6.40+02	5.57-02	1.98 - 02	-0.953	A	1,3,4
			53.867	0–1 856 440	2–2	6.38+02	2.77-02	9.84-03	-1.256	A	1,3,4
4	2s-5p	$^2S - ^2P^{\circ}$	48.55	0–2 059 600	2–6	3.36+02	3.56-02	1.14-02	-1.148	B+	1,3
			48.553	0-2 059 600	2-4	3.36+02	2.37-02	7.59-03	-1.324	A	1,3
			48.553	0–2 059 600	2–2	3.37+02	1.19-02	3.80 - 03	-1.623	B+	1,3
5	2s-6p	$^2S - ^2P^{\circ}$	46.09	0–2 169 670	2-6	1.95+02	1.86-02	5.64-03	-1.429	B+	1
			46.090	0–2 169 670	2-4	1.95+02	1.24-02	3.76-03	-1.606	B+	LS
			46.090	0–2 169 670	2–2	1.95+02	6.20-03	1.88 - 03	-1.907	$\mathrm{B}+$	LS
6	2s-7p	$^{2}S-^{2}P^{\circ}$	44.72	0–2 235 890	2-6	1.22+02	1.10-02	3.25-03	-1.658	C+	1
			44.725	0-2 235 890	2-4	1.23+02	7.35-03	2.16-03	-1.833	C+	LS
			44.725	0–2 235 890	2–2			1.08 - 03			LS
7	2p-3s	$^{2}\text{P}^{\circ}$ $ ^{2}\text{S}$	81.29	145 813–1 375 950	6–2	6.92+02	2.29-02	3.67-02	-0.862	A	1,3
			81.350	146 688–1 375 950	4-2	4.62+02	2.29-02	2.45-02	-1.038	A	1,3
			81.176	144 062–1 375 950	2–2	2.31+02	2.28-02	1.22 - 02	-1.341	A	1,3
8	2p-3d	$^{2}P^{\circ}-^{2}D$	77.86	145 813–1 430 120	6–10	4.37+03	6.62-01	1.02+00	0.599	A	1,3,4
			77.911	146 688-1 430 200	4-6	4.36+03	5.96-01	6.11-01	0.377	A	1,3,4
			77.764	144 062-1 430 000	2-4	3.65+03	6.62 - 01	3.39-01	0.122	A	1,3,4
			77.923	146 688–1 430 000	4–4	7.27 + 02	6.62-02	6.79 - 02	-0.577	A	1,3,4
9	2p-4s	$^{2}P^{\circ}-^{2}S$	59.01	145 813–1 840 350	6–2	2.73+02	4.75-03	5.53-03	-1.545	B+	1,3
			59.044	146 688-1 840 350	4-2	1.82 + 02	4.76-03	3.70-03	-1.720	$\mathrm{B} +$	1,3
			58.952	144 062–1 840 350	2–2	9.05+01	4.71 - 03	1.83 - 03	-2.026	B+	1,3
10	2p-4d	$^{2}P^{\circ}-^{2}D$	58.25	145 813–1 862 442	6–10	1.46+03	1.24-01	1.42-01	-0.128	A	1,3,4
			58.279	146 688-1 862 570	4-6	1.46+03	1.11-01	8.53-02	-0.353	A	1,3,4
			58.201	144 062–1 862 250	2-4			4.75 - 02			1,3,4
			58.290	146 688–1 862 250	4–4	2.40+02	1.22-02	9.36-03	-1.312	A	1,3,4
11	2p-5s	$^{2}P^{\circ}-^{2}S$	52.47	145 813–2 051 520	6–2	1.33+02	1.84-03	1.90-03	-1.957	B+	1,3
			52.498	146 688–2 051 520	4–2			1.27 - 03			1,3
			52.426	144 062–2 051 520	2–2	4.45+01	1.83-03	6.33-04	-2.437	B+	1,3
12	2p-5d	$^{2}P^{\circ}-^{2}D$	52.16	145 813–2 062 890	6–10	6.74+02	4.58-02	4.72-02	-0.561	A	1,3
			52.186	146 688–2 062910	4-6			2.83 - 02			1,3
			52.116	144 062–2 062 860	2–4			1.57 - 02			1,3
			52.187	146 688–2 062 860	4–4	1.12+02	4.57-03	3.14-03	-1.738	B+	1,3
13	2p-6d	$^{2}P^{\circ}-^{2}D$	49.37	145 813–2 171 486	6–10	3.65+02	2.22-02	2.17-02	-0.875	B+	1

TABLE 36. Transition probabilities of allowed lines for Na IX (references for this table are as follows: $1 = \text{Peach } et \ al.$, $^{76} \ 2 = \text{Yan } et \ al.$, $^{127} \ 3 = \text{Zhang } et \ al.$ $^{129} \ and \ 4 = \text{Martin } et \ al.$

No.	Transition array	Mult.	$\lambda_{air} (\mathring{A})$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \; {\rm s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				49.386	146 688–2 171 550	4–6	3.65+02	2.00-02	1.30-02	-1.097	B+	LS
				49.326	144 062-2 171 390	2-4	3.04+02	2.22-02	7.21 - 03	-1.353	$\mathrm{B} +$	LS
				49.390	146 688–2 171 390	4-4	6.07 + 01	2.22-03	1.44-03	-2.052	$\mathrm{B} +$	LS
14	2p-7d	$^{2}P^{\circ}-^{2}D$		47.82	145 813–2 237 166	6-10	2.24+02	1.28-02	1.21-02	-1.115	В	1
				47.836	146 688–2 237 170	4-6	2.23+02	1.15-02	7.24-03	-1.337	В	LS
				47.776	144 062-2 237 160	2-4	1.87 + 02	1.28 - 02	4.03 - 03	-1.592	В	LS
				47.836	146 688–2 237 160	4–4	3.70+01	1.27 - 03	8.00 - 04	-2.294	C+	LS
15	3s-3p	$^{2}S-^{2}P^{\circ}$	2 504	2 505	1 375 950– <i>1 415 877</i>	2-6	8.24-01	2.32-01	3.83+00	-0.333	A	1
			2 488.0	2 488.8	1 375 950–1 416 130	2-4	8.40-01	1.56-01	2.56+00	-0.506	A+	LS
			2 536.0	2 536.8	1 375 950–1 415 370	2-2	7.93-01	7.65 - 02	1.28+00	-0.815	A	LS
16	3s-4p	2 S $-^2$ P $^{\circ}$		208.03	1 375 950–1 856 660	2–6	1.73+02	3.37-01	4.62-01	-0.171	A	1
				207.978	1 375 950–1 856 770	2-4	1.73+02	2.25-01	3.08-01	-0.347	A	LS
				208.121	1 375 950–1 856 440	2–2			1.53-01			LS
17	3s - 5p	$^{2}S-^{2}P^{\circ}$		146.27	1 375 950–2 059 600	2–6	9.83+01	9.46-02	9.11-02	-0.723	A	1
	*											
				146.274 146.274	1 375 950–2 059 600 1 375 950–2 059 600	2–4 2–2			6.08-02 $3.03-02$			LS LS
10	2 6	$^{2}S-^{2}P^{\circ}$										
18	3s-6p	-SP		125.99	1 375 950–2 169 670	2–6			3.48-02			1
				125.989	1 375 950–2 169 670	2–4			2.31-02			LS
				125.989	1 375 950–2 169 670	2–2	5.88+01	1.40-02	1.16-02	-1.553	B+	LS
19	3s-7p	$^{2}\mathrm{S}-^{2}\mathrm{P}^{\circ}$		116.29	1 375 950–2 235 890	2–6	3.75+01	2.28-02	1.74-02	-1.341	В	1
				116.287	1 375 950–2 235 890	2-4	3.75+01	1.52 - 02	1.16-02	-1.517	В	LS
				116.287	1 375 950–2 235 890	2–2	3.74+01	7.58-03	5.80-03	-1.819	В	LS
20	3p-3d	$^{2}P^{\circ}-^{2}D$	7 020	7 021	1 415 877–1 430 120	6–10	2.95-02	3.64-02	5.06+00	-0.661	A	1
			7 105	7 107	1 416 1 30-1430 200	4-6	2.85-02	3.24-02	3.03+00	-0.887	A+	LS
			6 833	6 835	1 415 370-1 430 000	2-4	2.68 - 02	3.75 - 02	1.69 + 00	-1.125	A	LS
			7 208	7 210	1 416 130–1 430 000	4-4	4.56-03	3.55 - 03	3.37 - 01	-1.848	A	LS
21	3p-4s	$^{2}P^{\circ}-^{2}S$		235.59	<i>1 415 877</i> –1 840 350	6–2	1.90+02	5.27-02	2.45-01	-0.500	A	1
				235.727	1 416 130-1 840 350	4-2	1.27+02	5.27-02	1.64-01	-0.676	A	LS
				235.305	1 415 370-1 840 350	2-2	6.36+01	5.28-02	8.18 - 02	-0.976	A	LS
22	3p-4d	$^{2}P^{\circ}-^{2}D$		223.93	1 415 877–1 862 442	6–10	4.57+02	5.72-01	2.53+00	0.536	A	1
				223.994	1 416 130–1 862 570	4-6	4.56+02	5.15-01	1.52+00	0.314	Α	LS
				223.774	1 415 370–1 862 250	2–4		5.73-01		0.059		LS
				224.155	1 416 130–1 862 250	4-4			1.69-01			LS
23	3p-5s	$^{2}P^{\circ}-^{2}S$		157.32	<i>1 415 877</i> –2 051 520	6–2	8.97+01	1.11-02	3.45-02	-1.177	B+	1
				157 204	1 416 120 2 051 520	4.2	5.00 + 0.1	1 11 02	2.20 02	1 252	D I	LS
				157.384 157.196	1 416 130–2 051 520 1 415 370–2 051 520	4–2 2–2			2.30-02 $1.15-02$			LS
24	3p-5d	$^{2}P^{\circ}-^{2}D$		154.56	1 415 877–2 062 890	6–10			4.13-01			1
	-p 54			154.612	1 416 130–2 062 910	4–6			2.48-01			LS
				154.443	1 415 370–2 062 860	2-4			1.37-01			LS
				154.624	1 416 130–2 062 860	4-4			2.75 - 02			LS
		2_ 0 2										
25	3p-6d	$^{2}P^{\circ}-^{2}D$		132.34	1 415 877–2 171 486	6–10	1.27+02	5.56-02	1.45-01	-0.477	A	1

Table 36. Transition probabilities of allowed lines for Na IX (references for this table are as follows: $1 = \text{Peach } et \ al.$, $^{76} \ 2 = \text{Yan } et \ al.$, $^{127} \ 3 = \text{Zhang } et \ al.$ $^{129} \ and \ 4 = \text{Martin } et \ al.$

No.	Transition array	Mult.	$\lambda_{air} \ (\mathring{A})$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				132.377	1 416 130–2 171 550	4–6	1.27+02	5.00-02	8.72-02	-0.699	A	LS
				132.272	1 415 370-2 171 390	2-4	1.06+02	5.56-02	4.84-02	-0.954	A	LS
				132.405	1 416 130–2 171 390	4-4	2.11+01	5.55-01	9.68-03	-1.654	B +	LS
26	3p-7d	$^{2}P^{\circ}-^{2}D$		121.76	1 415 877–2 237 166	6–10	7.84+01	2.90-02	6.98-02	-0.759	B+	1
				121.797	1 416 130–2 237 170	4-6	7.82+01	2.61-02	4.19-02	-0.981	$\mathrm{B} +$	LS
				121.686	1 415 370-2 237 160	2-4	6.55 + 01	2.91 - 02	2.33 - 02	-1.235	В	LS
				121.798	1416 130–2237 160	4–4	1.30+01	2.90-03	4.65 - 03	-1.936	В	LS
27	3d-4p	$^{2}D-^{2}P^{\circ}$		234.44	1 430 120–1 856 660	10-6	2.85+01	1.41-02	1.09-01	-0.851	A	1
				234.428	1 430 200–1 856 770	6-4	2.57+01	1.41-02	6.53-02	-1.073	A	LS
				234.500	1 430 000-1 856 440	4-2	2.84+01	1.17 - 02	3.61 - 02	-1.330	A	LS
				234.318	1 430 000–1 856 770	4–4	2.85+00	2.35 - 03	7.25 - 03	-2.027	B+	LS
28	3 <i>d</i> -5 <i>p</i>	$^{2}D-^{2}P^{\circ}$		158.86	1 43 0120–2 059 600	10-6	1.22+01	2.77-03	1.45-02	-1.558	B+	1
				158.881	1 430 200–2 059 600	6-4	1.10+01	2.77-03	8.69-03	-1.779	B+	LS
				158.831	1 430 000–2 059 600	4-2	1.22+01	2.31 - 03	4.83 - 03	-2.034	B+	LS
				158.831	1 430 000–2 059 600	4–4	1.22+00	4.62 - 04	9.66-04	-2.733	В	LS
29	3 <i>d</i> -6 <i>p</i>	$^{2}D-^{2}P^{\circ}$		135.22	1 430 120–2 169 670	10-6	6.38+00	1.05-03	4.67-03	-1.979	B+	1
				135.232	1 430 200–2 169 670	6-4	5.74+00	1.05-03	2.80-03	-2.201	B+	LS
				135.195	1 430 000-2 169 670	4-2	6.39 + 00	8.75 - 04	1.56-03	-2.456	B +	LS
				135.195	1 430 000–2 169 670	4-4	6.39-01	1.75 - 04	3.12-04	-3.155	В	LS
30	3 <i>d</i> -7 <i>p</i>	$^{2}D-^{2}P^{\circ}$		124.10	1 430 120–2 235 890	10-6	3.78+00	5.24-04	2.14-03	-2.281	C+	1
				124.117	1 430 200–2 235 890	6-4	3.40+00	5.24-04	1.28-03	-2.503	C+	LS
				124.086	1 430 000-2 235 890	4-2	3.79 + 00	4.37-04	7.14-04	-2.757	C+	LS
				124.086	1 430 000–2 235 890	4-4	3.78+01	8.73 - 05	1.43 - 04	-3.457	C	LS
31	4s-4p	2 S $-^2$ P $^{\circ}$	6 130	6 131	1 840 350–1 856 660	2-6	1.89+01	3.19-01	1.29+01	-0.195	A+	1
			6 088	6 090	1 840 350-1 856 770	2-4	1.92-01	2.14-01	8.58+00	-0.369	A+	LS
			6 213	6 215	1 840 350-1 856 440	2-2			4.30+00			LS
32	4s-5p	$^{2}S-^{2}P^{\circ}$		456.10	1 840 350–2 059 600	2-6	3.94+01	3.69-01	1.11+00	-0.132	A	1
				456.100	1 840 350–2 059 600	2-4	3.94+01	2.46-01	7.39-01	-0.308	Α	LS
				456.100	1 840 350–2 059 600	2-2	3.94+01	1.23-01	3.69-01	-0.609	A	LS
33	4s-6p	2 S $-^2$ P $^{\circ}$		303.66	1 840 350–2 169 670	2-6	2.55+01	1.06-01	2.11-01	-0.674	A	1
				303.656	1 840 350-2 169 670	2-4	2.55+01	7.04-02	1.41-01	-0.851	Α	LS
				303.656	1 840 350–2 169 670	2–2			7.04-02			LS
34	4 <i>s</i> -7 <i>p</i>	$^{2}S-^{2}P^{\circ}$		252.82	1 840 350–2 235 890	2-6	1.65+01	4.75-02	7.91-02	-1.022	B+	1
				252.819	1 840 350–2 235 890	2-4	1 65+01	3 17-02	5.28-02	_1 198	R+	LS
				252.819	1 840 350–2 235 890	2–2			2.63 - 02			LS
35	4p - 4d	$^{2}P^{\circ}-^{2}D$	17 290	17 295	1 856 660–1 862 442	6–10	8.38-03	6.27-02	2.14+01	-0.425	A+	1
			17 237	17 241	1 856 770–1 862 570	4-6	8.47-03	5.66-02	1.29+01	-0.645	A+	LS
			17 207	17 212	1 856 440–1 862 250	2–4			7.14+00			LS
			18 243	18 248	1 856 770–1 862 250	4-4			1.43+00			LS
36	4p - 5s	$^{2}P^{\circ}-^{2}S$		513.19	1 856 660–2 051 520	6–2			8.53-01			1
				512 470	1 856 770 2 051 520	4.2	1 26 : 01	8 41 02	5.60 01	_0.472	٨	16
				513.479	1 856 770–2 051 520	4–2			5.69-01			LS
				512.610	1 856 440–2 051 520	2–2	2.14+01	6.45-02	2.85-01	-0.773	Α	LS

TABLE 36. Transition probabilities of allowed lines for Na IX (references for this table are as follows: $1 = \text{Peach } et \ al.$, $^{76} \ 2 = \text{Yan } et \ al.$, $^{127} \ 3 = \text{Zhang } et \ al.$ $^{129} \ and \ 4 = \text{Martin } et \ al.$

No.	Transition array	Mult.	$\lambda_{air} \ (\mathring{A})$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
37	4p-5d	$^{2}P^{\circ}-^{2}D$		484.90	1 856 660–2 062 890	6–10	9.44+01	5.55-01	5.31+00	0.522	A+	1
				485.107	1 856 770–2 062 910	4-6	9.43+01	4.99-01	3.19+00	0.300	A+	LS
				484.449	1 856 440-2 062 860	2-4	7.89 + 01	5.55 - 01	1.77 + 00	0.045	A	LS
				485.225	1 856 770–2 062 860	4–4	1.57+01	5.54-02	3.54-01	-0.654	A	LS
38	4p-6d	$^{2}P^{\circ}-^{2}D$		317.64	1 856 660–2 171 486	6–10	5.61+01	1.41-01	8.87-01	-0.073	A	1
				317.682	1 856 770–2 171 550	4-6			5.31-01			LS
				317.511	1 856 440–2 171 390	2–4			2.97 - 01			LS
				317.844	1 856 770–2 171 390	4–4	9.31+00	1.41-02	5.90-02	-1.249	A	LS
39	4p - 7d	$^{2}P^{\circ}-^{2}D$		262.81	1 856 660–2 237 166	6–10	3.52+01	6.07-02	3.15-01	-0.439	B+	1
				262.881	1 856 770-2 237 170	4-6	3.51+09	5.46-02	1.89 - 01	-0.661	B +	LS
				262.660	1 856 440–2 237 160	2-4	2.94+01	6.08 - 02	1.05 - 01	-0.915	B +	LS
				262.888	1 856 770–2 237 160	4-4	5.86+00	6.07 - 03	2.10-02	-1.615	В	LS
40	4d-5p	$^{2}D-^{2}P^{\circ}$		507.21	1 862 442–2 059 600	10-6	1.50+01	3.48-02	5.81 - 01	-0.458	A	1
				507.537	1 862 570–2 059 600	6-4	1.35+01	3.48-02	3.49-01	-0.680	A	LS
				506.714	1 862 250-2 059 600	4-2	1.51+01	2.90-02	1.94-01	-0.936	A	LS
				506.714	1 862 250–2 059 600	4-4	1.51+00	5.80-03	3.87 - 02	-1.635	A	LS
41	4 <i>d</i> -6 <i>p</i>	$^{2}D-^{2}P^{\circ}$		325.49	1 862 442–2 169 670	10-6	7.48+00	7.12-03	7.63-02	-1.148	A	1
				325.627	1 862 570–2 169 670	6–4	6.72+00	7.12-03	4.58-02	-1.369	Α	LS
				325.288	1 862 250–2 169 670	4–2	7.49 + 00	5.94-03	2.54-02	-1.624	B+	LS
				325.288	1 862 250–2 169 670	4-4			5.10-03			LS
42	4 <i>d</i> -7 <i>p</i>	$^{2}D-^{2}P^{\circ}$		267.77	1 862 442–2 235 890	10-6	4.28+00	2.76-03	2.43-02	-1.559	В	1
				267.867	1 862 570–2 235 890	6–4	3.85+00	2.76-03	1.46-02	-1.781	В	LS
				267.637	1 862 250-2 235 890	4-2	4.28 + 00	2.30-03	8.11 - 03	-2.036	В	LS
				267.637	1 862 250–2 235 890	4–4	4.28 - 01	4.60-04	1.62-03	-2.735	C+	LS
43	5s-5p	$^{2}S-^{2}P^{\circ}$	12 370	12 376	2 051 520–2 059 600	2-6	5.78-02	3.98-01	3.24+01	-0.099	A+	1
			12 373	12 376	2 051 520-2 059 600	2-4	5.77-02	2.65-01	2.16+01	-0.276	A+	LS
			12 373	12 376	2 051 520–2 059 600	2–2	5.79-02	1.33-01	1.08 + 01	-0.575	A+	LS
44	5 <i>s</i> -6 <i>p</i>	$^{2}S-^{2}P^{\circ}$		846.4	2 051 520–2 169 670	2-6	1.26+01	4.06-01	2.26+00	-0.090	A	1
				846.38	2 051 520–2 169 670	2-4	1 26+01	2 71 - 01	1.51+00	-0.266	Α	LS
				846.38	2 051 520-2 169 670	2-2			7.52-01			LS
45	5 <i>s</i> -7 <i>p</i>	$^{2}S-^{2}P^{\circ}$		542.39	2 051 520–2 235 890	2-6	8.81+00	1.17-01	4.16-01	-0.631	B+	1
				542.388	2 051 520–2 235 890	2.4	9 91 + 00	7.77 02	2.77-01	0.800	Д⊥	LS
				542.388	2 051 520–2 235 890	2–4 2–2			1.39-01			LS
46	5 <i>p</i> – 5 <i>d</i>	$^{2}P^{\circ}-^{2}D$		3 290 cm ⁻¹	2 059 600–2 062 890	6–10	4.22-03	9.74-02	5.85+01	-0.233	A+	1
	Î			3 310 cm ⁻¹	2 059 600–2 062 910	1.6	4 20 02	0 02 n2	2 51 + 01	0.452	Λ _	1.0
				3 260 cm ⁻¹	2 059 600–2 062 910	4–6 2–4			3.51+01 $1.95+01$			LS LS
				3 260 cm ⁻¹	2 059 600–2 062 860	4-4			3.90+00			
47	5 <i>p</i> -6 <i>d</i>	$^{2}P^{\circ}-^{2}D$		893.8	2 059 600–2 171 486	6–10	2.81+01	5.61-01	9.91+00	0.527	A+	1
	, ··											
				893.26 894.53	2 059 600–2 171 550	4-6			5.94+00	0.305		LS
				894.53 894.53	2 059 600–2 171 390 2 059 600–2 171 390	2–4 4–4			3.30+00 $6.61-01$	0.050		LS LS
		2.2.2				7-4						
48	5p-7d	$^{2}P^{\circ}-^{2}D$		563.2	2 059 600–2 237 166	6–10	1.87+01	1.48-01	1.64+00	-0.052	A	1
-	- F , W				22, 22, 200	- 10		01		3.00	_	

TABLE 36. Transition probabilities of allowed lines for Na IX (references for this table are as follows: 1=Peach et al., ⁷⁶ 2=Yan et al., ¹²⁷ 3=Zhang et al. ¹²⁹ and 4=Martin et al. ⁵⁹)—Continued

No.	Transition array	Mult.	$\begin{array}{cc} & \lambda_{vac} \; (\mathring{A}) \\ \lambda_{air} \; (\mathring{A}) & or \; \sigma \; (cm^{-1})^a \end{array}$	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	log gf	Acc.	Source
			563.16	2 059 600–2 237 170	4–6			9.86-01			LS
			563.19	2 059 600–2 237 160	2–4			5.49-01			LS
			563.19	2 059 600–2 237 160	4–4	3.11+00	1.48-02	1.10-01	-1.228	B+	LS
49	5 <i>d</i> -6 <i>p</i>	$^{2}D-^{2}P^{\circ}$	936.5	2 062 890–2 169 670	10-6	7.49+00	5.91-02	1.82+00	-0.228	A	1
			936.68	2 062 910–2 169 670	6-4	6.74+00	5.91-02	1.09 + 00	-0.450	A	LS
			936.24	2 062 860-2 169 670	4-2	7.49 + 00	4.92 - 02	6.07 - 01	-0.706	A	LS
			936.24	2 062 860–2 169 670	4–4	7.50-01	9.85-03	1.21 - 01	-1.405	A	LS
50	5 <i>d</i> -7 <i>p</i>	$^{2}D-^{2}P^{\circ}$	578.0	2 062 890–2 235 890	10-6	4.12+00	1.24-02	2.36-01	-0.907	B+	1
			578.10	2 062 910–2 235 890	6-4	3.71+00	1.24-02	1.42-01	-1.128	$\mathrm{B} +$	LS
			577.93	2 062 860-2 235 890	4-2	4.11+00	1.03 - 02	7.84 - 02	-1.385	B +	LS
			577.93	2 062 860–2 235 890	4-4	4.11-01	2.06-03	1.57 - 02	-2.084	В	LS
51	6 <i>p</i> – 6 <i>d</i>	$^{2}P^{\circ}-^{2}D$	$1.816 \ cm^{-1}$	2 169 670–2 171 486	6–10	1.54-03	1.18-01	1.28+02	-0.150	A+	1
			1 880 cm ⁻¹	2 169 670–2 171 550	4-6	1.73-03	1.10-01	7.70+01	-0.357	A+	LS
			1 720 cm ⁻¹	2 169 670-2 171 390	2-4	1.11 - 03	1.12 - 01	4.29+01	-0.650	A+	LS
			1 720 cm ⁻¹	2 169 670–2 171 390	4-4	2.21 + 04	1.12-02	8.57 + 00	-1.349	A+	LS
52	6 <i>p</i> – 7 <i>d</i>	$^{2}P^{\circ}-^{2}D$	1 481.6	2 169 670–2 237 166	6–10	1.06+01	5.82-01	1.70+01	0.543	A	1
			1 481.48	2 169 670–2 237 170	4-6	1.06+01	5.24-01	1.02+01	0.321	A	LS
			1 481.70	2 169 670-2 237 160	2-4	8.84 + 00	5.82-01	5.68+00	0.066	A	LS
			1 481.70	2 169 670–2 237 160	4-4	1.77+00	5.82-02	1.14+00	-0.633	A	LS
53	6 <i>d</i> -7 <i>p</i>	$^{2}D-^{2}P^{\circ}$	1 552.7	2 171 486–2 235 890	10-6	3.95+00	8.57-02	4.38+00	-0.067	A	1
			1 554.24	2 171 550–2 235 890	6–4	3.55+00	8.56-02	2.63+00	-0.289	A	LS
			1 550.39	2 171 390-2 235 890	4-2	3.97 + 00	7.15-02	1.46+00	-0.544	Α	LS
			1 550.39	2 171 390–2 235 890	4-4	3.97-01	1.43 - 02	2.92-01	-1.243	$\mathrm{B} +$	LS
54	7 <i>p</i> -7 <i>d</i>	$^{2}P^{\circ}-^{2}D$	1 276 cm ⁻¹	2 235 890–2 237 166	6–10	1.02-03	1.58-01	2.45+02	-0.023	A+	1
			1 280 cm ⁻¹	2 235 890–2 237 170	4-6	1.04-03	1.43-01	1.47+02	-0.243	A+	LS
			1 270 cm ⁻¹	2 235 890-2 237 160	2-4			8.19+01			LS
			1 270 cm ⁻¹	2 235 890-2 237 160	4-4	1.70±04	1.58-02	1.64±01	_1 100	Δ	LS

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

10.10. Na x

Helium isoelectronic sequence

Ground state: $1s^2 \, ^1S_0$

Ionization energy: 1465.1202 eV=11 816 996 cm⁻¹

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in the references, ^{27,50} as described in the general introduction.

10.10.1. Allowed Transitions for Na X

In general the transition rates from different sources for this heliumlike spectrum have proven to be in good agreement, including the results of the OP.²⁷ Most of the compiled data below have been taken from this source. The high-quality data from Khan *et al.*⁵⁰ were available primarily for the lower-lying transitions.

10.10.2. References for Allowed Transitions for Na X

²²J. A. Fernley, K. T. Taylor, and M. J. Seaton, J. Phys. B **20**, 6457 (1987).

²⁷J. A. Fernley, K. T. Taylor, and M. J. Seaton, http://legacy.gsfc.nasa.gov/topbase, downloaded on Aug. 8, 1995 (Opacity Project). See Fernley *et al.* (Ref. 22).

⁵⁰F. Khan, G. S. Khandelwal, and J. W. Wilson, Astrophys. J. **329**, 493 (1988).

Table 37. Wavelength finding list for allowed lines for Na X

TABLE 37. Wavelength finding list for allowed lines for Na X—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
8.542	9	45.664	14
8.560	8	45.670	14
8.587	7	45.672	14
8.626	6	47.432	34
8.686	5	47.443	34
8.788	4	47.497	34
8.983	3	47.519	15
9.433	2	47.785	32
11.003	1	47.797	32
36.081	26	47.851	32
36.421	24	48.964	35
36.908	22	49.109	33
37.259	50	60.668	12
37.266	50	60.694	12
37.300	50	60.700	12
37.323	27	63.520	30
37.625	48	63.540	30
37.633	48	63.541	30
37.642	20	63.569	13
37.667	48	63.627	30
37.684	25	63.637	30
38.150	46	63.638	30
38.158	46	65.079	28
38.193	46	65.101	28
38.195	51	65.203	28
38.202	23	66.279	31
38.576	49	66.902	29
38.834	18	87.113	66
38.945	44	88.976	67
38.953 38.982	44 21	89.010 89.023	87
38.982 38.989	44	89.023 89.079	87 87
39.123	47	89.123	64
39.123 39.949	45	90.072	102
40.166	42	90.072	102
40.175	42	90.073	102
40.213	42	90.102	103
40.239	40	90.434	88
40.248	40	91.060	65
40.249	19	91.128	85
40.287	40	91.142	85
40.989	16	91.201	85
40.991	16	92.095	62
40.992	16	92.222	100
41.264	43	92.223	100
41.295	41	92.239	101
42.455	38	92.245	100
42.465	38	92.602	86
42.508	38	94.141	63
42.541	17	94.271	83
42.598	36	94.285	83
42.607	36	94.349	83
42.651	36	95.402	99
43.682	39	95.408	98
43.741	37	95.409	98

TABLE 37. Wavelength finding list for allowed lines for Na X—Continued

TABLE 37. Wavelength finding list for allowed lines for Na X—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
95.433	98	176.701	54
95.816	84	176.701	114
96.808	60	170.702	115
99.028	61	180.095	131
99.028	81	180.093	131
99.291	81	180.216	131
99.361	81	181.622	145
100.424	97	181.702	144
100.424	96	182.162	55
100.477	96	182.291	132
100.503	96	182.529	71
100.303	82	182.584	71
100.929	58	182.822	71
107.617	79	186.945	91
107.634	59	187.870	69
107.636	79	187.370	69
107.030	79 79	188.180	69
108.145	77	188.702	72
108.164	77	188.780	112
108.247	77	189.180	90
109.286	95	189.187	90
109.440	94	189.280	90
109.443	94	189.287	90
109.474	94	189.295	90
109.763	80	189.313	90
109.982	78	190.874	70
122.536	56	192.056	113
122.559	56	192.795	129
122.565	56	192.822	129
125.752	57	192.933	129
125.788	75	194.307	143
125.815	75	194.499	142
125.927	75	195.178	130
127.048	73	209.707	110
127.074	73	213.556	111
127.189	73	214.953	127
128.013	93	214.986	127
128.471	92	215.125	127
128.474	92	216.342	141
128.496	92	216.788	140
128.500	92	217.637	128
128.502	92	252.958	108
128.517	92	258.052	109
128.716	76	258.311	125
129.234	74	258.359	125
168.973	116	258.559	125
171.721	117	261.372	123
172.005	133	261.421	123
172.026	133	261.626	123
172.115	133	262.131	139
173.518	147	263.333	138
173.540	146	263.335	126
174.076	134	264.601	124
176.585	54	296.746	158
176.679	54	300.789	159

TABLE 37. Wavelength finding list for allowed lines for Na X—Continued

TABLE 37. Wavelength finding list for allowed lines for Na X—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
301.742	171	590.06	209
301.776	171	591.76	208
301.915	171	593.61	200
303.635	183	711.74	150
303.852	182	726.55	151
304.683	172	728.27	188
321.436	156	729.07	163
326.005	157	729.27	163
327.555	169	730.08	163
327.595	169	738.84	189
327.759	169	743.38	175
329.350	181	748.90	207
329.789	180	749.11	164
330.775	170	750.91	197
363.777	154	753.14	206
369.278	155	753.99	161
372.140	167	754.03	174
372.191	167	754.20	161
372.403	167	755.08	161
373.576	179	756.19	198
374.512	178	759.45	162
375.797	168	856.28	218
384.664	106	866.15	219
384.891	106	874.65	224
384.946	106	880.22	225
394.228	107	1 100.11	216
395.423	121	1 112.01	10
395.534	121	1 114.36	217
396.004	121	1 133.61	222
403.830	137	1 140.02	223
407.181	122	1 142.47	10
408.140	119	1 149.32	10
408.258	119	1 184.12	186
408.759	119	1 205.87	187
409.177	136	1 232.88	205
409.433	136	1 251.30	204
409.495	136	1 254.64	195
412.414	120	1 259.94	196
450.384	152	1 579.35	230
457.917	152	1 597.95	230
464.546	177	1 626.81	231
464.578	165	1 626.81	234 235
464.658	165	1 646.93	11
464.989	165	1 828.5	214
466.956	176	1 859.0	215
468.982	166	1 936.6	220
501.489	192	1 941.8	221
507.596	193	Wavelength	Mult.
510.558	201	(air) (Å)	No.
512.321	211		110.
513.157	210	2.670.6	220
514.533	202	2 670.6	228
576.30	190	2 711.8	229
583.80	191	2 827.8	232
589.11	199	2 832.1	233

TABLE 37. Wavelength finding list for allowed lines for Na X—Continued

TABLE 37. Wavelength finding list for allowed lines for Na X—Continued

Wavelength (air) (Å)	Mult. No.	Wavenumber (cm^{-1})	Mult. No.
		(Cili)	110.
3 792.4	239	4 992	148
3 957.7	240	4 955	148
3 960.2	241	3 778	149
4 045.5	52	3 605	89
4 165.3	52	2 925	160
4 194.3	52	2 918	184
5 664	53	2 888	160
7 210	68	2 735	160
7 287	68	2 185	185
7 297	68	1 829	212
7 535	68	1 616	194
7 685	68	1 376	135
7 697	68	1 374	213
9 821	104	1 223	226
10 120	104	920	227
10 193	104	857	236
13 497	105	662	173
17 338	118	646	237
17 554	118	624	242
18 531	118	471	243
19 431	148	368	203

TABLE 38. Transition probabilities of allowed lines for Na X (reference for this table are as follows: 1=Fernely et al.²⁷ and 2=Khan et al.⁵⁰)

No.	Transition array	Mult.	λ_{air} λ_{vac} (Å) (\mathring{A}) or σ (cm ⁻¹	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
1	$1s^2 - 1s2p$	$^{1}S-^{1}P^{\circ}$	11.003	0–9 088 700	1–3	1.35+05	7.33-01	2.66-02	-0.135	A+	1,2
2	$1s^2-1s3p$	$^{1}S-^{1}P^{\circ}$	9.433	0–10 601 080	1–3	3.74+04	1.49-01	4.64-03	-0.827	A+	1,2
3	$1s^2 - 1s4p$	$^{1}S-^{1}P^{\circ}$	8.983	0–11 132 393	1–3	1.54+04	5.60-02	1.66-03	-1.252	A+	1,2
4	$1s^2 - 1s5p$	$^{1}S-^{1}P^{\circ}$	8.788	0–11 378 646	1–3	7.81+03	2.71-02	7.85-04	-1.567	A+	1,2
5	$1s^2 - 1s6p$	$^{1}S-^{1}P^{\circ}$	8.686	0–11 512 505	1–3	4.50+03	1.53-02	4.37-04	-1.815	A+	1,2
6	$1s^2 - 1s7p$	$^{1}S-^{1}P^{\circ}$	8.626	0–11 593 248	1–3	2.83+03	9.47-03	2.69-04	-2.024	A	1,2
7	$1s^2 - 1s8p$	$^{1}S-^{1}P^{\circ}$	8.587	0–11 645 667	1–3	1.89+03	6.28-03	1.78-04	-2.202	A	1,2
8	$1s^2 - 1s9p$	$^{1}S-^{1}P^{\circ}$	8.560	0–11 681 612	1–3	1.33+03	4.38-03	1.23-04	-2.359	A	1,2
9	$1s^2 - 1s10p$	$^{1}S-^{1}P^{\circ}$	8.542	0–11 707 327	1–3	9.67+02	3.17-03	8.92-05	-2.499	A+	1,2
10	1s2s-1s2p	$^{3}S-^{3}P^{\circ}$	1 126.1	8 935 337–9 024 141	3–9	1.22+00	6.97-02	7.75-01	-0.680	A	1
			11 12.01 1 142.47 1 149.32		3–5 3–3 3–1	1.17+00	2.29-02	4.31-01 2.58-01 8.60-02	-1.163	A	LS LS LS
11		$^{1}S-^{1}P^{\circ}$	1 646.93	9 027 981–9 088 700	1–3	4.09-01	4.99-02	2.71-01	-1.302	A	1
12	1s2s-1s3p	$^{3}S-^{3}P^{\circ}$	60.68	8 935 337– <i>10 583 324</i>	3–9	2.26+03	3.75-01	2.24-01	0.051	A	1
			60.668 60.694 60.700	8 935 337–10 583 658 8 935 337–10 582 947 8 935 337–10 582 781	3–5 3–3 3–1	2.26+03	1.25-01	1.25-01 7.49-02 2.49-02	-0.426	A	LS LS LS

Table 38. Transition probabilities of allowed lines for Na X (reference for this table are as follows: $1 = \text{Fernely } et \ al.^{27}$ and $2 = \text{Khan } et \ al.^{50}$)—Continued

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	E_i – E_k (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
13		$^{1}S-^{1}P^{\circ}$		63.569	9 027 981–10 601 080	1–3	2.16+03	3.92-01	8.20-02	-0.407	A	1
14	1s2s-1s4p	$^{3}S - ^{3}P^{\circ}$		45.67	8 935 337–11 125 103	3–9	9.95+02	9.33-02	4.21-02	-0.553	A	1
				45.664	8 935 337–11 125 244	3–5	9.94+02	5.18-02	2.34-02	-0.809	Α	LS
				45.670	8 935 337-11 124 944	3–3			1.40-02			LS
				45.672	8 935 337–11 124 873	3–1	9.98+02	1.04-02	4.69-03	-1.506	A	LS
15		$^{1}S-^{1}P^{\circ}$		47.519	9 027 981–11 132 393	1–3	9.51+02	9.66-02	1.51-02	-1.015	A	1
16	1s2s-1s5p	$^3S - ^3P^{\circ}$		40.99	8 935 337–11 374 960	3–9	5.12+02	3.87-02	1.57-02	-0.935	A	1
				40.989	8 935 337-11 375 032	3-5	5.12+02	2.15-02	8.70-03	-1.190	A	LS
				40.991	8 935 337-11 374 879	3–3	5.12+02	1.29-02	5.22-03	-1.412	A	LS
				40.992	8 935 337–11 374 842	3–1	5.13+02	4.31-03	1.74-03	-1.888	A	LS
17		$^{1}S-^{1}P^{\circ}$		42.541	9 027 981–11 378 646	1–3	4.90+02	3.99-02	5.59-03	-1.399	A	1
18	1s2s-1s6p	$^{3}\text{S} - ^{3}\text{P}^{\circ}$		38.83	8 935 337–11 510 387	3–9	2.97+02	2.02-02	7.73-03	-1.218	A	1
				38.834	8 935 337–11 510 387	3–5	2.97+02	1.12-02	4.30-03	-1.474	Α	LS
				38.834	8 935 337–11 510 387	3–3			2.58-03			LS
				38.834	8 935 337–11 510 387	3–1	2.97+02	2.24-03	8.59-04	-2.173	A	LS
19		$^{1}S-^{1}P^{\circ}$		40.249	9 027 981–11 512 505	1–3	2.84+02	2.07-02	2.74-03	-1.684	A	1
20	1s2s-1s7p	$^{3}S - ^{3}P^{\circ}$		37.64	8 935 337–11 591 920	3–9	1.88+02	1.20-02	4.45-03	-1.444	A	1
				37.642	8 935 337–11 591 920	3–5	1.88+02	6.64-03	2.47-03	-1.701	Α	LS
				37.642	8 935 337-11 591 920	3-3	1.88 + 02	3.99-03	1.48-03	-1.922	Α	LS
				37.642	8 935 337–11 591 920	3–1	1.88+02	1.33-03	4.94-04	-2.399	A	LS
21		$^{1}S-^{1}P^{\circ}$		38.982	9 027 981–11 593 248	1–3	1.79+02	1.22-02	1.57-03	-1.914	A	1
22	1s2s-1s8p	$^{3}\text{S} - ^{3}\text{P}^{\circ}$		36.91	8 935 337–11 644 781	3–9	1.25+02	7.68-03	2.80-03	-1.638	A	1
				36.908	8 935 337–11 644 781	3–5	1.25+02	4.27-03	1.56-03	-1.892	Α	LS
				36.908	8 935 337-11 644 781	3–3	1.25 + 02	2.56-03	9.33-04	-2.115	Α	LS
				36.908	8 935 337–11 644 781	3–1	1.25+02	8.54-04	3.11-04	-2.591	A	LS
23		$^{1}S-^{1}P^{\circ}$		38.202	9 027 981–11 645 667	1–3	1.20+02	7.89-03	9.92-04	-2.103	A	1
24	1s2s-1s9p	$^{3}S - ^{3}P^{\circ}$		36.42	8 935 337–11 680 991	3–9	8.84+01	5.28-03	1.90-03	-1.800	A	1
				36.421	8 935 337-11 680 991	3–5	8.84+01	2.93-03	1.05-03	-2.056	Α	LS
				36.421	8 935 337-11 680 991	3-3	8.85 + 01	1.76-03	6.33-04	-2.277	Α	LS
				36.421	8 935 337–11 680 991	3–1	8.84+01	5.86-04	2.11-04	-2.755	A	LS
25		$^{1}S-^{1}P^{\circ}$		37.684	9 027 981–11 681 612	1–3	8.44+01	5.39-03	6.69-04	-2.268	A	1
26	1s2s-1s10p	$^{3}\text{S} - ^{3}\text{P}^{\circ}$		36.08	8 935 337–11 706 875	3–9	6.45+01	3.78-03	1.35-03	-1.945	A	1
				36.081	8 935 337–11 706 875	3–5	6.46+01	2.10-03	7.48-04	-2.201	A	LS
				36.081	8 935 337–11 706 875	3–3	6.46+01	1.26-03	4.49 - 04	-2.423	A	LS
				36.081	8 935 337–11 706 875	3–1	6.44+01	4.19-04	1.49-04	-2.901	A	LS
27		$^{1}S-^{1}P^{\circ}$		37.323	9 027 981–11 707 327	1–3	6.16+01	3.86-03	4.74-04	-2.413	A	1
28	1s2p-1s3s	$^{3}P^{\circ}-^{3}S$		65.15	<i>9 024 141</i> –10 558 946	9–3	8.44+02	1.79-02	3.46-02	-0.793	A	1
				65.203	9 025 264–10 558 946	5–3	4.68+02	1.79-02	1.92-02	-1.048	A	LS
				65.101	9 022 867–10 558 946	3–3	2.82+02	1.79 - 02	1.15 - 02	-1.270	A	LS
				65.079	9 022 345–10 558 946	1–3	9.40+01	1.79 - 02	3.84 - 03	-1.747	A	LS
29		$^{1}P^{\circ}-^{1}S$		66.902	9 088 700–10 583 431	3–1	7.73+02	1.73-02	1.14-02	-1.285	A	1

Table 38. Transition probabilities of allowed lines for Na X (reference for this table are as follows: $1 = \text{Fernely } et \ al.^{27}$ and $2 = \text{Khan } et \ al.^{50}$)—Continued

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
30	1s2p-1s3d	$^{3}P^{\circ}-^{3}D$		63.59	9 024 141–10 596 783	9–15	6.67+03	6.74-01	1.27+00	0.783	A	1
				63.627	9 025 264-10 596 925	5–7	6.66+03	5.66-01	5.93-01	0.452	A	LS
				63.540	9 022 867-10 596 667	3–5		5.06-01		0.181		LS
				63.520	9 022 345-10 596 647	1-3			1.41-01	-0.171	Α	LS
				63.637	9 025 264-10 596 667	5-5			1.06-01			LS
				63.541	9 022 867-10 596 647	3-3	2.79+03	1.69-01	1.06-01	-0.295	A	LS
				63.638	9 025 264–10 596 647	5–3	1.85 + 02	6.74-03	7.06-03	-1.472	A	LS
31		$^{1}P^{\circ}-^{1}D$		66.279	9 088 700–10 597 475	3–5	6.39+03	7.01-01	4.59-01	0.323	A	1
32	1s2p-1s4s	$^{3}P^{\circ}-^{3}S$		47.83	9 024 141–11 115 065	9–3	3.35+02	3.83-03	5.43-03	-1.463	A	1
				47.851	9 025 264-11 115 065	5–3	1.86+02	3.83-03	3.02-03	-1.718	A	LS
				47.797	9 022 867–11 115 065	3–3	1.12+02	3.84 - 03	1.81 - 03	-1.939	A	LS
				47.785	9 022 345–11 115 065	1–3	3.74+01	3.84 - 03	6.04 - 04	-2.416	A	LS
33		$^{1}P^{\circ}-^{1}S$		49.109	9 088 700–11 124 986	3–1	3.15+02	3.80-03	1.84-03	-1.943	A	1
34	1s2p-1s4d	$^{3}P^{\circ}-^{3}D$		47.47	9 024 141–11 130 639	9–15	2.17+03	1.22-01	1.72-01	0.041	A	1
				47.497	9 025 264-11 130 639	5–7	2.18+03	1.03-01	8.05-02	-0.288	A	LS
				47.443	9 022 867-11 130 639	3-5	1.63+03	9.18-02	4.30-02	-0.560	A	LS
				47.432	9 022 345-11 130 639	1-3	1.21+03	1.22-01	1.91-02	-0.914	A	LS
				47.497	9 025 264-11 130 639	5-5	5.41+02	1.83-02	1.43-02	-1.039	A	LS
				47.443	9 022 867-11 130 639	3–3	9.07 + 02	3.06-02	1.43-02	-1.037	Α	LS
				47.497	9 025 264–11 130 639	5–3			9.54-04			LS
35		$^{1}P^{\circ}-^{1}D$		48.964	9 088 700–11 131 017	3–5	2.00+03	1.20-01	5.80-02	-0.444	A	1
36	1s2p-1s5s	$^{3}P^{\circ}-^{3}S$		42.63	9 024 141–11 369 887	9–3	1.66+02	1.51-03	1.91-03	-1.867	A	1
				42.651	9 025 264–11 369 887	5–3	9.23+01	1.51-03	1.06-03	-2.122	A	LS
				42.607	9 022 867–11 369 887	3–3	5.55+01	1.51 - 03	6.35 - 04	-2.344	A	LS
				42.598	9 022 345–11 369 887	1–3	1.85 + 01	1.51-03	2.12-04	-2.821	A	LS
37		$^{1}P^{\circ}-^{1}S$		43.741	9 088 700–11 374 868	3–1	1.57+02	1.50-03	6.48-04	-2.347	A	1
38	1s2p-1s5d	$^{3}P^{\circ}-^{3}D$		42.49	9 024 141–11 377 767	9–15	1.01+03	4.53-02	5.71-02	-0.390	A	1
				42.508	9 025 264-11 377 767	5–7	1.00+03	3.81-02	2.67-02	-0.720	Α	LS
				42.465	9 022 867-11 377 767	3-5	7.55 + 02	3.40-02	1.43-02	-0.991	A	LS
				42.455	9 022 345-11 377 767	1-3	5.60+02	4.54-02	6.35-03	-1.343	A	LS
				42.508	9 025 264-11 377 767	5-5	2.51+02	6.80-03	4.76-03	-1.469	A	LS
				42.465	9 022 867-11 377 767	3-3	4.18+02	1.13-02	4.74-03	-1.470	A	LS
				42.508	9 025 264–11 377 767	5–3	2.79+01	4.53-04	3.17-04	-2.645	A	LS
39		$^{1}P^{\circ}-^{1}D$		43.682	9 088 700–11 377 984	3–5	9.10+02	4.34-02	1.87-02	-0.885	A	1
40	1s2p-1s6s	$^{3}P^{\circ}-^{3}S$		40.27	9 024 141–11 507 469	9–3	9.41+01	7.62-04	9.10-04	-2.164	A	1
				40.287	9 025 264–11 507 469	5–3			5.05-04			LS
				40.248	9 022 867–11 507 469	3–3			3.03 - 04			LS
				40.239	9 022 345–11 507 469	1–3	1.05+01	7.63-04	1.01-04	-3.117	A	LS
1 1		$^{1}P^{\circ}-^{1}S$		41.295	9 088 700–11 510 320	3–1	8.97+01	7.64-04	3.12-04	-2.640	A	1
42	1s2p-1s6d	$^{3}P^{\circ}-^{3}D$		40.20	9 024 141–11 512 003	9–15	5.51+02	2.23-02	2.65-02	-0.697	A	1
				40.213	9 025 264-11 512 003	5–7			1.24-02			LS
				40.175	9 022 867–11 512 003	3–5			6.63-03			LS
				40.166	9 022 345–11 512 003	1–3			2.95-03			LS
				40.212	9 025 264-11 512 003	5-5	1 27 1 02	3 33 _ 03	2.20 - 03	-1.770	Δ	LS
				40.213 40.175	9 022 867–11 512 003	3–3			2.21-03			LS

Table 38. Transition probabilities of allowed lines for Na X (reference for this table are as follows: $1 = \text{Fernely } et \ al.^{27}$ and $2 = \text{Khan } et \ al.^{50}$)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				40.213	9 025 264–11 512 003	5–3	1.53+01	2.22-04	1.47-04	-2.955	A	LS
43		$^{1}P^{\circ}-^{1}D$		41.264	9 088 700–11 512 137	3–5	4.96+02	2.11-02	8.60-03	-1.199	A	1
44	1s2p-1s7s	$^{3}P^{\circ}-^{3}S$		38.97	9 024 141–11 590 091	9–3	5.86+01	4.45-04	5.14-04	-2.397	A	1
				38.989	9 025 264-11 590 091	5–3	3.25+01	4.45-04	2.86-04	-2.653	A	LS
				38.953	9 022 867–11 590 091	3–3	1.96+01	4.45 - 04	1.71 - 04	-2.875	A	LS
				38.945	9 022 345–11 590 091	1–3	6.52+00	4.45-04	5.71-05	-3.352	A	LS
45		$^{1}P^{\circ}-^{1}S$		39.949	9 088 700–11 591 874	3–1	5.60+01	4.47-04	1.76-04	-2.873	A	1
46	1s2p-1s8s	$^{3}P^{\circ}-^{3}S$		38.18	9 024 141–11 643 558	9–3	3.89+01	2.83-04	3.21-04	-2.594	A	1
				38.193	9 025 264-11 643 558	5-3	2.16+01	2.83-04	1.78-04	-2.849	A	LS
				38.158	9 022 867-11 643 558	3-3	1.30+01	2.84 - 04	1.07 - 04	-3.070	Α	LS
				38.150	9 022 345–11 643 558	1–3	4.34+00	2.84-04	3.57-05	-3.547	A	LS
47		$^{1}P^{\circ}-^{1}S$		39.123	9 088 700–11 644 747	3–1	3.73+01	2.85-04	1.10-04	-3.068	A	1
48	1s2p-1s9s	$^{3}P^{\circ}-^{3}S$		37.65	<i>9 024 141</i> –11 680 134	9–3	2.71+01	1.92-04	2.14-04	-2.762	A	1
				37.667	9 025 264–11 680 134	5–3	1.50+01	1.92-04	1.19-04	-3.018	A	LS
				37.633	9 022 867-11 680 134	3-3	9.04+00	1.92-04	7.14-05	-3.240	A	LS
				37.625	9 022 345–11 680 134	1–3	3.03+00	1.93 - 04	2.39 - 05	-3.714	A	LS
49		$^{1}P^{\circ}-^{1}S$		38.576	9 088 700–11 680 966	3–1	2.61+01	1.94-04	7.39-05	-3.235	A	1
50	1s2p-1s10s	$^{3}P^{\circ}-^{3}S$		37.28	<i>9 024 141</i> –11 706 251	9–3	1.97+01	1.37-04	1.51-04	-2.909	A	1
				37.300	9 025 264–11 706 251	5–3	1.09+01	1.37-04	8.41-05	-3.164	A	LS
				37.266	9 022 867-11 706 251	3-3	6.58 + 00	1.37 - 04	5.04 - 05	-3.386	Α	LS
				37.259	9 022 345–11 706 251	1–3	2.19+00	1.37 - 04	1.68 - 05	-3.863	A	LS
51		$^{1}P^{\circ}-^{1}S$		38.195	9 088 700–11 706 856	3–1	1.89+01	1.38-04	5.21-05	-3.383	A	1
52	1s3s-1s3p	$^{3}S - ^{3}P^{\circ}$	4 101	4 102	10 558 946– <i>10 583 324</i>	3–9	1.54-01	1.17-01	4.72+00	-0.455	A	1
			4 045.5	4 046.6	10 558 946-10 583 658	3–5	1.60-01	6.56-02	2.62+00	-0.706	A	LS
			4 165.3	4 166.5	10 558 946-10 582 947	3-3	1.47-01	3.82-02	1.57 + 00	-0.941	Α	LS
			4 194.3	4 195.5	10 558 946–10 582 781	3–1	1.44-01	1.27-02	5.26-01	-1.419	A	LS
53		$^{1}S-^{1}P^{\circ}$	5 664	5 666	10 583 431–10 601 080	1–3	6.04-02	8.72-02	1.63+00	-1.059	A	1
54	1s3s-1s4p	$^{3}S - ^{3}P^{\circ}$		176.63	10 558 946–11 125 103	3–9	2.91+02	4.08-01	7.12-01	0.088	A	1
				176.585	10 558 946-11 125 244	3–5	2.91+02	2.27-01	3.96-01	-0.167	A	LS
				176.679	10 558 946-11 124 944	3-3	2.91 + 02	1.36-01	2.37 - 01	-0.389	A	LS
				176.701	10 558 946-11 124 873	3–1	2.90+02	4.53 - 02	7.91 - 02	-0.867	A	LS
55		$^{1}S-^{1}P^{\circ}$		182.162	10 583 431–11 132 393	1–3	2.88+02	4.30-01	2.58-01	-0.367	A	1
56	1s3s-1s5p	$^3S - ^3P^{\circ}$		122.55	10 558 946– <i>11 374 960</i>	3–9	1.60+02	1.08-01	1.31-01	-0.489	A	1
				122.536	10 558 946–11 375 032	3–5	1.60+02	6.01-02	7.27-02	-0.744	A	LS
				122.559	10 558 946-11 374 879	3-3	1.60+02	3.61-02	4.37-02	-0.965	A	LS
				122.565	10 558 946–11 374 842	3–1			1.45-02			LS
57		$^{1}S-^{1}P^{\circ}$		125.752	10 583 431–11 378 646	1–3	1.57+02	1.12-01	4.64-02	-0.951	A	1
58	1s3s-1s6p	$^{3}S - ^{3}P^{\circ}$		105.10	10 558 946–11 510 387	3–9	9.42+01	4.68-02	4.86-02	-0.853	A	1
				105.104	10 558 946–11 510 387	3–5	9.42+01	2.60-02	2.70-02	-1.108	A	LS
				105.104	10 558 946–11 510 387	3–3			1.62-02			LS
				105.104	10 558 946-11 510 387	3–1			5.39-03			LS

Table 38. Transition probabilities of allowed lines for Na X (reference for this table are as follows: $1 = \text{Fernely } et \ al.^{27}$ and $2 = \text{Khan } et \ al.^{50}$)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	$A_{ki} \\ (10^8 \text{ s}^{-1})$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
59		$^{1}S-^{1}P^{\circ}$		107.634	10 583 431–11 512 505	1–3	9.27+01	4.83-02	1.71-02	-1.316	A	1
60	1s3s-1s7p	$^{3}S - ^{3}P^{\circ}$		96.81	10 558 946– <i>11 591 920</i>	3–9	5.98+01	2.52-02	2.41-02	-1.121	A	1
				96.808	10 558 946-11 591 920	3–5	5.98+01	1.40-02	1.34-02	-1.377	A	LS
				96.808	10 558 946-11 591 920	3-3	5.97 + 01	8.39-03	8.02 - 03	-1.599	A	LS
				96.808	10 558 946–11 591 920	3–1	5.98+01	2.80-03	2.68-03	-2.076	A	LS
61		$^{1}S-^{1}P^{\circ}$		99.028	10 583 431–11 593 248	1–3	5.87+01	2.59-02	8.44-03	-1.587	A	1
62	1s3s-1s8p	$^3S - ^3P^{\circ}$		92.10	10 558 946– <i>11 644 781</i>	3–9	4.02+01	1.53-02	1.39-02	-1.338	A	1
				92.095	10 558 946-11 644 781	3–5	4.02+01	8.51-03	7.74-03	-1.593	A	LS
				92.095	10 558 946-11 644 781	3-3	4.02 + 01	5.11 - 03	4.65 - 03	-1.814	A	LS
				92.095	10 558 946–11 644 781	3–1	4.01 + 01	1.70-03	1.55 - 03	-2.292	A	LS
63		$^{1}S-^{1}P^{\circ}$		94.141	10 583 431–11 645 667	1–3	3.94+01	1.57-02	4.87-03	-1.804	A	1
64	1s3s-1s9p	$^3S - ^3P^{\circ}$		89.12	10 558 946– <i>11 680 991</i>	3–9	2.82+01	1.01-02	8.87-03	-1.519	A	1
				89.123	10 558 946-11 680 991	3–5	2.82+01	5.60-03	4.93-03	-1.775	A	LS
				89.123	10 558 946-11 680 991	3-3	2.82 + 01	3.36-03	2.96-03	-1.997	A	LS
				89.123	10 558 946-11 680 991	3–1	2.82+01	1.12-03	9.86-04	-2.474	A	LS
65		$^{1}S-^{1}P^{\circ}$		91.060	10 583 431–11 681 612	1–3	2.76+01	1.03-02	3.09-03	-1.987	A	1
66	1s3s - 1s10p	$^3S - ^3P^{\circ}$		87.11	10 558 946– <i>11 706 875</i>	3–9	2.05+01	7.01-03	6.03-03	-1.677	A	1
				87.113	10 558 946–11 706 875	3–5	2.05+01	3.89-03	3.35-03	-1.933	A	LS
				87.113	10 558 946-11 706 875	3-3	2.06+01	2.34-03	2.01-03	-2.154	A	LS
				87.113	10 558 946–11 706 875	3–1	2.05+01	7.79-04	6.70-04	-2.631	A	LS
67		$^{1}S-^{1}P^{\circ}$		88.976	10 583 431–11 707 327	1–3	2.03+01	7.22-03	2.11-03	-2.141	A	1
68	1s3p-1s3d	$^{3}P^{\circ} - ^{3}D$	7 430	7 430	10 583 324–10 596 783	9–15	2.01-02	2.78-02	6.11+00	-0.602	A	1
			7 535	7 537	10 583 658–10 596 925	5–7	1.93-02	2.30-02	2.85+00	-0.939	A	LS
			7 287	7 289	10 582 947–10 596 667	3–5	1.60 - 02	2.12-02	1.53+00	-1.197	A	LS
			7 210	7 212	10 582 781–10 596 647	1–3	1.22 - 02	2.86 - 02	6.79 - 01	-1.544	A	LS
			7 685	7 687	10 583 658–10 596 667	5–5	4.54 - 03	4.02 - 03	5.09 - 01	-1.697	A	LS
			7 297	7 299	10 582 947–10 596 647	3–3			5.09 - 01			LS
			7 697	7 699	10 583 658–10 596 647	5–3	5.03+04	2.68-04	3.40-02	-2.873	A	LS
69	1s3p-1s4s	$^{3}P^{\circ}-^{3}S$		188.06	<i>10 583 324</i> –11 115 065	9–3	2.34+02	4.14-02	2.31-01	-0.429	A	1
				188.180	10 583 658-11 115 065	5–3	1.30+02	4.14-02	1.28 - 01	-0.684	A	LS
				187.928	10 582 947-11 115 065	3–3	7.84 + 01	4.15 - 02	7.70 - 02	-0.905	A	LS
				187.870	10 582 781–11 115 065	1–3	2.61+01	4.15-02	2.57-02	-1.382	A	LS
70		$^{1}P^{\circ}-^{1}S$		190.874	10 601 080–11 124 986	3–1	2.18+02	3.97-02	7.48 - 02	-0.924	A	1
71	1s3p-1s4d	$^{3}P^{\circ} - ^{3}D$		182.71	10 583 324–11 130 639	9–15	7.00+02	5.84-01	3.16+00	0.721	A	1
				182.822	10 583 658–11 130 639	5–7	6.98+02	4.90-01	1.47+00	0.389	A	LS
				182.584	10 582 947-11 130 639	3–5	5.26+02	4.38 - 01	7.90-01	0.119	A	LS
				182.529	10 582 781–11 130 639	1–3	3.90+02	5.85 - 01	3.52 - 01	-0.233	A	LS
				182.822	10 583 658-11 130 639	5–5			2.63-01			LS
				182.584	10 582 947–11 130 639	3–3			2.63-01			LS
				182.822	10 583 658–11 130 639	5–3	1.94+01	5.84-03	1.76-02	-1.535	A	LS
72		$^{1}P^{\circ}-^{1}D$		188.702	10 601 080–11 131 017	3–5	7.09+02	6.31-01	1.18+00	0.277	A	1
73	1s3p-1s5s	$^{3}P^{\circ}-^{3}S$		127.14	<i>10 583 324</i> –11 369 887	9–3	1.13+02	9.15-03	3.45-02	-1.084	A	1
				127.189	10 583 658–11 369 887	5–3	6.29+01	9.15-03	1.92-02	-1.340	A	LS

Table 38. Transition probabilities of allowed lines for Na X (reference for this table are as follows: $1 = \text{Fernely } et \ al.^{27}$ and $2 = \text{Khan } et \ al.^{50}$)—Continued

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				127.074	10 582 947-11 3698 87	3–3	3.78+01	9.15-03	1.15-02	-1.561	Α	LS
				127.048	10 582 781–11 369 887	1–3			3.83-03			LS
7.4		$^{1}P^{\circ}-^{1}S$		120.224	10 (01 000 11 274 060	2 1	1.06 - 02	0.04.02	1 12 02	1.576		1
74		P - S		129.234	10 601 080–11 374 868	3–1	1.06+02	8.84-03	1.13-02	-1.5/6	А	1
75	1s3p-1s5d	$^{3}P^{\circ}-^{3}D$		125.87	10 583 324–11 377 767	9–15	3.46+02	1.37 - 01	5.11 - 01	0.091	A	1
				125.927	10 583 658–11 377 767	5–7	3.46+02	1.15-01	2.38-01	-0.240	A	LS
				125.815	10 582 947-11 377 767	3-5	2.60+02	1.03 - 01	1.28 - 01	-0.510	A	LS
				125.788	10 582 781-11 377 767	1-3	1.93 + 02	1.37-01	5.67-02	-0.863	A	LS
				125.927	10 583 658-11 377 767	5-5	8.62 + 01	2.05 - 02	4.25 - 02	-0.989	A	LS
				125.815	10 582 947-11 377 767	3-3	1.44 + 02	3.42-02	4.25-02	-0.989	A	LS
				125.927	10 583 658-11 377 767	5-3	9.60+00	1.37-03	2.84-03	-2.164	A	LS
76		$^{1}P^{\circ}-^{1}D$		128.716	10 601 080–11 377 984	3–5	3 38±02	1.40_01	1.78-01	_0 377	Δ	1
77	1s3p-1s6s	$^{3}\text{P}^{\circ}-^{3}\text{S}$		108.21	10 583 324–11 507 469	9–3	6.29+01	3.68-03	1.18-02	-1.480	A	1
				108.247	10 583 658-11 507 469	5-3	3.49+01	3.68-03	6.56-03	-1.735	A	LS
				108.164	10 582 947-11 507 469	3-3	2.10+01	3.68 - 03	3.93 - 03	-1.957	Α	LS
				108.145	10 582 781-11 507 469	1-3	7.00+00	3.68 - 03	1.31 - 03	-2.434	A	LS
78		$^{1}\text{P}^{\circ}-^{1}\text{S}$		109.982	10 601 080–11 510 320	3–1	5.91+01	3.57-03	3.88-03	-1.970	A	1
79	1.2. 1.64	$^{3}P^{\circ}-^{3}D$		107.68	10 583 324–11 512 003				1.78-01			1
19	1s3p-1s6d	P - D		107.00	10 363 324–11 312 003	9–15	1.92+02	3.37-02	1.78-01	-0.300	Α	1
				107.719	10 583 658-11 512 003	5–7	1.92 + 02	4.68 - 02	8.30 - 02	-0.631	A	LS
				107.636	10 582 947-11 512 003	3-5	1.44 + 02	4.18 - 02	4.44 - 02	-0.902	A	LS
				107.617	10 582 781-11 512 003	1-3	1.07 + 02	5.58 - 02	1.98 - 02	-1.253	A	LS
				107.719	10 583 658-11 512 003	5-5	4.81 + 01	8.36-03	1.48 - 02	-1.379	A	LS
				107.636	10 582 947-11 512 003	3-3	8.00+01	1.39 - 02	1.48 - 02	-1.380	Α	LS
				107.719	10 583 658-11 512 003	5–3	5.34+00	5.57-04	9.88 - 04	-2.555	A	LS
80		$^{1}P^{\circ}-^{1}D$		109.763	10 601 080–11 512 137	3–5	1.86+02	5.61-02	6.08-02	-0.774	A	1
81	1s3p-1s7s	$^{3}P^{\circ}-^{3}S$		99.33	<i>10 583 324</i> –11 590 091	9–3	3.85+01	1.90-03	5.59-03	-1.767	A	1
				99.361	10 583 658-11 590 091	5–3	2.14+01	1.90-03	3.11-03	-2.022	Α	LS
				99.291	10 582 947-11 590 091	3–3			1.86-03			LS
				99.274	10 582 781–11 590 091	1–3			6.21-04			LS
0.2		lnº la										
82		$^{1}P^{\circ}-^{1}S$		100.929	10 601 080–11 591 874	3–1	3.65+01	1.86-03	1.85-03	-2.253	Α	1
83	1s3p-1s8s	$^{3}\text{P}^{\circ}-^{3}\text{S}$		94.32	<i>10 583 324</i> –11 643 558	9–3	2.54+01	1.13-03	3.16-03	-1.993	A	1
				94.349	10 583 658-11 643 558	5–3	1.41+01	1.13-03	1.75-03	-2.248	A	LS
				94.285	10 582 947-11 643 558	3-3	8.48 + 00	1.13-03	1.05-03	-2.470	Α	LS
				94.271	10 582 781–11 643 558	1–3			3.51-04			LS
0.1		$^{1}P^{\circ}-^{1}S$		05 016	10 601 000 11 644 747	2 1	2.42 - 01	1 11 02	1.05.02	2 479		1
84				95.816	10 601 080–11 644 747	3–1	2.42+01	1.11-03	1.05-03	-2.478	А	1
85	1s3p-1s9s	$^{3}P^{\circ}-^{3}S$		91.17	<i>10 583 324</i> –11 680 134	9–3	1.77 + 01	7.35-04	1.99-03	-2.179	A	1
				91.201	10 583 658-11 680 134	5-3	9.82+00	7.35-04	1.10-03	-2.435	A	LS
				91.142	10 582 947-11 680 134	3-3	5.90+00	7.35 - 04	6.62 - 04	-2.657	A	LS
				91.128	10 582 781-11 680 134	1-3	1.97 + 00	7.35 - 04	2.21 - 04	-3.134	A	LS
86		$^{1}P^{\circ}-^{1}S$		92.602	10 601 080–11 680 966	3–1	1.67+01	7.17-04	6.56-04	-2.667	A	1
87	1.25 1.10.	$^{3}P^{\circ}-^{3}S$		89.05								1
0/	1s3p-1s10s	г – 3			10 583 324–11 706 251	9–3	1.20+01	5.07-04	1.34-03	-2.341	Α	1
				89.079	10 583 658-11 706 251	5–3	7.10+00	5.07 - 04	7.43 - 04	-2.596	A	LS
				89.023	10 582 947-11 706 251	3-3	4 27 ± 00	5.07-04	4.46 - 04	_2 818	Δ	LS
				07.023	10 302 747 11 700 231	5 5	7.27 + 00	3.07 04		-2.010	11	LO

Table 38. Transition probabilities of allowed lines for Na X (reference for this table are as follows: $1 = \text{Fernely } et \ al.^{27}$ and $2 = \text{Khan } et \ al.^{50}$)—Continued

No.	Transition array	Mult.	$\lambda_{air} \ (\mathring{A})$	$\lambda_{\rm vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
88		$^{1}P^{\circ}-^{1}S$		90.434	10 601 080–11 706 856	3–1	1.22+01	4.97-04	4.44-04	-2.827	A	1
89	1s3d-1s3p	$^{1}D-^{1}P^{\circ}$		3 605 cm ⁻¹	10 597 475–10 601 080	5–3	6.40-04	4.43-03	2.02+00	-1.655	A	1
90	1s3d-1s4p	$^{3}D-^{3}P^{\circ}$		189.28	10 596 783–11 125 103	15–9	4.12+01	1.33-02	1.24-01	-0.700	A	1
				189.280	10 596 925–11 125 244	7–5	3.47+01	1.33-02	5.80-02	-1.031	A	LS
				189.295	10 596 667-11 124 944	5-3	3.09+01	9.95-03	3.10-02	-1.303	A	LS
				189.313	10 596 647-11 124 873	3-1	4.12+01	7.37-03	1.38-02	-1.655	A	LS
				189.187	10 596 667-11 125 244	5-5	6.19+00	3.32-03	1.03 - 02	-1.780	A	LS
				189.287	10 596 647-11 124 944	3-3	1.03 + 01	5.53-03	1.03 - 02	-1.780	A	LS
				189.180	10 596 647–11 125 244	3–5	4.13-01	3.69-04	6.89-04	-2.956	A	LS
91		$^{1}D-^{1}P^{\circ}$		186.945	10 597 475–11 132 393	5–3	3.28+01	1.03-02	3.17-02	-1.288	A	1
92	1s3d-1s5p	$^{3}D-^{3}P^{\circ}$		128.51	10 596 783–11 374 960	15–9	1.77+01	2.62-03	1.66-02	-1.406	A	1
				128.517	10 596 925–11 375 032	7–5	1.48+01	2.62-03	7.76-03	-1.737	A	LS
				128.500	10 596 667-11 374 879	5-3	1.33+01	1.97 - 03	4.17 - 03	-2.007	A	LS
				128.502	10 596 647-11 374 842	3-1	1.77 + 01	1.46 - 03	1.85 - 03	-2.359	A	LS
				128.474	10 596 667-11 375 032	5-5	2.65+00	6.55 - 04	1.39 - 03	-2.485	A	LS
				128.496	10 596 647-11 374 879	3-3	4.40+00	1.09 - 03	1.38 - 03	-2.485	A	LS
				128.471	10 596 647–11 375 032	3–5	1.77 - 01	7.28-05	9.24-05	-3.661	A	LS
93		$^{1}D-^{1}P^{\circ}$		128.013	10 597 475–11 378 646	5–3	1.41+01	2.08-03	4.38-03	-1.983	A	1
94	1s3d-1s6p	$^{3}D-^{3}P^{\circ}$		109.46	10 596 783–11 510 387	15–9	9.22+00	9.94-04	5.37-03	-1.827	A	1
				109.474	10 596 925-11 510 387	7–5	7.75 + 00	9.94-04	2.51-03	-2.158	Α	LS
				109.443	10 596 667-11 510 387	5-3	6.91+00	7.45 - 04	1.34-03	-2.429	A	LS
				109.440	10 596 647-11 510 387	3-1			5.97-04			LS
				109.443	10 596 667-11 510 387	5–5			4.47-04			LS
				109.440	10 596 647-11 510 387	3–3			4.47-04			LS
				109.440	10 596 647–11 510 387	3–5			2.98-05			LS
95		$^{1}D-^{1}P^{\circ}$		109.286	10 597 475–11 512 505	5–3	7.41+00	7.96-04	1.43-03	-2.400	A	1
96	1s3d-1s7p	$^{3}D-^{3}P^{\circ}$		100.49	10 596 783–11 591 920	15–9	5.47+00	4.97-04	2.47-03	-2.128	A	1
				100.503	10 596 925-11 591 920	7–5	4.59+00	4.97-04	1.15-03	-2.459	A	LS
				100.477	10 596 667-11 591 920	5-3	4.11+00	3.73-04	6.17-04	-2.729	A	LS
				100.475	10 596 647-11 591 920	3-1	5.47 + 00	2.76-04	2.74-04	-3.082	Α	LS
				100.477	10 596 667-11 591 920	5-5			2.05 - 04			LS
				100.475	10 596 647-11 591 920	3-3	1.37 + 00	2.07 - 04	2.05 - 04	-3.207	Α	LS
				100.475	10 596 647–11 591 920	3–5	5.47-02	1.38-05	1.37-05	-4.383	A	LS
97		$^{1}D-^{1}P^{\circ}$		100.424	10 597 475–11 593 248	5–3	4.39+00	3.98-04	6.58-04	-2.701	A	1
98	1s3d-1s8p	$^{3}D-^{3}P^{\circ}$		95.42	10 596 783–11 644 781	15–9	3.53+00	2.89-04	1.36-03	-2.363	A	1
				95.433	10 596 925–11 644 781	7–5	2.96+00	2.89-04	6.36-04	-2.694	A	LS
				95.409	10 596 667-11 644 781	5-3	2.65+00	2.17 - 04	3.41 - 04	-2.965	A	LS
				95.408	10 596 647-11 644 781	3-1	3.52+00	1.60 - 04	1.51 - 04	-3.319	A	LS
				95.409	10 596 667-11 644 781	5-5	5.29-01	7.22-05	1.13-04	-3.442	A	LS
				95.408	10 596 647-11 644 781	3-3	8.79-01	1.20-04	1.13-04	-3.444	A	LS
				95.408	10 596 647–11 644 781	3–5	3.53-02	8.02-06	7.56-06	-4.619	A	LS
99		$^{1}D-^{1}P^{\circ}$		95.402	10 597 475–11 645 667	5–3	2.83+00	2.32-04	3.64-04	-2.936	A	1
.00	1s3d-1s9p	$^{3}D-^{3}P^{\circ}$		92.23	10 596 783–11 680 991	15–9	2.40+00	1.84-04	8.38-04	-2.559	A	1
				92.245	10 596 925-11 680 991	7–5	2.02+00	1.84 - 04	3.91 - 04	-2.890	Α	LS
				92.245 92.223	10 596 925–11 680 991 10 596 667–11 680 991	7–5 5–3			3.91-04 2.09-04			LS LS

Table 38. Transition probabilities of allowed lines for Na X (reference for this table are as follows: $1 = \text{Fernely } et \ al.^{27}$ and $2 = \text{Khan } et \ al.^{50}$)—Continued

No.	Transition	Mult.	λ _{air} (Å)	$\lambda_{\text{vac}} (\mathring{A})$ or $\sigma (\text{cm}^{-1})^a$	$E_i - E_k$ (cm ⁻¹)	a a	A_{ki} (10 ⁸ s ⁻¹)	f	S (a.u.)	log of	A 00	Source
NO.	array	Muit.	(A)	or or (cm -)	(CIII -)	$g_i - g_k$	(10° 8°)	f_{ik}	(a.u.)	log gj	Acc.	Source
				92.223	10 596 667–11 680 991	5–5			6.98 - 05			LS
				92.222	10 596 647–11 680 991	3–3			6.99-05			LS
				92.222	10 596 647–11 680 991	3–5	2.40-02	5.11-06	4.65-06	-4.814	Α	LS
101		$^{1}D-^{1}P^{\circ}$		92.239	10 597 475–11 681 612	5–3	1.93+00	1.48-04	2.25-04	-3.131	A	1
102	1s3d-1s10p	$^{3}D - ^{3}P^{\circ}$		90.08	10 596 783–11 706 875	15–9	1.73+00	1.26-04	5.61-04	-2.724	A	1
				90.094	10 596 925–11 706 875	7–5	1.45+00	1.26-04	2.62-04	-3.055	A	LS
				90.073	10 596 667–11 706 875	5–3	1.29+00	9.45 - 05	1.40 - 04	-3.326	A	LS
				90.072	10 596 647–11 706 875	3-1	1.73+00	7.00 - 05	6.23 - 05	-3.678	A	LS
				90.073	10 596 667–11 706 875	5–5	2.59 - 01	3.15 - 05	4.67 - 05	-3.803	A	LS
				90.072	10 596 647–11 706 875	3–3	4.32 - 01	5.25 - 05	4.67 - 05	-3.803	A	LS
				90.072	10 596 647–11 706 875	3–5	1.73-02	3.50-06	3.11-06	-4.979	A	LS
103		$^{1}D-^{1}P^{\circ}$		90.102	10 597 475–11 707 327	5–3	1.38+00	1.01-04	1.50-04	-3.297	A	1
104	1s4s - 1s4p	$^{3}S - ^{3}P^{\circ}$	9 960	9 962	11 115 065–11 125 103	3–9	3.62-02	1.62-01	1.59+01	-0.313	A	1
			9 821	9 824	11 115 065–11 125 244	3–5	3.77-02	9.10-02	8.83+00	-0.564	A	LS
			10 120	10 122	11 115 065-11 124 944	3-3	3.45-02	5.30-02	5.30+00	-0.799	Α	LS
			10 193	10 196	11 115 065–11 124 873	3-1	3.37-02	1.75-02	1.76+00	-1.280	A	LS
105		$^{1}S-^{1}P^{\circ}$	13 497	13 501	11 124 986–11 132 393	1–3	1.49-02	1.22-01	5.42+00	-0.914	A	1
106	1s4s - 1s5p	$^{3}S-^{3}P^{\circ}$		384.77	11 115 065–11 374 960	3–9	6.83+01	4.54-01	1.73+00	0.134	A	1
	_			384.664	11 115 065–11 375 032	3–5	6.94 : 01	2.52 01	9.61-01	0.120	٨	LS
				384.891	11 115 065–11 374 879	3–3			5.74-01			LS
				384.946	11 115 065–11 374 842	3–1			1.92-01			LS
107		$^{1}S-^{1}P^{\circ}$		394.228	11 124 986–11 378 646	1–3	6.84+01	4.78-01	6.20-01	-0.321	A	1
108	1s4s - 1s6p	$^{3}S-^{3}P^{\circ}$		252.96	11 115 065– <i>11 510 387</i>	3–9	4.25+01	1.22-01	3.05-01	-0.437	A	1
	22 12 22 P	-		252.958	11 115 065–11 510 387	3–5			1.70-01			LS
				252.958	11 115 065–11 510 387	3–3			1.02-01			LS
				252.958	11 115 065 11 510 387	3–1			3.40-02			LS
109		$^{1}S-^{1}P^{\circ}$		258.052	11 124 986–11 512 505	1–3	4.21+01	1.26-01	1.07-01	-0.900	A	1
110	1s4s - 1s7p	$^{3}S-^{3}P^{\circ}$		209.71	11 115 065 <i>–11 591 920</i>	3–9	2.72+01	5.38-02	1.11-01	-0.792	A	1
	1					2 5						1.0
				209.707	11 115 065-11 591 920	3–5			6.19 - 02			LS LS
				209.707 209.707	11 115 065–11 591 920 11 115 065–11 591 920	3–3 3–1			3.71-02 $1.24-02$			LS LS
111		la laº										
111		${}^{1}S - {}^{1}P^{\circ}$		213.556	11 124 986–11 593 248	1–3			3.90-02			1
112	1s4s-1s8p	$^{3}S-^{3}P^{\circ}$		188.78	11 115 065–11 644 781	3–9			5.48-02			1
				188.780	11 115 065–11 644 781	3–5			3.04-02			LS
				188.780	11 115 065–11 644 781	3–3			1.83-02			LS
				188.780	11 115 065–11 644 781	3–1	1.84+01	3.27-03	6.10-03	-2.008	A	LS
113		$^{1}S-^{1}P^{\circ}$		192.056	11 124 986–11 645 667	1–3	1.82+01	3.02-02	1.91-02	-1.520	A	1
114	1s4s-1s9p	$^{3}S - ^{3}P^{\circ}$		176.70	11 115 065– <i>11 680 991</i>	3–9	1.29+01	1.82-02	3.17-02	-1.263	A	1
				176.702	11 115 065–11 680 991	3–5	1.29+01	1.01-02	1.76-02	-1.519	A	LS
				176.702	11 115 065-11 680 991	3-3	1.29+01	6.05-03	1.06-02	-1.741	A	LS
				176.702	11 115 065-11 680 991	3-1	1.29+01	2.02-03	3.53-03	-2.218	A	LS
115		$^{1}S-^{1}P^{\circ}$		179.654	11 124 986–11 681 612	1–3	1.28+01	1.86-02	1.10-02	-1.730	A	1

Table 38. Transition probabilities of allowed lines for Na X (reference for this table are as follows: $1 = \text{Fernely } et \ al.^{27}$ and $2 = \text{Khan } et \ al.^{50}$)—Continued

	Transition	3.5.1	λ_{air}	λ_{vac} (Å)	$E_i - E_k$		A_{ki}	c	S	1 ^		0
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	log gf	Acc.	Source
116	1s4s - 1s10p	$^{3}S - ^{3}P^{\circ}$		168.97	11 115 065– <i>11 706 875</i>	3–9	9.44+00	1.21-02	2.02-02	-1.440	A	1
				168.973	11 115 065–11 706 875	3–5	9.43+00	6.73 - 03	1.12 - 02	-1.695	A	LS
				168.973	11 115 065–11 706 875	3–3	9.44 + 00	4.04 - 03	6.74 - 03	-1.916	A	LS
				168.973	11 115 065–11 706 875	3–1	9.46+00	1.35-03	2.25-03	-2.393	A	LS
117		$^{1}S-^{1}P^{\circ}$		171.721	11 124 986–11 707 327	1–3	9.35+00	1.24-02	7.01 - 03	-1.907	A	1
118	1s4p-1s4d	$^{3}P^{\circ}-^{3}D$	18 060	18 064	11 125 103–11 130 639	9–15	5.98-03	4.87-02	2.61+01	-0.358	A	1
			18 531	18 536	11 125 244-11 130 639	5–7	5.53-03	3.99-02	1.22+01	-0.700	A	LS
			17 554	17 559	11 124 944–11 130 639	3–5	4.88 - 03	3.76 - 02	6.52+00	-0.948	A	LS
			17 338	17 343	11 124 873–11 130 639	1–3	3.76 - 03	5.08 - 02	2.90+00	-1.294	A	LS
			18 531	18 536	11 125 244-11 130 639	5–5	1.38 - 03	7.12 - 03	2.17+00	-1.449	A	LS
			17 554	17 559	11 124 944-11 130 639	3-3	2.70 - 03	1.25 - 02	2.17+00	-1.426	A	LS
			18 531	18 536	11 125 244–11 130 639	5–3	1.54-04	4.75-04	1.45-01	-2.624	A	LS
119	1s4p-1s5s	$^{3}P^{\circ}-^{3}S$		408.52	<i>11 125 103</i> –11 369 887	9–3	8.06+01	6.72-02	8.14-01	-0.218	A	1
				408.759	11 125 244–11 369 887	5–3	4.47+01	6.72-02	4.52-01	-0.474	A	LS
				408.258	11 124 944-11 369 887	3-3	2.69+01	6.73 - 02	2.71 - 01	-0.695	A	LS
				408.140	11 124 873–11 369 887	1–3	8.98+00	6.73-02	9.04-02	-1.172	A	LS
120		$^{1}P^{\circ}-^{1}S$		412.414	11 132 393–11 374 868	3–1	7.53+01	6.40-02	2.61-01	-0.717	A	1
121	1s4p-1s5d	$^{3}P^{\circ}-^{3}D$		395.78	11 125 103–11 377 767	9–15	1.45+02	5.67-01	6.65+00	0.708	A	1
				396.004	11 125 244–11 377 767	5–7	1.45+02	4.76-01	3.10+00	0.377	A	LS
				395.534	11 124 944-11 377 767	3-5	1.09 + 02	4.26-01	1.66+00	0.107	A	LS
				395.423	11 124 873-11 377 767	1-3	8.08 + 01	5.68-01	7.39-01	-0.246	A	LS
				396.004	11 125 244-11 377 767	5–5	3.62 + 01	8.51-02	5.55-01	-0.371	Α	LS
				395.534	11 124 944-11 377 767	3–3			5.55-01			LS
				396.004	11 125 244–11 377 767	5–3			3.70-02			LS
122		$^{1}P^{\circ}-^{1}D$		407.181	11 132 393–11 377 984	3–5	1.51+02	6.24-01	2.51+00	0.272	A	1
123	1s4p-1s6s	$^{3}P^{\circ}-^{3}S$		261.53	<i>11 125 103</i> –11 507 469	9–3	4.39+01	1.50-02	1.16-01	-0.870	A	1
				261.626	11 125 244-11 507 469	5–3	2.44+01	1.50-02	6.46-02	-1.125	Α	LS
				261.421	11 124 944-11 507 469	3–3	1.46+01	1.50-02	3.87-02	-1.347	Α	LS
				261.372	11 124 873–11 507 469	1–3			1.29-02			LS
124		$^{1}P^{\circ}-^{1}S$		264.601	11 132 393–11 510 320	3–1	4.14+01	1.45-02	3.79-02	-1.362	A	1
125	1s4p-1s6d	$^{3}P^{\circ}-^{3}D$		258.46	11 125 103–11 512 003	9–15	8.59+01	1.43-01	1.10+00	0.110	A	1
				258.559	11 125 244-11 512 003	5–7	8.55+01	1.20-01	5.11-01	-0.222	A	LS
				258.359	11 124 944-11 512 003	3-5	6.48 + 01	1.08 - 01	2.76 - 01	-0.489	A	LS
				258.311	11 124 873-11 512 003	1-3	4.80 + 01	1.44 - 01	1.22 - 01	-0.842	A	LS
				258.559	11 125 244-11 512 003	5-5	2.15+01	2.15 - 02	9.15-02	-0.969	A	LS
				258.359	11 124 944-11 512 003	3-3	3.59 + 01	3.59-02	9.16-02	-0.968	Α	LS
				258.559	11 125 244-11 512 003	5–3	2.38+00	1.43-03	6.09-03	-2.146	A	LS
126		$^{1}P^{\circ}-^{1}D$		263.335	11 132 393–11 512 137	3–5	8.66+01	1.50-01	3.90-01	-0.347	A	1
127	1s4p-1s7s	$^{3}P^{\circ}-^{3}S$		215.06	<i>11 125 103</i> –11 590 091	9–3	2.65+01	6.11-03	3.90-02	-1.260	A	1
				215.125	11 125 244–11 590 091	5–3	1.47+01	6.11-03	2.16-02	-1.515	A	LS
				214.986	11 124 944-11 590 091	3–3	8.83+00	6.12-03	1.30 - 02	-1.736	A	LS
				214.953	11 124 873–11 590 091	1–3	2.95+00	6.12-03	4.33-03	-2.213	A	LS
128		$^{1}P^{\circ}-^{1}S$		217.637	11 132 393–11 591 874	3–1	2.49+01	5.90-03	1.27-02	-1.752	A	1
129	1s4p-1s8s	$^{3}P^{\circ}-^{3}S$		192.88	<i>11 125 103</i> –11 643 558	9–3	1.72+01	3.20-03	1.83-02	-1.541	A	1

Table 38. Transition probabilities of allowed lines for Na X (reference for this table are as follows: $1 = \text{Fernely } et \ al.^{27}$ and $2 = \text{Khan } et \ al.^{50}$)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	$\lambda_{\mathrm{vac}} \ (\mathrm{\AA})$ or $\sigma \ (\mathrm{cm}^{-1})^{\mathrm{a}}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				192.933	11 125 244-11 643 558	5–3	9.56+00	3.20-03	1.02-02	-1.796	A	LS
				192.822	11 124 944-11 643 558	3-3	5.74+00	3.20 - 03	6.09-03	-2.018	A	LS
				192.795	11 124 873–11 643 558	1–3	1.91+00	3.20-03	2.03 - 03	-2.495	A	LS
130		$^{1}P^{\circ}-^{1}S$		195.178	11 132 393–11 644 747	3–1	1.63+01	3.10-03	5.98-03	-2.032	A	1
131	1s4p-1s9s	$^{3}P^{\circ}-^{3}S$		180.17	<i>11 125 103</i> –11 680 134	9–3	1.18+01	1.92-03	1.02-02	-1.762	A	1
				180.216	11 125 244-11680 134	5–3	6.57 + 00	1.92-03	5.70-03	-2.018	A	LS
				180.119	11 124 944–11 680 134	3–3	3.95+00	1.92 - 03	3.42 - 03	-2.240	A	LS
				180.095	11 124 873–11 680 134	1–3	1.32+00	1.92-03	1.14-03	-2.717	A	LS
132		$^{1}P^{\circ}-^{1}S$		182.291	11 132 393–11 680 966	3–1	1.12+01	1.86-03	3.35-03	-2.253	A	1
133	1s4p-1s10s	$^{3}P^{\circ}-^{3}S$		172.07	<i>11 125 103</i> –11 706 251	9–3	8.52+00	1.26-03	6.42-03	-1.945	A	1
				172.115	11 125 244-11 706 251	5–3	4.73+00	1.26-03	3.57-03	-2.201	A	LS
				172.026	11 124 944-11 706 251	3–3	2.84+00	1.26 - 03	2.14 - 03	-2.423	A	LS
				172.005	11 124 873–11 706 251	1–3	9.47-01	1.26-03	7.13 - 04	-2.900	A	LS
134		$^{1}P^{\circ}-^{1}S$		174.076	11 132 393–11 706 856	3–1	8.06+00	1.22-03	2.10-03	-2.437	A	1
135	1s4d-1s4p	$^{1}D-^{1}P^{\circ}$		1 376 cm ⁻¹	11 131 017–11 132 393	5–3	1.52-04	7.20-03	8.61+00	-1.444	A	1
136	1s4d-1s5p	$^{3}D-^{3}P^{\circ}$		409.30	11 130 639–11 374 960	15–9	2.18+01	3.29-02	6.65-01	-0.307	A	1
				409.177	11 130 639–11 375 032	7–5	1.84+01	3.29-02	3.10-01	-0.638	A	LS
				409.433	11 130 639-11 374 879	5-3	1.64 + 01	2.47 - 02	1.66-01	-0.908	A	LS
				409.495	11 130 639-11 374 842	3-1	2.18+01	1.83-02	7.40 - 02	-1.260	A	LS
				409.177	11 130 639–11 375 032	5–5	3.28 + 00	8.23-03	5.54-02	-1.386	A	LS
				409.433	11 130 639-11 374 879	3-3	5.45 + 00	1.37-02	5.54-02	-1.386	A	LS
				409.177	11 130 639–11 375 032	3–5			3.70-03			LS
137		$^{1}D-^{1}P^{\circ}$		403.830	11 131 017–11 378 646	5–3	1.80+01	2.64-02	1.75-01	-0.879	A	1
138	1s4d-1s6p	$^{3}D-^{3}P^{\circ}$		263.33	11 130 639–11 510 387	15–9	1.09+01	6.80-03	8.84-02	-0.991	A	1
				263.333	11 130 639–11 510 387	7–5	9.16+00	6.80-03	4.13-02	-1.322	A	LS
				263.333	11 130 639-11 510 387	5-3	8.18+00	5.10-03	2.21 - 02	-1.593	A	LS
				263.333	11 130 639-11 510 387	3-1	1.09 + 01	3.78 - 03	9.83 - 03	-1.945	A	LS
				263.333	11 130 639-11 510 387	5-5	1.64+00	1.70 - 03	7.37-03	-2.071	A	LS
				263.333	11 130 639-11 510 387	3-3	2.72 + 00	2.83 - 03	7.36-03	-2.071	A	LS
				263.333	11 130 639–11 510 387	3–5	1.09-01	1.89-04	4.92-04	-3.246	A	LS
139		$^{1}D-^{1}P^{\circ}$		262.131	11 131 017–11 512 505	5–3	9.00+00	5.56-03	2.40-02	-1.556	A	1
140	1s4d-1s7p	$^{3}D-^{3}P^{\circ}$		216.79	11 130 639–11 591 920	15–9	6.22+00	2.63-03	2.81-02	-1.404	A	1
				216.788	11 130 639–11 591 920	7–5	5.23+00	2.63-03	1.31-02	-1.735	A	LS
				216.788	11 130 639-11 591 920	5-3	4.66+00	1.97-03	7.03 - 03	-2.007	A	LS
				216.788	11 130 639-11591 920	3-1			3.13-03			LS
				216.788	11 130 639–11 591 920	5–5			2.34-03			LS
				216.788	11 130 639–11 591 920	3–3			2.33-03			LS
				216.788	11 130 639–11 591 920	3–5			1.56-04			LS
141		$^{1}D-^{1}P^{\circ}$		216.342	11 131 017–11 593 248	5–3	5.18+00	2.18-03	7.76-03	-1.963	A	1
142	1s4d - 1s8p	$^{3}D-^{3}P^{\circ}$		194.50	11 130 639–11 644 781	15–9			1.28-02			1
	ī			194.499	11 130 639–11 644 781	7–5			5.96-03			LS
				194.499	11 130 639–11 644 781	5–3			3.20-03			LS
				194.499	11 130 639–11 644 781	3–1			1.42-03			LS
				194.499	11 130 639–11 644 781	5–5			1.07-03			LS
				194.499	11 130 639–11 644 781	3–3			1.07-03			LS
				-21.122	-1 100 007 11 077 701	5 5	,.50 OI	2.20 04	1.07 03	2.,,0		23

Table 38. Transition probabilities of allowed lines for Na X (reference for this table are as follows: $1 = \text{Fernely } et \ al.^{27}$ and $2 = \text{Khan } et \ al.^{50}$)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				194.499	11 130 639–11 644 781	3–5	3.91-02	3.70-05	7.11-05	-3.955	A	LS
143		$^{1}D-^{1}P^{\circ}$		194.307	11 131 017–11 645 667	5–3	3.24+00	1.10-03	3.52-03	-2.260	A	1
144	1s4d-1s9p	$^{3}D-^{3}P^{\circ}$		181.70	11 130 639–11 680 991	15–9	2.65+00	7.87-04	7.06-03	-1.928	A	1
				181.702	11 130 639–11 680 991	7–5	2.23+00	7.87-04	3.30-03	-2.259	Α	LS
				181.702	11 130 639–11 680 991	5–3			1.76-03			LS
				181.702	11 130 639–11 680 991	3–1			7.84-04			LS
				181.702	11 130 639–11 680 991	5–5			5.89-04			LS
				181.702	11 130 639–11 680 991	3–3			5.89-04			LS
				181.702	11 130 639–11 680 991	3–5			3.93-05			LS
145		$^{1}D-^{1}P^{\circ}$		181.622	11 131 017–11 681 612	5–3	2.19+00	6.50-04	1.94-03	-2.488	A	1
146	1s4d-1s10p	$^{3}D-^{3}P^{\circ}$		173.54	11 130 639–11 706 875	15–9			4.33-03			1
1.0	10 tu 1010p	2 1		173.540	11 130 639–11 706 875	7–5			2.02-03			LS
				173.540	11 130 639 11 706 875	5–3			1.08-03			LS
				173.540	11 130 639–11 706 875	3–3			4.82-04			LS
				173.540	11 130 639–11 706 875	5–1 5–5			3.60-04			LS
				173.540	11 130 639–11 706 875	3–3			3.62-04			LS
				173.540	11 130 639–11 706 875	3–5			3.02-04 $2.40-05$			LS
1.47		$^{1}D-^{1}P^{\circ}$										
147				173.518	11 131 017–11 707 327	5–3			1.20-03			1
148	1s5s-1s5p	$^{3}S - ^{3}P^{\circ}$	19 710	19 712	11 369 887– <i>11 374 960</i>	3–9	1.17-02	2.04-01	3.97+01	-0.213	A	1
			19 431	19 436	11 369 887–11 375 032	3–5			2.21 + 01			LS
				4 992 cm ⁻¹	11 369 887–11 374 879	3–3	1.11 - 02	6.67 - 02	1.32+01	-0.699	A	LS
				4 955 cm ⁻¹	11 369 887–11 374 842	3–1	1.09-02	2.21-02	4.40+00	-1.178	A	LS
149		$^{1}S-^{1}P^{\circ}$		3 778 cm ⁻¹	11 374 868–11 378 646	1–3	4.89-03	1.54-01	1.34+01	-0.812	A	1
150	1s5s-1s6p	$^{3}S - ^{3}P^{\circ}$		711.7	11 369 887– <i>11 510 387</i>	3–9	2.21+01	5.04-01	3.54+00	0.180	A	1
				711.74	11 369 887-11 510 387	3-5	2.21+01	2.80-01	1.97+00	-0.076	Α	LS
				711.74	11 369 887-11 510 387	3–3	2.21+01	1.68-01	1.18+00	-0.298	Α	LS
				711.74	11 369 887–11 510 387	3-1			3.94-01			LS
151		$^{1}S-^{1}P^{\circ}$		726.55	11 374 868–11 512 505	1–3	2.24+01	5.31-01	1.27+00	-0.275	A	1
152	1s5s-1s7p	$^{3}S - ^{3}P^{\circ}$		450.38	11 369 887–11 591 920	3–9	1.49+01	1.36-01	6.05-01	-0.389	A	1
	· ·			450.204	11 260 007 11 501 020	2.5	1 40 - 01	7.55 02	2.26 01	0.645		
				450.384	11 369 887–11 591 920	3–5			3.36-01			LS
				450.384	11 369 887–11 591 920	3–3			2.02-01			LS
		1 1 0		450.384	11 369 887–11 591 920	3–1			6.72-02			LS
153		$^{1}S - ^{1}P^{\circ}$		457.917	11 374 868–11 593 248	1–3	1.50+01	1.41-01	2.13-01	-0.851	A	1
154	1s5s-1s8p	$^{3}S - ^{3}P^{\circ}$		363.78	11 369 887– <i>11 644 781</i>	3–9	1.01+01	6.04-02	2.17-01	-0.742	A	1
				363.777	11 369 887–11 644 781	3-5	1.02+01	3.36 - 02	1.21 - 01	-0.997	A	LS
				363.777	11 369 887–11 644 781	3–3	1.01 + 01	2.01 - 02	7.22 - 02	-1.220	A	LS
				363.777	11 369 887–11 644 781	3-1	1.01 + 01	6.71 - 03	2.41 - 02	-1.696	A	LS
155		$^{1}S-^{1}P^{\circ}$		369.278	11 374 868–11 645 667	1–3	1.02+01	6.23-02	7.57-02	-1.206	A	1
156	1s5s - 1s9p	$^{3}S - ^{3}P^{\circ}$		321.44	11 369 887– <i>11 680 991</i>	3–9	7.17+00	3.33-02	1.06-01	-1.000	A	1
				321.436	11 369 887–11 680 991	3–5			5.87-02			LS
				321.436	11 369 887–11 680 991	3–3			3.52-02			LS
				321.436	11 369 887–11 680 991	3–1			1.17-02			LS
157		$^{1}S-^{1}P^{\circ}$										
157		.S-,b		326.005	11 374 868–11 681 612	1–3	7.15+00	3.42-02	3.67-02	-1.466	A	1

TABLE 38. Transition probabilities of allowed lines for Na X (reference for this table are as follows: 1=Fernely et al.²⁷ and 2=Khan et al.⁵⁰)—Continued

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \; {\rm s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
158	1s5s - 1s10p	$^{3}S - ^{3}P^{\circ}$		296.75	11 369 887–11 706 875	3–9	5.23+00	2.07-02	6.07-02	-1.207	A	1
				296.746	11 369 887-11 706 875	3-5	5.23 + 00	1.15 - 02	3.37 - 02	-1.462	A	LS
				296.746	11 369 887-11 706 875	3-3	5.23+00	6.91-03	2.03 - 02	-1.683	A	LS
				296.746	11 369 887–11 706 875	3-1	5.23+00	2.30-03	6.74-03	-2.161	A	LS
159		$^{1}S-^{1}P^{\circ}$		300.789	11 374 868–11 707 327	1–3	5.23+00	2.13-02	2.11-02	-1.672	A	1
160	1s5p-1s5d	$^{3}P^{\circ}-^{3}D$		$2~807~{\rm cm}^{-1}$	11 374 960–11 377 767	9–15	2.15-03	6.80-02	7.18+01	-0.213	A	1
				2 735 cm ⁻¹	11 375 032–11 377 767	5–7	1.99-03	5.57-02	3.35+01	-0.555	A	LS
				2 888 cm ⁻¹	11 374 879–11 377 767	3–5	1.75 - 03	5.25 - 02	1.80 + 01	-0.803	A	LS
				2 925 cm ⁻¹	11 374 842–11 377 767	1–3	1.35 - 03	7.09 - 02	7.98+00	-1.149	A	LS
				2 735 cm ⁻¹	11 375 032-11 377 767	5-5	4.96 - 04	9.95 - 03	5.99+00	-1.303	A	LS
				$2~888~{\rm cm}^{-1}$	11 374 879-11 377 767	3–3	9.74-04	1.75-02	5.98+00	-1.280	Α	LS
				$2~735~{\rm cm}^{-1}$	11 375 032–11 377 767	5–3			3.99-01			LS
161	1s5p-1s6s	$^{3}P^{\circ}-^{3}S$		754.7	<i>11 374 960</i> –11 507 469	9–3	3.30+01	9.39-02	2.10+00	-0.073	A	1
				755.08	11 375 032–11 507 469	5–3	1.83+01	9.38-02	1.17+00	-0.329	A	LS
				754.20	11 374 879-11 507 469	3-3	1.10+01	9.39-02	6.99-01	-0.550	Α	LS
				753.99	11 374 842–11 507 469	1–3	3.68+00	9.40-02	2.33-01	-1.027	A	LS
162		$^{1}P^{\circ}-^{1}S$		759.45	11 378 646–11 510 320	3–1	3.10+01	8.93-02	6.70-01	-0.572	A	1
163	1s5p-1s6d	$^{3}P^{\circ}-^{3}D$		729.7	11 374 960–11 512 003	9–15	4.34+01	5.77-01	1.25+01	0.715	A	1
				730.08	11 375 032–11 512 003	5–7	4.34+01	4.85-01	5.83 + 00	0.385	A	LS
				729.27	11 374 879-11 512 003	3-5	3.26+01	4.33-01	3.12+00	0.114	Α	LS
				729.07	11 374 842-11 512 003	1-3			1.39+00			LS
				730.08	11 375 032–11 512 003	5–5			1.04+00			LS
				729.27	11 374 879–11 512 003	3–3			1.04+00			LS
				730.08	11 375 032–11 512 003	5–3			6.93-02			LS
164		$^{1}P^{\circ}-^{1}D$		749.11	11 378 646–11 512 137	3–5	4.57+01	6.41-01	4.74+00	0.284	A	1
165	1s5p-1s7s	$^{3}P^{\circ}-^{3}S$		464.83	<i>11 374 960</i> –11 590 091	9–3	1.95+01	2.11-02	2.91-01	-0.721	A	1
				464.989	11 375 032–11 590 091	5–3	1.08+01	2 11-02	1.61-01	-0.977	Α	LS
				464.658	11 374 879–11 590 091	3–3			9.68-02			LS
				464.578	11 374 842–11 590 091	1–3			3.23-02			LS
166		$^{1}P^{\circ}-^{1}S$		468.982	11 378 646–11 591 874	3–1	1.85+01	2.03-02	9.40-02	-1.215	A	1
167	1s5p-1s8s	$^{3}P^{\circ}-^{3}S$		372.30	<i>11 374 960</i> –11 643 558	9–3	1.25+01	8.65-03	9.54-02	-1.109	A	1
				372.403	11 375 032–11 643 558	5–3	6.93+00	8.65-03	5.30-02	-1.364	A	LS
				372.191	11 374 879-11 643 558	3-3	4.17 + 00	8.65 - 03	3.18 - 02	-1.586	A	LS
				372.140	11 374 842–11 643 558	1–3	1.39+00	8.65-03	1.06-02	-2.063	A	LS
168		$^{1}P^{\circ}-^{1}S$		375.797	11 378 646–11 644 747	3–1	1.19+01	8.37-03	3.11-02	-1.600	A	1
169	1s5p-1s9s	$^{3}P^{\circ}-^{3}S$		327.68	<i>11 374 960</i> –11 680 134	9–3	8.48+00	4.55-03	4.42-02	-1.388	A	1
				327.759	11 375 032–11 680 134	5–3	4.71+00	4.55-03	2.45-02	-1.643	A	LS
				327.595	11 374 879-11 680 134	3–3	2.83+00	4.55 - 03	1.47 - 02	-1.865	A	LS
				327.555	11 374 842–11 680 134	1–3	9.43-01	4.55-03	4.91-03	-2.342	A	LS
170		$^{1}P^{\circ}-^{1}S$		330.775	11 378 646–11 680 966	3–1	8.05+00	4.40-03	1.44-02	-1.879	A	1
171	1s5p-1s10s	$^{3}P^{\circ}-^{3}S$		301.85	<i>11 374 960</i> –11 706 251	9–3	6.04+00	2.75-03	2.46-02	-1.606	A	1
				301.915	11 375 032–11 706 251	5-3	3.35+00	2.75-03	1.37-02	-1.862	A	LS
				301.776	11 374 879-11 706 251	3-3	2.01+00	2.75-03	8.20-03	-2.084	A	LS
												LS
				301.742	11 374 842–11 706 251	1–3			2.73-03			

Table 38. Transition probabilities of allowed lines for Na X (reference for this table are as follows: $1 = \text{Fernely } et \ al.^{27}$ and $2 = \text{Khan } et \ al.^{50}$)—Continued

172	No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
174	172		$^{1}P^{\circ}-^{1}S$		304.683	11 378 646–11 706 856	3–1	5.76+00	2.67-03	8.03-03	-2.096	A	1
754.03	173	1s5d-1s5p	$^{1}D-^{1}P^{\circ}$		662 cm ⁻¹	11 377 984–11 378 646	5–3	4.62-05	9.49-03	2.36+01	-1.324	A	1
	174	1s5d-1s6p	$^{3}D-^{3}P^{\circ}$		754.0	11 377 767–11 510 387	15–9	1.10+01	5.62-02	2.09+00	-0.074	A	1
150 150					754.03	11 377 767–11 510 387	7–5	9.23+00	5.62-02	9.77-01	-0.405	A	LS
150 150					754.03	11 377 767–11 510 387	5–3	8.23+00	4.21-02	5.23-01	-0.677	A	LS
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
754.03 1377767-11510387 3-5 1.00-01 1.56-03 1.16-02 2.330 A 1.8 1.5						11 377 767-11 510 387							
176													
	175		$^{1}D-^{1}P^{\circ}$		743.38	11 377 984–11 512 505	5–3	9.17+00	4.56-02	5.58-01	-0.642	A	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	176	1s5d-1s7p	$^{3}D-^{3}P^{\circ}$		466.96	11 377 767–11 591 920	15–9	6.06+00	1.19-02	2.74-01	-0.748	A	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					466.956		7–5	5.10+00	1.19-02	1.28-01	-1.079	A	LS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					466.956		5–3	4.54 + 00	8.90 - 03	6.84 - 02	-1.352	A	LS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					466.956	11 377 767–11 591 920	3-1	6.05+00	6.59 - 03	3.04 - 02	-1.704	A	LS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					466.956	11 377 767–11 591 920	5–5	9.09 - 01	2.97 - 03	2.28 - 02	-1.828	A	LS
177					466.956	11 377 767–11 591 920	3–3	1.51 + 00	4.94 - 03	2.28 - 02	-1.829	A	LS
178					466.956	11 377 767–11 591 920	3–5	6.06-02	3.30-04	1.52-03	-3.004	A	LS
1	177		$^{1}D-^{1}P^{\circ}$		464.546	11 377 984–11 593 248	5–3	5.09+00	9.88-03	7.55-02	-1.306	A	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	178	1s5d-1s8p	$^{3}D - ^{3}P^{\circ}$		374.51	11 377 767–11 644 781	15–9	3.69+00	4.65-03	8.60-02	-1.156	A	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						11 377 767–11 644 781	5–3						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						11 377 767–11 644 781	3–1	3.70+00	2.59 - 03	9.58 - 03	-2.110	A	LS
179							5–5						LS
179													
180					374.512	11 377 767–11 644 781	3–5	3.68-02	1.29-04	4.77-04	-3.412	A	LS
329.789	179		$^{1}D-^{1}P^{\circ}$		373.576	11 377 984–11 645 667	5–3	3.12+00	3.92-03	2.41-02	-1.708	A	1
329.789	180	1s5d-1s9p	$^{3}D-^{3}P^{\circ}$		329.79	11 377 767–11 680 991	15–9	2.43+00	2.38-03	3.88-02	-1.447	A	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					329.789	11 377 767-11 680 991	7–5	2.04+00	2.38 - 03	1.81 - 02	-1.778	A	LS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					329.789	11 377 767-11 680 991	5-3	1.83 + 00	1.79 - 03	9.72 - 03	-2.048	A	LS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					329.789	11 377 767-11 680 991	3-1	2.43+00	1.32 - 03	4.30 - 03	-2.402	A	LS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					329.789	11 377 767-11 680 991	5-5	3.65 - 01	5.95 - 04	3.23 - 03	-2.527	A	LS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					329.789	11 377 767-11 680 991	3–3	6.08 - 01	9.92 - 04	3.23 - 03	-2.526	A	LS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					329.789	11 377 767–11 680 991	3–5	2.43-02	6.61-05	2.15-04	-3.703	A	LS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	181		$^{1}D-^{1}P^{\circ}$		329.350	11 377 984–11 681 612	5–3	2.05+00	2.00-03	1.08-02	-2.000	A	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	182	1s5d-1s10p	$^{3}D-^{3}P^{\circ}$		303.85	11 377 767–11 706 875	15–9	1.70+00	1.41-03	2.12-02	-1.675	A	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					303.852		7–5						LS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					303.852	11 377 767–11 706 875	5–3	1.28+00	1.06 - 03	5.30 - 03	-2.276	A	LS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						11 377 767–11 706 875	3–1	1.70+00	7.85 - 04	2.36 - 03	-2.628	A	LS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					303.852	11 377 767–11 706 875	5–5	2.55 - 01	3.53 - 04	1.77 - 03	-2.753	A	LS
183 $^{1}D^{-1}P^{\circ}$ 303.635 11 377 984-11 707 327 5-3 1.43+00 1.19-03 5.95-03 -2.225 A 1 184 1 $s6s-1s6p$ $^{3}S^{-3}P^{\circ}$ 2918 cm ⁻¹ 11 507 469-11 510 387 3-9 4.73-03 2.50-01 8.46+01 -0.125 A 1 2918 cm ⁻¹ 11 507 469-11 510 387 3-5 4.74-03 1.39-01 4.70+01 -0.380 A LS					303.852	11 377 767–11 706 875	3–3	4.26 - 01	5.89 - 04	1.77 - 03	-2.753	A	LS
184 $1s6s-1s6p$ ${}^{3}S-{}^{3}P^{\circ}$ $2918 cm^{-1}$ $11507469-11510387$ $3-9$ $4.73-032.50-018.46+01-0.125 A 1 2918 cm^{-1} 11507469-11510387 3-5 4.74-031.39-014.70+01-0.380 A LS$					303.852	11 377 767–11 706 875	3–5	1.70-02	3.93-05	1.18-04	-3.928	A	LS
2 918 cm ⁻¹ 11 507 469–11 510 387 3–5 4.74–03 1.39–01 4.70+01 –0.380 A LS	183		$^{1}D-^{1}P^{\circ}$		303.635	11 377 984–11 707 327	5–3	1.43+00	1.19-03	5.95-03	-2.225	A	1
	184	1s6s-1s6p	$^{3}S - ^{3}P^{\circ}$		$2918\;cm^{-1}$	11 507 469– <i>11 510 387</i>	3–9	4.73-03	2.50-01	8.46+01	-0.125	A	1
2 918 cm ⁻¹ 11 507 469-11 510 387 3-3 4.73-03 8.32-02 2.82+01 -0.603 A LS					$2918\;cm^{-1}$	11 507 469-11 510 387	3-5	4.74-03	1.39-01	4.70+01	-0.380	A	LS
					$2918\;{\rm cm^{-1}}$	11 507 469–11 510 387	3–3	4.73 - 03	8.32-02	2.82+01	-0.603	A	LS

TABLE 38. Transition probabilities of allowed lines for Na X (reference for this table are as follows: 1=Fernely et al. 27 and 2=Khan et al. 50)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				2 918 cm ⁻¹	11 507 469–11 510 387	3–1	4.72-03	2.77-02	9.38+00	-1.080	A	LS
185		$^{1}S-^{1}P^{\circ}$		2 185 cm ⁻¹	11 510 320–11 512 505	1–3	2.00-03	1.88-01	2.83+01	-0.726	A	1
186	1s6s-1s7p	$^{3}S - ^{3}P^{\circ}$		1 184.1	11 507 469– <i>11 591 920</i>	3–9	8.79+00	5.55-01	6.49+00	0.221	A	1
				1 184.12	11 507 469–11 591 920	3–5	8.79+00	3.08-01	3.60+00	-0.034	A	LS
				1 184.12	11 507 469-11 591 920	3–3	8.80+00	1.85 - 01	2.16+00	-0.256	A	LS
				1 184.12	11507 469–11591 920	3–1	8.79+00	6.16-02	7.20-01	-0.733	A	LS
187		$^{1}S-^{1}P^{\circ}$		1 205.87	11 510 320–11 593 248	1–3	8.96+00	5.86-01	2.33+00	-0.232	A	1
188	1s6s-1s8p	$^{3}S - ^{3}P^{\circ}$		728.3	11 507 469– <i>11 644 781</i>	3–9	6.29+00	1.50-01	1.08+00	-0.347	A	1
				728.27	11 507 469–11 644 781	3–5	6.29+00	8.33-02	5.99-01	-0.602	A	LS
				728.27	11 507 469-11 644 781	3-3	6.29 + 00	5.00-02	3.60-01	-0.824	Α	LS
				728.27	11 507 469-11 644 781	3-1			1.20-01			LS
189		$^{1}S-^{1}P^{\circ}$		738.84	11 510 320–11 645 667	1–3	6.31+00	1.55-01	3.77-01	-0.810	A	1
190	1s6s-1s9p	$^{3}S-^{3}P^{\circ}$		576.3	11 507 469– <i>11 680 991</i>	3–9			3.80-01			1
170	1303 - 139p	5- 1										
				576.30	11 507 469–11 680 991	3–5			2.11-01			LS
				576.30	11 507 469–11 680 991	3–3			1.27-01			LS
				576.30	11 507 469–11 680 991	3–1			4.22-02			LS
191		$^{1}\mathrm{S} - ^{1}\mathrm{P}^{\circ}$		583.80	11 510 320–11 681 612	1–3	4.49+00	6.89-02	1.32-01	-1.162	A	1
192	1s6s-1s10p	$^{3}\mathrm{S} - ^{3}\mathrm{P}^{\circ}$		501.49	11 507 469– <i>11 706 875</i>	3–9	3.27+00	3.70-02	1.83-01	-0.955	A	1
				501.489	11 507 469-11 706 875	3-5	3.28+00	2.06-02	1.02 - 01	-1.209	A	LS
				501.489	11 507 469-11 706 875	3-3	3.26+00	1.23 - 02	6.09 - 02	-1.433	A	LS
				501.489	11 507 469–11 706 875	3–1	3.28+00	4.12-03	2.04-02	-1.908	A	LS
193		$^{1}S-^{1}P^{\circ}$		507.596	11 510 320–11 707 327	1–3	3.28+00	3.80-02	6.35-02	-1.420	A	1
194	1s6p-1s6d	$^{3}P^{\circ}-^{3}D$		1 616 cm ⁻¹	11 510 387–11 512 003	9–15	8.89-04	8.51-02	1.56+02	-0.116	A	1
				1 616 cm ⁻¹	11 510 387-11 512 003	5–7	8.88-04	7.14-02	7.27+01	-0.447	A	LS
				1 616 cm ⁻¹	11 510 387-11 512 003	3-5	6.67-04	6.38-02	3.90+01	-0.718	Α	LS
				1 616 cm ⁻¹	11 510 387-11 512 003	1-3			1.73+01			LS
				1 616 cm ⁻¹	11 510 387-11 512 003	5–5	2.23-04	1.28-02	1.30+01	-1.194	Α	LS
				1 616 cm ⁻¹	11 510 387-11 512 003	3–3			1.30+01			LS
				1 616 cm ⁻¹	11 510 387–11 512 003	5–3			8.66-01			LS
195	1s6p-1s7s	$^{3}P^{\circ}-^{3}S$		1 254.6	<i>11 510 387</i> –11 590 091	9–3	1.54+01	1.21-01	4.50+00	0.037	A	1
				1 254.64	11 510 387-11 590 091	5–3	8.55+00	1.21-01	2.50+00	-0.218	Α	LS
				1 254.64	11 510 387-11590 091	3–3			1.50+00			LS
				1 254.64	11 510 387–11 590 091	1–3			5.00-01			LS
196		$^{1}P^{\circ}-^{1}S$		1 259.94	11 512 505–11 591 874	3–1	1.45+01	1.15-01	1.43+00	-0.462	A	1
197	1s6p-1s8s	$^{3}P^{\circ}-^{3}S$		750.9	<i>11 510 387</i> –11 643 558	9–3	9.69+00	2.73-02	6.07-01	-0.610	A	1
				750.91	11 510 387–11 643 558	5–3	5.38+00	2.73-02	3.37-01	-0.865	A	LS
				750.91	11 510 387-11 643 558	3–3			2.02-01			LS
				750.91	11 510 387–11 643 558	1–3			6.75 - 02			LS
198		$^{1}P^{\circ}-^{1}S$		756.19	11 512 505–11 644 747	3–1	9.20+00	2.63-02	1.96-01	-1.103	A	1
199	1s6p-1s9s	$^{3}P^{\circ}-^{3}S$		589.1	<i>11 510 387</i> –11 680 134	9–3	6.46+00	1.12-02	1.95-01	-0.997	A	1
	*											
				589.11	11 510 387-11 680 134	5–3			1.09-01			LS
				589.11	11 510 387–11 680 134	3–3	2.15+00	1.12-02	6.52-02	-1.474	A	LS

Table 38. Transition probabilities of allowed lines for Na X (reference for this table are as follows: $1 = \text{Fernely } et \ al.^{27}$ and $2 = \text{Khan } et \ al.^{50}$)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				589.11	11 510 387–11 680 134	1–3	7.18-01	1.12-02	2.17-02	-1.951	A	LS
200		$^{1}P^{\circ}-^{1}S$		593.61	11 512 505–11 680 966	3–1	6.13+00	1.08-02	6.33-02	-1.489	A	1
201	1s6p - 1s10s	$^{3}P^{\circ}-^{3}S$		510.56	<i>11 510 387</i> –11 706 251	9–3	4.56+00	5.94-03	8.99-02	-1.272	A	1
				510.558	11 510 387-11 706 251	5–3	2.53+00	5.94-03	4.99-02	-1.527	A	LS
				510.558	11 510 387-11 706 251	3-3	1.52+00	5.94-03	3.00 - 02	-1.749	A	LS
				510.558	11 510 387–11 706 251	1–3	5.07-01	5.94-03	9.98-03	-2.226	A	LS
202		$^{1}P^{\circ}-^{1}S$		514.533	11 512 505–11 706 856	3–1	4.34+00	5.74-03	2.92-02	-1.764	A	1
203	1s6d-1s6p	$^{1}D-^{1}P^{\circ}$		368 cm ⁻¹	11 512 137–11 512 505	5–3	1.75-05	1.16-02	5.19+01	-1.237	A	1
204	1s6d-1s7p	$^{3}D-^{3}P^{\circ}$		1 251.3	11 512 003–11 591 920	15–9	5.77+00	8.13-02	5.02+00	0.086	A	1
				1 251.30	11 512 003–11 591 920	7–5	4.85+00	8.13-02	2.34+00	-0.245	A	LS
				1 251.30	11 512 003–11 591 920	5–3	4.33+00	6.10 - 02	1.26+00	-0.516	A	LS
				1 251.30	11 512 003–11 591 920	3–1			5.59-01			LS
				1 251.30	11 512 003–11 591 920	5–5			4.18 - 01			LS
				1 251.30	11 512 003–11 591 920	3–3			4.19 - 01			LS
				1 251.30	11 512 003–11 591 920	3–5	5.78-02	2.26-03	2.79-02	-2.169	A	LS
205		$^{1}D-^{1}P^{\circ}$		1 232.88	11 512 137–11 593 248	5–3	4.90+00	6.70-02	1.36+00	-0.475	A	1
206	1s6d-1s8p	$^{3}D-^{3}P^{\circ}$		753.1	11 512 003–11 644 781	15–9	3.43+00	1.75-02	6.50-01	-0.581	A	1
				753.14	11 512 003–11 644 781	7–5	2.88+00	1.75 - 02	3.04-01	-0.912	A	LS
				753.14	11 512 003-11 644 781	5-3	2.57 + 00	1.31 - 02	1.62 - 01	-1.184	A	LS
				753.14	11 512 003-11 644 781	3-1	3.42+00	9.70-03	7.22-02	-1.536	A	LS
				753.14	11 512 003-11 644 781	5-5	5.14-01	4.37 - 03	5.42-02	-1.661	A	LS
				753.14	11 512 003-11 644 781	3-3	8.56-01	7.28 - 03	5.42-02	-1.661	A	LS
				753.14	11 512 003–11 644 781	3–5	3.42-02	4.85 - 04	3.61 - 03	-2.837	A	LS
207		$^{1}D-^{1}P^{\circ}$		748.90	11 512 137–11 645 667	5–3	2.93+00	1.48-02	1.82-01	-1.131	A	1
208	1s6d-1s9p	$^{3}D-^{3}P^{\circ}$		591.8	11 512 003–11 680 991	15–9	2.20+00	6.93-03	2.03-01	-0.983	A	1
				591.76	11 512 003–11 680 991	7–5	1.85+00	6.93-03	9.45-02	-1.314	A	LS
				591.76	11 512 003-11 680 991	5-3	1.65 + 00	5.20-03	5.07 - 02	-1.585	Α	LS
				591.76	11 512 003-11 680 991	3-1	2.20+00	3.85-03	2.25 - 02	-1.937	A	LS
				591.76	11 512 003-11 680 991	5-5	3.30-01	1.73 - 03	1.69-02	-2.063	A	LS
				591.76	11 512 003-11 680 991	3-3	5.50-01	2.89 - 03	1.69 - 02	-2.062	Α	LS
				591.76	11 512 003–11 680 991	3–5	2.21-02	1.93 - 04	1.13 - 03	-3.237	A	LS
209		$^{1}D-^{1}P^{\circ}$		590.06	11 512 137–11 681 612	5–3	1.88+00	5.90-03	5.73-02	-1.530	A	1
210	1s6d-1s10p	$^{3}D-^{3}P^{\circ}$		513.16	11 512 003–11 706 875	15–9	1.51+00	3.57-03	9.05-02	-1.271	A	1
				513.157	11 512 003–11 706 875	7–5	1.27+00	3.57-03	4.22-02	-1.602	A	LS
				513.157	11 512 003-11 706 875	5-3	1.13+00	2.68-03	2.26-02	-1.873	A	LS
				513.157	11 512 003-11 706 875	3-1	1.51 + 00	1.99-03	1.01-02	-2.224	Α	LS
				513.157	11 512 003–11 706 875	5–5			7.54-03			LS
				513.157	11 512 003–11 706 875	3–3			7.55-03			LS
				513.157	11 512 003–11 706 875	3–5			5.03-04			LS
211		$^{1}D-^{1}P^{\circ}$		512.321	11 512 137–11 707 327	5–3	1.30+00	3.06-03	2.58-02	-1.815	A	1
212	1s7s-1s7p	$^{3}S - ^{3}P^{\circ}$		1 829 cm ⁻¹	11 590 091–11 591 920	3–9	2.16-03	2.90-01	1.57+02	-0.060	A	1
				1 829 cm ⁻¹	11 590 091–11 591 920	3–5	2.16-03	1.61-01	8.69+01	-0.316	Α	LS
				1 829 cm ⁻¹	11 590 091–11 591 920	3–3			5.23+01			LS
				1 829 cm ⁻¹	11 590 091–11 591 920	3–3 3–1			3.23+01 $1.74+01$			LS
				1 029 CIII	11 370 071-11 371 720	3-1	2.10-03	5.25-02	1./4+01	-1.014	Α	പാ

TABLE 38. Transition probabilities of allowed lines for Na X (reference for this table are as follows: 1=Fernely et al. 27 and 2=Khan et al. 50)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
213		$^{1}S-^{1}P^{\circ}$		1 374 cm ⁻¹	11 591 874–11 593 248	1–3	9.28-04	2.21-01	5.30+01	-0.656	A	1
214	1s7s - 1s8p	$^{3}S-^{3}P^{\circ}$		1 828	11 590 091– <i>11 644 781</i>	3–9	4.05+00	6.09-01	1.10+01	0.262	A	1
	Y			1 828.5	11 590 091–11 644 781	3–5			6.10+00	0.006		LS
				1 828.5	11 590 091-11 644 781	3–3	4.05+00	2.03-01	3.67 + 00	-0.215	Α	LS
				1 828.5	11 590 091–11 644 781	3–1	4.04+00	6.75 - 02	1.22+00	-0.694	A	LS
215		$^{1}S-^{1}P^{\circ}$		1 859.0	11 591 874–11 645 667	1–3	4.13+00	6.42-01	3.93+00	-0.192	A	1
216	1s7s - 1s9p	$^{3}S - ^{3}P^{\circ}$		1 100.1	11 590 091– <i>11 680 991</i>	3–9	3.01+00	1.64-01	1.78+00	-0.308	A	1
				1 100.11	11 590 091–11 680 991	3–5	3.01+00	9.09-02	9.88-01	-0.564	A	LS
				1 100.11	11 590 091-11 680 991	3-3	3.00+00	5.45 - 02	5.92-01	-0.786	A	LS
				1 100.11	11 590 091–11 680 991	3-1	3.01+00	1.82 - 02	1.98-01	-1.263	A	LS
217		$^{1}S-^{1}P^{\circ}$		1 114.36	11 591 874–11 681 612	1–3	3.04+00	1.70-01	6.24-01	-0.770	A	1
218	1s7s-1s10p	$^{3}S - ^{3}P^{\circ}$		856.3	11 590 091–11 706 875	3–9	2.22+00	7.31-02	6.18-01	-0.659	A	1
				856.28	11 590 091–11 706 875	3–5	2.22+00	4.06-02	3.43-01	-0.914	A	LS
				856.28	11 590 091–11 706 875	3–3			2.06-01			LS
				856.28	11 590 091–11 706 875	3–1			6.87-02			LS
219		$^{1}S-^{1}P^{\circ}$		866.15	11 591 874–11 707 327	1–3	2.23+00	7.54-02	2.15-01	-1.123	A	1
220	1s7p - 1s8s	$^{3}P^{\circ}-^{3}S$		1 937	<i>11 591 920</i> –11 643 558	9–3	7.95+00	1.49-01	8.55+00	0.127	A	1
				1 936.6	11 591 920–11 643 558	5–3	4.42 + 00	1.40 .01	4.75+00	0.129	Δ.	LS
				1 936.6 1 936.6	11 591 920–11 643 558	3–3			2.85+00 $9.50-01$			LS LS
					11 591 920–11 643 558	1–3	8.83-01	1.49-01	9.30-01	-0.827	Α	LS
221		$^{1}P^{\circ}-^{1}S$		1 941.8	11 593 248–11 644 747	3–1	7.54+00	1.42-01	2.72+00	-0.371	A	1
222	1s7p-1s9s	$^{3}P^{\circ}-^{3}S$		1 133.6	<i>11 591 920</i> –11 680 134	9–3	5.23+00	3.36-02	1.13+00	-0.519	A	1
				1 133.61	11 591 920–11 680 134	5–3	2.91+00	3.36 - 02	6.27 - 01	-0.775	A	LS
				1 133.61	11 591 920-11 680 134	3–3	1.74+00	3.36 - 02	3.76 - 01	-0.997	A	LS
				1 133.61	11 591 920–11 680 134	1–3	5.81 - 01	3.36-02	1.25 - 01	-1.474	A	LS
223		$^{1}P^{\circ}-^{1}S$		1 140.02	11 593 248–11 680 966	3–1	4.99+00	3.24-02	3.65-01	-1.012	A	1
224	1s7p-1s10s	$^{3}P^{\circ}-^{3}S$		874.7	<i>11 591 920</i> –11 706 251	9–3	3.61+00	1.38-02	3.58-01	-0.906	A	1
				874.65	11 591 920-11 706 251	5–3	2.01+00	1.38-02	1.99-01	-1.161	Α	LS
				874.65	11 591 920-11 706 251	3–3			1.19-01			LS
				874.65	11 591 920–11 706 251	1–3			3.97-02			LS
225		$^{1}P^{\circ}-^{1}S$		880.22	11 593 248–11 706 856	3–1	3.46+00	1.34-02	1.16-01	-1.396	A	1
226	1s8s-1s8p	$^{3}S-^{3}P^{\circ}$		1 223 cm ⁻¹	11 643 558– <i>11 644 781</i>	3–9	1.11-03	3.33-01	2.69+02	-0.000	A	1
				1 223 cm ⁻¹	11 643 558–11 644 781	3–5	1 11-03	1.85-01	1.49+02	-0.256	Α	LS
				1 223 cm ⁻¹	11 643 558–11 644 781	3–3			8.96+01			LS
				1 223 cm ⁻¹	11 643 558–11 644 781	3–3			2.99+01			LS
227		$^{1}S-^{1}P^{\circ}$		920 cm ⁻¹	11 644 747–11 645 667	1–3			9.09+01			1
228	1s8s-1s9p	$^{3}S-^{3}P^{\circ}$	2 671	2 671	11 643 558– <i>11 680 991</i>	3–9	2.07+00	6.65-01	1.75+01	0.300	A	1
	-		2 670.6	2 671.4	11 643 558–11 680 991	3–5	2.07.±00	3 60 - 01	9.74+00	0.044	Δ	LS
			2 670.6	2 671.4	11 643 558–11 680 991	3–3 3–3			5.86+00			LS
			2 670.6	2 671.4	11 643 558–11 680 991				1.95+00			LS
222		10 1-0				3–1						
229		$^{1}S-^{1}P^{\circ}$	2 711.8	2 712.6	11 644 747–11 681 612	1–3	2.11+00	6.99-01	6.24+00	-0.156	A	1
230	1s8s-1s10p	$^{3}S - ^{3}P^{\circ}$		1 579.4	11 643 558 <i>–11 706 875</i>	3–9	1.58+00	1.77-01	2.77+00	-0.275	A	1

TABLE 38. Transition probabilities of allowed lines for Na X (reference for this table are as follows: 1=Fernely et al.²⁷ and 2=Khan et al.⁵⁰)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				1 579.35	11 643 558–11 706 875	3–5	1.58+00	9.86-02	1.54+00	-0.529	A	LS
				1 579.35	11 643 558-11 706 875	3-3	1.58+00	5.92-02	9.23-01	-0.751	A	LS
				1 579.35	11 643 558–11 706 875	3–1	1.58+00	1.97-02	3.07 - 01	-1.228	A	LS
231		$^{1}S-^{1}P^{\circ}$		1 597.95	11 644 747–11 707 327	1–3	1.60+00	1.84-01	9.68-01	-0.735	A	1
232	1s8p-1s9s	$^{3}P^{\circ}-^{3}S$	2 828	2 829	<i>11 644 781</i> –11 680 134	9–3	4.43+00	1.77-01	1.48+01	0.202	A	1
			2 827.8	2 828.6	11 644 781–11 680 134	5–3	2.46+00	1.77 - 01	8.24+00	-0.053	A	LS
			2 827.8	2 828.6	11 644 781–11 680 134	3–3			4.94 + 00			LS
			2 827.8	2 828.6	11 644 781–11 680 134	1–3	4.92-01	1.77-01	1.65+00	-0.752	A	LS
233		$^{1}P^{\circ}-^{1}S$	2 832.1	2 832.9	11 645 667–11 680 966	3–1	4.19+00	1.68-01	4.70+00	-0.298	A	1
234	1s8p-1s10s	$^{3}P^{\circ}-^{3}S$		1 626.8	<i>11 644 781</i> –11706 251	9–3	3.02+00	3.99-02	1.92+00	-0.445	A	1
				1 626.81	11 644 781–11 706 251	5–3	1.68+00	3.99-02	1.07+00	-0.700	A	LS
				1 626.81	11 644 781-11 706 251	3-3	1.01+00	3.99 - 02	6.41 - 01	-0.922	A	LS
				1 626.81	11 644 781–11 706 251	1–3	3.35-01	3.99-02	2.14-01	-1.399	A	LS
235		$^{1}P^{\circ}-^{1}S$		1 634.28	11 645 667–11 706 856	3–1	2.88+00	3.84-02	6.20-01	-0.939	A	1
236	1s9s-1s9p	$^3S - ^3P^{\circ}$		$857~cm^{-1}$	11 680 134 <i>–11 680 991</i>	3–9	6.15-04	3.77-01	4.34+02	0.053	A	1
				857 cm ⁻¹	11 680 134-11 680 991	3–5	6.14-04	2.09-01	2.41+02	-0.203	A	LS
				857 cm^{-1}	11 680 134-11 680 991	3-3	6.17 - 04	1.26-01	1.45 + 02	-0.423	A	LS
				857 cm ⁻¹	11 680 134–11 680 991	3–1	6.16-04	4.19-02	4.83+01	-0.901	A	LS
237		$^{1}S-^{1}P^{\circ}$		646 cm ⁻¹	11 680 966–11 681 612	1–3	2.64-04	2.85-01	1.45+02	-0.545	A	1
238	1s9s-1s10p	$^{3}S - ^{3}P^{\circ}$	3 739	3 740	11 680 134 <i>–11 706 875</i>	3–9	1.14+00	7.18-01	2.65+01	0.333	A	1
			3 738.5	3 739.6	11 680 134-11 706 875	3-5	1.14+00	3.99-01	1.47+01	0.078	A	LS
			3 738.5	3 739.6	11 680 134–11 706 875	3–3	1.14+00	2.39 - 01	8.83 + 00	-0.144	Α	LS
			3 738.5	3 739.6	11 680 134–11 706 875	3–1	1.14+00	7.98-02	2.95+00	-0.621	A	LS
239		$^{1}S-^{1}P^{\circ}$	3 792.4	3 793.5	11 680 966–11 707 327	1–3	1.17+00	7.57-01	9.45+00	-0.121	A	1
240	1s9p - 1s10s	$^{3}P^{\circ}-^{3}S$	3 958	3 959	<i>11 680 991</i> –11 706 251	9–3	2.62+00	2.05-01	2.40+01	0.266	A	1
			3 957.7	3 958.8	11 680 991–11 706 251	5-3	1.45+00	2.05-01	1.34+01	0.011	A	LS
			3 957.7	3 958.8	11 680 991-11 706 251	3-3	8.72-01	2.05 - 01	8.02 + 00	-0.211	Α	LS
			3 957.7	3 958.8	11 680 991–11 706 251	1–3			2.67+00		A	LS
241		$^{1}P^{\circ}-^{1}S$	3 960.2	3 961.3	11 681 612–11 706 856	3–1	2.49+00	1.95-01	7.63+00	-0.233	A	1
242	1s10s - 1s10p	$^{3}S-^{3}P^{\circ}$		624 cm^{-1}	11 706 251–11 706 875	3–9	3.63-04	4.20-01	6.64+02	0.100	A	1
				624 cm ⁻¹	11 706 251–11 706 875	3–5	3.63-04	2.33-01	3.69+02	-0.156	A	LS
				624 cm^{-1}	11 706 251-11 706 875	3-3	3.64-04	1.40-01	2.22+02	-0.377	A	LS
				624 cm^{-1}	11 706 251–11 706 875	3–1	3.63-04	4.66-02	7.38+01	-0.854	A	LS
243		$^{1}S-^{1}P^{\circ}$		471 cm ⁻¹	11 706 856–11 707 327	1–3	1.58-04	3.20-01	2.24+02	-0.495	A	1

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

11. Mg

11.1. Mg I

Ground state: $1s^2 2s^2 2p^6 3s^2 {}^1S_0$ Ionization energy: 7.646 232 eV=61 671.02 cm⁻¹

11.1.1. Allowed Transitions for Mg I

The large majority of the compiled transition rates for this spectrum has been taken from the R-matrix calculations of the OP.¹³ Only OP results were available for energy levels above the 3s4p. Wherever available we have used the data of Tachiev and Froese Fischer, 99 which result from extensive MCHF calculations with Breit-Pauli corrections to order α^2 , with energy corrections. Experimental values of Ueda et al. 114 were determined by the hook method. A substantial number of oscillator strengths were also calculated by Chang

J. Phys. Chem. Ref. Data, Vol. 37, No. 1, 2008

and Tang,¹⁷ who used a simple CI approach with a basis constructed from B splines. Weiss¹²³ used an extensive CI approach.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in two or more of the references, 13,17,99,114,123 as described in the general introduction. For this purpose the spin-allowed (non-OP) and intercombination data were treated separately. The pooling fit parameters of the intercombination lines of Tachiev and Froese Fischer were assumed to be the same as for the allowed lines (in which case the estimated accuracies are still generally lower, due to smaller line strengths). OP lines constituted a third group. The energy level labeled $3s3d\ ^1D_2$ also has some $3p^2\ ^1D_2$ character, and as a result associated transition rates generally fell outside the cluster of RSDM's for the other transitions. Transitions with upper levels labeled $5d/6d\ ^1D$ tended to be outliers.

11.1.2. References for Allowed Transitions for Mg I

TABLE 39. Wavelength finding list for allowed lines for Mg I

Wavelength (vac) (Å) Mult. No. 1 683.412 7 1 707.061 6 1 747.794 5 1 827.935 4 Wavelength (air) (Å) Mult. No. 2 025.824 3 2 731.994 21 2 733.493 21 2 736.539 21 2 736.541 21 2 779.820 20 2 779.834 20 2 779.834 20 2 781.416 20 2 809.755 54 2 811.048 54 2 811.050 54 2 811.077 54 2 811.777 54 2 848.344 18 2 848.345 18 2 851.652 18 2 851.654 18 2 851.655 18 2 851.654 18 2 851.655 18 2 851.654 18 2 851.655 18 2 851.656 18 2 851.656 <th></th> <th></th>		
1 683.412 7 1 707.061 6 1 747.794 5 1 827.935 4 Wavelength (air) (Å) No. 2 025.824 3 2 731.994 21 2 733.493 21 2 733.494 21 2 736.541 21 2 776.690 20 2 778.271 20 2 779.820 20 2 779.834 20 2 779.834 20 2 782.971 20 2 782.971 20 2 782.971 20 2 809.755 54 2 809.756 54 2 811.048 54 2 811.050 54 2 811.051 54 2 811.777 54 2 811.780 54 2 811.777 54 2 811.780 54 2 848.344 18 2 848.344 18 2 848.344 18 2 848.344 18 2 848.344 18 2 848.344 18 2 848.346 18 2 851.652 18 2 851.654 18 2 851.656 18 2 851.656 18 2 852.126 2 2 915.453 53 2 936.741 66 3 091.064 14 3 092.982 14 3 092.986 14 3 090.884 14 3 096.887	Wavelength	Mult.
1 707.061 6 1 747.794 5 1 827.935 4 Wavelength (air) (Å) No. 2 025.824 3 2 731.994 21 2 733.493 21 2 736.539 21 2 736.541 21 2 776.690 20 2 778.271 20 2 779.820 20 2 779.820 20 2 779.834 20 2 779.834 20 2 781.416 20 2 782.971 20 2 809.755 54 2 811.048 54 2 811.050 54 2 811.051 54 2 811.777 54 2 811.780 54 2 811.777 54 2 811.780 54 2 848.344 18 2 848.344 18 2 848.344 18 2 848.346 18 2 851.652 18 2 851.656 18 2 851.656 18 2 851.656 18 2 851.656 18 3 2 936.741 16 2 938.473 16 2 938.473 16 2 938.473 16 2 939.986 14 3 092.986 14 3 092.986 14 3 092.986 14 3 092.986 14 3 092.986 14 3 092.986 14 3 092.986 14 3 096.887 14 3 096.	(vac) (Å)	No.
1 707.061 6 1 747.794 5 1 827.935 4 Wavelength (air) (Å) No. 2 025.824 3 2 731.994 21 2 733.493 21 2 736.539 21 2 736.541 21 2 776.690 20 2 778.271 20 2 779.820 20 2 779.820 20 2 779.834 20 2 779.834 20 2 781.416 20 2 782.971 20 2 809.755 54 2 811.048 54 2 811.050 54 2 811.051 54 2 811.777 54 2 811.780 54 2 811.777 54 2 811.780 54 2 848.344 18 2 848.344 18 2 848.344 18 2 848.346 18 2 851.652 18 2 851.656 18 2 851.656 18 2 851.656 18 2 851.656 18 3 2 936.741 16 2 938.473 16 2 938.473 16 2 938.473 16 2 939.986 14 3 092.986 14 3 092.986 14 3 092.986 14 3 092.986 14 3 092.986 14 3 092.986 14 3 092.986 14 3 096.887 14 3 096.	1 683 412	7
1 747.794 5 1 827.935 4 Wavelength (air) (Å) Mult. No. 2 025.824 3 2 733.994 21 2 733.493 21 2 736.539 21 2 776.690 20 2 778.271 20 2 779.820 20 2 779.834 20 2 781.416 20 2 809.755 54 2 811.048 54 2 811.050 54 2 811.077 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 848.346 18 2 851.652 18 2 851.654 18 2 851.655 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 092.986 14 3 092.986 14 3 096.887 14 3 096.881		
1 827.935 4 Wavelength (air) (Å) Mult. No. 2 025.824 3 2 731.994 21 2 733.493 21 2 736.539 21 2 776.690 20 2 779.20 20 2 779.834 20 2 781.416 20 2 782.971 20 2 809.755 54 2 811.048 54 2 811.050 54 2 811.777 54 2 811.777 54 2 846.717 18 2 848.344 18 2 848.346 18 2 851.652 18 2 851.654 18 2 851.655 18 2 851.656 18 2 851.43 16 2 938.473 16 2 915.453 53 2 936.741 16 2 938.473 16 2 938.473 16 2 938.873 16 2 941.994 16 3 092.986 14 3 096.887		
(air) (Å) No. 2 025.824 3 2 731.994 21 2 733.493 21 2 736.539 21 2 736.541 21 2 776.690 20 2 778.271 20 2 779.820 20 2 779.834 20 2 782.971 20 2 809.755 54 2 809.756 54 2 811.048 54 2 811.050 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 851.652 18 2 851.654 18 2 851.656 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 092.986 14 3 092.986 14 3 096.881 14 3 096.881 14 3 096.882 105 3 829.355 10 <td></td> <td></td>		
(air) (Å) No. 2 025.824 3 2 731.994 21 2 733.493 21 2 736.539 21 2 736.541 21 2 776.690 20 2 778.271 20 2 779.820 20 2 779.834 20 2 782.971 20 2 809.755 54 2 809.756 54 2 811.048 54 2 811.050 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 851.652 18 2 851.654 18 2 851.656 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 092.986 14 3 092.986 14 3 096.881 14 3 096.881 14 3 096.882 105 3 829.355 10 <td>Wavelength</td> <td>Mult</td>	Wavelength	Mult
2 731.994 21 2 733.493 21 2 736.539 21 2 736.541 21 2 776.690 20 2 778.271 20 2 779.820 20 2 779.834 20 2 781.416 20 2 809.755 54 2 809.756 54 2 811.048 54 2 811.050 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 851.652 18 2 851.654 18 2 851.655 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 092.986 14 3 096.884 14 3 096.891 14 3 32.9919 12 3 33.46 10 3 832.299 10 3 838.292 10 3 838.295 10		
2 731.994 21 2 733.493 21 2 736.539 21 2 736.541 21 2 776.690 20 2 778.271 20 2 779.820 20 2 779.834 20 2 781.416 20 2 809.755 54 2 809.756 54 2 811.048 54 2 811.050 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 851.652 18 2 851.654 18 2 851.655 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 092.986 14 3 096.884 14 3 096.891 14 3 32.9919 12 3 33.46 10 3 832.299 10 3 838.292 10 3 838.295 10	2 025 824	3
2 733.493 21 2 736.539 21 2 736.541 21 2 776.690 20 2 779.820 20 2 779.834 20 2 781.416 20 2 809.755 54 2 809.756 54 2 811.048 54 2 811.050 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 851.652 18 2 851.654 18 2 851.655 18 2 851.654 18 2 851.655 18 2 936.741 16 2 938.473 16 2 941.994 16 3 092.982 14 3 096.884 14 3 096.887 14 3 096.891 14 3 332.146 12 3 332.304 10 3 832.299 10 3 838.292 10 3 838.295 10 3 890.178 207 <td></td> <td></td>		
2 733.494 21 2 736.539 21 2 736.541 21 2 776.690 20 2 779.820 20 2 779.834 20 2 782.971 20 2 809.755 54 2 809.756 54 2 811.050 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 851.652 18 2 851.654 18 2 851.655 18 2 851.654 18 2 851.654 18 2 936.741 16 2 938.473 16 2 941.994 16 3 092.982 14 3 092.986 14 3 096.887 14 3 096.891 14 3 332.146 12 3 332.304 10 3 832.299 10 3 838.292 10 3 838.295 10 3 890.178 207		
2 736.539 21 2 736.541 21 2 776.690 20 2 779.820 20 2 779.834 20 2 781.416 20 2 809.755 54 2 811.048 54 2 811.050 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 851.652 18 2 851.654 18 2 851.655 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 092.986 14 3 096.887 14 3 096.881 14 3 332.146 12 3 332.146 12 3 332.304 10 3 832.299 10 3 838.292 10 3 838.295 10 3 890.178 207		
2 736.541 21 2 776.690 20 2 778.271 20 2 779.820 20 2 781.416 20 2 809.755 54 2 809.756 54 2 811.050 54 2 811.077 54 2 811.777 54 2 846.717 18 2 848.344 18 2 851.652 18 2 851.656 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 092.986 14 3 096.887 14 3 096.881 14 3 096.891 14 3 332.146 12 3 332.146 12 3 332.304 10 3 832.299 10 3 838.292 10 3 838.295 10 3 890.178 207		
2 778.271 20 2 779.820 20 2 779.834 20 2 781.416 20 2 809.755 54 2 809.756 54 2 811.048 54 2 811.050 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 851.652 18 2 851.654 18 2 851.655 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 092.982 14 3 092.986 14 3 096.887 14 3 096.887 14 3 329.919 12 3 332.146 12 3 332.304 10 3 832.299 10 3 838.290 10 3 838.295 10 3 890.178 207		
2 778.271 20 2 779.820 20 2 781.416 20 2 809.755 54 2 809.756 54 2 811.048 54 2 811.050 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 851.652 18 2 851.654 18 2 851.655 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 092.982 14 3 092.986 14 3 096.884 14 3 096.887 14 3 329.919 12 3 332.146 12 3 332.146 12 3 829.355 10 3 832.299 10 3 838.290 10 3 838.295 10 3 890.178 207		
2 779.820 20 2 779.834 20 2 781.416 20 2 809.755 54 2 809.756 54 2 811.048 54 2 811.050 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 851.652 18 2 851.656 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 092.982 14 3 096.884 14 3 096.887 14 3 096.891 14 3 32.146 12 3 32.299 10 3 832.299 10 3 838.290 10 3 838.295 10 3 890.178 207		
2 779.834 20 2 781.416 20 2 809.755 54 2 809.756 54 2 811.048 54 2 811.050 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 851.652 18 2 851.654 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 092.982 14 3 096.884 14 3 096.887 14 3 096.887 14 3 332.146 12 3 332.146 12 3 32.306 10 3 832.299 10 3 838.290 10 3 838.292 10 3 890.178 207		
2 781.416 20 2 782.971 20 2 809.755 54 2 811.048 54 2 811.050 54 2 811.051 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 851.652 18 2 851.654 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 092.982 14 3 096.884 14 3 096.887 14 3 096.887 14 3 332.146 12 3 332.146 12 3 829.355 10 3 832.299 10 3 838.290 10 3 838.295 10 3 890.178 207		
2 782.971 20 2 809.755 54 2 811.048 54 2 811.050 54 2 811.051 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 851.652 18 2 851.654 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 091.064 14 3 092.982 14 3 096.884 14 3 096.891 14 3 329.919 12 3 332.146 12 3 323.55 10 3 822.305 10 3 832.299 10 3 838.292 10 3 890.178 207		
2 809.755 54 2 811.048 54 2 811.050 54 2 811.051 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 851.652 18 2 851.654 18 2 851.656 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 091.064 14 3 092.982 14 3 096.884 14 3 096.887 14 3 329.919 12 3 332.146 12 3 323.55 10 3 832.299 10 3 838.290 10 3 838.295 10 3 890.178 207		
2 809.756 54 2 811.048 54 2 811.050 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 851.652 18 2 851.654 18 2 851.656 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 091.064 14 3 092.982 14 3 096.884 14 3 096.887 14 3 096.891 14 3 329.919 12 3 332.146 12 3 829.355 10 3 832.299 10 3 838.290 10 3 838.295 10 3 890.178 207		
2 811.048 54 2 811.050 54 2 811.051 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 848.346 18 2 851.652 18 2 851.654 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 091.064 14 3 092.982 14 3 096.884 14 3 096.887 14 3 096.891 14 3 332.146 12 3 332.146 12 3 829.355 10 3 832.299 10 3 838.290 10 3 838.292 10 3 890.178 207		
2 811.050 54 2 811.051 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 848.346 18 2 851.652 18 2 851.654 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 091.064 14 3 092.982 14 3 096.884 14 3 096.887 14 3 096.891 14 3 332.146 12 3 332.146 12 3 829.355 10 3 832.299 10 3 838.290 10 3 838.295 10 3 890.178 207		
2 811.051 54 2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 848.346 18 2 851.652 18 2 851.654 18 2 851.656 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 091.064 14 3 092.982 14 3 096.884 14 3 096.887 14 3 096.891 14 3 329.919 12 3 336.674 12 3 829.355 10 3 832.299 10 3 838.290 10 3 838.295 10 3 890.178 207	2 811.048	54
2 811.777 54 2 811.780 54 2 846.717 18 2 848.344 18 2 848.346 18 2 851.652 18 2 851.654 18 2 851.656 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 091.064 14 3 092.982 14 3 096.884 14 3 096.887 14 3 096.891 14 3 332.146 12 3 332.299 10 3 829.355 10 3 832.299 10 3 838.290 10 3 838.295 10 3 890.178 207	2 811.050	54
2 811.780 54 2 846.717 18 2 848.344 18 2 848.346 18 2 851.652 18 2 851.654 18 2 851.656 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 091.064 14 3 092.982 14 3 096.884 14 3 096.887 14 3 096.891 14 3 332.146 12 3 332.304 10 3 829.355 10 3 832.299 10 3 832.304 10 3 838.292 10 3 838.295 10 3 890.178 207	2 811.051	54
2 846.717 18 2 848.344 18 2 848.346 18 2 851.652 18 2 851.654 18 2 851.656 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 091.064 14 3 092.982 14 3 096.884 14 3 096.887 14 3 096.891 14 3 332.146 12 3 332.146 12 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.292 10 3 890.178 207	2 811.777	54
2 848.344 18 2 848.346 18 2 851.652 18 2 851.654 18 2 851.656 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 091.064 14 3 092.982 14 3 096.884 14 3 096.887 14 3 096.891 14 3 332.146 12 3 332.146 12 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.295 10 3 890.178 207	2 811.780	54
2 848.346 18 2 851.652 18 2 851.654 18 2 851.656 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 091.064 14 3 092.982 14 3 096.884 14 3 096.887 14 3 096.891 14 3 329.919 12 3 332.146 12 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.295 10 3 890.178 207	2 846.717	18
2 851.652 18 2 851.654 18 2 851.656 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 091.064 14 3 092.982 14 3 096.884 14 3 096.887 14 3 096.891 14 3 329.919 12 3 332.146 12 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.295 10 3 890.178 207	2 848.344	18
2 851.652 18 2 851.654 18 2 851.656 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 091.064 14 3 092.982 14 3 096.884 14 3 096.887 14 3 096.891 14 3 329.919 12 3 332.146 12 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.295 10 3 890.178 207		18
2 851.654 18 2 851.656 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 091.064 14 3 092.982 14 3 096.884 14 3 096.887 14 3 096.891 14 3 329.919 12 3 332.146 12 3 829.355 10 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.295 10 3 890.178 207	2 851.652	
2 851.656 18 2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 2 941.994 16 3 091.064 14 3 092.982 14 3 096.884 14 3 096.887 14 3 329.919 12 3 332.146 12 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.295 10 3 890.178 207		
2 852.126 2 2 915.453 53 2 936.741 16 2 938.473 16 3 091.064 14 3 092.982 14 3 092.986 14 3 096.887 14 3 096.891 14 3 329.919 12 3 332.146 12 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.295 10 3 890.178 207		
2 915.453 53 2 936.741 16 2 938.473 16 3 091.064 14 3 092.982 14 3 096.884 14 3 096.887 14 3 329.919 12 3 332.146 12 3 332.6674 12 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.295 10 3 890.178 207		
2 936.741 16 2 938.473 16 2 941.994 16 3 091.064 14 3 092.982 14 3 096.884 14 3 096.887 14 3 096.891 14 3 329.919 12 3 332.146 12 3 336.674 12 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.295 10 3 890.178 207		
2 938.473 16 2 941.994 16 3 091.064 14 3 092.982 14 3 092.986 14 3 096.884 14 3 096.891 14 3 329.919 12 3 332.146 12 3 332.6674 12 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.295 10 3 890.178 207		
2 941.994 16 3 091.064 14 3 092.982 14 3 092.986 14 3 096.884 14 3 096.887 14 3 329.919 12 3 332.146 12 3 332.6674 12 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.295 10 3 890.178 207		
3 091.064 14 3 092.982 14 3 092.986 14 3 096.884 14 3 096.887 14 3 329.919 12 3 332.146 12 3 336.674 12 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.292 10 3 838.295 10 3 890.178 207		
3 092.982 14 3 092.986 14 3 096.884 14 3 096.887 14 3 096.891 14 3 329.919 12 3 332.146 12 3 336.674 12 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.295 10 3 890.178 207		
3 092.986 14 3 096.884 14 3 096.887 14 3 096.891 14 3 329.919 12 3 332.146 12 3 36.674 12 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.295 10 3 890.178 207		
3 096.884 14 3 096.887 14 3 096.891 14 3 329.919 12 3 332.146 12 3 36.674 12 3 627.628 105 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.292 10 3 838.295 10 3 890.178 207		
3 096.887 14 3 096.891 14 3 329.919 12 3 332.146 12 3 336.674 12 3 627.628 105 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.292 10 3 838.295 10 3 890.178 207		
3 096.891 14 3 329.919 12 3 332.146 12 3 336.674 12 3 627.628 105 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.292 10 3 838.295 10 3 890.178 207		
3 329.919 12 3 332.146 12 3 336.674 12 3 627.628 105 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.292 10 3 838.295 10 3 890.178 207		
3 332.146 12 3 336.674 12 3 627.628 105 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.292 10 3 838.295 10 3 890.178 207		
3 336.674 12 3 627.628 105 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.292 10 3 838.295 10 3 890.178 207		
3 627.628 105 3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.292 10 3 838.295 10 3 890.178 207		
3 829.355 10 3 832.299 10 3 832.304 10 3 838.290 10 3 838.292 10 3 838.295 10 3 890.178 207		
3 832.299 10 3 832.304 10 3 838.290 10 3 838.292 10 3 838.295 10 3 890.178 207		
3 832.304 10 3 838.290 10 3 838.292 10 3 838.295 10 3 890.178 207		
3 838.290 10 3 838.292 10 3 838.295 10 3 890.178 207		10
3 838.292 10 3 838.295 10 3 890.178 207	3 832.304	10
3 838.295 10 3 890.178 207	3 838.290	10
3 890.178 207	3 838.292	10
3 890.178 207	3 838.295	10
		207
	3 891.906	

¹³K. Butler, C. Mendoza, and C. J. Zeippen, J. Phys. B **26**, 4409 (1993). http://legacy.gsfc.nasa.gov/topbase, downloaded on July 28, 1995 (Opacity Project).

¹⁷T. N. Chang and X. Tang, J. Quant. Spectrosc. Radiat. Transf. **43**, 207 (1990).

⁹⁹G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, energy adjusted, downloaded on Dec. 10, 2003).

¹¹⁴K. Ueda, M. Karasawa, and K. Fukuda, J. Phys. Soc. Jpn. 51, 2267 (1982).

¹²³A. W. Weiss (private communication).

TABLE 39. Wavelength finding list for allowed lines for Mg I—Continued

TABLE 39. Wavelength finding list for allowed lines for Mg I—Continued

Wavelength	Mult.	Wavelength	Mult.
(air) (Å)	No.	(air) (Å)	No.
(*) ()			
3 893.304	207	8 346.128	48
3 895.572	207	8 710.174	69
3 898.059	207	8 712.676	69
3 899.460	207	8 712.689	69
3 938.400	26	8 717.803	69
3 986.753	25	8 717.816	69
4 057.505	24	8 717.825	69
4 099.787	168	8 736.006	46
4 167.271	23	8 736.020	46
4 351.906	22	8 736.029	46
4 409.923	231	8 806.756	11
4 571.096	1	8 923.569	30
4 702.991	19	9 246.508	38
4 730.029	17	9 255.778	40
5 167.321	8	9 414.943	44
5 172.684	8	9 414.959	44
5 183.604	8	9 414.970	44
5 528.405	15	9 429.814	66
5 711.088	13	9 432.745	66
6 318.717	31	9 432.764	66
6 319.237	31	9 438.755	66
6 319.495	31	9 438.774	66
7 060.414	51	9 438.783	66
7 193.184	49	9 665.479	72
7 291.055	32	9 983.188	64
7 387.689	47	9 986.474	64
7 657.603	29	9 993.210	64
7 659.152	29	10 299.24	68
7 659.901	29	10 312.524	70
7 691.553	45	10 811.053	41
7 875.43	75	10 811.076	41
7 877.48	75	10 811.097	41
7 881.67	75	10 811.122	41
7 930.794	52	10 811.143	41
7 930.806	52	10 811.158	41
7 930.814	52	10 953.320	62
7 947.10	74	10 957.276	62
7 949.18	74	10 957.304	62
7 953.45	74	10 965.386	62
8 047.720	73	10 965.414	62
8 049.855	73	10 965.450	62
8 054.231	73	11 032.073	39
8 098.707	50	11 032.095	39
8 098.719	50	11 032.110	39
8 098.727	50	11 033.657	39
8 209.84	42	11 033.694	39
8 213.041	43	11 034.481	39
8 303.313	71	11 522.208	67
8 305.586	71	11 540.61	65
8 305.596	71	11 828.185	9
8 310.244	71	12 039.861	34
8 310.255	71	12 083.662	36
8 310.264	71	12 417.91	60
8 346.106	48 48	12 423.00 12 433.42	60 60

TABLE 39. Wavelength finding list for allowed lines for Mg I—Continued

TABLE 39. Wavelength finding list for allowed lines for Mg I—Continued

Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.
12.457.61	104	17.407.640	00
13 457.61	104	17 407.642 17 749.615	99
13 458.903	102		119
13 949.725	100	17 753.640	119
14 360.481	63	17 753.687	119
14 601.00 14 615.580	82	17 761.967 17 762.014	119
	61		119
14 700.290	98	17 762.055	119 90
14 877.529 14 877.608	37 37	18 358.5 18 374.51	90
	37		117
14 877.648		18 512.3	117
14 877.712	37	18 516.7	
14 877.752 14 877.781	37 37	18 525.7 18 954.2	117 137
15 024.992 15 040.246	27 27	18 955.2 18 955.4	138 138
15 040.246 15 047.705	27	18 955.4 19 194.12	138 97
15 135.373	80	19 194.12	97 97
15 137.069	80	19 194.20	97
15 137.827	80	19 411.2	95
15 693.360	103	19 411.4	95
15 693.454	103	19 411.5	95
15 693.555	103	19 425.38	78
15 740.716	58	19 430.29	78
15 748.886	58	19 432.73	78
15 748.988	58	19 718.54	116
15 765.645	58	19 723.51	116
15 765.747	58	19 723.58	116
15 765.842	58	19 733.79	116
15 879.521	35	19 733.86	116
15 879.567	35	19 733.90	116
15 879.599	35	19 940.49	136
15 886.183	35	19 992.2	118
15 886.261	35		
15 889.485	35	Wavenumber	Mult.
15 902.68	123	(cm ⁻¹)	No.
15 905.91	123		
15 912.59	123	4 747.099	134
15 948.33	94	4 746.883	135
15 954.477	96	4 746.836	135
16 197.62	122	4 746.782	135
16 200.97	122	4 713.930	114
16 207.90	122	4 712.653	114
16 364.748	101	4710.013	114
16 364.850	101	4 658.786	79
16 364.960	101	4 642.139	133
16 595.67	81	4 642.121	133
16 621.188	121	4 642.110	133
16 624.718	121	4 642.074	133
16 632.020	121	4 642.063	133
17 074.20	120	4 642.009	133
17 077.92	120	4 383.271	93
17 085.63	120	4 383.233	93
17 108.663	28	4 383.192	93
17 407.402	99	4 376.48 4 364.581	146 132
17 407.518	99	4 304.361	1.52

TABLE 39. Wavelength finding list for allowed lines for Mg I—Continued

TABLE 39. Wavelength finding list for allowed lines for Mg I—Continued

Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.
4 285.504	91	3 316.710	113
4 285.466	91	3 302.87	111
4 285.425	91	3 246.505	182
4 284.726	91	3 245.859	182
4 284.685	91	3 244.558	182
4 284.354	91	3 230.936	199
4 254.97	167	3 216.31	144
4 254.256	165	3 209.477	57
4 194.065	112	3 094.80	154
4 192.788	112	3 092.382	156
4 192.767	112	3 086.92	180
4 190.148	112	3 086.28	180
4 190.127	112	3 084.97	180
4 190.117	112	3 059.355	198
4 080.350	86	3 059.316	198
4 069.521	88	3 059.278	198
4 031.407	56	3 012.049	89
4 028.112	56	3 012.011	89
4 021.364	56	3 011.973	89
4 006.06	145	3 011.972	89
3 993.92	164	3 011.934	89
3 992.902	162	3 011.893	89
3 934.357	130	2 967.152	161
3 934.141	131	2 967.122	161
3 934.094	131	2 967.099	161
3 934.040	131	2 943.664	33
3 787.913	59	2 929.64	159
3 766.220	129	2 929.61	159
3 766.199	129	2 929.59	159
3 766.189	129	2 928.24	181
3 766.152	129	2 923.076	197
3 766.142	129	2 864.118	179
3 766.088	129	2 863.472	179
3 628.25	158	2 863.457	179
3 626.989	160	2 862.171	179
3 606.405	110	2 862.156	179
3 605.128	110	2 862.143	179
3 602.488	110	2 826.769 2 826.731	87
3 594.419 3 504 380	166 166	2 826.731 2 826.600	87 87
3 594.389 3 594.366	166	2 826.690 2 825 430	87 87
3 518.26	184	2 825.430 2 825.389	87 87
3 517.62	184	2 823.389 2 824.743	87 87
3 516.31	184	2 746.71	195
3 450.71	143	2 746.60	196
3 403.79	183	2 740.00	196
3 403.15	183	2 719.462	108
3 401.85	183	2 718.185	108
3 346.808	128	2 718.162	108
3 333.065	163	2 715.162	108
3 333.035	163	2 715.543	108
3 333.012	163	2 715.322	108
3 331.11	200	2 676.968	194
3 331.07	200	2 676.953	194
3 331.03	200	2 676.940	194

TABLE 39. Wavelength finding list for allowed lines for Mg I—Continued

Table 39. Wavelength finding list for allowed lines for Mg I—Continued

Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm^{-1})	Mult. No.
(em)	110.	(em)	110.
2 676.914	194	2 114.547	190
2 676.901	194	2 114.536	190
2 676.863	194	2 114.508	190
2 672.610	206	2 114.497	190
2 632.07	177	2 114.459	190
2 631.43	177	2 058.65	245
2 630.13	177	2 058.32	245
2 586.322	126	2 057.58	245
2 586.106	127	2 042.65	212
2 586.059	127	1 959.81	257
2 586.005	127	1 951.842	265
2 585.96	141	1 945.661	173
2 585.22	141	1 945.015	173
2 584.89	141	1 944.18	244
2 540.10	230	1 943.85	244
2 539.391	228	1 943.714	173
2 492.12	178	1 943.11	244
2 485.828	193	1 927.22	213
2 432.545	157	1 913.38	222
2 432.515	157	1 859.622	256
2 432.492	157	1 858.440	226
2 393.36	142	1 858.430	226
2 380.200	76	1 858.409	226
2 377.560	76	1 838.53	174
2 376.283	76	1 836.856	189
2 374.29	155	1 826.027	176
2 374.26	155	1 786.894	242
2 374.24	155	1 786.563	242
2 301.715	175	1 785.823	242
2 301.069	175	1 690.488	263
2 301.051	175	1 688.056	255
2 299.768	175	1 642.99	106
2 299.750	175	1 641.71	106
2 299.739	175	1 639.07	106
2 292.89	214	1 631.943	124
2 291.617	125	1 627.31	240
2 291.594	125	1 626.98	240
2 291.564	125	1 626.24	240
2 291.547	125	1 607.309	153
2 291.517	125	1 607.279	153
2 291.463	125	1 607.256	153
2 279.05	227	1 601.845	109
2 278.037	225	1 571.894	83
2 271.85	150	1 563.00	241
2 267.096	152	1 551.762	254
2 219.374	191	1 547.01	243
2 219.309	192	1 541.796	84
2 219.270	192	1 522.33	282
2 219.232	192	1 509.83	271
2 150.330	77	1 509.542	151
2 138.003	204	1 509.512	151
2 119.794	229	1 509.489	151
2 119.784	229	1 508.772	151
2 119.763	229	1 508.749	151

TABLE 39. Wavelength finding list for allowed lines for Mg I—Continued

TABLE 39. Wavelength finding list for allowed lines for Mg I—Continued

Wavenumber	Mult.	Wavenumber	Mult.
(cm ⁻¹)	No.	(cm ⁻¹)	No.
1 492.527	224	1 125.28	139
1 492.517	224	1 114.514	250
1 492.496	224	1 109.76	239
1 487.30	210	1 078.36	291
1 480.337	107	1 034.336	300
1 455.02	223	1 031.92	293
1 454.99	223	1 028.119	140
1 425.796	171	982.519	279
1 425.150	171	982.508	279
1 425.129	171	982.490	279
1 423.849	171	957.920	221
1 423.828	171	957.910	221
1 423.818	171	957.889	221
1 406.632	187	935.12	268
1 406.567	188	921.07	289
1 406.528	188	906.611	147
1 406.490	188	899.67	219
1 404.507	238	899.66	219
1 404.176	238	899.64	219
1 404.161	238	895.782	148
1 403.436	238	895.61	274
1 403.421	238	894.351	276
1 403.408	238	883.11	269
1 393.77	211	877.746	305
1 379.93	218	873.36	319
1 377.517	220	872.646	317
1 375.39	252	862.820	299
1 375.34	253	856.24	311
1 324.575	261	848.060	248
1 312.767	202	848.010	249
1 312.717	201	842.104	234
1 305.669	251	841.773	234
1 305.654	251	841.755	234
1 305.641	251	841.033	234
1 261.28	280	841.015	234
1 260.264	278	841.004	234
1 248.78	270	838.136	169
1 243.873	281	837.490	169
1 243.862	281 281	836.189	169
1 243.844	186	819.083 808.254	185 172
1 238.646 1 238.625	186	794.42	172
1 238.615	186	794.42 789.968	259
1 238.586	186	761.49	287
1 238.576	186	743.266	247
1 238.538	186	743.200	247
1 192.83	292	743.246	247
1 172.46	236	740.05	288
1 172.13	236	740.03	298
1 171.39	236	724.06	290
1 139.100	307	681.469	318
1 134.58	301	681.456	318
1 127.22	139	681.441	318
1 126.88	237	637.48	325
1 125.92	139	622.546	208

TABLE 39. Wavelength finding list for allowed lines for Mg I—Continued

TABLE 39. Wavelength finding list for allowed lines for Mg I—Continued

Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.
621.806	208	379.77	266
621.475	208	365.72	322
616.606	277	362.16	272
616.595	277	359.744	273
616.577	277	350.41	332
612.31	316	349.66	267
611.77	334	328.213	328
611.292	314	306.64	283
599.97	330	303.93	284
595.19	310	299.054	340
579.10	275	289.228	294
579.08	275	286.81	286
579.07	275	248.71	308
570.82	209	246.64	312
556.98	215	245.379	313
552.231	216	236.087	149
550.11	297	236.049	149
538.69	285	236.019	149
538.67	285	236.010	149
538.66	285	235.980	149
523.01	324	235.957	149
511.833	303	234.06	343
499.729	329	229.52	309
498.47	326	206.60	321
486.050	232	206.14	320
485.719	232	191.869	327
484.979	232	190.61	323
484.499	85	175.06	338
484.445	85	174.044	337
484.407	85	159.07	335
484.398	85	133.816	342
484.360	85	132.80	344
484.319	85	132.684	217
480.433	295	132.674	217
480.418	295	132.653	217
480.405	295	128.25	346
473.29	233	127.538	345
465.542	246	115.939	55
460.79	235	112.644	55
436.11	341	112.613	55
435.398	339	105.896	55
420.12	336	105.883	55
420.115	315	105.865	55
420.102	315	100.000	33

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $1^3\ 2 = Tachiev\ and\ Froese\ Fischer$, $9^9\ 3 = Ueda\ et\ al.$, $1^{14}\ 4 = Chang$, $Tang^{17}$, and $5 = Weiss^{123}$)

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
1	$3s^2 - 3s3p$	$^{1}S - ^{3}P^{\circ}$										
	_		4 571.096	4 572.377	0.000-21 870.464	1–3	2.54-06	2.38-06	3.59-05	-5.623	D	2
2		$^{1}S-^{1}P^{\circ}$	2 852.126	2 852.964	0.000-35 051.264	1–3	4.91+00	1.80+00	1.69+01	0.255	A	5

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Butler\ et\ al.$

No.	Transition array	Mult.	$\lambda_{air} \ (\mathring{A})$	$\lambda_{\rm vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
3	$3s^2 - 3s4p$	$^{1}S - ^{1}P^{\circ}$	2 025.824	2 026.477	0.000-49 346.729	1–3	6.12-01	1.13-01	7.54-01	-0.947	B+	2
4	$3s^2 - 3s5p$	$^{1}S-^{1}P^{\circ}$		1 827.935	0.000–54 706.536	1–3	1.60-01	2.40-02	1.44-01	-1.620	В	4
5	$3s^2 - 3s6p$	$^{1}S-^{1}P^{\circ}$		1 747.794	0.000–57 214.992	1–3	6.62-02	9.10-03	5.24-02	-2.041	C+	4
6	$3s^2 - 3s7p$	$^{1}S-^{1}P^{\circ}$		1 707.061	0.000-58 580.23	1–3	3.28-02	4.30-03	2.42-02	-2.367	D+	4
7	$3s^2 - 3s8p$	$^{1}S-^{1}P^{\circ}$		1 683.412	0.000-59 403.18	1–3	1.88-02	2.40-03	1.33-02	-2.620	D+	4
8	3s3p-3s4s	$^{3}P^{\circ}-^{3}S$	5 178.15	5 179.59	21 890.85–41 197.403	9–3	1.01+00	1.36-01	2.08+01	0.088	$\mathrm{B}+$	2
			5 183.604	5 185.048	21 911.178-41 197.403	5–3	5.61-01	1.36-01	1.16+01	-0.167	A	2
			5 172.684	5 174.125	21 870.464-41 197.403	3-3	3.37 - 01	1.35 - 01	6.92 + 00	-0.393	B +	2
			5 167.321	5 168.761	21 850.405-41 197.403	1–3	1.13-01	1.35 - 01	2.30+00	-0.870	$\mathrm{B} + $	2
9		$^{1}P^{\circ}-^{1}S$	11 828.185	11 831.423	35 051.264–43 503.333	3–1	2.22-01	1.55-01	1.81+01	-0.333	A	2
10	3s3p-3s3d	$^{3}P^{\circ}-^{3}D$	3 835.30	3 836.39	21 890.85–47 957.04	9–15	1.62+00	5.94-01	6.75+01	0.728	B+	2
			3 838.292	3 839.381	21 911.178–47 957.045	5–7	1.61+00	4.99-01	3.16+01	0.397	B+	2
			3 832.304	3 833.391	21 870.464–47 957.027	3–5		4.45-01		0.125		2
			3 829.355	3 830.441	21 850.405–47 957.058	1–3		5.93-01				2
			3 838.295	3 839.383	21 911.178–47 957.027	5–5		8.91-02				2
			3 832.299	3 833.387	21 870.464–47 957.058	3–3		1.48-01				2
			3 838.290	3 839.379	21 911.178–47 957.058	5–3		5.94-03				2
11		$^{1}P^{\circ}-^{1}D$	8 806.756	8 809.175	35 051.264–46 403.065	3–5		2.45-01				2
12	3s3p-3s5s	$^{3}P^{\circ}-^{3}S$	3 334.41	3 335.37	21 890.85–51 872.526	9–3	2.89-01	1.61-02	1.59+00	-0.839	С	1,3
			3 336.674	3 337.634	21 911.178-51 872.526	5–3	1.70 - 01	1.70 - 02	9.34-01	-1.071	В	3
			3 332.146	3 333.104	21 870.464-51 872.526	3–3	1.02 - 01	1.70 - 02	5.60 - 01	-1.292	В	3
			3 329.919	3 330.877	21 850.405–51 872.526	1–3	3.09 - 02	1.54 - 02	1.69-01	-1.812	D+	LS
13		$^{1}P^{\circ}-^{1}S$	5 711.088	5 712.672	35 051.264–52 556.206	3–1	3.86-02	6.30-03	3.55-01	-1.724	В	4
14	3s3p-3s4d	$^{3}P^{\circ}-^{3}D$	3 094.94	3 095.84	21 890.85–54 192.28	9–15	5.01-01	1.20-01	1.10+01	0.033	C+	1,3
			3 096.891	3 097.790	21 911.178–54 192.256	5–7	4.96-01	1.00-01	5.10+00	-0.301	C+	LS
			3 092.986	3 093.884	21 870.464-54 192.294	3–5		8.94-02				LS
			3 091.064	3 091.961	21 850.405–54 192.335	1–3		1.33-01				3
			3 096.887	3 097.786	21 911.178–54 192.294	5–5		1.79-02				LS
			3 092.982	3 093.880	21 870.464–54 192.335	3–3		2.98-02				LS
			3 096.884	3 097.782	21 911.178–54 192.335	5–3		1.19-03				LS
15		$^{1}P^{\circ}-^{1}D$	5 528.405	5 529.940	35 051.264–53 134.642	3–5		1.06-01				
16	3s3p - 3s6s		2 940.23	2 941.09	21 890.85–55 891.80	9–3		5.32-03				1
10	SSSP SSSS	1 5										
			2 941.994	2 942.854	21 911.178–55 891.80	5–3		5.32-03				LS
			2 938.473	2 939.332	21 870.464–55 891.80	3–3		5.33-03				LS
			2 936.741	2 937.600	21 850.405–55 891.80	1–3		5.33-03				LS
17			4 730.029	4 731.352	35 051.264–56 186.873	3–1	1.34-02	1.50-03	7.01-02	-2.347	C+	4
18	3s3p-3s5d	$^{3}P^{\circ}-^{3}D$	2 850.00	2 850.84	21 890.85–56 968.24	9–15	2.36-01	4.79-02	4.04+00	-0.365	С	1
			2 851.656	2 852.494	21 911.178-56 968.218	5–7	2.35 - 01	4.02 - 02	1.89+00	-0.697	C	LS
			2 848.346	2 849.183	21 870.464-56 968.248	3-5	1.77 - 01	3.59 - 02	1.01 + 00	-0.968	C	LS
			2 846.717	2 847.553	21 850.405-56 968.271	1-3	1.31 - 01	4.79 - 02	4.49 - 01	-1.320	D+	LS
			2 851.654	2 852.492	21 911.178-56 968.248	5-5	5.88-02	7.17 - 03	3.37-01	-1.446	D+	LS
			2 848.344	2 849.181	21 870.464-56 968.271	3-3	9.86 - 02	1.20 - 02	3.38 - 01	-1.444	D+	LS

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Butler\ et\ al.$

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\begin{array}{c} \lambda_{vac} \; (\mathring{A}) \\ or \; \sigma \; (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
19		$^{1}\text{P}^{\circ} - ^{1}\text{D}$	4 702.991	4 704.307	35 051.264–56 308.381	3–5	2.19-01	1.21-01	5.62+00	-0.440	B+	4
20	$3s3p-3p^2$	$^{3}P^{\circ}-^{3}P$	2 779.83	2 780.65	21 890.85–57 853.6	9_9	5.41+00	6.28-01	5.17+01	0.752	В	1,3
			2 779.834	2 780.654	21 911.178–57 873.94	5–5	4.09+00	4.74-01	2.17+01	0.375	В	LS
			2 779.820	2 780.641	21 870.464-57 833.40	3-3	1.36+00	1.58 - 01	4.34+00	-0.324	C+	LS
			2 782.971	2 783.792	21 911.178-57 833.40	5-3	2.14+00	1.49 - 01	6.83 + 00	-0.128	B +	3
			2 781.416	2 782.237	21 870.464-57 812.77	3-1	5.43+00	2.10-01	5.77 + 00	-0.201	C+	LS
			2 776.690	2 777.510	21 870.464-57 873.94	3-5	1.32+00	2.54-01	6.97 + 00	-0.118	$\mathrm{B} +$	3
			2 778.271	2 779.091	21 850.405–57 833.40	1–3	1.82+00	6.32-01	5.78+00	-0.199	C+	LS
21	3s3p-3s6d	$^{3}P^{\circ}-^{3}D$	2 735.02	2 735.83	21 890.85–58 442.85	9–15	1.25-01	2.33-02	1.89+00	-0.678	D+	1
			2 736.541	2 737.351	21 911.178-58 442.843	5–7	1.25-01	1.96-02	8.83-01	-1.009	C	LS
			2 733.494	2 734.303	21 870.464-58 442.853	3-5	9.37 - 02	1.75 - 02	4.73-01	-1.280	D+	LS
			2 731.994	2 732.803	21 850.405-58 442.874	1-3	6.97 - 02	2.34-02	2.11-01	-1.631	D+	LS
			2 736.541	2 737.351	21 911.178-58 442.853	5–5	3.12-02	3.50-03	1.58-01	-1.757	D	LS
			2 733.493	2 734.302	21 870.464-58 442.874	3-3			1.58-01			LS
			2 736.539	2 737.349	21 911.178-58 442.874	5–3	3.46-03	2.33 - 04	1.05 - 02	-2.934	E+	LS
22		$^{1}P^{\circ}-^{1}D$	4 351.906	4 353.129	35 051.264–58 023.246	3–5	1.84-01	8.70-02	3.74+00	-0.583	B+	4
23	3s3p-3s7d	$^{1}P^{\circ}-^{1}D$	4 167.271	4 168.446	35 051.264–59 041.019	3–5	1.38-01	6.00-02	2.47+00	-0.745	C+	4
24	3s3p-3s8d	$^{1}\text{P}^{\circ}$ – ^{1}D	4 057.505	4 058.651	35 051.264–59 689.991	3–5	1.02-01	4.20-02	1.68+00	-0.900	C+	4
25	3s3p-3s9d	$^{1}P^{\circ}-^{1}D$	3 986.753	3 987.881	35 051.264-60 127.239	3–5	7.30-02	2.90-02	1.14+00	-1.060	D	1
26	3s3p-3s10d	$^{1}P^{\circ}-^{1}D$	3 938.400	3 939.515	35 051.264-60 435.099	3–5	5.47-02	2.12-02	8.25-01	-1.197	D	1
27	3s4s-3s4p	$^{3}S - ^{3}P^{\circ}$	15 032.60	15 036.70	41 197.403–47 847.80	3–9	1.34-01	1.37+00	2.03+02	0.614	A	2
			15 024.992	15 029.099	41 197.403-47 851.162	3-5	1.35-01	7.59-01	1.13+02	0.357	A	2
			15 040.246	15 044.356	41 197.403-47 844.414	3–3	1.34-01	4.55-01	6.76+01	0.135	A	2
			15 047.705	15 051.817	41 197.403–47 841.119	3-1			2.26+01	-0.341	$\mathrm{B} +$	2
28		$^{1}S-^{1}P^{\circ}$	17 108.663	17 113.336	43 503.333–49 346.729	1–3	8.81-02	1.16+00	6.54+01	0.064	A	2
29	3s4s - 3s5p	$^{3}S - ^{3}P^{\circ}$	7 658.37	7 660.48	41 197.403–54 251.41	3–9	1.23-02	3.24-02	2.45+00	-1.012	C	1
			7 657.603	7 659.711	41 197.403–54 252.726	3–5	1.23-02	1.80-02	1.36+00	-1.268	С	LS
			7 659.152	7 661.260	41 197.403–54 250.086	3–3			8.17-01			LS
			7 659.901		41 197.403–54 248.809	3–1			2.73-01			
30		$^{1}S-^{1}P^{\circ}$	8 923.569	8 926.019	43 503.333–54 706.536	1–3	5.86-03	2.10-02	6.17-01	-1.678	В	4
31	3s4s-3s6p	$^{3}S - ^{3}P^{\circ}$	6 318.98	6 320.72	41 197.403–57 018.38	3–9	2.64-03	4.74-03	2.96-01	-1.847	D	1
			6 318.717	6 320.464	41 197.403–57 019.025	3–5	2 63-03	2 63 - 03	1.64-01	-2 103	D+	LS
			6 319.237	6 320.984	41 197.403–57 017.724	3–3			9.86-02			LS
			6 319.495	6 321.242	41 197.403 57 017.724	3–1			3.28-02			LS
32		¹c ¹p°	7 291.055	7 293.064	43 503.333–57 214.992	1–3			3.60-02			4
33	3s3d-3s4p	¹ D- ¹ P°		943.664 cm ⁻¹	46 403.065–49 346.729	5–3			8.19+01			2
34	3s3d-3s5p		12 039.861		46 403.065–54 706.536	5–3			1.17+00			4
35		$^{3}D-^{3}P^{\circ}$	15 882.88	15 887.21	47 957.04–54 251.41	15–9	3.54-03	8.04-03	6.31+00	-0.919	С	1
			15 879.567	15 883.905	47 957.045–54 252.726	7–5	2.98 - 03	8.04 - 03	2.94+00	-1.250	C+	LS
			15 886.183	15 890.523	47 957.027–54 250.086	5–3	2.65 - 03	6.03 - 03	1.58+00	-1.521	C	LS
			15 889.485	15 893.827	47 957.058-54 248.809	3-1	3.54 - 03	4.47 - 03	7.02 - 01	-1.873	C	LS
			15 879.521	15 883.860	47 957.027–54 252.726	5–5	5.31-04	2.01-03	5.26-01	-1.998	D+	LS

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Tachiev\ and\ Froese\ Fischer$, $13 = Tachiev\ and\ Froese\ And\ Froe$

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			15 886.261	15 890.601	47 957.058–54 250.086	3–3	8.85-04	3.35-03	5.26-01	-1.998	D+	LS
			15 879.599		47 957.058-54 252.726	3–5			3.50-02			LS
26	2 2 1 2 16	ln ln	, 12 002 662	12 007 070	16 100 065 51 656 100		1.60.01	5 1 4 0 1	1 02 02	0.410		4
36	3s3d-3s4f	'D-'F	12 083.662	12 086.969	46 403.065–54 676.438	5–7	1.68-01	5.14-01	1.02+02	0.410	Α	4
37		$^{3}D - ^{3}F^{\circ}$	14 877.61	14 881.68	47 957.04–54 676.71	15-21	1.67-01	7.76-01	5.70+02	1.066	B+	1
			14 877.529	14 881.595	47 957.045–54 676.755	7–9	1.67-01	7.12-01	2.44+02	0.698	B+	LS
			14 877.608		47 957.027–54 676.701	5–7		6.89-01		0.537		LS
			14 877.781	14 881.847	47 957.058-54 676.654	3–5		7.76-01		0.367		LS
			14 877.648	14 881.714	47 957.045-54 676.701	7–7	1.86-02	6.17-02	2.12+01	-0.365	В	LS
			14 877.712	14 881.778	47 957.027-54 676.654	5-5	2.60-02	8.64-02	2.12+01	-0.365	В	LS
			14 877.752	14 881.818	47 957.045-54 676.654	7–5	7.34-04	1.74-03	5.97-01	-1.914	C	LS
38	3s3d-3s6p	${}^{1}D - {}^{1}P^{\circ}$	9 246.508	9 249.045	46 403.065–57 214.992	5–3	2 99-03	2 30-03	3.50-01	_1 939	R	4
	333u 330p											
39		*D=*P	11 032.88	11 035.90	47 957.04–57 018.38	15–9			1.23+00			1
			11 032.095		47 957.045–57 019.025	7–5			5.75-01			LS
			11 033.657	11 036.679	47 957.027–57 017.724	5–3			3.07-01			LS
			11 034.481	11 037.503	47 957.058–57 017.078	3–1			1.36-01			LS
			11 032.073		47 957.027–57 019.025	5–5			1.03-01			LS
			11 033.694		47 957.058–57 017.724	3–3			1.03-01			LS
			11 032.110	11 035.132	47 957.058–57 019.025	3–5	2.06-05	6.28-05	6.84-03	-3.725	E+	LS
40	3s3d-3s5f	${}^{1}D - {}^{1}F$	9 255.778	9 258.318	46 403.065–57 204.163	5–7	7.95-02	1.43-01	2.18+01	-0.146	B+	4
41		$^{3}D-^{3}F$	10 811.08	10 814.05	47 957.04–57 204.27	15–21	6.70-02	1.65-01	8.79+01	0.394	В	1
			10 811.053	10 814.014	47 957.045–57 204.305	7–9	6.70-02	1.51-01	3.76+01	0.024	В	LS
			10 811.076		47 957.027–57 204.267	5–7			2.60+01			LS
			10 811.158		47 957.058–57 204.228	3–5			1.76+01			LS
			10 811.097		47 957.045–57 204.267	7–7			3.26+00			LS
			10 811.122		47 957.027–57 204.228	5–5			3.28+00			LS
			10 811.143		47 957.045–57 204.228	7–5			9.22-02			LS
42	2-24-2-7	lp lp										
42	3s3d-3s7p		8 209.84	8 212.09	46 403.065–58 580.23	5–3			1.49-01			4
43	3 <i>s</i> 3 <i>d</i> −3 <i>s</i> 6 <i>f</i>	¹ D- ¹ F		8 215.299	46 403.065–58 575.477	5–7	4.38-02	6.20-02	8.38+00	-0.509	B+	4
44		$^{3}D-^{3}F^{\circ}$	9 414.96	9 417.53	47 957.04–58 575.53	15–21	3.24-02	6.03-02	2.81+01	-0.044	C+	1
			9 414.959	9 417.542	47 957.045–58 575.527	7–9	3.24 - 02	5.54-02	1.20+01	-0.411	В	LS
			9 414.943	9 417.526	47 957.027-58 575.527	5-7	2.88 - 02	5.36-02	8.31 + 00	-0.572	C+	LS
			9 414.970	9 417.554	47 957.058-58 575.527	3-5	2.72 - 02	6.03 - 02	5.61+00	-0.743	C+	LS
			9 414.959	9 417.542	47 957.045-58 575.527	7–7	3.61-03	4.80-03	1.04+00	-1.474	C	LS
			9 414.943	9 417.526	47 957.027-58 575.527	5-5	5.05-03	6.72-03	1.04+00	-1.474	C	LS
			9 414.959	9 417.542	47 957.045–58 575.527	7–5			2.93-02			LS
45	3 <i>s</i> 3 <i>d</i> −3 <i>s</i> 7 <i>f</i>	${}^{1}D - {}^{1}F$	7 691.553	7 693.670	46 403.065–59 400.763	5–7	2.66-02	3.30-02	4.18+00	-0.783	В	4
46		$^{3}D - ^{3}F^{\circ}$	8 736.02	8 738.42	47 957.04–59 400.76	15–21	1.83-02	2.93-02	1.26+01	-0.357	D+	1
			8 736.020	8 738.419	47 957.045–59 400.763	7–9	1.83-02	2.69-02	5.42+00	-0.725	С	LS
			8 736.006		47 957.027–59 400.763	5–7			3.74+00			LS
			8 736.029		47 957.058–59 400.763	3–5			2.53+00			LS
			8 736.020		47 957.045–59 400.763	7–7			4.69-01			LS
			8 736.006		47 957.027–59 400.763	5–5			4.70-01			LS
			8 736.000		47 957.045–59 400.763	7–5			1.33 - 02			LS
47	3 <i>s</i> 3 <i>d</i> -3 <i>s</i> 8 <i>f</i>	$^{1}D-^{1}F$	7 387.689	7 389.724	46 403.065–59 935.370	5–7			2.43+00			
48	~ ~J		8 346.12	8 348.41	47 957.04–59 935.37	15–21			6.91+00			
10		D-1	0 570.12	0 570.71	1, 751.07 37 733.31	15-21	1.13-02	1.00-02	J.71 T UU	0.577	וע	1

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Butler\ et\ al.$

	Transition		λ_{air}	λ_{vac} (Å)	$E_i - E_k$		A_{ki}		S			
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	log gf	Acc.	Source
			8 346.119	8 348.413	47 957.045–59 935.370	7–9	1.15-02	1.54-02	2.96+00	-0.967	D+	LS
			8 346.106	8 348.400	47 957.027–59 935.370	5–7			2.05+00			LS
			8 346.128	8 348.422	47 957.058–59 935.370	3–5			1.38 + 00			LS
			8 346.119	8 348.413	47 957.045–59 935.370	7–7			2.56-01			LS
			8 346.106	8 348.400	47 957.027–59 935.370	5–5			2.57-01			LS
			8 346.119	8 348.413	47 957.045–59 935.370	7–5	5.04-05	3.76-05	7.23-03	-3.580	E	LS
49	3 <i>s</i> 3 <i>d</i> −3 <i>s</i> 9 <i>f</i>	$^{1}D-^{1}F^{\circ}$		7 195.167	46 403.065–60 301.283	5–7	1.18-02	1.28-02	1.52+00	-1.194	D	1
50		$^{3}D-^{3}F^{\circ}$	8 098.72	8 100.94	47 957.04–60 301.28	15–21	7.68-03	1.06-02	4.23+00	-0.799	D	1
			8 098.719	8 100.946	47 957.045–60 301.283	7–9	7.68 - 03	9.71 - 03	1.81 + 00	-1.168	D+	LS
			8 098.707	8 100.934	47 957.027-60 301.283	5–7	6.82 - 03	9.39-03	1.25 + 00	-1.328	D	LS
			8 098.727	8 100.954	47 957.058-60 301.283	3-5	6.46 - 03	1.06 - 02	8.48 - 01	-1.498	D	LS
			8 098.719	8 100.946	47 957.045-60 301.283	7–7	8.55 - 04	8.41 - 04	1.57 - 01	-2.230	E	LS
			8 098.707	8 100.934	47 957.027–60 301.283	5-5	1.20 - 03	1.18 - 03	1.57 - 01	-2.229	E	LS
			8 098.719	8 100.946	47 957.045–60 301.283	7–5	3.37-05	2.37-05	4.42-03	-3.780	E	LS
51	3s3d-3s10f	$^{1}D-^{1}F^{\circ}$	7 060.414	7 062.360	46 403.065–60 562.637	5–7	8.51-03	8.91-03	1.04+00	-1.351	D	1
52		$^{3}D-^{3}F^{\circ}$	7 930.80	7 932.98	47 957.04–60 562.64	15–21	5.38-03	7.11-03	2.79+00	-0.972	D	1
			7 930.806	7 932.987	47 957.045-60 562.637	7–9	5.38-03	6.53-03	1.19+00	-1.340	D	LS
			7 930.794	7 932.976	47 957.027-60 562.637	5–7	4.78-03	6.32-03	8.25-01	-1.500	D	LS
			7 930.814	7 932.995	47 957.058-60 562.637	3-5	4.52-03	7.11-03	5.57-01	-1.671	D	LS
			7 930.806	7 932.987	47 957.045-60 562.637	7–7	6.00-04	5.66-04	1.03-01	-2.402	E	LS
			7 930.794	7 932.976	47 957.027-60 562.637	5-5	8.41-04	7.93-04	1.04-01	-2.402	E	LS
			7 930.806	7 932.987	47 957.045–60 562.637	7–5			2.93-03			LS
53	3s3d-3p3d	$^{1}D-^{1}D^{\circ}$	2 915.453	2 916.307	46 403.065–80 693.01	5–5	4.09+00	5.21-01	2.50+01	0.416	В	1
54		$^{3}D-^{3}D^{\circ}$	2 810.59	2 811.42	47 957.04–83 526.3	15–15	2.81+00	3.33-01	4.63+01	0.699	C+	1
			2 809.756	2 810.584	47 957.045-83 536.84	7–7	2.50+00	2.96-01	1.92+01	0.316	В	LS
			2 811.048	2 811.876	47 957.027-83 520.47	5-5	1.96+00	2.32 - 01	1.07 + 01	0.064	В	LS
			2 811.780	2 812.608	47 957.058-83 511.25	3-3	2.11+00	2.50 - 01	6.94+00	-0.125	C+	LS
			2 811.050	2 811.878	47 957.045-83 520.47	7–5	4.38 - 01	3.71 - 02	2.40+00	-0.586	C	LS
			2 811.777	2 812.605	47 957.027-83 511.25	5-3	7.03 - 01	5.00 - 02	2.31+00	-0.602	C	LS
			2 809.755	2 810.583	47 957.027-83 536.84	5-7	3.14 - 01	5.20 - 02	2.41+00	-0.585	C	LS
			2 811.051	2 811.879	47 957.058-83 520.47	3–5	4.22-01	8.33-02	2.31+00	-0.602	C	LS
55	3s4p-3s3d	$^{3}P^{\circ} - ^{3}D$		109.24 cm ⁻¹	47 847.80–47 957.04	9–15	8.26-07	1.73-02	4.69+02	-0.808	A	2
				105.883 cm ⁻¹	47 851.162–47 957.045	5–7	7.52-07	1.41-02	2.19+02	-1.152	A	2
				112.613 cm ⁻¹	47 844.414-47 957.027	3–5			1.17+02			2
				115.939 cm ⁻¹	47 841.119–47 957.058	1–3			5.21+01			2
				105.865 cm ⁻¹	47 851.162–47 957.027	5–5			3.91+01			2
				112.644 cm ⁻¹	47 844.414–47 957.058	3–3			3.91+01			2
				105.896 cm ⁻¹	47 851.162–47 957.058	5–3			2.61+00			2
56	3s4p - 3s5s	$^{3}P^{\circ}-^{3}S$		4 024.73 cm ⁻¹	47 847.80–51 872.526	9–3	8.99-02	2.77-01	2.04+02	0.397	B+	1
			4	021.364 cm ⁻¹	47 851.162–51 872.526	5–3	4.98-02	2.77-01	1.13+02	0.141	B+	LS
				028.112 cm ⁻¹	47 844.414–51 872.526	3–3			6.82+01			LS
				031.407 cm ⁻¹	47 841.119–51 872.526	1–3			2.27+01			LS
57		$^{1}P^{\circ}-^{1}S$	3	209.477 cm ⁻¹	49 346.729–52 556.206	3–1	6.10-02	2.96-01	9.11+01	-0.052	A	4
58	3s4p-3s4d	$^{3}P^{\circ}-^{3}D$	15 757.41	15 761.73	47 847.80–54 192.28	9–15	9.88-02	6.13-01	2.86+02	0.742	B+	1
			15 765.842	15 770.149	47 851.162–54 192.256	5–7	9 87-02	5.15-01	1.34+02	0.411	B+	LS
			15 748.988	15 770.149	47 844.414–54 192.294	3–7		4.60-01		0.411		LS

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Butler\ et\ al.$

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
			15 740.716	15 745.016	47 841.119–54 192.335	1-3	5.51-02	6.14-01	3.18+01	-0.212	В	LS
			15 765.747	15 770.055	47 851.162-54 192.294	5-5	2.47 - 02	9.20-02	2.39 + 01	-0.337	В	LS
			15 748.886	15 753.189	47 844.414-54 192.335	3-3	4.11 - 02	1.53 - 01	2.38+01	-0.338	В	LS
			15 765.645	15 769.953	47 851.162–54 192.335	5–3	2.74-03	6.13-03	1.59+00	-1.514	C	LS
59		$^{1}\text{P}^{\circ} - ^{1}\text{D}$	3	787.913 cm ⁻¹	49 346.729–53 134.642	3–5	5.36-02	9.34-01	2.44+02	0.447	A	4
60	3s4p-3s6s	$^{3}\text{P}^{\circ} - ^{3}\text{S}$	12 428.2	12 431.6	47 847.80–55 891.80	9–3	2.80-02	2.16-02	7.96+00	-0.711	C+	1
			12 433.42	12 436.82	47 851.162–55 891.80	5-3	1.55-02	2.16-02	4.42+00	-0.967	C+	LS
			12 423.00	12 426.40	47 844.414-55 891.80	3-3	9.33 - 03	2.16-02	2.65+00	-1.188	C	LS
			12 417.91	12 421.31	47 841.119–55 891.80	1-3	3.13-03	2.17 - 02	8.87 - 01	-1.664	C	LS
61		$^{1}P^{\circ}-^{1}S$	14 615.580	14 619.575	49 346.729–56 186.873	3–1	1.87-02	2.00-02	2.89+00	-1.222	B+	4
62	3s4p-3s5d	$^{3}\text{P}^{\circ} - ^{3}\text{D}$	10 961.38	10 964.38	47 847.80–56 968.24	9–15	4.56-02	1.37-01	4.45+01	0.091	В	1
			10 965.450	10 968.453	47 851.162–56 968.218	5-7	4.55-02	1.15-01	2.08+01	-0.240	В	LS
			10 957.304	10 960.305	47 844.414-56 968.248	3-5	3.43 - 02	1.03 - 01	1.11 + 01	-0.510	В	LS
			10 953.320	10 956.320	47 841.119-56 968.271	1-3	2.54 - 02	1.37-01	4.94 + 00	-0.863	C+	LS
			10 965.414	10 968.417	47 851.162-56 968.248	5-5	1.14 - 02	2.05 - 02	3.70+00	-0.989	C+	LS
			10 957.276	10 960.277	47 844.414-56 968.271	3-3	1.90-02	3.42-02	3.70+00	-0.989	C+	LS
			10 965.386	10 968.389	47 851.162–56 968.271	5-3	1.27-03	1.37-03	2.47-01	-2.164	D+	LS
63		$^{1}P^{\circ}-^{1}D$	14 360.481	14 364.407	49 346.729–56 308.381	3–5	2.91-04	1.50-03	2.13-01	-2.347	В	4
64	3s4p-3s7s	$^{3}P^{\circ}-^{3}S$	9 989.85	9 992.59	47 847.80–57 855.214	9–3	1.41-02	7.02-03	2.08+00	-1.199	D	1
			9 993.210	9 995.950	47 851.162–57 855.214	5–3	7.81-03	7.02-03	1.16+00	-1.455	D	LS
			9 986.474	9 989.212	47 844.414-57 855.214	3-3	4.70 - 03	7.03 - 03	6.94-01	-1.676	D	LS
			9 983.188	9 985.925	47 841.119–57 855.214	1-3			2.31-01			LS
65		$^{1}P^{\circ}-^{1}S$	11 540.61	11 543.77	49 346.729–58 009.41	3–1	9.61-03	6.40-03	7.30-01	-1.717	C+	4
66	3s4p-3s6d	$^{3}\text{P}^{\circ} - ^{3}\text{D}$	9 435.78	9 438.37	47 847.80–58 442.85	9–15	2.41-02	5.36-02	1.50+01	-0.317	C+	1
			9 438.783	9 441.372	47 851.162–58 442.843	5–7	2.41-02	4.50-02	6.99+00	-0.648	C+	LS
			9 432.764	9 435.352	47 844.414-58 442.853	3-5	1.81 - 02	4.02-02	3.75 + 00	-0.919	C+	LS
			9 429.814	9 432.401	47 841.119–58 442.874	1-3	1.34-02	5.36-02	1.66+00	-1.271	C	LS
			9 438.774	9 441.363	47 851.162–58 442.853	5–5	6.01-03	8.03-03	1.25 + 00	-1.396	C	LS
			9 432.745	9 435.333	47 844.414-58 442.874	3–3			1.25 + 00			LS
				9 441.344	47 851.162–58 442.874	5–3			8.33-02			LS
67		$^{1}\text{P}^{\circ} - ^{1}\text{D}$	11 522.208	11 525.362	49 346.729–58 023.246	3–5	1.24-03	4.10-03	4.67-01	-1.910	В	4
68	3s4p - 3s8s	$^{1}P^{\circ}-^{1}S$	10 299.24	10 302.07	49 346.729–59 053.52	3–1	5.28-03	2.80-03	2.85-01	-2.076	C	4
69	3s4p-3s7d	$^{3}P^{\circ}-^{3}D$	8 715.26	8 717.66	47 847.80–59 318.77	9–15	1.43-02	2.72-02	7.03+00	-0.611	D	1
			8 717.825	8 720.219	47 851.162–59 318.764	5–7	1.43-02	2.29-02	3.29+00	-0.941	D+	LS
			8 712.689	8 715.082	47 844.414–59 318.775	3–5			1.76+00			LS
			8 710.174	8 712.567	47 841.119–59 318.793	1–3			7.80-01			LS
			8 717.816	8 720.211	47 851.162–59 318.775	5–5			5.86-01			LS
			8 712.676	8 715.069	47 844.414–59 318.793	3–3			5.86-01			LS
			8 717.803	8 720.197	47 851.162–59 318.793	5–3			3.90-02			LS
70		$^{1}\text{P}^{\circ} - ^{1}\text{D}$	10 312.524	10 315.351	49 346.729–59 041.019	3–5			6.32-01			4
71	3s4p - 3s8d		8 307.93	8 310.22	47 847.80–59 881.18	9–15			4.10+00			1,4
-	F 2300											
			8 310.264	8 312.548	47 851.162–59 881.168	5–7			1.83+00			LS
			8 305.596	8 307.879	47 844.414–59 881.181	3–5			1.31 + 00			4
			8 303.313	8 305.595	47 841.119–59 881.196	1–3	5.16-03	1.60-02	4.37-01	-1.796	E+	LS

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Butler\ et\ al.$

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
			8 310.255	8 312.539	47 851.162–59 881.181	5–5	2.32-03	2.40-03	3.28-01	-1.921	E+	LS
			8 305.586	8 307.868	47 844.414-59 881.196	3-3	3.87-03	4.00 - 03	3.28 - 01	-1.921	E+	LS
			8 310.244	8 312.528	47 851.162–59 881.196	5–3	2.57 - 04	1.60 - 04	2.19-02	-3.097	E	LS
72		$^{1}P^{\circ}-^{1}D$	9 665.479	9 668.130	49 346.729–59 689.991	3–5	2.44-03	5.70-03	5.44-01	-1.767	C+	4
73	3s4p-3s9d	$^{3}P^{\circ}-^{3}D$	8 052.05	8 054.27	47 847.80–60 263.58	9–15	6.37-03	1.03-02	2.46+00	-1.033	D	1
			8 054.231	8 056.446	47 851.162–60 263.583	5–7	6.36-03	8.67-03	1.15+00	-1.363	D	LS
			8 049.855	8 052.069	47 844.414-60 263.583	3–5	4.78 - 03	7.74 - 03	6.16-01	-1.634	D	LS
			8 047.720	8 049.933	47 841.119–60 263.583	1-3			2.73 - 01			LS
			8 054.231	8 056.446	47 851.162–60 263.583	5-5	1.59 - 03	1.55 - 03	2.06-01	-2.111	E+	LS
			8 049.855	8 052.069	47 844.414–60 263.583	3–3	2.65 - 03	2.58 - 03	2.05 - 01	-2.111	E+	LS
			8 054.231	8 056.446	47 851.162–60 263.583	5–3	1.76 - 04	1.03 - 04	1.37 - 02	-3.288	E	LS
74	3s4p - 3s11s	$^{3}P^{\circ}-^{3}S$	7 951.3	7 953.5	47 847.80–60 420.87	9-3	2.61-03	8.26-04	1.95-01	-2.129	D	1
			7 953.45	7 955.63	47 851.162-60 420.87	5-3	1.45 - 03	8.26 - 04	1.08 - 01	-2.384	D	LS
			7 949.18	7 951.37	47 844.414-60 420.87	3-3	8.71 - 04	8.26 - 04	6.49 - 02	-2.606	D	LS
			7 947.10	7 949.28	47 841.119–60 420.87	1–3	2.91-04	8.26 - 04	2.16-02	-3.083	E+	LS
75	3s4p-3s10d	$^{3}P^{\circ}-^{3}D$	7 879.6	7 881.8	47 847.80–60 535.3	9–15	4.56-03	7.08-03	1.65+00	-1.196	E+	1
			7 881.67	7 883.84	47 851.162-60 535.34	5–7	4.56-03	5.95-03	7.72-01	-1.527	D	LS
			7 877.48	7 879.65	47 844.414-60 535.34	3-5	3.43-03	5.32-03	4.14-01	-1.797	E+	LS
			7 875.43	7 877.60	47 841.119-60 535.34	1-3	2.54-03	7.09-03	1.84-01	-2.149	E+	LS
			7 881.67	7 883.84	47 851.162-60 535.34	5-5	1.14-03	1.06-03	1.38-01	-2.276	Е	LS
			7 877.48	7 879.65	47 844.414-60 535.34	3-3	1.90-03	1.77-03	1.38-01	-2.275	E	LS
			7 881.67	7 883.84	47 851.162–60 535.34	5–3			9.19-03			LS
76	3s5s-3s5p	$^{3}S - ^{3}P^{\circ}$	2	2 378.88 cm ⁻¹	51 872.526– <i>54</i> 251.41	3–9	2.25-02	1.79+00	7.41+02	0.730	B+	1
			2	380.200 cm ⁻¹	51 872.526-54 252.726	3–5	2.25-02	9.93-01	4.12+02	0.474	B+	LS
			2	377.560 cm ⁻¹	51 872.526-54 250.086	3-3	2.24-02	5.95-01	2.47 + 02	0.252	$\mathrm{B} +$	LS
			2	376.283 cm ⁻¹	51 872.526-54 248.809	3–1	2.24-02	1.98-01	8.23+01	-0.226	B+	LS
77		$^{1}S-^{1}P^{\circ}$	2	150.330 cm ⁻¹	52 556.206-54 706.536	1–3	1.81-02	1.76+00	2.69+02	0.246	A	4
78	3s5s-3s6p	$^{3}S - ^{3}P^{\circ}$	19 427.8	19 433.1	51 872.526– <i>57 018.38</i>	3–9	3.55-03	6.03-02	1.16+01	-0.743	C+	1
			19 425.38	19 430.68	51 872.526-57 019.025	3-5	3.55 - 03	3.35 - 02	6.43 + 00	-0.998	C+	LS
			19 430.29	19 435.60	51 872.526-57 017.724	3-3	3.55 - 03	2.01-02	3.86+00	-1.220	C+	LS
			19 432.73	19 438.04	51 872.526-57 017.078	3-1	3.54-03	6.69-03	1.28+00	-1.697	C	LS
79		$^{1}S-^{1}P^{\circ}$	4	658.786 cm ⁻¹	52 556.206-57 214.992	1–3	2.32-03	4.80-02	3.39+00	-1.319	B+	4
80	3s5s-3s7p	$^{3}S - ^{3}P^{\circ}$	15 136.21	15 140.36	51 872.526– <i>58 477.39</i>	3–9	1.28-03	1.32-02	1.97+00	-1.402	D	1
			15 135.373	15 139.509	51 872.526-58 477.760	3-5	1.28 - 03	7.31 - 03	1.09 + 00	-1.659	D	LS
			15 137.069	15 141.205	51 872.526-58 477.020	3-3	1.28 - 03	4.39 - 03	6.56 - 01	-1.880	D	LS
			15 137.827	15 141.964	51 872.526-58 476.689	3-1	1.27-03	1.46 - 03	2.18-01	-2.359	E+	LS
81		$^{1}S-^{1}P^{\circ}$	16 595.67	16 600.20	52 556.206-58 580.23	1–3	6.54-04	8.10-03	4.43-01	-2.092	C	4
82	3s5s-3s8p	$^{1}S-^{1}P^{\circ}$	14 601.00	14 604.99	52 556.206-59 403.18	1–3	2.61-04	2.50-03	1.20-01	-2.602	C	4
83	3s4d-3s5p	$^{1}D-^{1}P^{\circ}$	1	571.894 cm ⁻¹	53 134.642–54 706.536	5–3	7.80-03	2.84-01	2.97+02	0.152	A	4
84	3s4d-3s4f	$^{1}D-^{1}F^{\circ}$	1	541.796 cm ⁻¹	53 134.642–54 676.438	5–7	7.43-03	6.56-01	7.00+02	0.516	A	4
85		$^{3}D-^{3}F^{\circ}$		484.43 cm ⁻¹	54 192.28–54 676.71	15–21	2.54-04	2.28-01	2.32+03	0.534	B+	1
				484.499 cm ⁻¹	54 192.256-54 676.755	7–9	2.55-04	2.09-01	9.94+02	0.165	B+	LS
				484.407 cm ⁻¹	54 192.294-54 676.701	5–7	2.26-04	2.02-01	6.86+02	0.004	B+	LS

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Tachiev\ and\ Froese\ Fischer$, $13 = Tachiev\ and\ Froese\ And\ Froe$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Acc.	cc. Sou
484.445 cm ⁻¹ 54 192.236-54 676.701 7-7 2.83-05 1.81-02 8.61+01 -0.88	5 R+	+ LS
484.360 cm ⁻¹ 54 192.294-54 676.654 5-5 3.97-05 2.54-02 8.63+01 -0.88 484.396 cm ⁻¹ 54 192.295-54 676.654 7-5 1.12-06 5.11-04 2.43+00 -2.4 86 3s4d-3s6p		
484.398 cm ⁻¹ 54 192.256-54 676.654 7-5 1.12-06 5.11-04 2.43+00 -2.44 86 3s4d-3s6p		
87		
2 826.769 cm ⁻¹ 54 192.256-57 019.025 7-5 1.68-03 2.25-02 1.83+01 -0.88 2825.430 cm ⁻¹ 54 192.294-57 017.724 5-3 1.50-03 1.69-02 9.85+00 -1.07 2826.730 cm ⁻¹ 54 192.294-57 019.725 5-5 3.00-03 1.25-02 4.37+00 -1.47 2826.690 cm ⁻¹ 54 192.335-57 017.078 3-1 2.00-03 1.25-02 4.37+00 -1.57 2826.690 cm ⁻¹ 54 192.335-57 017.724 3-3 4.99-04 9.38-03 3.28+00 -1.57 2826.690 cm ⁻¹ 54 192.335-57 019.025 3-5 2.00-05 6.25-04 2.18-01 -2.77 2826.690 cm ⁻¹ 54 192.335-57 019.025 3-5 2.00-05 6.25-04 2.18-01 -2.77 2826.690 cm ⁻¹ 54 192.335-57 019.025 3-5 2.00-05 6.25-04 2.18-01 -2.77 2826.690 cm ⁻¹ 54 192.285-57 204.227 15-21 2.59-02 5.99-01 9.82+02 0.92 3.012.094 cm ⁻¹ 54 192.285-57 204.227 15-21 2.59-02 5.99-01 9.82+02 0.92 3.012.094 cm ⁻¹ 54 192.294-57 204.27 15-21 2.59-02 5.99-01 9.82+02 0.92 3.012.011 cm ⁻¹ 54 192.294-57 204.27 15-21 2.59-02 5.99-01 1.96+02 0.22 3.012.011 cm ⁻¹ 54 192.294-57 204.228 3-5 2.17-02 5.99-01 1.96+02 0.22 3.012.011 cm ⁻¹ 54 192.294-57 204.228 3-5 2.17-02 5.99-01 1.96+02 0.22 3.012.011 cm ⁻¹ 54 192.294-57 204.228 3-5 2.17-02 5.99-01 1.96+02 0.22 3.012.011 cm ⁻¹ 54 192.294-57 204.228 3-5 1.14-04 1.35-03 1.03+00 -2.00 3.011.97 2 cm ⁻¹ 54 192.295-57 204.228 3-5 1.14-04 1.35-03 1.03+00 -2.00 3.011.97 2 cm ⁻¹ 54 192.295-57 204.228 3-5 1.14-04 1.35-03 1.03+00 -2.00 3.011.97 2 cm ⁻¹ 54 192.295-57 204.228 3-5 1.14-04 1.35-03 1.03+00 -2.00 3.011.97 2 cm ⁻¹ 54 192.295-58 477.760 3-5 1.14-04 1.35-03 1.03+00 -2.00 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3	7 B+	+ 4
2 825,430 cm ⁻¹ 54 192,294-57 017,724 5-3 1.50-03 1.69-02 9.85+00 -1.07 2824,743 cm ⁻¹ 54 192,294-57 019.025 5-5 3.00-04 5.63-03 3.28+00 -1.55 2825,389 cm ⁻¹ 54 192,335-57 017,724 3-3 4.99-04 9.38-03 3.28+00 -1.55 2826,690 cm ⁻¹ 54 192,335-57 017,724 3-3 4.99-04 9.38-03 3.28+00 -1.55 2826,690 cm ⁻¹ 54 192,335-57 017,724 3-3 4.99-04 9.38-03 3.28+00 -1.55 2826,690 cm ⁻¹ 54 192,235-57 019,025 3-5 2.00-05 6.25-04 2.18-01 -2.77 2.88 3s4d-3s5f	2 C+	+ 1
2 824.743 cm ⁻¹ 54 192.335-57 017.078 3-1 2.00-03 1.25-02 4.37+00 -1.45 192.294-57 019.025 5-5 3.00-04 5.63-03 3.28+00 -1.55 2.825.389 cm ⁻¹ 54 192.235-57 019.025 3-5 2.00-05 6.25-04 2.18-01 -2.75 192.28 192.335-57 019.025 3-5 2.00-05 6.25-04 2.18-01 -2.75 192.28 192.335-57 019.025 3-5 2.00-05 6.25-04 2.18-01 -2.75 192.28 192.335-57 019.025 3-5 2.00-05 6.25-04 2.18-01 -2.75 192.28 192.335-57 019.025 3-5 2.00-05 6.25-04 2.18-01 -2.75 192.28 192.335-57 019.025 3-5 2.00-05 6.25-04 2.18-01 -2.75 192.28 192.335-57 019.025 3-5 2.00-05 6.25-04 2.18-01 -2.75 192.28 192.28 192.28 192.28 192.28 192.29 192	3 B	LS
$\begin{array}{c} 2 \ 826.731 \ cm^{-1} & 54 \ 192.294-57 \ 019.025 & 5-5 & 3.00-04 & 5.63-03 & 3.28+00 & -1.5t \\ 2 \ 825.389 \ cm^{-1} & 54 \ 192.335-57 \ 019.025 & 3-5 & 2.00-05 & 6.25-04 & 2.18-01 & -2.7t \\ 2 \ 826.690 \ cm^{-1} & 54 \ 192.335-57 \ 019.025 & 3-5 & 2.00-05 & 6.25-04 & 2.18-01 & -2.7t \\ 88 $	3 B	LS
$\begin{array}{c} 2 825.389 \ \mathrm{cm}^{-1} & 54 192.335-57 \ 017.724 & 3-3 & 4.99-04 & 9.38-03 & 3.28+00 & -1.52 \\ 2 826.690 \ \mathrm{cm}^{-1} & 54 192.335-57 \ 019.025 & 3-5 & 2.00-05 & 6.25-04 & 2.18-01 & -2.72 \\ 888 & 3s4d-3s5f & ^{1}D-^{1}F^{2} & 4069.521 \ \mathrm{cm}^{-1} & 53 134.642-57 \ 204.163 & 5-7 & 9.39-03 & 1.19-01 & 4.81+01 & -0.22 \\ 899 & ^{3}D-^{3}F^{2} & 3011.99 \ \mathrm{cm}^{-1} & 54 192.285-57 \ 204.27 & 15-21 & 2.59-02 & 5.99-01 & 9.82+02 & 0.92 \\ & & 3012.049 \ \mathrm{cm}^{-1} & 54 192.295-57 \ 204.265 & 5-7 & 2.30-02 & 5.32-01 & 2.91+02 & 0.45 \\ & 3011.893 \ \mathrm{cm}^{-1} & 54 192.295-57 \ 204.267 & 5-7 & 2.30-02 & 5.32-01 & 2.91+02 & 0.45 \\ & 3011.934 \ \mathrm{cm}^{-1} & 54 192.294-57 \ 204.267 & 5-7 & 2.30-02 & 5.32-01 & 2.91+02 & 0.45 \\ & 3011.972 \ \mathrm{cm}^{-1} & 54 192.295-57 \ 204.226 & 5-5 & 4.04-03 & 6.68-02 & 3.65+01 & -0.47 \\ & 3011.972 \ \mathrm{cm}^{-1} & 54 192.295-57 \ 204.228 & 5-5 & 4.04-03 & 6.68-02 & 3.65+01 & -0.47 \\ & 3011.972 \ \mathrm{cm}^{-1} & 54 192.295-57 \ 204.228 & 5-5 & 1.14-04 & 1.35-03 & 1.03+00 & -2.07 \\ & 90 \ 3s4d-3s7p & ^{1}D-^{1}P^{2} \ 18 \ 358.5 & 18 \ 363.5 & 53 \ 134.642-58 \ 580.23 & 5-3 & 1.35-03 & 4.10-03 & 1.24+00 & -1.66 \\ & 4 285.504 \ \mathrm{cm}^{-1} & 54 192.295-58 \ 477.760 & 5-5 & 7.87-04 & 4.59-03 & 2.47+00 & -1.46 \\ & 4 284.726 \ \mathrm{cm}^{-1} & 54 192.294-58 \ 477.760 & 5-5 & 7.87-04 & 4.59-03 & 5.88-01 & -2.17 \\ & 4 285.466 \ \mathrm{cm}^{-1} & 54 192.294-58 \ 477.60 & 5-5 & 1.41-04 & 1.15-03 & 4.42-01 & -2.24 \\ & 4 285.425 \ \mathrm{cm}^{-1} & 54 192.235-58 \ 477.60 & 5-5 & 1.41-04 & 1.15-03 & 4.42-01 & -2.24 \\ & 4 285.425 \ \mathrm{cm}^{-1} & 54 192.235-58 \ 477.60 & 3-5 & 1.41-04 & 1.15-03 & 4.29-01 & -2.24 \\ & 4 285.425 \ \mathrm{cm}^{-1} & 54 192.235-58 \ 477.60 & 3-5 & 1.41-04 & 1.15-03 & 4.29-01 & -2.24 \\ & 4 285.425 \ \mathrm{cm}^{-1} & 54 192.235-58 \ 575.57 & 5-7 & 8.89-03 & 6.30-02 & 1.91+01 & -0.56 \\ & 4 383.237 \ \mathrm{cm}^{-1} & 54 192.235-58 \ 575.527 & 5-7 & 1.32-02 & 1.49-01 & 7.83+01 & -0.01 \\ & 4 383.237 \ \mathrm{cm}^{-1} & 54 192.226-58 \ 575.527 & 7-5 & 1.52-02 & 1.62-01 & 3.65+01 & -0.3 \\ & 4 383.271 \ \mathrm{cm}^{-1} &$	5 C+	+ LS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 C+	+ LS
88	1 C+	+ LS
89	7 D+	+ LS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 A	4
3 011.973 cm ⁻¹ 54 192.294-57 204.228 3-5 2.17-02 5.99-01 1.96+02 0.42 3 011.893 cm ⁻¹ 54 192.256-57 204.228 3-5 2.17-02 5.99-01 1.96+02 0.22 3 012.011 cm ⁻¹ 54 192.256-57 204.228 7-5 4.04-03 4.77-02 3.65+01 -0.47 3 011.934 cm ⁻¹ 54 192.256-57 204.228 7-5 1.14-04 1.35-03 1.03+00 -2.02 3.01.972 cm ⁻¹ 54 192.256-57 204.228 7-5 1.14-04 1.35-03 1.03+00 -2.02 3.01.972 cm ⁻¹ 54 192.256-57 204.228 7-5 1.14-04 1.35-03 1.03+00 -2.02 3.01.972 cm ⁻¹ 54 192.256-58 477.39 15-9 9.37-04 4.59-03 5.29+00 -1.16 4.285.504 cm ⁻¹ 54 192.256-58 477.760 7-5 7.87-04 4.59-03 5.29+00 -1.16 4.285.504 cm ⁻¹ 54 192.294-58 477.020 5-3 7.02-04 3.44-03 1.32+00 -1.76 4.284.354 cm ⁻¹ 54 192.294-58 477.00 5-3 7.02-04 3.44-03 1.32+00 -1.76 4.284.354 cm ⁻¹ 54 192.294-58 477.00 5-5 1.41-04 1.15-03 4.42-01 -2.24 4.284.685 cm ⁻¹ 54 192.335-58 476.689 3-1 9.37-04 2.55-03 5.88-01 -2.12 4.285.465 cm ⁻¹ 54 192.335-58 477.00 3-5 9.33-06 1.27-04 2.93-02 -3.44 4.285.425 cm ⁻¹ 54 192.335-58 477.760 3-5 9.33-06 1.27-04 2.93-02 -3.44 4.285.425 cm ⁻¹ 54 192.335-58 477.760 3-5 1.41-04 1.15-03 4.42-01 -2.24 4.285.425 cm ⁻¹ 54 192.335-58 477.760 3-5 9.33-06 1.27-04 2.93-02 -3.44 4.285.425 cm ⁻¹ 54 192.335-58 477.760 3-5 1.41-04 1.15-03 4.42-01 -2.24 4.285.425 cm ⁻¹ 54 192.335-58 477.760 3-5 1.41-04 1.15-03 4.42-01 -2.24 4.285.425 cm ⁻¹ 54 192.335-58 575.57 5-7 1.48-02 1.62-01 1.83+02 0.33 4.383.271 cm ⁻¹ 54 192.294-58 575.527 7-9 1.49-02 1.49-01 7.83+01 0.00 4.383.271 cm ⁻¹ 54 192.294-58 575.527 7-7 1.65-03 1.29-02 6.78+00 -1.04 4.383.233 cm ⁻¹ 54 192.294-58 575.527 7-7 1.65-03 1.29-02 6.78+00 -1.04 4.383.271 cm ⁻¹ 54 192.294-58 575.527 7-7 1.65-03 1.29-02 6.78+00 -1.04 4.383.233 cm ⁻¹ 54 192.294-58 575.527 7-7 1.65-03 1.29-02 6.78+00 -1.04 4.383.271 cm ⁻¹ 54 192.256-58 575.527 7-7 1.65-03 1.29-02 6.78+00 -1.04 4.383.271 cm ⁻¹ 54 192.256-58 575.527 7-7 1.65-03 1.29-02 6.78+00 -1.04 4.383.271 cm ⁻¹ 54 192.256-58 575.527 7-7 1.65-03 1.29-02 6.78+00 -1.04 4.383.271 cm ⁻¹ 54 192.256-58 575.527 7-7 6.51-03 3.63-04 1.91-01 -2.55 4.25 4.25 4.2	4 B+	+ 1
3 011.973 cm ⁻¹ 54 192.294-57 204.267 5-7 2.30-02 5.32-01 2.91+02 0.42 3 011.893 cm ⁻¹ 54 192.335-57 204.228 3-5 2.17-02 5.99-01 1.96+02 0.22 3 011.910 cm ⁻¹ 54 192.294-57 204.228 5-5 4.04-03 6.68-02 3.65+01 -0.47 3 011.972 cm ⁻¹ 54 192.294-57 204.228 7-5 1.14-04 1.35-03 1.03+00 -2.03 3 011.972 cm ⁻¹ 54 192.256-57 204.228 7-5 1.14-04 1.35-03 1.03+00 -2.03 1.03+00 -2.03 1.03-04 1.05-	5 B+	+ LS
3 011.893 cm ⁻¹ 54 192.335-57 204.228 3-5 2.17-02 5.99-01 1.96+02 0.22 3.01-01 cm ⁻¹ 54 192.256-57 204.267 7-7 2.89-03 4.77-02 3.65+01 -0.47 3.011.934 cm ⁻¹ 54 192.294-57 204.228 5-5 4.04-03 6.68-02 3.65+01 -0.47 3.011.972 cm ⁻¹ 54 192.256-57 204.228 7-5 1.14-04 1.35-03 1.03+00 -2.02 90 3s4d-3s7p	5 B+	+ LS
$\begin{array}{c} 3 \ 012.011 \ \text{cm}^{-1} \\ 3 \ 011.934 \ \text{cm}^{-1} \\ 3 \ 011.934 \ \text{cm}^{-1} \\ 3 \ 011.972 \ \text{cm}^{-1} \\ 54 \ 192.294-57 \ 204.228 \\ 5-5 \ 4.04-03 \ 6.68-02 \ 3.65+01 \ -0.47 \\ 54 \ 192.256-57 \ 204.228 \\ 7-5 \ 1.14-04 \ 1.35-03 \ 1.03+00 \ -2.02 \\ 1.14-04 \ 1.35-03 \ 1.03+00 \ -2.02 \\ 1.0$	5 B+	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		LS
3011.972 cm ⁻¹ 54 192.256–57 204.228 7–5 1.14–04 1.35–03 1.03+00 -2.02 1.090 3s4d–3s7p ¹ D− ¹ P° 18 358.5 18 363.5 53 134.642–58 580.23 5–3 1.35–03 4.10–03 1.24+00 -1.66 1.091 ³ D− ³ P° 4285.11 cm ⁻¹ 54 192.28–58 477.39 15–9 9.37–04 4.59–03 5.29+00 -1.16 1.091 4285.504 cm ⁻¹ 54 192.294–58 477.760 7–5 7.87–04 4.59–03 2.47+00 -1.49 4284.726 cm ⁻¹ 54 192.294–58 477.760 5–3 7.02–04 3.44–03 1.32+00 -1.76 4284.354 cm ⁻¹ 54 192.294–58 477.760 5–5 1.41–04 1.15–03 4.42–01 -2.26 4284.685 cm ⁻¹ 54 192.335–58 476.689 3–1 9.37–04 2.55–03 5.88–01 -2.11 4285.466 cm ⁻¹ 54 192.335–58 477.760 5–5 1.41–04 1.15–03 4.42–01 -2.26 4285.425 cm ⁻¹ 54 192.335–58 477.760 3–5 9.33–06 1.27–04 2.93–02 -3.41 92 3s4d–3s6f ¹ D− ¹ F° 18 374.51 18 379.53 53 134.642–58 575.537 5–7 8.89–03 6.30–02 1.91+01 -0.56 93 3D− ³ F° 4383.25 cm ⁻¹ 54 192.28–58 575.527 7–9 1.49–01 7.83+01 0.01 4383.233 cm ⁻¹ 54 192.294–58 575.527 5–7 1.32–02 1.44–01 5.41+01 -0.14 4383.271 cm ⁻¹ 54 192.294–58 575.527 5–7 1.52–02 1.62–01 3.65+01 -0.35 4383.271 cm ⁻¹ 54 192.294–58 575.527 7–7 1.65–03 1.29–02 6.78+00 -1.06 4383.233 cm ⁻¹ 54 192.294–58 575.527 7–7 1.65–03 1.29–02 6.78+00 -1.06 4383.271 cm ⁻¹ 54 192.294–58 575.527 7–5 6.51–05 3.63–04 1.91–01 -2.59 4383.271 cm ⁻¹ 54 192.294–58 575.527 7–5 6.51–05 3.63–04 1.91–01 -2.59 4383.271 cm ⁻¹ 54 192.294–58 575.527 7–5 6.51–05 3.63–04 1.91–01 -2.59 4383.271 cm ⁻¹ 54 192.294–58 575.527 7–5 6.51–05 3.63–04 1.91–01 -2.59 4383.271 cm ⁻¹ 54 192.294–58 575.527 7–5 6.51–05 3.63–04 1.91–01 -2.59 4383.271 cm ⁻¹ 54 192.294–58 575.527 7–5 6.51–05 3.63–04 1.91–01 -2.59 4383.271 cm ⁻¹ 54 192.294–58 575.527 7–5 6.51–05 3.63–04 1.91–01 -2.59 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 -2.59 4383.271 cm ⁻¹ 54 192.294–58 575.527 7–5 6.51–05 3.63–04 1.91–01 -2.59 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 -2.59 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 -2.59 4383.271 cm	5 B	LS
91		
4 285.504 cm ⁻¹ 54 192.256–58 477.760 7-5 7.87–04 4.59–03 2.47+00 -1.49 4 284.726 cm ⁻¹ 54 192.294–58 477.020 5-3 7.02–04 3.44–03 1.32+00 -1.70 4 284.354 cm ⁻¹ 54 192.335–58 476.689 3-1 9.37–04 2.55–03 5.88–01 -2.11 4 285.466 cm ⁻¹ 54 192.294–58 477.00 5-5 1.41–04 1.15–03 4.42–01 -2.24 4 284.685 cm ⁻¹ 54 192.335–58 477.020 3-3 2.34–04 1.91–03 4.40–01 -2.24 4 285.425 cm ⁻¹ 54 192.335–58 477.00 3-5 9.33–06 1.27–04 2.93–02 -3.41 92 3s4d–3s6f	3 C+	+ 4
4 284.726 cm ⁻¹ 54 192.294–58 477.020 5–3 7.02–04 3.44–03 1.32+00 –1.76 4 284.354 cm ⁻¹ 54 192.335–58 476.689 3–1 9.37–04 2.55–03 5.88–01 –2.11 4 285.466 cm ⁻¹ 54 192.294–58 477.760 5–5 1.41–04 1.15–03 4.42–01 –2.24 4 284.685 cm ⁻¹ 54 192.335–58 477.020 3–3 2.34–04 1.91–03 4.40–01 –2.24 4 285.425 cm ⁻¹ 54 192.335–58 477.760 3–5 9.33–06 1.27–04 2.93–02 –3.41 92 3s4d–3s6f 1D–1F° 18 374.51 18 379.53 53 134.642–58 575.477 5–7 8.89–03 6.30–02 1.91+01 –0.56 3 1.20–3 3	2 D	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 D+	+ LS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$4285.425 \text{ cm}^{-1} 54 192.335 - 58 477.760 3-5 9.33 - 06 1.27 - 04 2.93 - 02 -3.4992 384d - 386f {}^{1}D^{-1}F^{\circ} 18 374.51 18 379.53 53 134.642 - 58 575.477 5-7 8.89 - 03 6.30 - 02 1.91 + 01 -0.5093 -0.59$		
93		LS
4 383.271 cm ⁻¹ 54 192.256–58 575.527 7–9 1.49–02 1.49–01 7.83+01 0.01 4383.233 cm ⁻¹ 54 192.294–58 575.527 5–7 1.32–02 1.44–01 5.41+01 –0.14 4383.192 cm ⁻¹ 54 192.355–58 575.527 3–5 1.25–02 1.62–01 3.65+01 –0.33 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–7 1.65–03 1.29–02 6.78+00 –1.04 4383.233 cm ⁻¹ 54 192.294–58 575.527 5–5 2.31–03 1.80–02 6.76+00 –1.04 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 4383 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 4383 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 4383 4383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 4383 4383 43840–38 4383 43840–38 43840 4383 43840 43840 4383 43840 43	2 B+	+ 4
4 383.233 cm ⁻¹ 54 192.294–58 575.527 5–7 1.32–02 1.44–01 5.41+01 -0.14 4 383.192 cm ⁻¹ 54 192.335–58 575.527 3–5 1.25–02 1.62–01 3.65+01 -0.33 4 383.271 cm ⁻¹ 54 192.256–58 575.527 7–7 1.65–03 1.29–02 6.78+00 -1.04 4 383.233 cm ⁻¹ 54 192.294–58 575.527 5–5 2.31–03 1.80–02 6.76+00 -1.04 4 383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 -2.59 94 3s4d–3s8p ¹ D– ¹ P° 15 948.33 15 952.68 53 134.642–59 403.18 5–3 8.74–04 2.00–03 5.25–01 -2.00	6 B+	+ 1
4 383.233 cm ⁻¹ 54 192.294–58 575.527 5–7 1.32–02 1.44–01 5.41+01 -0.14 4 383.192 cm ⁻¹ 54 192.335–58 575.527 3–5 1.25–02 1.62–01 3.65+01 -0.33 4 383.271 cm ⁻¹ 54 192.256–58 575.527 7–7 1.65–03 1.29–02 6.78+00 -1.04 4 383.233 cm ⁻¹ 54 192.294–58 575.527 5–5 2.31–03 1.80–02 6.76+00 -1.04 4 383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 -2.59 94 3s4d–3s8p ¹ D– ¹ P° 15 948.33 15 952.68 53 134.642–59 403.18 5–3 8.74–04 2.00–03 5.25–01 -2.00	8 B+	+ LS
4 383.192 cm ⁻¹ 54 192.335–58 575.527 3–5 1.25–02 1.62–01 3.65+01 -0.3 4 383.271 cm ⁻¹ 54 192.256–58 575.527 7–7 1.65–03 1.29–02 6.78+00 -1.04 4 383.233 cm ⁻¹ 54 192.294–58 575.527 5–5 2.31–03 1.80–02 6.76+00 -1.04 4 383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 -2.59 94 3s4d–3s8p ¹ D– ¹ P° 15 948.33 15 952.68 53 134.642–59 403.18 5–3 8.74–04 2.00–03 5.25–01 -2.00		
4 383.271 cm ⁻¹ 54 192.256–58 575.527 7-7 1.65–03 1.29–02 6.78+00 -1.04 4 383.233 cm ⁻¹ 54 192.294–58 575.527 5-5 2.31–03 1.80–02 6.76+00 -1.04 4 383.271 cm ⁻¹ 54 192.256–58 575.527 7-5 6.51–05 3.63–04 1.91–01 -2.59 94 3s4d–3s8p ¹ D– ¹ P° 15 948.33 15 952.68 53 134.642–59 403.18 5-3 8.74–04 2.00–03 5.25–01 -2.00		LS
4 383.233 cm ⁻¹ 54 192.294–58 575.527 5–5 2.31–03 1.80–02 6.76+00 –1.04 4 383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 94 3s4d–3s8p ¹ D– ¹ P° 15 948.33 15 952.68 53 134.642–59 403.18 5–3 8.74–04 2.00–03 5.25–01 –2.00	4 C+	
4 383.271 cm ⁻¹ 54 192.256–58 575.527 7–5 6.51–05 3.63–04 1.91–01 –2.59 94 3s4d–3s8p ¹ D– ¹ P° 15 948.33 15 952.68 53 134.642–59 403.18 5–3 8.74–04 2.00–03 5.25–01 –2.00		
•		
2 2 9) C+	+ 4
95 ${}^{3}D - {}^{3}P^{\circ}$ 19 411 19 417 54 192.28–59 342.5 15–9 5.26–04 1.78–03 1.71+00 –1.57	3 E+	+ 1
19 411.2 19 416.5 54 192.256-59 342.51 7-5 4.41-04 1.78-03 7.96-01 -1.90	4 D	LS
19 411.4 19 416.7 54 192.294–59 342.51 5–3 3.95–04 1.34–03 4.28–01 –2.17		
19 411.5 19 416.8 54 192.335–59 342.51 3–1 5.26–04 9.91–04 1.90–01 –2.52		
19 411.4 19 416.7 54 192.294–59 342.51 5–5 7.89–05 4.46–04 1.43–01 –2.65		
19 411.5 19 416.8 54 192.335–59 342.51 3–3 1.31–04 7.43–04 1.42–01 –2.65		LS
19 411.5 19 416.8 54 192.335–59 342.51 3–5 5.27–06 4.96–05 9.51–03 –3.82		LS
96 $3s4d-3s7f$ $^{1}D-^{1}F^{\circ}$ 15 954.477 15 958.836 53 134.642–59 400.763 5–7 6.55–03 3.50–02 9.19+00 –0.73	7 B	4

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Butler\ et\ al.$

No.	Transition array	Mult.	$\lambda_{air} \ (\mathring{A})$	$\begin{array}{c} \lambda_{vac} \; (\mathring{A}) \\ \text{or} \; \sigma \; (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
97		$^{3}D-^{3}F^{\circ}$	19 194.2	19 199.5	54 192.28–59 400.76	15–21	8.96-03	6.93-02	6.57+01	0.017	С	1
			19 194.12	19 199.36	54 192.256–59 400.763	7–9	8 07_03	6.37-02	2 82 ± 01	_0.351	$C \perp$	LS
			19 194.26	19 199.50	54 192.294–59 400.763	5–7		6.16-02				LS
			19 194.41	19 199.65	54 192.335–59 400.763	3–5		6.93-02				LS
			19 194.12	19 199.36	54 192.256–59 400.763	7–7		5.52-03				LS
			19 194.26	19 199.50	54 192.294–59 400.763	5–5		7.72-03				LS
			19 194.12	19 199.36	54 192.256–59 400.763	7–5		1.56-04				LS
98	3s4d-3s8f	$^{1}D-^{1}F^{\circ}$	14 700.290	14 704.308	53 134.642–59 935.370	5–7	4.85-03	2.20-02	5.32+00	-0.959	В	4
99		$^{3}D-^{3}F^{\circ}$	17 407.49	17 412.23	54 192.28–59 935.37	15–21	5.84-03	3.72-02	3.19+01	-0.253	C	1
			17 407.402	17 412.157	54 192.256–59 935.370	7–9	5.84-03	3.41-02	1.37+01	-0.622	С	LS
			17 407.518	17 412.272	54 192.294-59 935.370	5–7		3.30-02				LS
			17 407.642	17 412.396	54 192.335-59 935.370	3–5		3.72-02				LS
			17 407.402	17 412.157	54 192.256–59 935.370	7–7		2.96-03				LS
			17 407.518	17 412.272	54 192.294–59 935.370	5–5		4.14-03				LS
			17 407.402	17 412.272	54 192.256–59 935.370	7–5		8.35-05				LS
100	3s4d-3s9f	$^{1}D-^{1}F^{\circ}$	13 949.725	13 953.538	53 134.642–60 301.283	5–7	3.23-03	1.32-02	3.03+00	-1.180	D+	1
101		$^{3}D-^{3}F^{\circ}$	16 364.82	16 369.29	54 192.28–60 301.28	15–21	4.02-03	2.26-02	1.83+01	-0.470	D+	1
			16 364.748	16 369.219	54 192.256-60 301.283	7–9	4 01 - 03	2.07-02	7.81+00	-0.839	C	LS
			16 364.850	16 369.321	54 192.294–60 301.283	5–7		2.01-02				LS
			16 364.960	16 369.431	54 192.335–60 301.283	3–5		2.26-02				LS
			16 364.748	16 369.219	54 192.256–60 301.283	7–7		1.80-03				LS
			16 364.850	16 369.321	54 192.294–60 301.283	5–5		2.52-03				LS
			16 364.748	16 369.321	54 192.256–60 301.283	3–3 7–5		5.07-05				LS
102	3s4d-3s10f	$^{1}D-^{1}F^{\circ}$	13 458.903	13 462.583	53 134.642–60 562.637	5–7	2.45-03	9.31-03	2.06+00	-1.332	D+	1
103		$^{3}D-^{3}F^{\circ}$	15 693.43	15 697.70	54 192.28–60 562.64	15–21	2.88-03	1.49-02	1.15+01	-0.651	D+	1
			15 602 260	15 607 649	54 102 256 60 562 627	7.0	2 99 02	1 27 02	4.06 ± 00	1.019	C	LS
			15 693.360	15 697.648	54 192.256–60 562.637	7–9 5.7		1.37-02				
			15 693.454	15 697.742	54 192.294–60 562.637	5–7		1.32-02				LS
			15 693.555	15 697.843	54 192.335–60 562.637	3–5		1.49-02				LS
			15 693.360	15 697.648	54 192.256–60 562.637	7–7		1.19-03				LS
			15 693.454	15 697.742	54 192.294–60 562.637	5–5		1.66-03				LS
			15 693.360	15 697.648	54 192.256–60 562.637	7–5		3.35-05				LS
104	3s4d - 3s11p		13 457.61	13 461.29	53 134.642–60 563.35	5–3		5.77-04				1
105	3s4d-3p3d	$^{1}D - ^{1}D^{\circ}$	3 627.628	3 628.662	53 134.642–80 693.01	5–5	5.62-02	1.11-02	6.63-01	-1.256	С	1
106	3s5p-3s6s	$^{3}P^{\circ}-^{3}S$		1 640.39 cm ⁻¹	54 251.41–55 891.80	9–3	2.23-02	4.14-01	7.48+02	0.571	B+	1
				1 639.07 cm ⁻¹	54 252.726-55 891.80	5-3	1.24 - 02	4.14 - 01	4.16+02	0.316	$\mathrm{B} +$	LS
				1 641.71 cm ⁻¹	54 250.086-55 891.80	3-3	7.44 - 03	4.14 - 01	2.49 + 02	0.094	B +	LS
				1 642.99 cm ⁻¹	54 248.809-55 891.80	1–3	2.49-03	4.15 - 01	8.32 + 01	-0.382	$\mathrm{B} +$	LS
107		$^{1}P^{\circ}-^{1}S$	1	480.337 cm ⁻¹	54 706.536–56 186.873	3–1	1.88-02	4.29-01	2.86+02	0.110	A	4
108	3s5p-3s5d	$^{3}P^{\circ}-^{3}D$		2 716.83 cm ⁻¹	54 251.41–56 968.24	9–15	1.85-02	6.25-01	6.82+02	0.750	B+	1
			2	715.492 cm ⁻¹	54 252.726–56 968.218	5–7	1.84-02	5.25-01	3.18+02	0.419	B+	LS
			2	718.162 cm ⁻¹	54 250.086-56 968.248	3-5	1.39-02	4.69-01	1.70+02	0.148	$\mathrm{B} +$	LS
			2	719.462 cm ⁻¹	54 248.809-56 968.271	1-3	1.03-02	6.26-01	7.58 + 01	-0.203	B+	LS
				715.522 cm ⁻¹	54 252.726–56 968.248	5–5		9.38-02				LS
				718.185 cm ⁻¹	54 250.086–56 968.271	3–3		1.56-01				LS
				715.545 cm ⁻¹	54 252.726–56 968.271	5–3		6.25-03				
			2	/13.343 cm ⁻¹	34 232.720-36 968.271	5-5	5.12-04	0.25-03	3.79+00	-1.505	C+	

TABLE 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: 1=Butler *et al.*, ¹³ 2=Tachiev and Froese Fischer, ⁹⁹ 3 =Ueda *et al.*, ¹¹⁴ 4=Chang, Tang ¹⁷, and 5=Weiss ¹²³)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\begin{array}{c} \lambda_{vac} \; (\mathring{A}) \\ or \; \sigma \; (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
109		$^{1}P^{\circ}-^{1}D$	1 (601.845 cm ⁻¹	54 706.536–56 308.381	3–5	1.39-02	1.35+00	8.32+02	0.607	A	4
110	3s5p-3s7s	$^{3}P^{\circ}-^{3}S$	ŝ	3 603.80 cm ⁻¹	<i>54 251.41</i> –57 855.214	9–3	7.52-03	2.89-02	2.38+01	-0.585	C	1
			3 (602.488 cm ⁻¹	54 252.726-57 855.214	5–3	4.17-03	2.89-02	1.32+01	-0.840	C	LS
			3 (605.128 cm ⁻¹	54 250.086-57 855.214	3-3	2.51 - 03	2.90 - 02	7.94 + 00	-1.060	C	LS
			3 (606.405 cm ⁻¹	54 248.809–57 855.214	1–3	8.39-04	2.90-02	2.65+00	-1.538	D+	LS
111		$^{1}P^{\circ}-^{1}S$	3	3 302.87 cm ⁻¹	54 706.536-58 009.41	3–1	6.77-03	3.10-02	9.27+00	-1.032	В	4
112	3s5p-3s6d	$^{3}P^{\circ}-^{3}D$	4	4 191.44 cm ⁻¹	54 251.41–58 442.85	9–15	1.03-02	1.47-01	1.04+02	0.122	В	1
			4	190.117 cm ⁻¹	54 252.726-58 442.843	5–7	1.03-02	1.23-01	4.83+01	-0.211	$\mathrm{B} +$	LS
			4	192.767 cm ⁻¹	54 250.086-58 442.853	3-5	7.74 - 03	1.10 - 01	2.59 + 01	-0.481	В	LS
			4	194.065 cm ⁻¹	54 248.809-58 442.874	1-3	5.75-03	1.47-01	1.15 + 01	-0.833	В	LS
			4	190.127 cm ⁻¹	54 252.726-58 442.853	5-5	2.58-03	2.20-02	8.64+00	-0.959	C+	LS
				192.788 cm ⁻¹	54 250.086-58 442.874	3–3		3.68-02				LS
				190.148 cm ⁻¹	54 252.726–58 442.874	5–3		1.47-03				LS
113		$^{1}P^{\circ}-^{1}D$	33	316.710 cm ⁻¹	54 706.536–58 023.246	3–5	7.04-04	1.60-02	4.76+00	-1.319	B+	4
114	3s5p - 3s8s	$^{3}P^{\circ}-^{3}S$	4	4 711.33 cm ⁻¹	<i>54 251.41</i> –58 962.739	9–3	4.09-03	9.20-03	5.79+00	-1.082	D+	1
			4	710.013 cm ⁻¹	54 252.726-58 962.739	5–3	2.27-03	9.20-03	3.22+00	-1.337	D+	LS
				712.653 cm ⁻¹	54 250.086-58 962.739	3–3		9.21-03				LS
				713.930 cm ⁻¹	54 248.809–58 962.739	1–3		9.21-03				LS
115		$^{1}P^{\circ}-^{1}S$	4	346.98 cm ⁻¹	54 706.536–59 053.52	3–1	3.44-03	9.10-03	2.07+00	-1.564	C+	4
116	3s5p-3s7d	${}^{3}P^{\circ} - {}^{3}D I$	9 728.7	19 734.1	54 251.41–59 318.77	9–15	6.24-03	6.08-02	3.55+01	-0.262	C	1
		1	9 733.90	19 739.29	54 252.726-59 318.764	5–7	6.24-03	5.10-02	1.66+01	-0.593	С	LS
		1	9 723.58	19 728.97	54 250.086-59 318.775	3-5	4.69 - 03	4.56-02	8.89 + 00	-0.864	C	LS
		1	9 718.54	19 723.93	54 248.809-59 318.793	1-3	3.47-03	6.08-02	3.95 + 00	-1.216	D+	LS
			9 733.86	19 739.25	54 252.726-59 318.775	5-5	1.56-03	9.11-03	2.96+00	-1.342	D+	LS
			9 723.51	19 728.90	54 250.086-59 318.793	3–3		1.52-02				LS
			9 733.79	19 739.18	54 252.726–59 318.793	5–3		6.07-04				LS
117	3s5p-3s9s	$^{3}P^{\circ}-^{3}S$ 1	8 521	18 526	<i>54 251.41</i> –59 649.15	9–3	2.54-03	4.35-03	2.39+00	-1.407	D	1
		1	8 525.7	18 530.8	54 252.726-59 649.15	5–3	1.41-03	4.35-03	1.33+00	-1.663	D	LS
		1	8 516.7	18 521.7	54 250.086-59 649.15	3-3	8.46-04	4.35-03	7.96-01	-1.884	D	LS
		1	8 512.3	18 517.3	54 248.809–59 649.15	1–3	2.82-04	4.35-03	2.65-01	-2.362	E+	LS
118		${}^{1}P^{\circ} - {}^{1}S = 1$	9 992.2	19 997.7	54 706.536–59 707.11	3–1	1.92-03	3.83-03	7.56-01	-1.940	D	1
119	3s5p-3s8d	${}^{3}P^{\circ} - {}^{3}D I$	7 757.87	17 762.71	54 251.41–59 881.18	9–15	4.06-03	3.20-02	1.68+01	-0.541	D+	1
		1	7 762.055	17 766.906	54 252.726-59 881.168	5–7	4.06-03	2.69-02	7.87 + 00	-0.871	С	LS
			7 753.687	17 758.535	54 250.086-59 881.181	3-5		2.40-02				LS
			7 749.615	17 754.462	54 248.809-59 881.196	1–3		3.20-02				LS
			7 762.014	17 766.865	54 252.726–59 881.181	5–5		4.80-03				LS
			7 753.640	17 758.488	54 250.086–59 881.196	3–3		8.00-03				LS
			7 761.967	17 766.818	54 252.726–59 881.196	5–3		3.20-04				LS
120	3s5p-3s10s	$^{3}\text{P}^{\circ}$ – ^{3}S I	7 081.8	17 086.5	<i>54 251.41</i> –60 104.00	9–3	1.69-03	2.47-03	1.25+00	-1.653	E+	1
		1	7 085.63	17 090.30	54 252.726-60 104.00	5–3	9.40=.04	2.47-03	6.0501	_1 009	D	LS
			7 077.92	17 082.59	54 250.086-60 104.00	3–3		2.47 - 03				LS
			7 074.20	17 078.86	54 248.809–60 104.00	1–3		2.47-03				LS
121	3s5p-3s9d	$^{3}P^{\circ}-^{3}D I$	6 628.38	16 632.93	54 251.41–60 263.58	9–15	2.79-03	1.93 - 02	9.51 + 00	-0.760	D+	1

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Butler\ et\ al.$

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\begin{array}{c} \lambda_{vac} \ (\mathring{A}) \\ or \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
			16 632.020	16 636.563	54 252.726–60 263.583	5–7	2.79-03	1.62-02	4.44+00	-1.092	D+	LS
			16 624.718	16 629.259	54 250.086-60 263.583	3-5			2.38+00			LS
			16 621.188	16 625.729	54 248.809-60 263.583	1-3	1.55-03	1.93-02	1.06+00	-1.714	D	LS
			16 632.020	16 636.563	54 252.726-60 263.583	5-5	6.96-04	2.89-03	7.91-01	-1.840	D	LS
			16 624.718	16 629.259	54 250.086-60 263.583	3-3	1.16-03	4.82-03	7.92-01	-1.840	D	LS
			16 632.020	16 636.563	54 252.726-60 263.583	5–3	7.75-05	1.93-04	5.29-02	-3.015	E	LS
122	3s5p-3s11s	$^{3}P^{\circ}-^{3}S$	16 204.4	16 208.9	<i>54 251.41</i> –60 420.87	9–3	1.20-03	1.57-03	7.54-01	-1.850	D+	1
			16 207.90	16 212.33	54 252.726-60 420.87	5-3	6.64 - 04	1.57 - 03	4.19 - 01	-2.105	D+	LS
			16 200.97	16 205.40	54 250.086-60 420.87	3–3	3.99 - 04	1.57 - 03	2.51-01	-2.327	D+	LS
			16 197.62	16 202.04	54 248.809–60 420.87	1–3	1.33-04	1.57-03	8.37-02	-2.804	D	LS
123	3s5p-3s10d	$^{3}P^{\circ}-^{3}D$	15 909.3	15 913.7	54 251.41–60 535.3	9–15	1.99-03	1.26-02	5.95+00	-0.945	D	1
			15 912.59	15 916.94	54 252.726-60 535.34	5–7			2.78+00			LS
			15 905.91	15 910.26	54 250.086–60 535.34	3–5			1.49+00			LS
			15 902.68	15 907.02	54 248.809–60 535.34	1–3			6.60-01			LS
			15 912.59	15 916.94	54 252.726–60 535.34	5–5			4.95-01			LS
			15 905.91	15 910.26	54 250.086–60 535.34	3–3			4.97-01			LS
			15 912.59	15 916.94	54 252.726–60 535.34	5–3	5.53-05	1.26-04	3.30-02	-3.201	Е	LS
124	3s4f-3s5d	${}^{1}F^{\circ} - {}^{1}D$		631.943 cm ⁻¹	54 676.438–56 308.381	7–5	3.28-03	1.32-01	1.86+02	-0.034	A	4
125		$^{3}F^{\circ}-^{3}D$	2	2 291.53 cm ⁻¹	54 676.71–56 968.24	21–15	1.39-03	2.83-02	8.53+01	-0.226	В	1
			2 2	291.463 cm ⁻¹	54 676.755–56 968.218	9–7	1.27 - 03	2.83 - 02	3.66+01	-0.594	В	LS
			2 2	291.547 cm ⁻¹	54 676.701-56 968.248	7–5	1.23 - 03	2.51 - 02	2.52+01	-0.755	В	LS
			2 2	291.617 cm ⁻¹	54 676.654-56 968.271	5-3	1.38 - 03	2.37 - 02	1.70+01	-0.926	В	LS
			2 2	291.517 cm ⁻¹	54 676.701–56 968.218	7–7	1.10-04	3.15 - 03	3.17+00	-1.657	C+	LS
			2 2	291.594 cm ⁻¹	54 676.654-56 968.248	5-5	1.54 - 04	4.41 - 03	3.17+00	-1.657	C+	LS
			2.2	291.564 cm ⁻¹	54 676.654–56 968.218	5–7	3.10-06	1.24-04	8.91-02	-3.208	D	LS
126	3s4f-3s5g	${}^{1}F^{\circ} - {}^{1}G$	2.	586.322 cm ⁻¹	54 676.438–57 262.760	7–9	4.41-02	1.27+00	1.13+03	0.949	B+	1
127		$^{3}F^{\circ}-^{3}G$				21–27						1
			2 :	586.059 cm ⁻¹	54 676.701-57 262.760	7–9	4.13 - 02	1.19+00	1.06+03	0.921	B +	LS
			2 :	586.106 cm ⁻¹	54 676.654-57 262.760	5-7	4.05 - 02	1.27 + 00	8.08 + 02	0.803	B +	LS
			2 :	586.005 cm ⁻¹	54 676.755–57 262.760	9_9	2.76 - 03	6.19 - 02	7.09+01	-0.254	B +	LS
				586.059 cm ⁻¹	54 676.701-57 262.760	7–7	3.55 - 03	7.96-02	7.09+01	-0.254	B +	LS
			2 :	586.005 cm ⁻¹	54 676.755–57 262.760	9–7	5.41-05	9.43-04	1.08+00	-2.071	C	LS
128	3s4f-3s6d	${}^{1}F^{\circ} - {}^{1}D$	3 3	346.808 cm ⁻¹	54 676.438–58 023.246	7–5	1.15-03	1.10-02	7.57 + 00	-1.114	C+	1
129		$^{3}F^{\circ}-^{3}D$	Ĵ	3 766.14 cm ⁻¹	54 676.71–58 442.85	21–15	5.70-04	4.30-03	7.89+00	-1.044	C	1
			3 ′	766.088 cm ⁻¹	54 676.755–58 442.843	9–7	5.23-04	4.30-03	3.38+00	-1.412	C+	LS
				766.152 cm ⁻¹	54 676.701–58 442.853	7–5			2.34+00			LS
			3 ′	766.220 cm ⁻¹	54 676.654-58 442.874	5-3	5.69-04	3.61-03	1.58 + 00	-1.744	C	LS
			3 ′	766.142 cm ⁻¹	54 676.701-58 442.843	7–7	4.53-05	4.79-04	2.93-01	-2.475	D+	LS
			3 ′	766.199 cm ⁻¹	54 676.654-58 442.853	5-5	6.35-05	6.71 - 04	2.93-01	-2.474	D+	LS
			3 ′	766.189 cm ⁻¹	54 676.654-58 442.843	5–7	1.28-06	1.89-05	8.26-03	-4.025	E+	LS
130	3s4f-3s6g	${}^{1}F^{\circ} - {}^{1}G$	3 9	934.357 cm ⁻¹	54 676.438–58 610.795	7–9	1.56-02	1.94-01	1.14+02	0.133	B+	1
131		$^{3}F^{\circ}-^{3}G$	Ĵ	3 934.08 cm ⁻¹	54 676.71–58 610.79	21–27	1.56-02	1.95-01	3.42+02	0.612	B+	1
			3 9	934.040 cm ⁻¹	54 676.755–58 610.795	9–11	1.56-02	1.85-01	1.39+02	0.221	B+	LS
			3 9	934.094 cm ⁻¹	54 676.701–58 610.795	7–9	1.46-02	1.82-01	1.07 + 02	0.105	$\mathrm{B} +$	LS
			3 9	934.141 cm ⁻¹	54 676.654-58 610.795	5-7	1.44-02	1.95-01	8.16+01	-0.011	$\mathrm{B} +$	LS
			3 9	934.040 cm ⁻¹	54 676.755–58 610.795	9_9	9.78-04	9.47-03	7.13+00	-1.069	C+	LS

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Tachiev\ and\ Froese\ Fischer$, $13 = Tachiev\ and\ Froese\ And\ Froe$

No.	Transition array	Mult.	$\begin{array}{ccc} \lambda_{air} & \lambda_{vac} \; (\mathring{A}) \\ (\mathring{A}) & \text{or} \; \sigma \; (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			3 934.094 cm ⁻¹	54 676.701–58 610.795	7–7	1.26-03	1.22-02	7.15+00	-1.069	C+	LS
			3 934.040 cm ⁻¹	54 676.755–58 610.795	9–7	1.91-05	1.44-04	1.08 - 01	-2.887	D	LS
132	3s4f - 3s7d	${}^{1}F^{\circ} - {}^{1}D$	4 364.581 cm ⁻¹	54 676.438–59 041.019	7–5	6.01 .04	2 29 02	1.78+00	1 626	D±	1
132	354j – 357a		4 304.361 CIII	34 070.436-39 041.019	1-3	0.01-04	3.36-03	1.70+00	-1.020	D⊤	1
133		$^{3}F^{\circ}-^{3}D$	$4\ 642.06\ cm^{-1}$	54 676.71–59 318.77	21–15	3.00-04	1.49-03	2.22+00	-1.505	D	1
			$4642.009~\mathrm{cm^{-1}}$	54 676.755–59 318.764	9–7	2.75 - 04	1.49-03	9.51-01	-1.873	D	LS
			$4642.074~\mathrm{cm^{-1}}$	54 676.701-59 318.775	7–5	2.66 - 04	1.32 - 03	6.55 - 01	-2.034	D	LS
			4 642.139 cm ⁻¹	54 676.654-59 318.793	5–3	2.99 - 04	1.25 - 03	4.43 - 01	-2.204	E+	LS
			4 642.063 cm ⁻¹	54 676.701-59 318.764	7–7	2.39 - 05	1.66 - 04	8.24 - 02	-2.935	E	LS
			4 642.121 cm ⁻¹	54 676.654-59 318.775	5–5	3.35 - 05	2.33 - 04	8.26 - 02	-2.934	E	LS
			4 642.110 cm ⁻¹	54 676.654–59 318.764	5–7	6.74 - 07	6.56-06	2.33 - 03	-4.484	E	LS
134	3s4f-3s7g	${}^{1}F^{\circ} - {}^{1}G$	4 747.099 cm ⁻¹	54 676.438–59 423.537	7–9	7.68-03	6.57-02	3.19+01	-0.337	C+	1
135		$^{3}F^{\circ}-^{3}G$	4 746.83 cm ⁻¹	54 676.71–59 423.54	21–27	7.67-03	6.56-02	9.56+01	0.139	C+	1
			4 746.782 cm ⁻¹	54 676.755–59 423.537	9–11	7.67-03	6.24-02	3.89+01	-0.251	C±	LS
			4 746.836 cm ⁻¹	54 676.701–59 423.537	7–9			2.99+01			LS
			4 746.883 cm ⁻¹	54 676.654–59 423.537	5–7			2.28+01			LS
			4 746.782 cm ⁻¹	54 676.755–59 423.537	9_9			2.00+00			LS
			4 746.836 cm ⁻¹	54 676.701–59 423.537	7–7			2.00+00			LS
			4 746.782 cm ⁻¹	54 676.755–59 423.537	9–7			3.04-02			LS
126	2-46 2-01	le° lo									
136	3s4f-3s8d			54 676.438–59 689.991	7–5			7.03-01			1
137	3 <i>s</i> 4 <i>f</i> −3 <i>s</i> 8 <i>g</i>		18 954.2 18 959.4	54 676.438–59 950.87	7–9	4.42-03	3.06-02	1.34+01	-0.669	С	1
138		$^{3}F^{\circ}-^{3}G$			21–27						1
			18 955.4 18 960.5	54 676.755–59 950.87	9-11	4.42-03	2.91-02	1.63+01	-0.582	C	LS
			18 955.2 18 960.3	54 676.701-59 950.87	7–9	4.14 - 03	2.87 - 02	1.25+01	-0.697	C	LS
			18 955.4 18 960.5	54 676.755–59 950.87	9_9	2.76-04	1.49-03	8.37-01	-1.873	D	LS
139	3s6s-3s6p	$^{3}S - ^{3}P^{\circ}$	1 126.58 cm ⁻¹	55 891.80–57 018.38	3–9	6.24-03	2.21+00	1.94+03	0.822	B+	1
			1 127.22 cm ⁻¹	55 891.80-57 019.025	3-5	6.25-03	1.23 + 00	1.08 + 03	0.567	$\mathrm{B} +$	LS
			1 125.92 cm ⁻¹	55 891.80-57 017.724	3-3	6.22 - 03	7.36-01	6.46 + 02	0.344	$\mathrm{B} +$	LS
			1 125.28 cm ⁻¹	55 891.80–57 017.078	3-1	6.21-03	2.45-01	2.15+02	-0.134	B+	LS
140		$^{1}S-^{1}P^{\circ}$	1 028.119 cm ⁻¹	56 186.873–57 214.992	1–3	5.15-03	2.19+00	7.01+02	0.340	B+	1
141	3s6s-3s7p	$^{3}S-^{3}P^{\circ}$	2 585.59 cm ⁻¹	55 891.80– <i>58 477.39</i>	3–9	1.30-03	8.73-02	3.33+01	-0.582	C	1
			2 585.96 cm ⁻¹	55 891.80–58 477.760	3–5	1.30-03	4.85-02	1.85+01	-0.837	C	LS
			2 585.22 cm ⁻¹	55 891.80-58 477.020	3–3			1.11+01			LS
			2 584.89 cm ⁻¹	55 891.80–58 476.689	3–1			3.70+00			LS
142		$^{1}S-^{1}P^{\circ}$	2 393.36 cm ⁻¹	56 186.873–58 580.23	1–3	9.86-04	7.74-02	1.06+01	-1.111	C	1
143	3s6s-3s8p	$^{3}S - ^{3}P^{\circ}$	$3450.7~cm^{-1}$	55 891.80– <i>59 342.5</i>	3–9	5.48-04	2.07-02	5.92+00	-1.207	D+	1
			3 450.71 cm ⁻¹	55 891.80–59 342.51	3–5	5.48-04	1.15-02	3.29+00	-1.462	D+	LS
			3 450.71 cm ⁻¹	55 891.80–59 342.51	3–3			1.97+00			LS
			3 450.71 cm ⁻¹	55 891.80–59 342.51	3–1			6.58-01			LS
144		$^{1}S-^{1}P^{\circ}$	3 216.31 cm ⁻¹	56 186.873–59 403.18	1–3	3.70-04	1.61-02	1.65+00	-1.793	D	1
145	3s6s-3s9p	$^{3}S-^{3}P^{\circ}$	4 006.1 cm ⁻¹	55 891.80–59 897.9	3–9	2.91-04	8.17-03	2.01+00	-1.611	D	1
	•		4.006.06 =1	55 001 00 50 007 07	2.5	202 04	4.54.00	1 10 / 00	1 0//	D	10
			4 006.06 cm ⁻¹	55 891.80–59 897.86	3–5			1.12+00			LS
			4 006.06 cm ⁻¹	55 891.80–59 897.86	3–3			6.71-01			LS
			4 006.06 cm ⁻¹	55 891.80–59 897.86	3–1	2.91-04	9.07-04	2.24-01	-2.565	F+	LS

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Butler\ et\ al.$

No.	Transition array	Mult.	$\begin{array}{ccc} \lambda_{air} & & \lambda_{vac} \ (\mathring{A}) \\ (\mathring{A}) & & \text{or} \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
146	3s6s-3s11p	$^{1}S-^{1}P^{\circ}$	4 376.48 cm ⁻¹	56 186.873–60 563.35	1–3	6.00-05	1.41-03	1.06-01	-2.851	D	1
147	3s5d-3s6p	$^{1}D-^{1}P^{\circ}$	906.611 cm^{-1}	56 308.381–57 214.992	5–3	3.68-03	4.03-01	7.32+02	0.304	B+	1
148	3s5d-3s5f	$^{1}D-^{1}F^{\circ}$	$895.782~{\rm cm^{-1}}$	56 308.381–57 204.163	5–7	4.59-03	1.20+00	2.21+03	0.778	B+	1
149		$^{3}D-^{3}F^{\circ}$	$236.03~cm^{-1}$	56 968.24–57 204.27	15–21	1.03-04	3.87-01	8.09+03	0.764	B+	1
			236.087 cm ⁻¹	56 968.218-57 204.305	7–9	1.03-04	3.55-01	3.47-05	0.395	$\mathrm{B} +$	LS
			236.019 cm ⁻¹	56 968.248-57 204.267	5-7	9.13-05	3.44 - 01	2.40+03	0.236	$\mathrm{B} +$	LS
			235.957 cm ⁻¹	56 968.271-57 204.228	3–5	8.62 - 05	3.87 - 01	1.62+03	0.065	B +	LS
			236.049 cm ⁻¹	56 968.218-57 204.267	7–7			3.01 + 02			LS
			235.980 cm ⁻¹	56 968.248-57 204.228	5–5			3.01 + 02			LS
			236.010 cm ⁻¹	56 968.218–57 204.228	7–5	4.51-07	8.68-04	8.48+00	-2.216	C+	LS
150	3s5d-3s7p	$^{1}D-^{1}P^{\circ}$	2 271.85 cm ⁻¹	56 308.381–58 580.23	5–3	1.54-03	2.69-02	1.95+01	-0.871	C	1
151		$^{3}D-^{3}P^{\circ}$	$1\ 509.15\ cm^{-1}$	56 968.24–58 477.39	15–9	8.61-04	3.40-02	1.11+02	-0.292	C+	1
			1 509.542 cm ⁻¹	56 968.218-58 477.760	7–5	7.24-04	3.40-02	5.19+01	-0.623	C+	LS
			1 508.772 cm ⁻¹	56 968.248-58 477.020	5-3	6.45 - 04	2.55 - 02	2.78+01	-0.894	C+	LS
			1 508.418 cm ⁻¹	56 968.271-58 476.689	3-1	8.61 - 04	1.89 - 02	1.24+01	-1.246	C	LS
			1 509.512 cm ⁻¹	56 968.248-58 477.760	5–5	1.29 - 04	8.51 - 03	9.28+00	-1.371	C	LS
			1 508.749 cm ⁻¹	56 968.271–58 477.020	3–3	2.16-04	1.42 - 02	9.30+00	-1.371	C	LS
			1 509.489 cm ⁻¹	56 968.271–58 477.760	3–5	8.62-06	9.45-04	6.18-01	-2.547	D	LS
152	3s5d-3s6f	$^{1}D-^{1}F^{\circ}$	2 267.096 cm ⁻¹	56 308.381–58 575.477	5–7	1.51-04	6.18-03	4.49+00	-1.510	C+	1
153		$^{3}D-^{3}F^{\circ}$	$1~607.29~cm^{-1}$	56 968.24–58 575.53	15–21	6.10-03	4.96-01	1.52+03	0.872	B+	1
			1 607.309 cm ⁻¹	56 968.218-58 575.527	7–9	6.10-03	4.55-01	6.52+02	0.503	$\mathrm{B} +$	LS
			1 607.279 cm ⁻¹	56 968.248-58 575.527	5–7	5.42-03	4.40 - 01	4.51 + 02	0.342	B +	LS
			1 607.256 cm ⁻¹	56 968.271-58 575.527	3-5	5.13-03	4.96 - 01	3.05+02	0.173	$\mathrm{B} +$	LS
			1 607.309 cm ⁻¹	56 968.218-58 575.527	7–7			5.65 + 01			LS
			1 607.279 cm ⁻¹	56 968.248-58 575.527	5–5			5.65 + 01			LS
			1 607.309 cm ⁻¹	56 968.218–58 575.527	7–5	2.68-05	1.11-03	1.59+00	-2.110	С	LS
154	3s5d-3s8p	$^{1}D-^{1}P^{\circ}$	3 094.80 cm ⁻¹	56 308.381–59 403.18	5–3	8.99-04	8.44-03	4.49+00	-1.375	D+	1
155		$^{3}D-^{3}P^{\circ}$	2 374.3 cm ⁻¹	56 968.24–59 342.5	15–9	4.65-04	7.42-03	1.54+01	-0.954	D+	1
			2 374.29 cm ⁻¹	56 968.218-59 342.51	7–5	3.91-04	7.42-03	7.20+00	-1.284	C	LS
			2 374.26 cm ⁻¹	56 968.248-59 342.51	5-3	3.49 - 04	5.57 - 03	3.86+00	-1.555	D+	LS
			2 374.24 cm ⁻¹	56 968.271-59 342.51	3-1	4.65 - 04	4.12 - 03	1.71 + 00	-1.908	D	LS
			2 374.26 cm ⁻¹	56 968.248-59 342.51	5–5	6.99-05	1.86 - 03	1.29+00	-2.032	D	LS
			2 374.24 cm ⁻¹	56 968.271–59 342.51	3–3	1.16-04	3.09-03	1.29 + 00	-2.033	D	LS
			2 374.24 cm ⁻¹	56 968.271–59 342.51	3–5	4.65-06	2.06-04	8.57-02	-3.209	E	LS
156	3s5d-3s7f	$^{1}D-^{1}F^{\circ}$	3 092.382 cm ⁻¹	56 308.381–59 400.763	5–7	5.56-04	1.22-02	6.49+00	-1.215	C	1
157		$^{3}D-^{3}F^{\circ}$	2 432.52 cm ⁻¹	56 968.24–59 400.76	15–21	4.35-03	1.54-01	3.13+02	0.364	C+	1
			2 432.545 cm ⁻¹	56 968.218-59 400.763	7–9	4.36-03	1.42 - 01	1.35+02	-0.003	В	LS
			2 432.515 cm ⁻¹	56 968.248-59 400.763	5–7			9.27 + 01			LS
			2 432.492 cm ⁻¹	56 968.271–59 400.763	3–5			6.25+01			LS
			2 432.545 cm ⁻¹	56 968.218-59 400.763	7–7			1.17+01			LS
			2 432.515 cm ⁻¹	56 968.248–59 400.763	5–5			1.16+01			LS
			2 432.545 cm ⁻¹	56 968.218–59 400.763	7–5	1.91-05	3.46-04	3.28-01	-2.616	E+	LS
158	3s5d-3s9p	$^{1}D-^{1}P^{\circ}$	3 628.25 cm ⁻¹	56 308.381–59 936.63	5–3	5.80-04	3.96-03	1.80+00	-1.703	D+	1
159		$^{3}D-^{3}P^{\circ}$	$2929.7~{\rm cm^{-1}}$	56 968.24-59 897.9	15–9	2.79-04	2.93-03	4.93+00	-1.357	D	1

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Tachiev\ and\ Froese\ Fischer$, $2 = Tachiev\ and\ Froese\ Fischer$, $3 = Ueda\ et\ al.$, $14 = Chang,\ Tang^{17}$, and $5 = Weiss^{123}$)—Continued

No.	Transition array	Mult.	$\begin{array}{ccc} \lambda_{air} & \lambda_{vac} \ (\mathring{A}) \\ (\mathring{A}) & \text{ or } \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
			2 929.64 cm ⁻¹	56 968.218–59 897.86	7–5	2.25 04	2.02.02	2.30+00	1 600	D±	LS
			2 929.61 cm ⁻¹		5–3			1.23+00			LS
			2 929.59 cm ⁻¹		3–3			5.50-01			LS
			2 929.61 cm ⁻¹		5–1 5–5			4.11-01			LS
			2 929.59 cm ⁻¹	56 968.271–59 897.86	3–3			4.11-01			LS
			2 929.59 cm ⁻¹		3–5			2.74-02			LS
160	3s5d-3s8f	$^{1}D-^{1}F^{\circ}$	3 626.989 cm ⁻¹	56 308.381–59 935.370	5–7			4.42+00			1
161	, and the same	$^{3}D-^{3}F^{\circ}$	$2\ 967.13\ cm^{-1}$		15–21		7.15-02		0.030		1
			2.067.152	56,069,219, 50,025,270	7.0	2.00 .02	(5(02	5.00 . 01	0.220	C 1	1.0
			2 967.152 cm ⁻¹	56 968.218–59 935.370	7–9			5.09+01			LS
			2 967.122 cm ⁻¹	56 968.248–59 935.370	5–7			3.52+01			LS
			2 967.099 cm ⁻¹		3–5			2.38+01			LS
			2 967.152 cm ⁻¹	56 968.218–59 935.370	7–7			4.42 + 00			LS
			2 967.122 cm ⁻¹		5–5			4.42 + 00			LS
			2 967.152 cm ⁻¹	56 968.218–59 935.370	7–5	1.32-05	1.60-04	1.24-01	-2.951	E	LS
162	3s5d-3s9f	$^{1}D-^{1}F^{\circ}$	3 992.902 cm ⁻¹	56 308.381–60 301.283	5–7	5.43-04	7.15-03	2.95+00	-1.447	D+	1
163		$^{3}D-^{3}F^{\circ}$	3 333.04 cm ⁻¹	56 968.24–60 301.28	15–21	2.12-03	4.00-02	5.92+01	-0.222	C	1
			3 333.065 cm ⁻¹	56 968.218-60 301.283	7–9	2.12-03	3.67-02	2.54+01	-0.590	C+	LS
			3 333.035 cm ⁻¹	56 968.248-60 301.283	5–7	1.88-03	3.55-02	1.75 + 01	-0.751	C	LS
			3 333.012 cm ⁻¹		3–5			1.19+01			LS
			3 333.065 cm ⁻¹	56 968.218–60 301.283	7–7			2.20+00			LS
			3 333.035 cm ⁻¹	56 968.248–60 301.283	5–5			2.20+00			LS
			3 333.065 cm ⁻¹		7–5			6.21-02			LS
164	3s5d-3s10p	$^{1}D-^{1}P^{\circ}$	3 993.92 cm ⁻¹	56 308.381–60 302.30	5–3	3.99-04	2.25-03	9.27-01	-1.949	D	1
165	3s5d-3s10f	$^{1}D-^{1}F^{\circ}$	4 254.256 cm ⁻¹	56 308.381–60 562.637	5–7	4.55-04	5.28-03	2.04+00	-1.578	D+	1
166		$^{3}D-^{3}F^{\circ}$	3 594.40 cm ⁻¹	56 968.24–60 562.64	15–21	1.55-03	2.51-02	3.45+01	-0.424	C	1
			3 594.419 cm ⁻¹	56 968.218–60 562.637	7–9	1.55_03	2 31 _ 02	1.48+01	_0.701	C	LS
			3 594.389 cm ⁻¹	56 968.248–60 562.637	5–7			1.02+01			LS
			3 594.366 cm ⁻¹	56 968.271–60 562.637	3–5			6.90+00			LS
			3 594.419 cm ⁻¹	56 968.218–60 562.637	7–7			1.28+00			LS
			3 594.389 cm ⁻¹	56 968.248–60 562.637	5–5	2.41-04	2.80-03	1.28+00	-1.854	D	LS
			3 594.419 cm ⁻¹	56 968.218–60 562.637	7–5	6.80-05	5.64-05	3.62-02	-3.404	Е	LS
167	3s5d-3s11p	$^{1}D-^{1}P^{\circ}$	4 254.97 cm ⁻¹	56 308.381–60 563.35	5–3	2.88-04	1.43-03	5.53-01	-2.146	C	1
168	3s5d-3p3d	$^{1}D-^{1}D^{\circ}$	4 099.787 4 100.944	56 308.381–80 693.01	5–5	1.71-02	4.32-03	2.92-01	-1.666	D+	1
169	3s6p-3s7s	$^{3}P^{\circ}-^{3}S$	836.83 cm ⁻¹	57 018.38–57 855.214	9–3	7.77-03	5.54-01	1.96+03	0.698	В	1
			836.189 cm ⁻¹	57 019.025-57 855.214	5-3	4.31-03	5.54-01	1.09 + 03	0.442	В	LS
			837.490 cm ⁻¹	57 017.724-57 855.214	3-3	2.60-03	5.55-01	6.55 + 02	0.221	В	LS
			838.136 cm ⁻¹		1-3	8.67-04	5.55-01	2.18+02	-0.256	В	LS
170		$^{1}P^{\circ}-^{1}S$	794.42 cm ⁻¹	57 214.992–58 009.41	3–1	7.26-03	5.75-01	7.15+02	0.237	В	1
171	3s6p-3s6d	$^{3}P^{\circ}-^{3}D$	$1\ 424.47\ cm^{-1}$	57 018.38–58 442.85	9–15	5.55-03	6.83-01	1.42+03	0.789	B+	1
			1 423.818 cm ⁻¹	57 019.025–58 442.843	5–7	5.54-03	5.74-01	6.64+02	0.458	B+	LS
			1 425.129 cm ⁻¹		3–5		5.13-01		0.187		LS
			1 425.796 cm ⁻¹		1–3			1.58+02			LS
			1 423.828 cm ⁻¹		5–5			1.18+02			LS
			1 425.150 cm ⁻¹		3–3			1.19+02			LS
			1 423.849 cm ⁻¹	57 019.025–58 442.874	5–3	1.54-04	0.83-03	7.90+00	-1.46/	C+	LS

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Butler\ et\ al.$

No.	Transition array	Mult.	$\begin{array}{ccc} \lambda_{air} & & \lambda_{vac} \ (\mathring{A}) \\ (\mathring{A}) & & \text{or} \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
172		$^{1}P^{\circ}-^{1}D$	808.254 cm ⁻¹	57 214.992–58 023.246	3–5	4.60-03	1.76+00	2.15+03	0.723	B+	1
173	3s6p - 3s8s	$^{3}P^{\circ}-^{3}S$	1 944.36 cm ⁻¹	57 018.38–58 962.739	9–3	2.95-03	3.90-02	5.94+01	-0.455	C+	1
			1 943.714 cm ⁻¹	57 019.025-58 962.739	5–3	1.64-03	3.90-02	3.30+01	-0.710	C+	LS
			1 945.015 cm ⁻¹	57 017.724-58 962.739	3–3		3.90-02				LS
			$1945.661~{\rm cm}^{-1}$	57 017.078-58 962.739	1–3	3.28-04	3.90-02	6.60+00	-1.409	C	LS
174		$^{1}P^{\circ}-^{1}S$	$1~838.53~{\rm cm}^{-1}$	57 214.992–59 053.52	3–1	2.61-03	3.86-02	2.07+01	-0.936	C	1
175	3s6p-3s7d	$^{3}P^{\circ}-^{3}D$	$2\ 300.39\ cm^{-1}$	57 018.38–59 318.77	9–15	3.46-03	1.63-01	2.11+02	0.166	C+	1
			2 299.739 cm ⁻¹	57 019.025-59 318.764	5–7	3.45-03	1.37-01	9.81+01	-0.164	В	LS
			2 301.051 cm ⁻¹	57 017.724-59 318.775	3-5	2.61 - 03	1.23 - 01	5.28 + 01	-0.433	C+	LS
			2 301.715 cm ⁻¹	57 017.078-59 318.793	1-3	1.93-03	1.64-01	2.35+01	-0.785	C+	LS
			2 299.750 cm ⁻¹	57 019.025-59 318.775	5–5	8.64-04	2.45-02	1.75 + 01	-0.912	C	LS
			2 301.069 cm ⁻¹	57 017.724-59 318.793	3–3		4.09-02				LS
			2 299.768 cm ⁻¹	57 019.025–59 318.793	5–3		1.64-03				LS
176		$^{1}P^{\circ}-^{1}D$	1 826.027 cm ⁻¹	57 214.992–59 041.019	3–5	3.30-04	2.47-02	1.34+01	-1.130	C	1
177	3s6p-3s9s	$^{3}P^{\circ}-^{3}S$	2 630.77 cm ⁻¹	57 018.38–59 649.15	9–3	1.72-03	1.24-02	1.40+01	-0.952	C	1
			2 630.13 cm ⁻¹	57 019.025-59 649.15	5–3	9 54 - 04	1.24-02	7.76±00	_1 208	C	LS
			2 631.43 cm ⁻¹	57 017.724–59 649.15	3–3		1.24 - 02				LS
			2 632.07 cm ⁻¹	57 017.078–59 649.15	1–3	1.91-04	1.24-02	1.55+00	-1.907	D	LS
178		$^{1}P^{\circ}-^{1}S$	2 492.12 cm ⁻¹	57 214.992–59 707.11	3–1	1.49-03	1.20-02	4.76+00	-1.444	C	1
179	3s6p-3s8d	$^{3}P^{\circ}-^{3}D$	2 862.80 cm ⁻¹	57 018.38–59 881.18	9–15	2.27-03	6.93-02	7.17+01	-0.205	C	1
			$2~862.143~{\rm cm}^{-1}$	57 019.025–59 881.168	5–7	2.27-03	5.82-02	3.35+01	-0.536	C+	LS
			2 863.457 cm ⁻¹	57 017.724-59 881.181	3-5	1.71 - 03	5.20-02	1.79 + 01	-0.807	C	LS
			2 864.118 cm ⁻¹	57 017.078-59 881.196	1-3	1.26-03	6.93-02	7.97 + 00	-1.159	C	LS
			2 862.156 cm ⁻¹	57 019.025-59 881.181	5–5	5.68-04	1.04-02	5.98+00	-1.284	C	LS
			2 863.472 cm ⁻¹	57 017.724-59 881.196	3–3		1.73-02				LS
			2 862.171 cm ⁻¹	57 019.025–59 881.196	5–3		6.93-04				LS
180	3s6p - 3s10s	$^{3}P^{\circ}-^{3}S$	$3~085.62~cm^{-1}$	<i>57 018.38</i> –60 104.00	9–3	1.12-03	5.86-03	5.63+00	-1.278	D+	1
			$3~084.97~{\rm cm}^{-1}$	57 019.025-60 104.00	5–3	6.20-04	5.86-03	3.13+00	-1.533	D+	LS
			3 086.28 cm ⁻¹	57 017.724-60 104.00	3–3	3.72 - 04	5.86 - 03	1.88+00	-1.755	D+	LS
			3 086.92 cm ⁻¹	57 017.078-60 104.00	1–3	1.24-04	5.86-03	6.25-01	-2.232	D	LS
181		$^{1}P^{\circ}-^{1}S$	2 928.24 cm ⁻¹	57 214.992–60 143.23	3–1	9.66-04	5.63-03	1.90+00	-1.772	D+	1
182	3s6p-3s9d	$^{3}P^{\circ}-^{3}D$	3 245.20 cm ⁻¹	57 018.38–60 263.58	9–15	1.56-03	3.71-02	3.39+01	-0.476	C	1
			3 244.558 cm ⁻¹	57 019.025-60 263.583	5–7	1.56-03	3.12-02	1.58+01	-0.807	C	LS
			3 245.859 cm ⁻¹	57 017.724-60 263.583	3-5	1.17-03	2.78-02	8.46+00	-1.079	C	LS
			3 246.505 cm ⁻¹	57 017.078-60 263.583	1-3		3.71-02				LS
			3 244.558 cm ⁻¹	57 019.025–60 263.583	5–5		5.57-03				LS
			3 245.859 cm ⁻¹	57 017.724–60 263.583	3–3		9.28-03				LS
			3 244.558 cm ⁻¹	57 019.025–60 263.583	5–3		3.71-04				LS
183	3s6p-3s11s	$^{3}P^{\circ}-^{3}S$	3 402.49 cm ⁻¹	57 018.38–60 420.87	9–3	7.76-04	3.35-03	2.92+00	-1.521	C	1
			3 401.85 cm ⁻¹	57 019.025-60 420.87	5–3	4.31-04	3.35-03	1.62+00	-1.776	С	LS
			3 403.15 cm ⁻¹	57 017.724-60 420.87	3–3	2.59-04	3.35-03	9.72-01	-1.998	C	LS
			$3\ 403.79\ cm^{-1}$	57 017.078-60 420.87	1–3		3.35-03				LS
184	3s6p-3s10d	$^{3}P^{\circ}-^{3}D$	$3516.9~cm^{-1}$	57 018.38–60 535.3	9–15	1.12-03	2.27-02	1.91+01	-0.690	D+	1

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Tachiev\ and\ Froese\ Fischer$, $13 = Tachiev\ and\ Froese\ And\ Froe$

No.	Transition array	Mult.	$\begin{array}{ccc} \lambda_{air} & \lambda_{vac} \ (\mathring{A}) \\ (\mathring{A}) & \text{or } \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
			3 516.31 cm ⁻¹	57 019.025-60 535.34	5–7	1.13-03	1.91-02	8.94+00	-1.020	С	LS
			3 517.62 cm ⁻¹	57 017.724-60 535.34	3-5	8.42 - 04	1.70 - 02	4.77 + 00	-1.292	C	LS
			3 518.26 cm ⁻¹	57 017.078-60 535.34	1-3	6.25 - 04	2.27 - 02	2.12+00	-1.644	D+	LS
			3 516.31 cm ⁻¹	57 019.025-60 535.34	5-5	2.81 - 04	3.41 - 03	1.60+00	-1.768	D	LS
			3 517.62 cm ⁻¹	57 017.724-60 535.34	3-3	4.69 - 04	5.68 - 03	1.59 + 00	-1.769	D	LS
			3 516.31 cm ⁻¹	57 019.025–60 535.34	5–3	3.12-05	2.27-04	1.06-01	-2.945	E	LS
185	3s5f-3s6d	${}^{1}F^{\circ} - {}^{1}D$	819.083 cm ⁻¹	57 204.163–58 023.246	7–5	2.02-03	3.22-01	9.06+02	0.353	B+	1
186		$^{3}F^{\circ}-^{3}D$	1 238.58 cm ⁻¹	57 204.27–58 442.85	21–15	1.01-03	7.07-02	3.95+02	0.172	B+	1
			1 238.538 cm ⁻¹	57 204.305-58 442.843	9–7	9.30-04	7.07 - 02	1.69 + 02	-0.196	B +	LS
			1 238.586 cm ⁻¹	57 204.267-58 442.853	7–5	9.00 - 04	6.28 - 02	1.17 + 02	-0.357	B +	LS
			1 238.646 cm ⁻¹	57 204.228-58 442.874	5-3	1.01 - 03	5.94-02	7.89 + 01	-0.527	$\mathrm{B} +$	LS
			1 238.576 cm ⁻¹	57 204.267-58 442.843	7–7	8.06-05	7.88-03	1.47 + 01	-1.258	В	LS
			1 238.625 cm ⁻¹	57 204.228-58 442.853	5-5	1.13-04	1.10-02	1.46 + 01	-1.260	В	LS
			1 238.615 cm ⁻¹	57 204.228-58 442.843	5–7	2.27-06	3.11-04	4.13-01	-2.808	D+	LS
187	3s5f-3s6g	${}^{1}F^{\circ} - {}^{1}G$	1 406.632 cm ⁻¹	57 204.163–58 610.795	7–9	1.08-02	1.05+00	1.72+03	0.866	B+	1
188		$^{3}F^{\circ}-^{3}G$	$1\ 406.52\ cm^{-1}$	57 204.27–58 610.79	21–27	1.08-02	1.05+00	5.18+03	1.343	B+	1
			1 406.490 cm ⁻¹	57 204.305-58 610.795	9-11	1.08 - 02	1.00+00	2.11+03	0.954	$\mathrm{B} +$	LS
			1 406.528 cm ⁻¹	57 204.267-58 610.795	7–9	1.01 - 02	9.88 - 01	1.62+03	0.840	$\mathrm{B} +$	LS
			1 406.567 cm ⁻¹	57 204.228-58 610.795	5-7	9.99-03	1.06+00	1.24+03	0.724	B +	LS
			1 406.490 cm ⁻¹	57 204.305-58 610.795	9_9	6.77 - 04	5.13-02	1.08 + 02	-0.336	B +	LS
			1 406.528 cm ⁻¹	57 204.267–58 610.795	7–7	8.71 - 04	6.60-02	1.08+02	-0.335	B+	LS
			1 406.490 cm ⁻¹	57 204.305–58 610.795	9–7	1.33-05	7.82-04	1.65+00	-2.153	C	LS
189	3s5f-3s7d	$^{1}\text{F}^{\circ}$ – ^{1}D	1 836.856 cm ⁻¹	57 204.163–59 041.019	7–5	7.53-04	2.39-02	3.00+01	-0.777	C+	1
190		$^{3}F^{\circ}-^{3}D$	$2\ 114.50\ cm^{-1}$	57 204.27–59 318.77	21–15	4.97-04	1.19-02	3.89+01	-0.602	C	1
			2 114.459 cm ⁻¹	57 204.305-59 318.764	9–7	4.56-04	1.19 - 02	1.67 + 01	-0.970	C	LS
			2 114.508 cm ⁻¹	57 204.267-59 318.775	7–5	4.43 - 04	1.06 - 02	1.16+01	-1.130	C	LS
			2 114.565 cm ⁻¹	57 204.228-59 318.793	5-3	4.96 - 04	9.98-03	7.77 + 00	-1.302	C	LS
			2 114.497 cm ⁻¹	57 204.267-59 318.764	7–7	3.94 - 05	1.32 - 03	1.44 + 00	-2.034	D	LS
			2 114.547 cm ⁻¹	57 204.228-59 318.775	5-5	5.52 - 05	1.85 - 03	1.44 + 00	-2.034	D	LS
			2 114.536 cm ⁻¹	57 204.228–59 318.764	5–7	1.11-06	5.23-05	4.07-02	-3.583	E	LS
191	3s5f-3s7g	$^{1}F^{\circ}-^{1}G$	2 219.374 cm ⁻¹	57 204.163–59 423.537	7–9	5.90-03	2.31-01	2.40+02	0.209	В	1
192		$^{3}F^{\circ}-^{3}G$	2 219.27 cm ⁻¹	57 204.27–59 423.54	21–27	5.91-03	2.31-01	7.21+02	0.686	В	1
			2 219.232 cm ⁻¹	57 204.305-59 423.537	9-11	5.91-03	2.20-01	2.94 + 02	0.297	В	LS
			2 219.270 cm ⁻¹	57 204.267-59 423.537	7–9	5.54 - 03	2.17 - 01	2.25 + 02	0.182	В	LS
			2 219.309 cm ⁻¹	57 204.228-59 423.537	5-7	5.42-03	2.31-01	1.71 + 02	0.063	В	LS
			2 219.232 cm ⁻¹	57 204.305-59 423.537	9_9	3.71 - 04	1.13-02	1.51 + 01	-0.993	C	LS
			2 219.270 cm ⁻¹	57 204.267-59 423.537	7–7	4.76 - 04	1.45 - 02	1.51 + 01	-0.994	C	LS
			2 219.232 cm ⁻¹	57 204.305–59 423.537	9–7	7.22-06	1.71 - 04	2.28-01	-2.813	E+	LS
193	3s5f-3s8d	$^{1}F^{\circ}-^{1}D$	2 485.828 cm ⁻¹	57 204.163–59 689.991	7–5	4.13-04	7.16-03	6.64+00	-1.300	C	1
194		$^{3}F^{\circ}-^{3}D$	2 676.91 cm ⁻¹	57 204.27–59 881.18	21–15	2.88-04	4.31-03	1.11+01	-1.043	D+	1
			2 676.863 cm ⁻¹	57 204.305–59 881.168	9–7	2.65-04	4.31-03	4.77+00	-1.411	C	LS
			2 676.914 cm ⁻¹	57 204.267-59 881.181	7–5	2.56-04	3.83-03	3.30+00	-1.572	D+	LS
			2 676.968 cm ⁻¹	57 204.228-59 881.196	5-3	2.88-04	3.62-03	2.23+00	-1.742	D+	LS
			2 676.901 cm ⁻¹	57 204.267–59 881.168	7–7			4.13-01			LS
			2 676.953 cm ⁻¹	57 204.228-59 881.181	5-5	3.21-05	6.72-04	4.13-01	-2.474	E+	LS
			2 676.940 cm ⁻¹	57 204.228-59 881.168	5–7	6.45-07	1.89-05	1.16-02	-4.025	E	LS

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Butler\ et\ al.$

No.	Transition array	Mult.	$\begin{array}{ccc} \lambda_{air} & & \lambda_{vac} \; (\mathring{A}) \\ (\mathring{A}) & & \text{or} \; \sigma \; (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
195	3s5f-3s8g	$^{1}F^{\circ}-^{1}G$	2 746.71 cm ⁻¹	57 204.163–59 950.87	7–9	3.53-03	9.02-02	7.57+01	-0.200	C+	1
196		$^{3}F^{\circ}-^{3}G$			21–27						1
			2 746.57 cm ⁻¹	57 204.305–59 950.87	9–11	3.52-03	8.56-02	9.23+01	-0.113	В	LS
			2 746.60 cm ⁻¹	57 204.267-59 950.87	7–9	3.30 - 03	8.44-02	7.08 + 01	-0.229	C+	LS
			$2.746.57~\mathrm{cm^{-1}}$	57 204.305–59 950.87	9_9	2.20-04	4.38-03	4.73+00	-1.404	C	LS
197	3s5f-3s9d	${}^{1}F^{\circ} - {}^{1}D$	2 923.076 cm ⁻¹	57 204.163–60 127.239	7–5	2.57-04	3.22-03	2.54+00	-1.647	D+	1
198		$^{3}F^{\circ}-^{3}D$	3 059.31 cm ⁻¹	57 204.27–60 263.58	21–15	1.85-04	2.12-03	4.79+00	-1.351	D	1
			3 059.278 cm ⁻¹	57 204.305–60 263.583	9–7	1.70-04	2.12-03	2.05+00	-1.719	D+	LS
			3 059.316 cm ⁻¹	57 204.267-60 263.583	7–5	1.64-04	1.88-03	1.42 + 00	-1.881	D	LS
			3 059.355 cm ⁻¹	57 204.228-60 263.583	5-3	1.85 - 04	1.78-03	9.58-01	-2.051	D	LS
			3 059.316 cm ⁻¹	57 204.267-60 263.583	7–7	1.47-05	2.36-04	1.78-01	-2.782	E+	LS
			3 059.355 cm ⁻¹	57 204.228-60 263.583	5–5		3.30-04				LS
			3 059.355 cm ⁻¹	57 204.228–60 263.583	5–7		9.31-06				LS
199	3s5f-3s10d	${}^{1}F^{\circ} - {}^{1}D$	3 230.936 cm ⁻¹	57 204.163–60 435.099	7–5	1.73-04	1.77-03	1.26+00	-1.907	D	1
200		$^{3}F^{\circ}-^{3}D$	3 331.0 cm ⁻¹	57 204.27–60 535.3	21–15	1.27-04	1.22-03	2.54+00	-1.591	D	1
			3 331.03 cm ⁻¹	57 204.305–60 535.34	9–7	1.16-04	1.22-03	1.09+00	-1.959	D	LS
			3 331.07 cm ⁻¹	57 204.267-60 535.34	7–5	1.13-04	1.09-03	7.54-01	-2.117	D	LS
			3 331.11 cm ⁻¹	57 204.228–60 535.34	5–3		1.03-03				LS
			3 331.07 cm ⁻¹	57 204.267–60 535.34	7–7		1.36-04				LS
			3 331.11 cm ⁻¹	57 204.228–60 535.34	5–5		1.91-04				LS
			3 331.11 cm ⁻¹	57 204.228-60 535.34	5–7	2.85-07	5.39-06	2.66-03	-4.569	Е	LS
201	3s5g-3s6f	$^{1}G-^{1}F^{\circ}$	1 312.717 cm ⁻¹	57 262.760–58 575.477	9–7	1.95-04	1.32-02	2.98+01	-0.925	В	1
202		$^3G-^3F^{\circ}$			27–21						1
			1 312.767 cm ⁻¹	57 262.760–58 575.527	9–7	1.83-04	1.24-02	2.80+01	-0.952	В	LS
			1 312.767 cm ⁻¹	57 262.760-58 575.527	7–5	1.96-04	1.22-02	2.14+01	-1.069	В	LS
			1 312.767 cm ⁻¹	57 262.760-58 575.527	9_9	9.54-06	8.30-04	1.87 + 00	-2.127	C	LS
			1 312.767 cm ⁻¹	57 262.760–58 575.527	7–7		1.07-03				LS
			1 312.767 cm ⁻¹	57 262.760–58 575.527	7–9		1.62-05				LS
203	3s5g-3s7f	$^{3}G-^{3}F^{\circ}$			27–21						1
			2 138.003 cm ⁻¹	57 262.760–59 400.763	9–7	7.72-05	1.97-03	2.73+00	-1.751	D+	LS
			2 138.003 cm ⁻¹	57 262.760-59 400.763	7–5		1.93-03				LS
			2 138.003 cm ⁻¹	57 262.760-59 400.763	9_9		1.32-04				LS
			2 138.003 cm ⁻¹	57 262.760–59 400.763	7–7		1.69-04				LS
			2 138.003 cm ⁻¹	57 262.760–59 400.763	7–9		2.58-06				LS
204		$^{1}G-^{1}F^{\circ}$	2 138.003 cm ⁻¹	57 262.760–59 400.763	9–7	8.23-05	2.10-03	2.91+00	-1.724	D+	1
205	3s5g-3s8f	$^{3}G-^{3}F^{\circ}$			27–21						1
			2 672.610 cm ⁻¹	57 262.760–59 935.370	9–7	4.13-05	6.75-04	7.48-01	-2.216	D	LS
			2 672.610 cm ⁻¹	57 262.760–59 935.370	7–5		6.62-04				LS
			2 672.610 cm ⁻¹	57 262.760–59 935.370	9_9		4.51-05				LS
			2 672.610 cm ⁻¹	57 262.760–59 935.370	7–7		5.80-05				LS
			2 672.610 cm ⁻¹	57 262.760–59 935.370	7–7 7–9		8.83-07				LS
201		1- 1-0									
206		${}^{1}G - {}^{1}F^{\circ}$	2 672.610 cm ⁻¹	57 262.760–59 935.370	9–7		7.18-04		-2.190	D	1
207	$3p^2-3p3d$	$^{3}P-^{3}D^{\circ}$	3 894.09 3 895.19	57 853.6–83 526.3	9–15	2.36+00	8.93-01	1.03+02	0.905	В	1

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Tachiev\ and\ Froese\ Fischer$, $2 = Tachiev\ and\ Froese\ Fischer$, $3 = Ueda\ et\ al.$, $14 = Chang,\ Tang^{17}$, and $5 = Weiss^{123}$)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \; {\rm s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			3 895.572	3 896.676	57 873.94–83 536.84	5–7	2.35+00	7.50-01	4.81+01	0.574	B+	LS
			3 891.906	3 893.009	57 833.40-83 520.47	3-5	1.77+00	6.70-01	2.58+01	0.303	В	LS
			3 890.178	3 891.281	57 812.77-83 511.25	1-3	1.31+00	8.94-01	1.15+01	-0.049	В	LS
			3 898.059	3 899.163	57 873.94-83 520.47	5-5	5.88 - 01	1.34 - 01	8.60+00	-0.174	C+	LS
			3 893.304	3 894.407	57 833.40–83 511.25	3–3	9.81-01	2.23-01	8.58+00	-0.175	C+	LS
			3 899.460	3 900.565	57 873.94–83 511.25	5–3	6.52-02	8.92-03	5.73-01	-1.351	C	LS
208	3s7s-3s7p	$^{3}S - ^{3}P^{\circ}$		$622.18~cm^{-1}$	57 855.214–58 477.39	3–9	2.28-03	2.65+00	4.20+03	0.900	В	1
				622.546 cm ⁻¹	57 855.214-58 477.760	3-5	2.28-03	1.47 + 00	2.33+03	0.644	В	LS
				621.806 cm ⁻¹	57 855.214-58 477.020	3–3	2.28 - 03	8.83 - 01	1.40+03	0.423	В	LS
				621.475 cm ⁻¹	57 855.214–58 476.689	3–1	2.27-03	2.94-01	4.67 + 02	-0.055	В	LS
209		$^{1}S-^{1}P^{\circ}$		570.82 cm ⁻¹	58 009.41–58 580.23	1–3	1.91-03	2.64+00	1.52+03	0.422	В	1
210	3s7s - 3s8p	$^{3}S - ^{3}P^{\circ}$		1 487.3 cm ⁻¹	57 855.214 <i>–59 342.5</i>	3–9	5.14-04	1.04-01	6.94+01	-0.506	C+	1
			1	1 487.30 cm ⁻¹	57 855.214-59 342.51	3-5	5.14-04	5.81-02	3.86+01	-0.759	C+	LS
			1	1 487.30 cm ⁻¹	57 855.214-59 342.51	3-3	5.13-04	3.48 - 02	2.31+01	-0.981	C+	LS
			1	1 487.30 cm ⁻¹	57 855.214-59 342.51	3–1	5.13-04	1.16-02	7.70+00	-1.458	C	LS
211		$^{1}S-^{1}P^{\circ}$	1	1 393.77 cm ⁻¹	58 009.41–59 403.18	1–3	4.03-04	9.32-02	2.20+01	-1.031	C+	1
212	3s7s - 3s9p	$^{3}S - ^{3}P^{\circ}$		2 042.7 cm ⁻¹	57 855.214–59 897.9	3–9	2.35-04	2.54-02	1.23+01	-1.118	D+	1
			2	2 042.65 cm ⁻¹	57 855.214-59 897.86	3–5	2.35-04	1.41-02	6.82+00	-1.374	C	LS
			2	2 042.65 cm ⁻¹	57 855.214-59 897.86	3-3	2.35 - 04	8.46-03	4.09 + 00	-1.596	D+	LS
			2	2 042.65 cm ⁻¹	57 855.214-59 897.86	3-1	2.35-04	2.82-03	1.36+00	-2.073	D	LS
213		$^{1}S-^{1}P^{\circ}$	1	1 927.22 cm ⁻¹	58 009.41–59 936.63	1–3	1.69-04	2.05-02	3.50+00	-1.688	D+	1
214	3s7s - 3s10p	$^{1}S-^{1}P^{\circ}$	2	2 292.89 cm ⁻¹	58 009.41-60 302.30	1–3	8.97-05	7.67-03	1.10+00	-2.115	D	1
215	3s6d-3s7p	$^{1}D-^{1}P^{\circ}$		556.98 cm ⁻¹	58 023.246-58 580.23	5–3	1.94-03	5.62-01	1.66+03	0.449	В	1
216	3s6d-3s6f	$^{1}D-^{1}F^{\circ}$		552.231 cm ⁻¹	58 023.246-58 575.477	5–7	2.38-03	1.64+00	4.89+03	0.914	B+	1
217		$^{3}D-^{3}F^{\circ}$		132.68 cm ⁻¹	58 442.85–58 575.53	15–21	4.42-05	5.27-01	1.96+04	0.898	B+	1
				132.684 cm ⁻¹	58 442.843-58 575.527	7–9	4.42-05	4.84-01	8.41+03	0.530	$\mathrm{B}+$	LS
				132.674 cm ⁻¹	58 442.853-58 575.527	5-7	3.92 - 05	4.68 - 01	5.81 + 03	0.369	B +	LS
				132.653 cm ⁻¹	58 442.874-58 575.527	3-5	3.71 - 05	5.27 - 01	3.92+03	0.199	$\mathrm{B} +$	LS
				132.684 cm ⁻¹	58 442.843-58 575.527	7–7	4.93-06	4.20 - 02	7.29 + 02	-0.532	$\mathrm{B} +$	LS
				132.674 cm ⁻¹	58 442.853-58 575.527	5-5	6.89-06	5.87 - 02	7.28 + 02	-0.532	B +	LS
				132.684 cm ⁻¹	58 442.843–58 575.527	7–5	1.94-07	1.18-03	2.05+01	-2.083	В	LS
218	3s6d-3s8p	$^{1}D-^{1}P^{\circ}$	1	1 379.93 cm ⁻¹	58 023.246-59 403.18	5–3	8.15-04	3.85-02	4.59+01	-0.716	C+	1
219		$^{3}D - ^{3}P^{\circ}$		899.7 cm ⁻¹	58 442.85–59 342.5	15–9	4.45-04	4.95-02	2.72+02	-0.129	C+	1
				899.67 cm ⁻¹	58 442.843-59 342.51	7–5	3.74-04	4.95-02	1.27+02	-0.460	В	LS
				899.66 cm ⁻¹	58 442.853-59 342.51	5-3	3.34 - 04	3.71 - 02	6.79 + 01	-0.732	C+	LS
				899.64 cm ⁻¹	58 442.874-59 342.51	3-1	4.45-04	2.75-02	3.02+01	-1.084	C+	LS
				899.66 cm ⁻¹	58 442.853-59 342.51	5-5	6.69-05	1.24-02	2.27 + 01	-1.208	C+	LS
				899.64 cm ⁻¹	58 442.874-59 342.51	3–3			2.26+01			LS
				899.64 cm ⁻¹	58 442.874–59 342.51	3–5			1.51+00			LS
220	3s6d-3s7f	$^{1}D-^{1}F^{\circ}$	1	377.517 cm ⁻¹	58 023.246-59 400.763	5–7	3.53-05	3.90-03	4.66+00	-1.710	D+	1
221		$^{3}D-^{3}F^{\circ}$		957.91 cm ⁻¹	58 442.85–59 400.76	15–21	1.94-03	4.44-01	2.29+03	0.823	В	1
				957.920 cm ⁻¹	58 442.843–59 400.763	7–9	1.94-03	4.08-01	9.82+02	0.456	В	LS
				957.910 cm ⁻¹	58 442.853–59 400.763	5–7			6.77 + 02			LS

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Butler\ et\ al.$

No.	Transition array	Mult.	$\begin{array}{ccc} \lambda_{air} & & \lambda_{vac} \; (\mathring{A}) \\ (\mathring{A}) & & \text{or} \; \sigma \; (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			957.889 cm ⁻¹	58 442.874–59 400.763	3–5	1.62 02	4.44-01	4.58 + 02	0.125	D	LS
			957.920 cm ⁻¹	58 442.843–59 400.763	3–3 7–7			4.38+02 8.49+01			LS
			957.910 cm ⁻¹	58 442.853–59 400.763	5–5			8.49+01			LS
			957.920 cm ⁻¹	58 442.843–59 400.763	7–5			2.40+00			LS
222	3s6d-3s9p	$^{1}D-^{1}P^{\circ}$	1 913.38 cm ⁻¹	58 023.246–59 936.63	5–3			1.03+01			1
	330u – 337p	$^{3}D-^{3}P^{\circ}$									
223		*D=*P	1 455.1 cm ⁻¹	58 442.85–59 897.9	15–9			3.74+01			1
			1 455.02 cm ⁻¹	58 442.843–59 897.86	7–5			1.74+01			LS
			1 455.01 cm ⁻¹	58 442.853–59 897.86	5–3			9.37+00			LS
			1 454.99 cm ⁻¹	58 442.874–59 897.86	3–1			4.16+00			LS
			1 455.01 cm ⁻¹	58 442.853–59 897.86	5–5			3.12+00			LS
			1 454.99 cm ⁻¹	58 442.874-59 897.86	3–3			3.12+00			LS
			1 454.99 cm ⁻¹	58 442.874–59 897.86	3–5	2.60-06	3.07-04	2.08-01	-3.036	E+	LS
224	3s6d-3s8f	$^{3}D-^{3}F^{\circ}$	$1\ 492.52\ cm^{-1}$	58 442.85–59 935.37	15–21	1.54-03	1.45-01	4.80+02	0.337	В	1
			1 492.527 cm ⁻¹	58 442.843-59 935.370	7–9	1.54-03	1.33-01	2.05 + 02	-0.031	В	LS
			1 492.517 cm ⁻¹	58 442.853-59 935.370	5-7	1.37-03	1.29-01	1.42 + 02	-0.190	В	LS
			1 492.496 cm ⁻¹	58 442.874-59 935.370	3-5	1.29 - 03	1.45 - 01	9.60+01	-0.362	В	LS
			1 492.527 cm ⁻¹	58 442.843-59 935.370	7–7	1.71 - 04	1.15 - 02	1.78 + 01	-1.094	C	LS
			1 492.517 cm ⁻¹	58 442.853-59 935.370	5-5	2.41 - 04	1.62-02	1.79 + 01	-1.092	C	LS
			1 492.527 cm ⁻¹	58 442.843-59 935.370	7–5	6.76-06	3.25-04	5.02-01	-2.643	E+	LS
225	3s6d-3s9f	$^{1}D-^{1}F^{\circ}$	$2278.037~{\rm cm^{-1}}$	58 023.246-60 301.283	5–7	3.71-05	1.50-03	1.08+00	-2.125	D	1
226		$^3D - ^3F^{\circ}$	1 858.43 cm ⁻¹	58 442.85–60 301.28	15–21	1.13-03	6.88-02	1.83+02	0.014	C+	1
			1 858.440 cm ⁻¹	58 442.843-60 301.283	7–9	1.13-03	6.32-02	7.84+01	-0.354	C+	LS
			1 858.430 cm ⁻¹	58 442.853-60 301.283	5-7	1.01-03	6.11-02	5.41 + 01	-0.515	C+	LS
			1 858.409 cm ⁻¹	58 442.874-60 301.283	3-5	9.51-04	6.88-02	3.66+01	-0.685	C+	LS
			1 858.440 cm ⁻¹	58 442.843-60 301.283	7–7	1.26-04	5.47-03	6.78 + 00	-1.417	C	LS
			1 858.430 cm ⁻¹	58 442.853-60 301.283	5-5	1.76-04	7.66-03	6.78 + 00	-1.417	C	LS
			$1~858.440~{\rm cm}^{-1}$	58 442.843-60 301.283	7–5	4.97-06	1.54 - 04	1.91-01	-2.967	E+	LS
227	3s6d - 3s10p	$^{1}D-^{1}P^{\circ}$	2 279.05 cm ⁻¹	58 023.246-60 302.30	5–3	3.25-04	5.62-03	4.06+00	-1.551	D+	1
228	3s6d-3s10f	$^{1}D-^{1}F^{\circ}$	2 539.391 cm ⁻¹	58 023.246-60 562.637	5–7	4.82-05	1.57-03	1.02+00	-2.105	D	1
229		$^{3}D-^{3}F^{\circ}$	2 119.79 cm ⁻¹	58 442.85–60 562.64	15–21	8.46-04	3.95-02	9.21+01	-0.227	C+	1
			2 119.794 cm ⁻¹	58 442.843–60 562.637	7–9	8 46-04	3 63-02	3.95+01	-0.595	C+	LS
			2 119.784 cm ⁻¹	58 442.853–60 562.637	5–7			2.73+01			LS
			2 119.763 cm ⁻¹	58 442.874-60 562.637	3–5			1.84 + 01			LS
			2 119.794 cm ⁻¹	58 442.843–60 562.637	7–7			3.42+00			LS
			2 119.784 cm ⁻¹	58 442.853–60 562.637	5–5			3.42+00			LS
			2 119.794 cm ⁻¹	58 442.843–60 562.637	7–5			9.64-02			LS
230	3s6d-3s11p	$^{1}D-^{1}P^{\circ}$	2 540.10 cm ⁻¹	58 023.246-60 563.35	5–3	2.28-04	3.18-03	2.06+00	-1.799	С	1
231	3s6d-3p3d		4 409.923 4 411.162	58 023.246-80 693.01	5–5			1.63-01			1
	•	$^{3}P^{\circ}-^{3}S$									
232	3s7p-3s8s	P - S	485.35 cm ⁻¹	58 477.39–58 962.739	9–3		6.84-01		0.789		1
			484.979 cm ⁻¹	58 477.760–58 962.739	5–3		6.84-01		0.534		LS
			485.719 cm ⁻¹	58 477.020–58 962.739	3–3		6.85-01		0.313		LS
			486.050 cm ⁻¹	58 476.689–58 962.739	1–3	3.60-04	6.85-01	4.64+02	-0.164	В	LS
233		$^{1}P^{\circ}-^{1}S$	473.29 cm ⁻¹	58 580.23–59 053.52	3–1	3.16-03	7.04-01	1.47+03	0.325	В	1
234	3s7p-3s7d	$^{3}P^{\circ}-^{3}D$	$841.38~cm^{-1}$	58 477.39–59 318.77	9–15	2.07 - 07	7.32-01	2.58+03	0.819	В	1

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Tachiev\ and\ Froese\ Fischer$, $2 = Tachiev\ and\ Froese\ Fischer$, $3 = Ueda\ et\ al.$, $14 = Chang,\ Tang^{17}$, and $5 = Weiss^{123}$)—Continued

No.	Transition array	Mult.	$egin{array}{lll} \lambda_{air} & \lambda_{vac} \ (\mathring{A}) \ (\mathring{A}) & ext{or } \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			841.004 cm ⁻¹	58 477.760–59 318.764	5–7	2 07-03	6.14-01	1 20+03	0.487	R	LS
			841.755 cm ⁻¹	58 477.020–59 318.775	3–5		5.49-01		0.217		LS
			842.104 cm ⁻¹	58 476.689–59 318.793	1–3			2.86+02			LS
			841.015 cm ⁻¹	58 477.760–59 318.775	5–5			2.15+02			LS
			841.773 cm ⁻¹	58 477.020–59 318.793	3–3			2.15 + 02			LS
			841.033 cm ⁻¹	58 477.760–59 318.793	5–3			1.43+01			LS
235		$^{1}P^{\circ}-^{1}D$	460.79 cm ⁻¹	58 580.23–59 041.019	3–5	1.74-03	2.05+00	4.39+03	0.789	В	1
236	3s7p-3s9s	$^{3}P^{\circ}-^{3}S$	$1\ 171.76\ cm^{-1}$	<i>58 477.39</i> –59 649.15	9–3	1.29-03	4.68-02	1.18+02	-0.376	C+	1
			1 171.39 cm ⁻¹	58 477.760-59 649.15	5-3	7.14-04	4.68-02	6.58+01	-0.631	C+	LS
			1 172.13 cm ⁻¹	58 477.020-59 649.15	3–3	4.29-04	4.68-02	3.94+01	-0.853	C+	LS
			1 172.46 cm ⁻¹	58 476.689–59 649.15	1-3	1.43-04	4.69-02	1.32+01	-1.329	C	LS
237		$^{1}P^{\circ}-^{1}S$	1 126.88 cm ⁻¹	58 580.23–59 707.11	3–1	1.22-03	4.82-02	4.22+01	-0.840	C+	1
238	3s7p-3s8d	$^{3}P^{\circ}-^{3}D$	1 403.79 cm ⁻¹	58 477.39–59 881.18	9–15	1.40-03	1.77-01	3.74+02	0.202	C+	1
			1 403.408 cm ⁻¹	58 477.760–59 881.168	5–7	1 40-03	1 49_01	1.75+02	_0.128	R	LS
			1 404.161 cm ⁻¹	58 477.020–59 881.1 81	3–7			9.35+01			LS
			1 404.507 cm ⁻¹	58 476.689–59 881.196	1–3			4.15+01			LS
			1 404.307 cm ⁻¹	58 477.760–59 881.181	5–5			3.11+01			LS
			1 403.421 cm ⁻¹	58 477.020–59 881.196	3–3			3.11+01			LS
			1 404.176 cm ⁻¹	58 477.760–59 881.196	5–3 5–3			2.08+00			LS
239		$^{1}P^{\circ}-^{1}D$	1 109.76 cm ⁻¹	58 580.23–59 689.991	3–5			3.29+01			1
240	3s7p - 3s10s	$^{3}P^{\circ}-^{3}S$	1 626.61 cm ⁻¹	58 477.39–60 104.00	9–3			2.66+01			1
240	337p-33103	1 – 3									
			1 626.24 cm ⁻¹	58 477.760–60 104.00	5–3			1.48+01			LS
			1 626.98 cm ⁻¹	58 477.020–60 104.00	3–3			8.86+00			LS
244		1p° 1a	1 627.31 cm ⁻¹	58 476.689–60 104.00	1–3			2.95+00			LS
241		$^{1}P^{\circ} - ^{1}S$	1 563.00 cm ⁻¹	58 580.23–60 143.23	3–1			9.42+00			1
242	3s7p-3s9d	$^{3}P^{\circ}-^{3}D$	1 786.19 cm ⁻¹	58 477.39–60 263.58	9–15			1.25+02			1
			1 785.823 cm ⁻¹	58 477.760–60 263.583	5–7			5.83 + 01			LS
			1 786.563 cm ⁻¹	58 477.020–60 263.583	3–5			3.12+01			LS
			1 786.894 cm ⁻¹	58 476.689-60 263.583	1–3			1.39 + 01			LS
			1 785.823 cm ⁻¹	58 477.760-60 263.583	5–5	2.40 - 04	1.13 - 02	1.04+01	-1.248	C	LS
			1 786.563 cm ⁻¹	58 477.020-60 263.583	3–3	4.00 - 04	1.88 - 02	1.04+01	-1.249	C	LS
			1 785.823 cm ⁻¹	58 477.760–60 263.583	5–3	2.67-05	7.53-04	6.94-01	-2.424	D	LS
243		$^{1}P^{\circ}-^{1}D$	1 547.01 cm ⁻¹	58 580.23-60 127.239	3–5	3.37-05	3.52-03	2.25+00	-1.976	D+	1
244	3s7p-3s11s	$^{3}P^{\circ}-^{3}S$	1 943.48 cm ⁻¹	58 477.39-60 420.87	9–3	5.20-04	6.88-03	1.05+01	-1.208	D+	1
			1 943.11 cm ⁻¹	58 477.760-60 420.87	5–3	2.89-04	6.88-03	5.83+00	-1.463	C	LS
			1 943.85 cm ⁻¹	58 477.020-60 420.87	3–3	1.73 - 04	6.88 - 03	3.50+00	-1.685	D+	LS
			1 944.18 cm ⁻¹	58 476.689–60 420.87	1–3	5.78-05	6.88 - 03	1.17+00	-2.162	D	LS
245	3s7p-3s10d	$^{3}P^{\circ}-^{3}D$	$2~057.9~cm^{-1}$	58 477.39–60 535.3	9–15	6.91-04	4.08-02	5.87+01	-0.435	C	1
			2 057.58 cm ⁻¹	58 477.760-60 535.34	5–7	6.90-04	3.42-02	2.74+01	-0.767	C+	LS
			$2058.32~{\rm cm^{-1}}$	58 477.020-60 535.34	3-5	5.19-04	3.06-02	1.47 + 01	-1.037	C	LS
			2 058.65 cm ⁻¹	58 476.689-60 535.34	1–3			6.52+00			LS
			2 057.58 cm ⁻¹	58 477.760-60 535.34	5–5			4.89 + 00			LS
			2 058.32 cm ⁻¹	58 477.020–60 535.34	3–3			4.89+00			LS
			2 057.58 cm ⁻¹	58 477.760–60 535.34	5–3			3.26-01			LS
246	3s6f-3s7d	$^{1}\text{F}^{\circ}$ – ^{1}D	465.542 cm ⁻¹	58 575.477–59 041.019	7–5		5.14-01		0.556		1
 0	550j – 581a	r - D	403.342 CIII	JU J J. 7 -J7 U41.U19	1-3	1.04-03	5.14-01	2.34+03	0.550	ט	1

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Butler\ et\ al.$

No.	Transition array	Mult.	$\begin{array}{ccc} \lambda_{air} & & \lambda_{vac} \ (\mathring{A}) \\ (\mathring{A}) & & \text{or} \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
247		$^{3}F^{\circ}-^{3}D$	743.24 cm ⁻¹	58 575.53–59 318.77	21–15	6.09-04	1.18-01	1.10+03	0.394	В	1
			743.237 cm ⁻¹	58 575.527-59 318.764	9–7	5.59-04	1.18-01	4.70+02	0.026	В	LS
			743.248 cm ⁻¹	58 575.527–59 318.775	7–5			3.26+02			LS
			743.266 cm ⁻¹	58 575.527–59 318.793	5–3			2.19+02			LS
			743.237 cm ⁻¹	58 575.527–59 318.764	7–7			4.06+01			LS
			743.248 cm ⁻¹	58 575.527–59 318.775	5–5			4.08+01			LS
			743.248 cm ⁻¹	58 575.527–59 318.764	5–7			1.15+00			LS
248	3s6f-3s7g	$^{1}F^{\circ}-^{1}G$	848.060 cm ⁻¹	58 575.477–59 423.537	7–9	3.55-03	9.52-01	2.59+03	0.824	В	1
249		$^{3}F^{\circ}-^{3}G$	848.01 cm ⁻¹	58 575.53–59 423.54	21–27	3.54-03	9.49-01	7.74+03	1.299	В	1
			848.010 cm ⁻¹	58 575.527–59 423.537	9–11	3.54-03	9.03-01	3.16+03	0.910	В	LS
			848.010 cm^{-1}	58 575.527-59 423.537	7–9	3.32 - 03	8.89 - 01	2.42 + 03	0.794	В	LS
			848.010 cm^{-1}	58 575.527-59 423.537	5–7	3.25 - 03	9.50 - 01	1.84 + 03	0.677	В	LS
			848.010 cm^{-1}	58 575.527-59 423.537	9_9	2.22 - 04	4.62 - 02	1.61 + 02	-0.381	В	LS
			848.010 cm^{-1}	58 575.527-59 423.537	7–7	2.85 - 04	5.94-02	1.61 + 02	-0.381	В	LS
			848.010 cm ⁻¹	58 575.527–59 423.537	9–7	4.34-06	7.03 - 04	2.46+00	-2.199	D+	LS
250	3s6f-3s8d	${}^{1}F^{\circ} - {}^{1}D$	1 114.514 cm ⁻¹	58 575.477–59 689.991	7–5	4.00-04	3.45-02	7.13+01	-0.617	C+	1
251		$^{3}F^{\circ}-^{3}D$	$1~305.65~{\rm cm^{-1}}$	58 575.53–59 881.18	21–15	3.23-04	2.03-02	1.07+02	-0.370	C+	1
			1 305.641 cm ⁻¹	58 575.527-59 881.168	9–7	2.97 - 04	2.03-02	4.61+01	-0.738	C+	LS
			1 305.654 cm ⁻¹	58 575.527-59 881.181	7–5	2.87-04	1.80-02	3.18+01	-0.900	C+	LS
			1 305.669 cm ⁻¹	58 575.527-59 881.196	5-3	3.22-04	1.70-02	2.14+01	-1.071	C+	LS
			1 305.641 cm ⁻¹	58 575.527-59 881.168	7–7			3.99+00			LS
			1 305.654 cm ⁻¹	58 575.527–59 881.181	5–5			3.98+00			LS
			1 305.641 cm ⁻¹	58 575.527–59 881.168	5–7			1.12-01			LS
252	3s6f-3s8g	${}^{1}F^{\circ} - {}^{1}G$	1 375.39 cm ⁻¹	58 575.477–59 950.87	7–9	2.32-03	2.36-01	3.95+02	0.218	В	1
253		$^{3}F^{\circ}-^{3}G$			21–27						1
			1 375.34 cm ⁻¹	58 575.527-59 950.87	9–11	2.32-03	2.25-01	4.85 + 02	0.306	В	LS
			1 375.34 cm ⁻¹	58 575.527-59 950.87	7–9	2.18-03	2.22-01	3.72 + 02	0.191		LS
			1 375.34 cm ⁻¹	58 575.527-59 950.87	9_9			2.48+01	-0.985	C+	LS
254	3s6f-3s9d	${}^{1}F^{\circ}-{}^{1}D$	1 551.762 cm ⁻¹	58 575.477-60 127.239	7–5	2.29-04	1.02-02	1.51+01	-1.146	C	1
255		$^{3}F^{\circ}-^{3}D$	1 688.05 cm ⁻¹	58 575.53–60 263.58	21–15	1.96-04	7.36-03	3.01+01	-0.811	C	1
			1 688.056 cm ⁻¹	58 575.527-60 263.583	9–7	1.80-04	7.36-03	1.29+01	-1.179	C	LS
			1 688.056 cm ⁻¹	58 575.527-60 263.583	7–5	1.74 - 04	6.54 - 03	8.93 + 00	-1.339	C	LS
			1 688.056 cm ⁻¹	58 575.527-60 263.583	5-3	1.96 - 04	6.18 - 03	6.03+00	-1.510	C	LS
			1 688.056 cm ⁻¹	58 575.527-60 263.583	7–7	1.56-05	8.20-04	1.12+00	-2.241	D	LS
			1 688.056 cm ⁻¹	58 575.527-60 263.583	5-5	2.19-05	1.15-03	1.12+00	-2.240	D	LS
			$1~688.056~\mathrm{cm^{-1}}$	58 575.527-60 263.583	5–7			3.16-02			LS
256	3s6f-3s10d	$^{1}F^{\circ}-^{1}D$	1 859.622 cm ⁻¹	58 575.477-60 435.099	7–5	1.48-04	4.58-03	5.68+00	-1.494	C	1
257		$^{3}F^{\circ}-^{3}D$	1 959.8 cm ⁻¹	58 575.53–60 535.3	21–15	1.31-04	3.64-03	1.28+01	-1.117	D+	1
			1 959.81 cm ⁻¹	58 575.527-60 535.34	9–7	1.20-04	3.64-03	5.50+00	-1.485	C	LS
			1 959.81 cm ⁻¹	58 575.527-60 535.34	7–5	1.16-04	3.23 - 03	3.80+00	-1.646	D+	LS
			1 959.81 cm ⁻¹	58 575.527-60 535.34	5-3	1.31-04	3.06-03	2.57 + 00	-1.815	D+	LS
			1 959.81 cm ⁻¹	58 575.527-60 535.34	7–7	1.04-05	4.06-04	4.77-01	-2.546	E+	LS
			1 959.81 cm ⁻¹	58 575.527-60 535.34	5-5			4.77-01			LS
			1 959.81 cm ⁻¹	58 575.527-60 535.34	5–7			1.34-02			LS
258	3s6g-3s7f	$^{3}G-^{3}F^{\circ}$	789.97 cm ⁻¹	58 610.79–59 400.76	27–21	1.76-04	3.29-02	3.70+02	-0.051	В	1

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Tachiev\ and\ Froese\ Fischer$, $13 = Tachiev\ and\ Froese\ And\ Froe$

No	Transition	M ₁₁ 14	λ_{air} λ_{vac} (Å) (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	c ~	A_{ki} (10 ⁸ s ⁻¹)	£	S (2.11)	log of	A a a	Source
No.	array	Mult.	(A) or σ (cm ⁻¹)	(cm ·)	$g_i - g_k$	(10° s ·)	f_{ik}	(a.u.)	log gf	Acc.	Source
			789.968 cm ⁻¹	58 610.795–59 400.763	11–9			1.51 + 02			LS
			789.968 cm ⁻¹	58 610.795–59 400.763	9–7			1.16+02			LS
			789.968 cm ⁻¹	58 610.795–59 400.763	7–5			8.81+01			LS
			789.968 cm ⁻¹	58 610.795–59 400.763	9_9			7.73+00			LS
			789.968 cm ⁻¹	58 610.795–59 400.763	7–7			7.73+00			LS
			789.968 cm ⁻¹	58 610.795–59 400.763	7–9	1.30-07	4.03-05	1.18-01	-3.550	Е	LS
259		$^{1}G-^{1}F^{\circ}$	789.968 cm ⁻¹	58 610.795–59 400.763	9–7	1.76-04	3.29-02	1.23+02	-0.529	В	1
260	3s6g-3s8f	$^{3}G-^{3}F^{\circ}$	1 324.58 cm ⁻¹	58 610.79–59 935.37	27–21	8.29-05	5.51-03	3.70+01	-0.827	С	1
			1 324.575 cm ⁻¹	58 610.795–59 935.370	11–9			1.51 + 01			LS
			1 324.575 cm ⁻¹	58 610.795–59 935.370	9–7	7.76 - 05	5.16-03	1.15+01	-1.333	C	LS
			1 324.575 cm ⁻¹	58 610.795–59 935.370	7–5			8.80 + 00			LS
			1 324.575 cm ⁻¹	58 610.795–59 935.370	9–9			7.69 - 01			LS
			1 324.575 cm ⁻¹	58 610.795–59 935.370	7–7			7.71 - 01			LS
			1 324.575 cm ⁻¹	58 610.795–59 935.370	7–9	6.13-08	6.74-06	1.17-02	-4.326	E	LS
261		$^{1}G-^{1}F^{\circ}$	1 324.575 cm ⁻¹	58 610.795–59 935.370	9–7	8.25-05	5.48-03	1.23+01	-1.307	C	1
262	3s6g-3s9f	$^{3}G-^{3}F^{\circ}$	$1~690.49~{\rm cm}^{-1}$	58 610.79–60 301.28	27–21	4.66-05	1.90-03	1.00+01	-1.290	D+	1
			1 690.488 cm ⁻¹	58 610.795-60 301.283	11-9	4.43-03	1.90-03	4.07 + 00	-1.680	D+	LS
			1 690.488 cm ⁻¹	58 610.795-60 301.283	9–7	4.36-05	1.78-03	3.12+00	-1.795	D+	LS
			1 690.488 cm ⁻¹	58 610.795-60 301.283	7–5	4.67-05	1.75-03	2.39+00	-1.912	D+	LS
			1 690.488 cm ⁻¹	58 610.795-60 301.283	9_9	2.27-06	1.19-04	2.09-01	-2.970	E+	LS
			$1~690.488~{\rm cm}^{-1}$	58 610.795-60 301.283	7–7	2.92-06	1.53 - 04	2.09-01	-2.970	E+	LS
			1 690.488 cm ⁻¹	58 610.795-60 301.283	7–9	3.45-08	2 33-06	3.18-03	_4 788	F	LS
263		$^{1}G-^{1}F^{\circ}$	1 690.488 cm ⁻¹	58 610.795–60 301.283	9–7			3.18 - 03 $3.33 + 00$			1
264	3s6g-3s10f	$^{3}G-^{3}F^{\circ}$	1 951.85 cm ⁻¹	58 610.79–60 562.64	27–21	2.94-05	8.99-04	4.09+00	-1.615	D	1
			1 951.842 cm ⁻¹	58 610.795-60 562.637	11–9	2.79-05	8.99-04	1.67+00	-2.005	D	LS
			1 951.842 cm ⁻¹	58 610.795-60 562.637	9–7	2.75 - 05	8.42 - 04	1.28+00	-2.120	D	LS
			1 951.842 cm ⁻¹	58 610.795-60 562.637	7–5	2.94 - 05	8.25 - 04	9.74 - 01	-2.238	D	LS
			1 951.842 cm ⁻¹	58 610.795-60 562.637	9_9	1.43 - 06	5.62 - 05	8.53 - 02	-3.296	E	LS
			1 951.842 cm ⁻¹	58 610.795-60 562.637	7–7	1.84 - 06	7.23 - 05	8.54 - 02	-3.296	E	LS
			1 951.842 cm ⁻¹	58 610.795-60 562.637	7–9	2.17-08	1.10-06	1.30-03	-5.114	E	LS
265		$^{1}G-^{1}F^{\circ}$	1 951.842 cm ⁻¹	58 610.795–60 562.637	9–7	2.93-05	8.97-04	1.36+00	-2.093	D	1
266	3s8s-3s8p	$^{3}S - ^{3}P^{\circ}$	$379.8~cm^{-1}$	58 962.739–59 342.5	3–9	9.89-04	3.08+00	8.02+03	0.966	В	1
			379.77 cm ⁻¹	58 962.739-59 342.51	3-5	9.87-04	1.71 + 00	4.45+03	0.710	В	LS
			379.77 cm ⁻¹	58 962.739-59 342.51	3-3	9.91-04	1.03 + 00	2.68+03	0.490	В	LS
			379.77 cm^{-1}	58 962.739-59 342.51	3-1		3.43-01		0.012		LS
267		$^{1}S-^{1}P^{\circ}$	349.66 cm ⁻¹	59 053.52–59 403.18	1–3	8.37-04	3.08+00	2.90+03	0.489	В	1
268	3s8s - 3s9p	$^3S - ^3P^{\circ}$	935.2 cm ⁻¹	58 962.739–59 897.9	3–9	2.41-04	1.24-01	1.31+02	-0.429	C+	1
			935.12 cm ⁻¹	58 962.739–59 897.86	3–5	2.41-04	6.90-02	7.29+01	-0.684	C+	LS
			935.12 cm ⁻¹	58 962.739-59 897.86	3–3	2.41-04	4.14-02	4.37+01	-0.906	C+	LS
			935.12 cm ⁻¹	58 962.739–59 897.86	3–1			1.46+01			LS
269		$^{1}S-^{1}P^{\circ}$	883.11 cm ⁻¹	59 053.52–59 936.63	1–3	1.89-04	1.09-01	4.06+01	-0.963	C+	1
270	3s8s-3s10p	$^{1}S-^{1}P^{\circ}$	1 248.78 cm ⁻¹	59 053.52-60 302.30	1–3	8.63-05	2.49-02	6.56+00	-1.604	C	1
271	3s8s-3s11p	$^{1}S-^{1}P^{\circ}$	1 509.83 cm ⁻¹	59 053.52–60 563.35	1–3	4.86-05	9.58-03	2.09+00	-2.019	D+	1
272	3s7d - 3s8p	$^{1}D-^{1}P^{\circ}$	362.16 cm ⁻¹	59 041.019–59 403.18	5–3	1.05-03	7.21-01	3.28+03	0.557	В	1
	•										

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Butler\ et\ al.$

No.	Transition array	Mult.	$ \begin{array}{ccc} \lambda_{air} & & \lambda_{vac} \ (\mathring{A}) \\ (\mathring{A}) & & \text{or} \ \sigma \ (cm^{-1})^a \end{array} $	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
273	3s7d-3s7f	$^{1}D-^{1}F^{\circ}$	359.744 cm ⁻¹	59 041.019–59 400.763	5–7	1.23-03	2.00+00	9.15+03	1.000	В	1
274	3s7d-3s9p	$^{1}D-^{1}P^{\circ}$	895.61 cm ⁻¹	59 041.019–59 936.63	5–3	4.55-04	5.10-02	9.37+01	-0.593	В	1
275		$^{3}D-^{3}P^{\circ}$	579.1 cm^{-1}	59 318.77–59 897.9	15–9	2.48-04	6.66-02	5.68+02	-0.000	В	1
			579.10 cm ⁻¹	59 318.764-59 897.86	7–5	2.09-04	6.66-02	2.65+02	-0.331	В	LS
			579.08 cm ⁻¹	59 318.775-59 897.86	5-3	1.86-04	5.00-02	1.42+02	-0.602	В	LS
			579.07 cm ⁻¹	59 318.793-59 897.86	3-1	2.48 - 04	3.70 - 02	6.31 + 01	-0.955	C+	LS
			579.08 cm ⁻¹	59 318.775-59 897.86	5-5	3.74 - 05	1.67 - 02	4.75 + 01	-1.078	C+	LS
			579.07 cm ⁻¹	59 318.793-59 897.86	3-3	6.22 - 05	2.78 - 02	4.74 + 01	-1.079	C+	LS
			579.07 cm ⁻¹	59 318.793–59 897.86	3–5	2.48-06	1.85-03	3.16+00	-2.256	D+	LS
276	3s7d-3s8f	$^{1}D-^{1}F^{\circ}$	894.351 cm ⁻¹	59 041.019–59 935.370	5–7	9.41-05	2.47-02	4.55+01	-0.908	C+	1
277		$^{3}D-^{3}F^{\circ}$	616.60 cm^{-1}	59 318.77–59 935.37	15–21	7.58-04	4.18-01	3.35+03	0.797	В	1
			616.606 cm ⁻¹	59 318.764-59 935.370	7–9		3.84-01		0.429	В	LS
			616.595 cm ⁻¹	59 318.775–59 935.370	5–7		3.72 - 01		0.270	В	LS
			616.577 cm ⁻¹	59 318.793–59 935.370	3–5		4.18 - 01		0.098		LS
			616.606 cm ⁻¹	59 318.764-59 935.370	7–7	8.45 - 05	3.33 - 02	1.24 + 02	-0.632	В	LS
			616.595 cm ⁻¹	59 318.775–59 935.370	5–5		4.66 - 02				LS
			616.606 cm ⁻¹	59 318.764–59 935.370	7–5	3.33-06	9.39-04	3.51+00	-2.182	D+	LS
278	3s7d-3s9f	$^{1}D-^{1}F^{\circ}$	1 260.264 cm ⁻¹	59 041.019–60 301.283	5–7	9.76-06	1.29-03	1.68+00	-2.190	D	1
279		$^{3}D-^{3}F^{\circ}$	982.51 cm ⁻¹	59 318.77–60 301.28	15–21	6.42-04	1.40-01	7.02 + 02	0.322	В	1
			982.519 cm ⁻¹	59 318.764-60 301.283	7–9	6.41-04	1.28-01	3.00+02	-0.048	В	LS
			982.508 cm ⁻¹	59 318.775-60 301.283	5-7	5.70 - 04	1.24 - 01	2.08+02	-0.208	В	LS
			982.490 cm ⁻¹	59 318.793-60 301.283	3-5	5.41 - 04	1.40 - 01	1.41 + 02	-0.377	В	LS
			982.519 cm ⁻¹	59 318.764-60 301.283	7–7	7.15 - 05	1.11 - 02	2.60+01	-1.110	C+	LS
			982.508 cm ⁻¹	59 318.775-60 301.283	5-5	1.00 - 04	1.56 - 02	2.61+01	-1.108	C+	LS
			982.519 cm ⁻¹	59 318.764-60 301.283	7–5	2.82-06	3.13-04	7.34-01	-2.659	D	LS
280	3s7d-3s10p	$^{1}D-^{1}P^{\circ}$	1 261.28 cm ⁻¹	59 041.019-60 302.30	5–3	2.81-04	1.59-02	2.08+01	-1.100	C	1
281	3s7d - 3s10f	$^{3}D-^{3}F^{\circ}$	1 243.87 cm ⁻¹	59 318.77–60 562.64	15–21	4.97-04	6.75-02	2.68+02	0.005	C+	1
			1 243.873 cm ⁻¹	59 318.764-60 562.637	7–9	4.98-04	6.20-02	1.15 + 02	-0.363	В	LS
			1 243.862 cm ⁻¹	59 318.775-60 562.637	5-7	4.42 - 04	5.99-02	7.93 + 01	-0.524	C+	LS
			1 243.844 cm ⁻¹	59 318.793-60 562.637	3-5	4.18 - 04	6.75 - 02	5.36+01	-0.694	C+	LS
			1 243.873 cm ⁻¹	59 318.764-60 562.637	7–7	5.54-05	5.37-03	9.95 + 00	-1.425	C	LS
			1 243.862 cm ⁻¹	59 318.775-60 562.637	5-5	7.76 - 05	7.52 - 03	9.95 + 00	-1.425	C	LS
			1 243.873 cm ⁻¹	59 318.764-60 562.637	7–5	2.18-06	1.51-04	2.80-01	-2.976	E+	LS
282	3s7d-3s11p	$^{1}D-^{1}P^{\circ}$	1 522.33 cm ⁻¹	59 041.019-60 563.35	5–3	1.91-04	7.43-03	8.03+00	-1.430	C	1
283	3s8p-3s9s	$^{3}P^{\circ}-^{3}S$	$306.7~cm^{-1}$	59 342.5–59 649.15	9–3	1.54-03	8.16-01	7.88+03	0.866	В	1
			306.64 cm ⁻¹	59 342.51–59 649.15	5–3		8.16-01		0.611	В	LS
			306.64 cm ⁻¹	59 342.51-59 649.15	3–3	5.12 - 04	8.16-01	2.63+03	0.389	В	LS
			306.64 cm ⁻¹	59 342.51–59 649.15	1–3	1.71 - 04	8.16-01	8.76+02	-0.088	В	LS
284		$^{1}P^{\circ}-^{1}S$	303.93 cm ⁻¹	59 403.18–59 707.11	3–1	1.53-03	8.30-01	2.70+03	0.396	В	1
285	3s8p-3s8d	$^{3}P^{\circ}-^{3}D$	$538.7~cm^{-1}$	59 342.5–59 881.18	9–15	9.08-04	7.82-01	4.30+03	0.847	В	1
			538.66 cm ⁻¹	59 342.51–59 881.168	5–7	9.08-04	6.57-01	2.01+03	0.517	В	LS
			538.67 cm ⁻¹	59 342.51-59 881.181	3-5	6.81 - 04	5.86 - 01	1.07 + 03	0.245	В	LS
			538.69 cm ⁻¹	59 342.51–59 881.196	1–3	5.05 - 04	7.82 - 01	4.78 + 02	-0.107	В	LS
			538.69 cm ⁻¹ 538.67 cm ⁻¹	59 342.51–59 881.196 59 342.51–59 881.181	1–3 5–5		7.82-01 1.17-01				LS LS

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Tachiev\ and\ Froese\ Fischer$, $13 = Tachiev\ and\ Froese\ And\ Froe$

No.	array	Mult.	$ \lambda_{air} $ $ \lambda_{vac} $ $ (\mathring{A}) $ or $ \sigma $ $ (cm^{-1})^a $	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	log gf	Acc.	Source
			538.69 cm ⁻¹	59 342.51–59 881.196	5–3	2.52-05	7.82-03	2.39+01	-1.408	C+	LS
286		$^{1}P^{\circ}-^{1}D$	286.81 cm ⁻¹	59 403.18-59 689.991	3–5	7.70-04	2.34+00	8.06+03	0.846	В	1
287	3s8p-3s10s	$^{3}P^{\circ}-^{3}S$	$761.5 \ cm^{-1}$	59 342.5–60 104.00	9–3	6.30-04	5.43-02	2.11+02	-0.311	C+	1
			761.49 cm ⁻¹	59 342.51-60 104.00	5-3	3.50-04	5.43-02	1.17+02	-0.566	В	LS
			761.49 cm^{-1}	59 342.51-60 104.00	3-3	2.10-04	5.43 - 02	7.04+01	-0.788	C+	LS
			761.49 cm ⁻¹	59 342.51–60 104.00	1–3	7.00-05	5.43-02	2.35+01	-1.265	C+	LS
288		$^{1}P^{\circ}-^{1}S$	740.05 cm ⁻¹	59 403.18-60 143.23	3–1	6.26-04	5.71-02	7.62+01	-0.766	C+	1
289	3s8p-3s9d	$^{3}P^{\circ}-^{3}D$	921.1 cm^{-1}	59 342.5–60 263.58	9–15	6.43-04	1.89-01	6.09+02	0.231	В	1
			$921.07~{\rm cm}^{-1}$	59 342.51-60 263.583	5–7	6.43-04	1.59-01	2.84+02	-0.100	В	LS
			921.07 cm ⁻¹	59 342.51-60 263.583	3-5	4.82 - 04	1.42 - 01	1.52 + 02	-0.371	В	LS
			921.07 cm ⁻¹	59 342.51-60 263.583	1-3	3.57 - 04	1.89 - 01	6.76+01	-0.724	C+	LS
			921.07 cm ⁻¹	59 342.51-60 263.583	5-5	1.61-04	2.84-02	5.08 + 01	-0.848	C+	LS
			921.07 cm ⁻¹	59 342.51-60 263.583	3–3	2.68-04	4.73-02	5.07 + 01	-0.848	C+	LS
			921.07 cm ⁻¹	59 342.51-60 263.583	5–3			3.38+00			LS
290		$^{1}P^{\circ}-^{1}D$	724.06 cm ⁻¹	59 403.18-60 127.239	3–5	9.92-05	4.73-02	6.45+01	-0.848	C+	1
291	3s8p - 3s11s	$^{3}P^{\circ}-^{3}S$	$1~078.4~cm^{-1}$	59 342.5–60 420.87	9–3	3.89-04	1.67-02	4.59+01	-0.823	C	1
			1 078.36 cm ⁻¹	59 342.51-60 420.87	5–3	2.16-04	1.67-02	2.55+01	-1.078	C+	LS
			1 078.36 cm ⁻¹	59 342.51-60 420.87	3–3	1.30-04	1.67-02	1.53 + 01	-1.300	C	LS
			1 078.36 cm ⁻¹	59 342.51–60 420.87	1–3			5.10+00			LS
292	3s8p - 3s10d	$^{3}P^{\circ}-^{3}D$	1 192.8 cm ⁻¹	59 342.5–60 535.3	9–15	4.61-04	8.09-02	2.01+02	-0.138	C+	1
			1 192.83 cm ⁻¹	59 342.51-60 535.34	5–7	4.61-04	6.80-02	9.38+01	-0.469	В	LS
			1 192.83 cm ⁻¹	59 342.51-60 535.34	3-5	3.46 - 04	6.07 - 02	5.03 + 01	-0.740	C+	LS
			1 192.83 cm ⁻¹	59 342.51-60 535.34	1-3	2.56-04	8.09-02	2.23+01	-1.092	C+	LS
			1 192.83 cm ⁻¹	59 342.51-60 535.34	5-5	1.15-04	1.21-02	1.67 + 01	-1.218	C	LS
			1 192.83 cm ⁻¹	59 342.51-60 535.34	3-3	1.92-04	2.02-02	1.67 + 01	-1.218	C	LS
			1 192.83 cm ⁻¹	59 342.51-60 535.34	5–3			1.12+00			LS
293		$^{1}P^{\circ}-^{1}D$	1 031.92 cm ⁻¹	59 403.18-60 435.099	3–5	2.54-05	5.96-03	5.70+00	-1.748	C	1
294	3s7f-3s8d	$^{1}F^{\circ}-^{1}D$	289.228 cm ⁻¹	59 400.763–59 689.991	7–5	5.53-04	7.08-01	5.64+03	0.695	В	1
295		$^{3}F^{\circ}-^{3}D$	480.42 cm ⁻¹	59 400.76–59 881.18	21–15	3.64-04	1.69-01	2.43+03	0.550	В	1
			480.405 cm ⁻¹	59 400.763–59 881.168	9–7	3.34-04	1.69-01	1.04+03	0.182	В	LS
			480.418 cm ⁻¹	59 400.763-59 881.181	7–5	3.23-04	1.50-01	7.20 + 02	0.021	В	LS
			480.433 cm^{-1}	59 400.763-59 881.196	5-3			4.87 + 02	-0.149	В	LS
			480.405 cm ⁻¹	59 400.763–59 881.168	7–7			9.02+01			LS
			480.418 cm ⁻¹	59 400.763–59 881.181	5–5			9.05 + 01			LS
			480.405 cm ⁻¹	59 400.763–59 881.168	5–7			2.55+00			LS
296	3s7f-3s8g	$^{3}F^{\circ}-^{3}G$			21–27						1
			550.11 cm ⁻¹	59 400.763–59 950.87	9–11	1.41-03	8.55-01	4.61+03	0.886	В	LS
			550.11 cm ⁻¹	59 400.763-59 950.87	7–9		8.42-01		0.770	В	LS
			550.11 cm ⁻¹	59 400.763–59 950.87	9_9			2.35+02			LS
297		${}^{1}F^{\circ} - {}^{1}G$	550.11 cm ⁻¹	59 400.763–59 950.87	7–9	1.41-03	9.01-01	3.77+03	0.800	В	1
298	3s7f-3s9d	$^{1}\text{F}^{\circ}-^{1}\text{D}$	726.476 cm ⁻¹	59 400.763–60 127.239	7–5	2.18-04	4.43-02	1.41+02	-0.508	В	1
		$^{3}F^{\circ}-^{3}D$	862.82 cm ⁻¹	59 400.76–60 263.58	21–15	2.05-04	2.95-02	2.37+02	-0.208	C+	1
299											

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Butler\ et\ al.$

No.	Transition array	Mult.	$\begin{array}{ccc} \lambda_{air} & & \lambda_{vac} \ (\mathring{A}) \\ (\mathring{A}) & & \text{or} \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \; {\rm s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			862.820 cm ⁻¹	59 400.763-60 263.583	7–5	1.83-04	2.63-02	7.02+01	-0.735	C+	LS
			862.820 cm^{-1}	59 400.763-60 263.583	5-3	2.05 - 04	2.48-02	4.73 + 01	-0.907	C+	LS
			862.820 cm ⁻¹	59 400.763-60 263.583	7–7	1.63-03	3.29-03	8.79 + 00	-1.638	C	LS
			862.820 cm^{-1}	59 400.763-60 263.583	5-5	2.29-05	4.61-03	8.79 + 00	-1.637	C	LS
			862.820 cm^{-1}	59 400.763–60 263.583	5–7	4.61-07	1.30-04	2.48-01	-3.187	E+	LS
300	3s7f - 3s10d	${}^{1}F^{\circ} - {}^{1}D$	$1\ 034.336\ cm^{-1}$	59 400.763–60 435.099	7–5	1.30-04	1.30-02	2.90+01	-1.041	C+	1
301		${}^3F^{\circ} - {}^3D$	1 134.5 cm ⁻¹	59 400.76–60 535.3	21–15	1.31-04	1.09-02	6.64+01	-0.640	C	1
			1 134.58 cm ⁻¹	59 400.763-60 535.34	9–7	1.20-04	1.09-02	2.85+01	-1.008	C+	LS
			1 134.58 cm ⁻¹	59 400.763-60 535.34	7–5	1.16-04	9.67 - 03	1.96+01	-1.169	C	LS
			1 134.58 cm ⁻¹	59 400.763-60 535.34	5-3	1.31 - 04	9.15 - 03	1.33 + 01	-1.340	C	LS
			1 134.58 cm ⁻¹	59 400.763-60 535.34	7–7	1.04-05	1.21-03	2.46+00	-2.072	D+	LS
			1 134.58 cm ⁻¹	59 400.763-60 535.34	5–5	1.46-05	1.70-03	2.47 + 00	-2.071	D+	LS
			1 134.58 cm ⁻¹	59 400.763-60 535.34	5–7		4.79-05				LS
302	3s7g-3s8f	$^{3}G-^{3}F^{\circ}$	511.83 cm ⁻¹	59 423.54–59 935.37	27–21	1.30-04	5.78-02	1.00+03	0.193	В	1
			511.833 cm ⁻¹	59 423.537–59 935.370	11–9	1.23-04	5.78-02	4.09+02	-0.197	В	LS
			511.833 cm ⁻¹	59 423.537-59 935.370	9–7	1.22-04	5.42-02	3.14+02	-0.312	В	LS
			511.833 cm ⁻¹	59 423.537-59 935.370	7–5	1.30-04	5.31-02	2.39 + 02	-0.430	В	LS
			511.833 cm ⁻¹	59 423,537-59 935,370	9_9	6.33-06	3.62-03	2.10+01	-1.487	C	LS
			511.833 cm ⁻¹	59 423.537–59 935.370	7–7		4.65-03				LS
			511.833 cm ⁻¹	59 423.537–59 935.370	7–9		7.08-05				LS
303		$^{1}G-^{1}F^{\circ}$	511.833 cm ⁻¹	59 423.537–59 935.370	9–7	1.29-04	5.75-02	3.33+02	-0.286	В	1
304	3s7g-3s9f	$^{3}G-^{3}F^{\circ}$	877.74 cm ⁻¹	59 423.54–60 301.28	27–21	6.66-05	1.01-02	1.02+02	-0.564	C+	1
			877.746 cm ⁻¹	59 423.537–60 301.283	11–9	6.34-05	1.01-02	4.17+01	-0.954	C+	LS
			877.746 cm ⁻¹	59 423.537-60 301.283	9–7	6.24 - 05	9.44 - 03	3.19+01	-1.071	C+	LS
			877.746 cm ⁻¹	59 423.537-60 301.283	7–5	6.66 - 05	9.26-03	2.43 + 01	-1.188	C+	LS
			877.746 cm ⁻¹	59 423.537-60 301.283	9_9	3.24-06	6.30-04	2.13+00	-2.246	D+	LS
			877.746 cm ⁻¹	59 423.537-60 301.283	7–7	4.16-06	8.10-04	2.13+00	-2.246	D+	LS
			877.746 cm ⁻¹	59 423.537-60 301.283	7–9	4.92-08	1.23-05	3.23-02	-4.065	E	LS
305		$^{1}G-^{1}F^{\circ}$	877.746 cm ⁻¹	59 423.537-60 301.283	9–7	6.67-05	1.01-02	3.41+01	-1.041	C+	1
306	3s7g - 3s10f	$^{3}G-^{3}F^{\circ}$	1 139.10 cm ⁻¹	59 423.54–60 562.64	27–21	3.98-05	3.58-03	2.79+01	-1.015	C	1
			1 139.100 cm ⁻¹	59 423.537-60 562.637	11–9	3.79-05	3.58-03	1.14+01	-1.405	C	LS
			1 139.100 cm ⁻¹	59 423.537-60 562.637	9–7	3.73 - 05	3.35 - 03	8.71 + 00	-1.521	C	LS
			1 139.100 cm ⁻¹	59 423.537-60 562.637	7–5	3.99 - 05	3.29 - 03	6.66+00	-1.638	C	LS
			1 139.100 cm ⁻¹	59 423.537-60 562.637	9_9	1.94 - 06	2.24 - 04	5.83 - 01	-2.696	D	LS
			1 139.100 cm ⁻¹	59 423.537-60 562.637	7–7	2.49 - 06	2.88 - 04	5.83 - 01	-2.696	D	LS
			1 139.100 cm ⁻¹	59 423.537-60 562.637	7–9	2.96-08	4.39-06	8.88-03	-4.512	E	LS
307		$^{1}G-^{1}F^{\circ}$	$1\ 139.100\ cm^{-1}$	59 423.537–60 562.637	9–7	3.97-05	3.57-03	9.29+00	-1.493	C	1
308	3s9s - 3s9p	$^{3}S - ^{3}P^{\circ}$	$248.8 \ cm^{-1}$	59 649.15–59 897.9	3–9	4.86-04	3.53+00	1.40+04	1.025	В	1
			248.71 cm ⁻¹	59 649.15–59 897.86	3–5	4.85-04	1.96+00	7.78+03	0.769	В	LS
			248.71 cm ⁻¹	59 649.15–59 897.86	3–3	4.87 - 04	1.18+00	4.69 + 03	0.549	В	LS
			248.71 cm ⁻¹	59 649.15–59 897.86	3–1	4.85 - 04	3.92-01	1.56+03	0.070	В	LS
309		$^{1}S-^{1}P^{\circ}$	229.52 cm ⁻¹	59 707.11–59 936.63	1–3	4.11-04	3.51 + 00	5.03+03	0.545	В	1
310	3s9s - 3s10p	$^{1}S-^{1}P^{\circ}$	595.19 cm ⁻¹	59 707.11-60 302.30	1–3	1.00-04	1.27-01	7.02+01	-0.896	C+	1
311	3s9s - 3s11p	$^{1}S-^{1}P^{\circ}$	$856.24~{\rm cm^{-1}}$	59 707.11–60 563.35	1–3	4.78-05	2.93-02	1.13+01	-1.533	C	1
312	3s8d-3s9p	$^{1}D-^{1}P^{\circ}$	246.64 cm ⁻¹	59 689.991–59 936.63	5–3	5.92-04	8.76-01	5.85+03	0.641	В	1

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Tachiev\ and\ Froese\ Fischer$, $13 = Tachiev\ and\ Froese\ And\ Froe$

No.	Transition array	Mult.	$egin{array}{lll} \lambda_{air} & \lambda_{vac} \ (\mathring{A}) \ (\mathring{A}) & ext{or } \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
313	3s8d-3s8f	$^{1}D-^{1}F^{\circ}$	245.379 cm ⁻¹	59 689.991–59 935.370	5–7	6.63-04	2.31+00	1.55+04	1.063	B+	1
314	3 <i>s</i> 8 <i>d</i> −3 <i>s</i> 9 <i>f</i>	$^{1}D-^{1}F^{\circ}$	611.292 cm ⁻¹	59 689.991–60 301.283	5–7	9.03-05	5.07-02	1.37+02	-0.596	В	1
315		$^3D-^3F^{\circ}$	420.10 cm ⁻¹	59 881.18–60 301.28	15–21	3.42-04	4.06-01	4.77+03	0.785	В	1
			420.115 cm ⁻¹	59 881.168–60 301.283	7–9	3.42-04	3.73-01	2.05+03	0.417	В	LS
			$420.102~{\rm cm^{-1}}$	59 881.181-60 301.283	5-7	3.04 - 04	3.61 - 01	1.41 + 03	0.256	В	LS
			$420.087~{\rm cm^{-1}}$	59 881.196-60 301.283	3-5	2.87 - 04	4.06 - 01	9.55 + 02	0.086	В	LS
			420.115 cm ⁻¹	59 881.168-60 301.283	7–7	3.80 - 05	3.23 - 02	1.77 + 02	-0.646	В	LS
			420.102 cm^{-1}	59 881.181-60 301.283	5–5	5.32-05	4.52 - 02	1.77 + 02	-0.646	В	LS
			420.115 cm ⁻¹	59 881.168–60 301.283	7–5	1.50-06	9.11-04	5.00+00	-2.195	C	LS
316	3s8d - 3s10p	$^{1}D-^{1}P^{\circ}$	612.31 cm ⁻¹	59 689.991–60 302.30	5–3	2.66-04	6.37-02	1.71+02	-0.497	В	1
317	3s8d - 3s10f	$^{1}D-^{1}F^{\circ}$	872.646 cm ⁻¹	59 689.991–60 562.637	5–7	2.33-05	6.43-03	1.21+01	-1.493	C	1
318		$^{3}D-^{3}F^{\circ}$	681.46 cm ⁻¹	59 881.18–60 562.64	15–21	3.04-04	1.37-01	9.94+02	0.313	В	1
			681.469 cm ⁻¹	59 881.168-60 562.637	7–9	3.04-04	1.26-01	4.26+02	-0.055	В	LS
			681.456 cm ⁻¹	59 881.181–60 562.637	5–7			2.95+02			LS
			681.441 cm ⁻¹	59 881.196–60 562.637	3–5			1.99+02			LS
			681.469 cm ⁻¹	59 881.168-60 562.637	7–7			3.69+01			LS
			681.456 cm ⁻¹	59 881.181-60 562.637	5–5			3.70+01			LS
			681.469 cm ⁻¹	59 881.168–60 562.637	7–5			1.04+00			LS
319	3s8d-3s11p	$^{1}D-^{1}P^{\circ}$	873.36 cm ⁻¹	59 689.991–60 563.35	5–3	1.69-04	1.99-02	3.75+01	-1.002	C+	1
320	3s9p - 3s10s	$^{3}P^{\circ}-^{3}S$	206.1 cm ⁻¹	59 897.9-60 104.00	9–3	8.07-04	9.49-01	1.36+04	0.932	В	1
			206.14 cm ⁻¹	59 897.86-60 104.00	5-3	4.48-04	9.49-01	7.58+03	0.676	В	LS
			206.14 cm ⁻¹	59 897.86-60 104.00	3-3	2.69 - 04	9.49 - 01	4.55 + 03	0.454	В	LS
			206.14 cm ⁻¹	59 897.86–60 104.00	1–3	8.97-05	9.49-01	1.52+03	-0.023	В	LS
321		$^{1}P^{\circ}-^{1}S$	206.60 cm^{-1}	59 936.63-60 143.23	3-1	8.21-04	9.61-01	4.59+03	0.460	В	1
322	3s9p-3s9d	$^{3}P^{\circ}-^{3}D$	365.7 cm ⁻¹	59 897.9–60 263.58	9–15	4.47-04	8.35-01	6.76+03	0.876	В	1
			365.72 cm ⁻¹	59 897.86-60 263.583	5–7	4.47-04	7.01-01	3.16+03	0.545	В	LS
			365.72 cm ⁻¹	59 897.86-60 263.583	3-5	3.35-04	6.26-01	1.69 + 03	0.274	В	LS
			365.72 cm ⁻¹	59 897.86-60 263.583	1-3	2.48-04	8.35-01	7.52 + 02	-0.078	В	LS
			$365.72~{\rm cm}^{-1}$	59 897.86-60 263.583	5-5	1.12-04	1.25 - 01	5.63 + 02	-0.204	В	LS
			365.72 cm ⁻¹	59 897.86-60 263.583	3-3	1.86-04	2.09-01	5.64 + 02	-0.203	В	LS
			365.72 cm^{-1}	59 897.86-60 263.583	5–3	1.24-05	8.35-03	3.76+01	-1.379	C+	LS
323		$^{1}P^{\circ}-^{1}D$	190.61 cm ⁻¹	59 936.63–60 127.239	3–5	3.82-04	2.63+00	1.36+04	0.897	В	1
324	3s9p - 3s11s	$^{3}P^{\circ}-^{3}S$	$523.0~cm^{-1}$	59 897.9-60 420.87	9–3	3.38-04	6.18-02	3.50+02	-0.255	В	1
			523.01 cm ⁻¹	59 897.86-60 420.87	5–3	1.88-04	6.18-02	1.95+02	-0.510	В	LS
			523.01 cm ⁻¹	59 897.86–60 420.87	3–3			1.17+02			LS
			523.01 cm ⁻¹	59 897.86–60 420.87	1–3			3.89+01			LS
325	3s9p - 3s10d	$^{3}\text{P}^{\circ}-^{3}D$	637.4 cm^{-1}	59 897.9–60 535.3	9–15	3.27-04	2.01-01	9.35+02	0.257	В	1
	,		637.48 cm ⁻¹	59 897.86–60 535.34	5–7			4.36+02			LS
			637.48 cm ⁻¹	59 897.86–60 535.34	3–5			2.34+02			LS
			637.48 cm ⁻¹	59 897.86–60 535.34	1–3			1.04+02			LS
			637.48 cm^{-1}	59 897.86–60 535.34	5–5			7.80+01			LS
			637.48 cm ⁻¹	59 897.86–60 535.34	3–3			7.79+01			LS
			637.48 cm ⁻¹	59 897.86–60 535.34	5–3			5.19+00			LS
326		$^{1}P^{\circ}-^{1}D$	498.47 cm ⁻¹	59 936.63–60 435.099	3–5	5.66-05	5.69-02	1.13+02	-0.768	В	1
327	3 <i>s</i> 8 <i>f</i> −3 <i>s</i> 9 <i>d</i>	${}^{1}F^{\circ} - {}^{1}D$	191.869 cm ⁻¹	59 935.370–60 127.239	7–5	3.10-04	9.01-01	1.08+04	0.800	В	1
	,		-, 1.00, em	. ,		2.23 01	01		2.000	_	-

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $13 = Butler\ et\ al.$

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
328		$^{3}F^{\circ}-^{3}D$		328.21 cm ⁻¹	59 935.37–60 263.58	21–15	2.24-04	2.22-01	4.69+03	0.669	В	1
				328.213 cm ⁻¹	59 935.370-60 263.583	9–7	2.05 - 04	2.22-01	2.00+03	0.301	В	LS
				328.213 cm ⁻¹	59 935.370-60 263.583	7–5	1.99-04	1.98-01	1.39 + 03	0.142	В	LS
				328.213 cm ⁻¹	59 935.370-60 263.583	5-3	2.24 - 04	1.87 - 01	9.38 + 02	-0.029	В	LS
				328.213 cm ⁻¹	59 935.370-60 263.583	7–7	1.78-05	2.48-02	1.74 + 02	-0.760	В	LS
				328.213 cm ⁻¹	59 935.370-60 263.583	5-5	2.49-05	3.47 - 02	1.74 + 02	-0.761	В	LS
				328.213 cm ⁻¹	59 935.370–60 263.583	5–7	5.02-07	9.78-04	4.90+00	-2.311	C	LS
329	3s8f - 3s10d	${}^{1}F^{\circ}-{}^{1}D$		499.729 cm ⁻¹	59 935.370-60 435.099	7–5	1.24-04	5.31-02	2.45+02	-0.430	В	1
330		$^{3}F^{\circ}-^{3}D$		599.9 cm ⁻¹	59 935.37–60 535.3	21–15	1.32-04	3.94-02	4.54+02	-0.082	В	1
				599.97 cm ⁻¹	59 935.370-60 535.34	9–7	1.22-04	3.94-02	1.95 + 02	-0.450	В	LS
				599.97 cm ⁻¹	59 935.370-60 535.34	7–5	1.18-04	3.50-02	1.34 + 02	-0.611	В	LS
				599.97 cm ⁻¹	59 935.370-60 535.34	5-3			9.08+01			LS
				599.97 cm ⁻¹	59 935.370-60 535.34	7–7			1.69+01			LS
				599.97 cm ⁻¹	59 935.370-60 535.34	5–5			1.68+01			LS
				599.97 cm ⁻¹	59 935.370–60 535.34	5–7			4.75-01			LS
331	3 <i>s</i> 8 <i>g</i> – 3 <i>s</i> 9 <i>f</i>	$^{3}G-^{3}F^{\circ}$				27–21						1
				250 41 am-1	50.050.97.60.201.292	11 0	9.50 05	0.50 02	0 07 1 02	0.025	D	I C
				350.41 cm ⁻¹	59 950.87–60 301.283	11–9			8.87+02			LS
				350.41 cm ⁻¹	59 950.87–60 301.283	9–7			6.79+02			LS
222		10 10°		350.41 cm ⁻¹	59 950.87–60 301.283	9_9			4.54+01			LS
332		${}^{1}G - {}^{1}F^{\circ}$		350.41 cm ⁻¹	59 950.87–60 301.283	9–7	9.01-05	8.56-02	7.24+02	-0.113	В	1
333	3s8g - 3s10f	$^{3}G-^{3}F^{\circ}$				27–21						1
				611.77 cm ⁻¹	59 950.87-60 562.637	11–9	4.76 - 05	1.56 - 02	9.23 + 01	-0.765	В	LS
				611.77 cm ⁻¹	59 950.87-60 562.637	9–7	4.69 - 05	1.46 - 02	7.07 + 01	-0.881	C+	LS
				611.77 cm ⁻¹	59 950.87–60 562.637	9_9	2.43 - 06	9.74-04	4.72+00	-2.057	C	LS
334		$^{1}G-^{1}F^{\circ}$		611.77 cm ⁻¹	59 950.87-60 562.637	9–7	4.97-05	1.55-02	7.51+01	-0.855	C+	1
335	3s10s - 3s10p	$^{1}S-^{1}P^{\circ}$		159.07 cm ⁻¹	60 143.23–60 302.30	1–3	2.22-04	3.94+00	8.15+03	0.595	В	1
336	3s10s - 3s11p	$^{1}S-^{1}P^{\circ}$		420.12 cm ⁻¹	60 143.23–60 563.35	1–3	5.61-05	1.43-01	1.12+02	-0.845	В	1
337	3s9d - 3s9f	$^{1}D-^{1}F^{\circ}$		174.044 cm ⁻¹	60 127.239–60 301.283	5–7	3.74-04	2.59+00	2.45+04	1.112	B+	1
338	3s9d-3s10p	$^{1}D-^{1}P^{\circ}$		175.06 cm ⁻¹	60 127.239–60 302.30	5-3	3.51-04	1.03+00	9.68+03	0.712	В	1
339	3s9d-3s10f	$^{1}D-^{1}F^{\circ}$		435.398 cm ⁻¹	60 127.239–60 562.637	5–7	6.96-05	7.71-02	2.91+02	-0.414	В	1
340		$^{3}D-^{3}F^{\circ}$		299.06 cm ⁻¹	60 263.58-60 562.64	15–21	1.71-04	4.01-01	6.62+03	0.779	В	1
				299.054 cm ⁻¹	60 263.583–60 562.637	7–9	1.71-04	3.68-01	2.84+03	0.411	В	LS
				299.054 cm ⁻¹	60 263.583-60 562.637	5–7	1.52-04	3.56-01	1.96+03	0.250	В	LS
				299.054 cm ⁻¹	60 263.583-60 562.637	3-5	1.44-04	4.01 - 01	1.32 + 03	0.080	В	LS
				299.054 cm ⁻¹	60 263.583-60 562.637	7–7			2.46+02			LS
				299.054 cm ⁻¹	60 263.583-60 562.637	5–5			2.46+02			LS
				299.054 cm ⁻¹	60 263.583–60 562.637	7–5			6.94+00			LS
341	3s9d-3s11p	$^{1}D-^{1}P^{\circ}$		436.11 cm ⁻¹	60 127.239–60 563.35	5–3			2.88+02			1
342	3s9f-3s10d	$^{1}\text{F}^{\circ}-^{1}\text{D}$		133.816 cm ⁻¹	60 301.283–60 435.099	7–5		1.09+00		0.883		1
343	,	$^{3}F^{\circ}-^{3}D$		234.0 cm^{-1}	60 301.28–60 535.3	21–15		2.77-01		0.765		1
515		1 1										
				234.06 cm ⁻¹	60 301.283–60 535.34	9–7		2.77 - 01		0.397		LS
				234.06 cm ⁻¹	60 301.283–60 535.34	7–5		2.46 - 01		0.236		LS
				234.06 cm ⁻¹	60 301.283–60 535.34	5–3	1.42-04	2.33-01	1.64+03	0.066	В	LS

Table 40. Transition probabilities of allowed lines for Mg I (references for this table are as follows: $1 = Butler\ et\ al.$, $1^3\ 2 = Tachiev\ and\ Froese\ Fischer$, $9^9\ 3 = Ueda\ et\ al.$, $1^{14}\ 4 = Chang,\ Tang^{17}$, and $5 = Weiss^{123}$)—Continued

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				234.06 cm ⁻¹	60 301.283–60 535.34	7–7	1.13-05	3.09-02	3.04+02	-0.665	В	LS
				234.06 cm^{-1}	60 301.283-60 535.34	5-5	1.58 - 05	4.33 - 02	3.05+02	-0.665	В	LS
				234.06 cm ⁻¹	60 301.283-60 535.34	5–7	3.18-07	1.22-03	8.58+00	-2.215	C	LS
344	3s10p - 3s10d	$^{1}P^{\circ}-^{1}D$		132.80 cm ⁻¹	60 302.30-60 435.099	3–5	2.05-04	2.91+00	2.16+04	0.941	B+	1
345	3s10d-3s10f	$^{1}D-^{1}F^{\circ}$		127.538 cm ⁻¹	60 435.099–60 562.637	5–7	2.22-04	2.86+00	3.69+04	1.155	B+	1
346	3s10d - 3s11p	$^{1}D-^{1}P^{\circ}$		128.25 cm ⁻¹	60 435.099–60 563.35	5–3	2.18-04	1.19+00	1.53+04	0.775	$\mathrm{B} +$	1

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

11.1.3. Forbidden Transitions for Mg I

Wherever available we have used the data of Tachiev and Froese Fischer, 95 which result from extensive MCHF calculations with Breit-Pauli corrections to order α^2 . The calculations only extend to transitions from energy levels up to the 3s4p. Godefroid *et al.*⁴² calculated the $3s^2$ 1S -3s3d 1D E2 transition using a somewhat different MCHF procedure, with better than 2% agreement in the relative standard deviation of the mean (RSDM).

Only one transition was reported in both references. To estimate the accuracy of the forbidden lines from allowed lines, we isoelectronically averaged the logarithmic quality factors (as discussed in Sec. 4.1 in the Introduction) observed for lines from the lower-lying levels of Mg I and Si III and applied the result to forbidden lines of Mg I, as described in the Introduction. The listed accuracies are therefore less well established than for the allowed lines.

11.1.4. References for Forbidden Transitions for Mg I

⁴²M. Godefroid, C. E. Magnusson, P. O. Zetterberg, and I. Joelsson, Phys. Scr. **32**, 125 (1985).

⁹⁵G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on Sept. 3, 2003).

TABLE 41. Wavelength finding list for forbidden lines Mg I

Wavelength (air) (Å)	Mult. No.						
2 084.535	3	3 838.292	11	4 081.832	10	7 814.533	16
2 084.537	3	3 838.295	11	4 562.602	1	7 816.546	16
2 089.149	4	3 844.951	14	4 630.015	8	8 806.756	12
2 154.353	2	3 845.949	14	5 172.684	7	12 267.597	22
3 635.813	15	3 847.920	14	5 183.604	7	14 789.612	18
3 638.468	15	3 848.920	14	7 573.180	6	14 789.641	18
3 643.867	15	3 849.408	14	7 584.705	6	14 789.680	18
3 829.359	11	3 853.960	14	7 608.206	6	15 024.992	21
3 832.299	11	3 854.962	14	7 746.326	13	15 040.246	21
3 832.301	11	3 855.452	14	7 746.334	13	16 265.934	9
3 832.304	11	4 071.729	10	7 746.345	13	19 204.61	17
3 838.290	11	4 075.058	10	7 810.413	16		
Wavenumber (cm ⁻¹)	Mult. No.						
4 453.725	20	1 505.610	29	1 389.684	26	105.883	27
4 453.694	20	1 502.315	29	1 389.671	26	105.865	27
2 943.664	25	1 495.567	29	115.908	27	60.773	5
2 899.732	19	1 448.097	24	112.644	27	40.714	5
1 553.993	23	1 441.349	24	112.631	27	20.059	5
1 553.980	23	1 438.054	24	112.613	27		
1 553.962	23	1 389.702	26	105.896	27		

Table 42. Transition probabilities of forbidden lines for Mg I (references for this table are as follows: 1=Tachiev and Froese Fischer 95 and $2=Godefroid^{42}$)

No.	Transition array	$\begin{array}{cc} & \lambda_{air} \\ \text{Mult.} & (\mathring{A}) \end{array}$	$\lambda_{ m vac}$ (Å) or σ (cm ⁻¹) ^a	$(cm^{-1}) E_i - E_k$	$g_i - g_k$	Туре	$A_{ki} $ (s ⁻¹)	S (a.u.)	Acc.	Source
1	$3s^2 - 3s3p$	$^{1}S - ^{3}P^{\circ}$								
		4 562.60	2 4 563.881	0.000–21 911.178	1-5	M2	3.98-03	2.64+03	B+	1
2	$3s^2 - 3s3d$	${}^{1}S - {}^{1}D$								
_		2 154.35	3 2 155.030	0.000-46 403.065	1-5	E2	1.64+03	3.40+02	Α	1,2
3		$^{1}S-^{3}D$								
3		3- D								
		2 084.53		0.000–47 957.027	1–5	E2	1.06-03	1.87 - 04		1
4	$3s^2 - 3s4p$	$2 084.53$ $^{1}\text{S} - ^{3}\text{P}^{\circ}$	5 2 085.199	0.000–47 957.058	1–3	M1	7.24-12	7.30-15	Е	1
4	3s –3s4p	3- F								
_		2 089.14	9 2 089.813	0.000–47 851.162	1–5	M2	2.69+00	3.60+04	B+	1
5	3s3p-3s3p	$^{3}P^{\circ}-^{3}P^{\circ}$								
			$40.714~{\rm cm^{-1}}$	21 870.464–21 911.178	3–5	M1	9.10 - 07	2.50+00	$\mathrm{B} +$	1
			40.714 cm ⁻¹	21 870.464–21 911.178	3–5	E2	9.94 - 13	3.97 + 02		1
			20.059 cm ⁻¹	21 850.405–21 870.464	1–3	M1	1.45-07	2.00+00 1.76+02	B+	1
			60.773 cm ⁻¹	21 850.405–21 911.178	1–5	E2	3.27-12	1./6+02	А	1
6		$^{3}\text{P}^{\circ}-^{1}\text{P}^{\circ}$								
		7 584.70	5 7 586.793	21 870.464-35 051.264	3–3	M1	7.22-05	3.51-06	D+	1
		7 584.70		21 870.464-35 051.264	3–3	E2	3.76-05	2.53-03	C	1
		7 608.20	6 7 610.300	21 911.178-35 051.264	5–3	M1	1.19-04	5.86 - 06	D+	1
		7 608.20		21 911.178–35 051.264	5–3	E2	2.65-05	1.81-03	C	1
		7 573.18	0 7 575.265	21 850.405–35 051.264	1–3	M1	9.67-05	4.68-06	D+	1
7	3s3p-3s4s	$^{3}P^{\circ}-^{3}S$								
		5 183.60	4 5 185.048	21 911.178-41 197.403	5–3	M2	1.02-04	7.70+01	В	1
		5 172.68		21 870.464–41 197.403	3–3	M2	3.46-05	2.58+01		1
0		$^{3}P^{\circ}-^{1}S$								
8		P - 3								
		4 630.01	5 4 631.312	21 911.178-43 503.333	5–1	M2	2.04-03	2.91 + 02	B+	1
9		$^{1}\text{P}^{\circ}-^{3}\text{S}$								
		16 265 03	4 16 270 277	25 051 264 41 107 402	2 2	MO	2 65 07	0 20 1 01	D	1
		16 265.93	4 16 270.377	35 051.264–41 197.403	3–3	M2	3.65-07	8.38+01	В	1
10	3s3p-3s3d	$^{3}P^{\circ}-^{1}D$								
		4 071.72	9 4 072.878	21 850.405-46 403.065	1–5	M2	4.71-04	1.77+02	B+	1
		4 075.05		21 870.464-46 403.065	3–5	M2	1.05-03	3.96+02		1
		4 081.83	2 4 082.985	21 911.178-46 403.065	5–5	M2	8.09 - 04	3.08+02	B+	1
11		$^{3}\text{P}^{\circ} - ^{3}\text{D}$								
		3 832.30		21 870.464-47 957.045	3–7	M2	2.20-05	8.53+00		1
		3 829.35 3 838.29		21 850.405–47 957.027 21 911.178–47 957.045	1–5 5–7	M2 M2	2.11-05 2.04-03	5.82+00 8.01+02		1 1
		3 832.30		21 870.464–47 957.027	3–7	M2	6.36-04	1.77 + 02		1
		3 838.29		21 911.178–47 957.027	5–5 5–5	M2	3.28-04	9.18+01	В	1
		3 832.29		21 870.464–47 957.058	3–3	M2	7.17-05	1.19+01	В	1
		3 838.29		21 911.178–47 957.058	5–3	M2	1.80-06	3.01-01		1
12		$^{1}P^{\circ}-^{1}D$				-			•	
12		'P = 'D								
		8 806.75	6 8 809.175	35 051.264-46 403.065	3–5	M2	6.29-06	1.12+02	В	1
13		$^{1}\text{P}^{\circ} - ^{3}\text{D}$								
			4 7740466	25.051.064.45.055.045	2.7	3.50	2.20. 05	2.00 02	D :	1
		7 746.33		35 051.264_47 957.045 35 051 264_47 957 027	3–7	M2 M2	2.20-05	2.89+02		1
		7 746.34	5 7 748.476	35 051.264–47 957.027	3–5	IV12	5.48 - 06	5.14+01	D	1

TABLE 42. Transition probabilities of forbidden lines for Mg I (references for this table are as follows: 1=Tachiev and Froese Fischer and $2=Godefroid^{42}$)—Continued

No.	Transition array	$\begin{array}{cc} & \lambda_{air} \\ \text{Mult.} & (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	Туре	$A_{ki} $ (s ⁻¹)	S (a.u.)	Acc.	Source
		7 746.326	7 748.458	35 051.264–47 957.058	3–3	M2	6.09-07	3.42+00	C+	1
14	3s3p-3s4p	$^{3}P^{\circ}-^{3}P^{\circ}$								
		3 853.960	3 855.052	21 911.178-47 851.162	5–5	M1	2.89-12	3.07-14	Е	1
		3 853.960	3 855.052	21 911.178-47 851.162	5–5	E2	2.55+01	9.70+01	B+	1
		3 848.920	3 850.011	21 870.464-47 844.414	3-3	M1	4.31 - 10	2.74 - 12	Е	1
		3 848.920	3 850.011	21 870.464-47 844.414	3-3	E2	1.83 + 01	4.14+01	B+	1
		3 855.452	3 856.546	21 911.178-47 841.119	5-1	E2	7.32 + 01	5.58 + 01	B+	1
		3 854.962	3 856.056	21 911.178-47 844.414	5-3	M1	1.59 - 04	1.01 - 06	D	1
		3 854.962	3 856.056	21 911.178-47 844.414	5-3	E2	5.48 + 01	1.25 + 02	B+	1
		3 849.408	3 850.500	21 870.464-47 841.119	3-1	M1	9.20 - 05	1.95 - 07	D	1
		3 847.920	3 849.011	21 870.464-47 851.162	3-5	M1	9.50-05	1.00-06	D	1
		3 847.920	3 849.011	21 870.464-47 851.162	3-5	E2	3.28+01	1.24 + 02	B+	1
		3 845.949	3 847.040	21 850.405-47 844.414	1-3	M1	3.05 - 05	1.93 - 07	D	1
		3 844.951	3 846.042	21 850.405-47 851.162	1-5	E2	1.46+01	5.48 + 01	B+	1
15		$^{3}P^{\circ}-^{1}P^{\circ}$								
10			2 (20 505	21 970 464 40 246 720	2.2	M1	7.29 05	2.06 .07	D	1
		3 638.468	3 639.505	21 870.464-49 346.729	3–3	M1	7.38-05	3.96-07		1
		3 638.468	3 639.505	21 870.464-49 346.729	3–3	E2	2.12-04	3.63-04	С	1
		3 643.867	3 644.906	21 911.178-49 346.729	5–3	M1	1.22-04	6.56-07	D	1
		3 643.867	3 644.906	21 911.178–49 346.729	5–3	E2	2.80-04	4.83-04	С	1
		3 635.813	3 636.850	21 850.405–49 346.729	1–3	M1	9.89-05	5.29-07	D	1
16		$^{1}P^{\circ}-^{3}P^{\circ}$								
		7 814.533	7 816.683	35 051.264-47 844.414	3–3	M1	1.03-05	5.45 - 07	D	1
		7 814.533	7 816.683	35 051.264-47 844.414	3–3	E2	4.20 - 04	3.28 - 02	C+	1
		7 816.546	7 818.697	35 051.264-47 841.119	3-1	M1	4.11 - 05	7.28 - 07	D	1
		7 810.413	7 812.562	35 051.264-47 851.162	3-5	M1	1.02 - 05	9.04 - 07	D	1
		7 810.413	7 812.562	35 051.264–47 851.162	3–5	E2	3.76-05	4.89 - 03	C+	1
17	3s4s - 3s3d	$^{3}S-^{1}D$								
		19 204.61	19 209.85	41 197.403–46 403.065	3–5	M1	2.31-13	3.04-13	Е	1
		19 204.61	19 209.85	41 197.403–46 403.065	3–5	E2	3.12-07	3.65-03		1
18		$^{3}S-^{3}D$								
10										
		14 789.641	14 793.683	41 197.403–47 957.045	3–7	E2	2.33+00	1.03 + 04		1
		14 789.680	14 793.722	41 197.403–47 957.027	3–5	M1	9.64 - 11	5.78 - 11		1
		14 789.680	14 793.722	41 197.403–47 957.027	3–5	E2	2.33+00	7.37 + 03	A	1
		14 789.612		41 197.403–47 957.058	3–3	M1	4.92-10	1.77-10		1
		14 789.612	14 793.654	41 197.403–47 957.058	3–3	E2	2.33+00	4.42+03	A	1
19		$^{1}S-^{1}D$								
			2 899.732 cm ⁻¹	43 503.333-46 403.065	1–5	E2	2.46-02	5.35+03	A	1
20		${}^{1}S - {}^{3}D$								
			1 152 601 cm-1	43 503.333–47 957.027	1.5	E2	2.02.07	5 10 02	C	1
				43 503.333–47 957.058	1–5 1–3	E2 M1	2.03-07 $2.78-15$	5.18-03 3.51-15		1
21	2-4- 2-4-	$^{3}S-^{3}P^{\circ}$								
21	3s4s-3s4p	3- r								
		15 024.992	15 029.099	41 197.403–47 851.162	3–5	M2	1.02 - 05	2.62+03	B+	1
		15 040.246	15 044.356	41 197.403–47 844.414	3–3	M2	5.56-06	8.62+02	B+	1
22		$^{3}S-^{1}P^{\circ}$								
		12 267.597	12 270.953	41 197.403–49 346.729	3–3	M2	6.23-05	3.49+03	В⊥	1
		12 207.397	14 4/0.933	+1 177.403-49 340.729	3-3	1 V1 ∠	0.23-03	3.49+03	рΤ	1

Table 42. Transition probabilities of forbidden lines for Mg I (references for this table are as follows: 1=Tachiev and Froese Fischer and $2=Godefroid^{42}$)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{ m vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	Type	A_{ki} (s^{-1})	S (a.u.)	Acc.	Source
23	3s3d-3s3d	$^{1}D - ^{3}D$									
				1 553.962 cm ⁻¹	46 403.065–47 957.027	5–5	M1	9.42-09	4.65-07	D	1
					46 403.065–47 957.027	5–5	E2	2.50-10	1.23-03		1
				1 553.993 cm ⁻¹	46 403.065-47 957.058	5–3	M1	8.47-08	2.51-06		1
				1 553.993 cm ⁻¹	46 403.065-47 957.058	5–3	E2	7.19 - 10	2.13-03	C	1
				1 553.980 cm ⁻¹	46 403.065-47 957.045	5–7	M1	3.76 - 08	2.60-06	D+	1
				1 553.980 cm ⁻¹	46 403.065–47 957.045	5–7	E2	3.78 - 10	2.61-03	C	1
24	3s3d-3s4p	$^{1}D-^{3}P^{\circ}$									
				1 438.054 cm ⁻¹	46 403.065–47 841.119	5-1	M2	1.09-09	1.19+02	В	1
				1 441.349 cm ⁻¹	46 403.065-47 844.414	5-3	M2	8.22 - 10	2.66+02	B+	1
				1 448.097 cm ⁻¹	46 403.065–47 851.162	5–5	M2	3.97 - 10	2.09+02	$\mathrm{B}+$	1
25		$^{1}D-^{1}P^{\circ}$									
26		$^{3}D-^{1}P^{\circ}$		2 943.664 cm ⁻¹	46 403.065–49 346.729	5–3	M2	3.58-08	3.26+02	B+	1
				1 389.684 cm ⁻¹	47 957.045–49 346.729	7–3	M2	3.76-09	1.46+03	B+	1
					47 957.027–49 346.729	5–3	M2	6.83 – 10	2.65+02	B+	1
					47 957.058–49 346.729	3–3	M2	4.44-11	1.72 + 01		1
27	3s4p-3s3d	$^{3}P^{\circ}-^{3}D$									
				112.631 cm ⁻¹	47 844.414–47 957.045	3–7	M2	2.16-16	5.60+01	В	1
				115.908 cm ⁻¹	47 841.119-47 957.027	1-5	M2	2.41 - 16	3.86+01	В	1
				105.883 cm ⁻¹	47 851.162-47 957.045	5–7	M2	9.59 - 15	3.38+03	B+	1
				112.613 cm ⁻¹	47 844.414-47 957.027	3-5	M2	4.09 - 15	7.58 + 02	B+	1
				105.865 cm^{-1}	47 851.162-47 957.027	5-5	M2	1.41 - 15	3.55 + 02	$\mathrm{B}+$	1
				112.644 cm ⁻¹	47 844.414-47 957.058	3-3	M2	3.23 - 16	3.58+01	В	1
				105.896 cm ⁻¹	47 851.162–47 957.058	5–3	M2	1.04 - 18	1.58 - 01	C	1
28		$^{3}\text{P}^{\circ} - ^{3}\text{P}^{\circ}$									
				$10.043~\rm{cm^{-1}}$	47 841.119–47 851.162	1–5	E2	2.17-14	9.50+03	A	1
29		$^{3}\text{P}^{\circ}-^{1}\text{P}^{\circ}$									
				1 502.315 cm ⁻¹	47 844.414-49 346.729	3–3	M1	5.63-07	1.85-05	D+	1
				1 502.315 cm ⁻¹	47 844.414-49 346.729	3–3	E2	2.40 - 07	8.40 - 01	В	1
				1 495.567 cm ⁻¹	47 851.162–49 346.729	5–3	M1	9.26 - 07	3.08 - 05	D+	1
				1 495.567 cm ⁻¹	47 851.162–49 346.729	5–3	E2	8.53 - 08	3.05 - 01	В	1
				1 505.610 cm ⁻¹	47 841.119–49 346.729	1–3	M1	7.55 - 07	2.46 - 05	D+	1

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

11.2. Mg II

Sodium isoelectronic sequence Ground state: $1s^22s^22p^63s^2S_{1/2}$

Ionization energy: $15.035\ 27\ eV = 121\ 267.61\ cm^{-1}$

11.2.1. Allowed Transitions for Mg II

The large majority of the compiled transition rates has been taken from the R-matrix calculations of the OP. We expect the OP values of this Na-like spectrum to be accurate because spin-orbit interactions are generally unimportant. Also, the "one-electron" spectrum of Mg II is particularly well suited to the R-matrix technique of the OP calculation. Wherever available we have used the data of Froese Fischer, ³⁶ which result from nonorthogonal spline CI computations.

Siegel *et al.*⁸⁴ employed a single configuration Dirac-Fock method with a core-polarization model. Ansbacher *et al.*² performed accurate lifetime measurements of the 4*p* energy levels. Theodosiou and Federman¹⁰⁶ performed detailed semiempirical calculations. Johnson *et al.*⁴⁷ performed relativistic third-order many-body calculations. The 3*s*-4*p* line (and similar transitions) strength is anomalously small, due to cancellations near this "Cooper minimum" region, and therefore particularly difficult to compute accurately. Thus we have assigned it an accuracy that is low for such a low-lying line. Perhaps surprisingly, the between-author discrepancies of most of the stronger Mg II lines generally appear to be significantly greater than for the analogous Na-like transitions of Na, Al, and Si.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in two or more references, 2,36,47,84,103,106 as described in the general introduction. For this purpose we divided the data into groups with and without OP results. Good agreement was generally found among the different sources including OP (<10% RSDM for S>0.01). We chose the transition rates of Froese Fischer, 36 rather than those of Froese Fischer, because the former encompass a much wider range of transitions.

11.2.2. References for Allowed Transitions for Mg II

²W. Ansbacher, Y. Li, and E. H. Pinnington, Phys. Lett. A **139**, 165 (1989).

³⁶C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (nonorthogonal spline CI, downloaded on Nov. 29, 2002).

³⁷C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, *ab initio*, downloaded on Dec. 15, 2003).

⁴⁷W. R. Johnson, Z. W. Liu, and J. Sapirstein, At. Data Nucl. Data Tables **64** 279 (1996).

⁸⁴W. Siegel, J. Migdalek, and Y.-K. Kim, At. Data Nucl. Data Tables **68** 303 (1998).

¹⁰³K. T. Taylor http://legacy.gsfc.nasa.gov/topbase, down-loaded on July 28, 1995 (Opacity Project).

¹⁰⁶C. E. Theodosiou and S. R. Federman, Astrophys. J. **527**, 470 (1999).

TABLE 43. Wavelength finding list for allowed lines for Mg II

Wavelength	Mult.
(vac) (Å)	No.
070.222	-
870.332	7
870.346	7
884.697	6
884.719	6
907.375	5
907.412	5
946.703	4
946.769	4
1 025.968	3
1 026.113	3
1 239.925	2
1 240.395	2
1 248.048	21
1 248.507	20
1 249.476	21
1 249.477	21
1 249.936	20
1 271.239	19
1 271.940	18
1 272.720	19
1 272.721	19
1 273.423	18
1 306.714	17
1 307.875	16
1 308.279	17
1 308.281	17
1 309.443	16
1 365.544	15
1 367.254	15
1 367.257	15
1 367.708	14
1 369.423	14
1 476.000	13
1 477.997	13
1 478.004	13
1 480.879	12
1 482.890	12
1 734.852	11
1 737.613	11
1 737.628	11
1 750.664	10
1 753.474	10
Wavelength	Mult.
(air) (Å)	No.
2 216.911	27
2 217.006	27
2 253.869	39
2 253.913	39
2 302.986	38
2 303.032	38
_ 100.002	

TABLE 43. Wavelength finding list for allowed lines for Mg II—Continued

TABLE 43. Wavelength finding list for allowed lines for Mg II—Continued

Wavelength	Mult.	Wavelength	Mult.
(air) (Å)	No.	(air) (Å)	No.
2 303.134	38	3 848.211	30
2 312.597	26	3 848.340	30
2 312.749	26	3 850.386	30
2 329.562	37	4 368.54	68
2 329.609	37	4 368.64	68
2 406.418	36	4 368.91	68
2 406.469	36	4 384.637	43
2 406.633	36	4 390.514	43
2 449.561	35	4 390.572	43
2 449.613	35	4 427.994	42
2 474.314	25	4 433.988	42
2 474.584	25	4 436.491	67
2 582.019	34	4 436.593	67
2 582.077	34	4 481.126	29
2 582.371	34	4 481.150	29
2 660.754	33	4 481.325	29
2 660.756	33	4 521.938	56
2 660.817	33	4 522.333	56
2 790.542	24	4 545.253	73
2 790.777	9	4 545.263	73
2 791.117	24	4 545.288	73
2 795.528	1	4 630.878	66
2 797.930	9	4 630.990	66
2 797.998	9	4 631.404	66
2 802.705	1	4 739.593	65
2 842.097	51	4 739.709	65
2 844.479	50	4 868.823	72
2 844.566 2 844.570	51 51	4 868.837 4 868.866	72 72
2 846.952	50	4 938.703	55
2 928.299	32	4 938.703	55
2 928.299	32	5 068.938	64
2 928.633	8	5 069.072	64
2 929.007	32	5 069.802	64
2 936.510	8	5 157.628	84
2 965.328	49	5 161.302	84
2 968.015	49	5 161.310	84
2 968.020	49	5 264.220	63
2 969.148	48	5 264.364	63
2 971.842	48	5 433.999	71
3 104.715	31	5 434.034	71
3 104.721	31	5 434.070	71
3 104.805	31	5 451.250	83
3 165.879	47	5 455.355	83
3 168.941	47	5 455.370	83
3 168.954	47	5 460.018	82
3 172.708	46	5 464.136	82
3 175.784	46	5 739.77	54
3 534.970	45	5 741.22	54
3 538.789	45	5 916.43	62
3 538.812	45	5 916.61	62
3 549.513	44	5 918.16	62
3 553.364	44	5 923.36	81
3 613.780	23	5 928.21	81
3 615.583	23	5 928.23	81

TABLE 43. Wavelength finding list for allowed lines for Mg II—Continued

TABLE 43. Wavelength finding list for allowed lines for Mg II—Continued

Wavelength	Mult.	Wavelength	Mult.
(air) (Å)	No.	(air) (Å)	No.
5.030.63	00	0.621.05	50
5 938.63 5 943.50	80 80	9 631.95 9 632.43	59 59
6 346.74	61	9 828.12	111
6 346.75	61	9 828.12	111
6 346.75	61	9 835.25 9 835.30	111
6 620.44	70	9 855.50 9 856.65	110
6 620.52	70	9 863.83	110
6 620.57	70	10 163.60	87
6 781.45	79	10 166.53	87
6 787.80	79	10 391.76	69
6 787.85	79	10 392.09	69
6 812.86	78	10 392.22	69
6 819.27	78	10 399.31	94
7 603.27	103	10 399.63	94
7 603.29	103	10 402.71	94
7 603.32	103	10 914.24	28
7 786.50	53	10 915.28	28
7 790.98	53	10 951.77	28
7 825.4	98	11 255.93	93
7 825.6	98	11 256.32	93
7 826.4	98	11 477.39	109
7 877.05	41	11 487.12	109
7 896.04	41	11 487.20	109
7 896.37	41	11 534.83	108
8 046.14	97	11 544.66	108
8 046.34	97	11 751.38	100
8 115.22	60	11 751.55	100
8 115.57	60	11 751.63	100
8 120.43	60	12 856.30	127
8 213.99	40	12 856.35	127
8 234.64	40	12 856.40	127
8 259.07	102	13 704.1	123
8 259.10	102	13 704.5	123
8 259.14	102	13 707.1	123
8 543.22	88	14 258.91	86
8 544.63	88	14 267.89	86
8 709.15	96	14 395.78	122
8 709.38	96	14 396.16	122
8 710.85	96	14 727.23	92
8 734.98 8 745.52	77	14 727.88	92
8 745.52 8 745.66	77 77	14 737.45 14 850.10	92 126
8 824.32	76	14 850.10	126
8 835.08	76	14 850.21	126
8 913.28	112	15 067.70	134
8 919.14	112	15 007.70	134
8 919.17	112	15 077.79	134
9 101.78	95	15 205.36	107
9 102.03	95	15 222.45	107
9 218.25	22	15 222.73	107
9 244.26	22	15 364.20	106
9 393.38	101	15 381.64	106
9 393.43	101	16 350.39	115
9 393.48	101	16 355.56	115
9 631.89	59	16 665.73	121

TABLE 43. Wavelength finding list for allowed lines for Mg II—Continued

TABLE 43. Wavelength finding list for allowed lines for Mg II—Continued

Wavelength	Mult.	Wavenumber	Mult.
(air) (Å)	No.	(cm ⁻¹)	No.
16 666.23	121	3 277.86	105
16 671.59	121	3 270.48	105
16 760.22	75	3 270.30	105
16 799.08	75 75	3 161.99	103
16 799.08	75 75	3 154.61	104
17 411.90	73 74	3 134.85	124
17 453.85	74	3 134.73	124
17 717.33	91	3 134.70	124
17 717.43	91	2 769.52	136
17 718.37	91	2 767.59	136
17 881.5	133	2 764.19	149
17 895.6	133	2 761.35	149
17 895.7	133	2 761.30	149
17 976.1	132	2 734.74	148
17 990.4	132	2 731.90	148
18 165.2	120	2 701.67	140
18 165.8	120	2 701.55	140
18 968.6	125	2 699.62	140
18 968.9	125	2 434.93	157
18 969.0	125	2 434.90	157
19 187.4	99	2 432.97	85
19 188.0	99	2 425.59	85
19 188.3	99	2 210.02	90
337	N. 1.	2 209.72	90
Wavenumber (cm ⁻¹)	Mult. No.	2 206.50	139
(CIII)	140.	2 206.38	139
		2 202.34	90
4 678.41	52	2 031.27	143
4 664.61	52	2 031.21	143
4 537.01	145	1 993.59	129
4 536.98	145	1 989.18	129
4 248.76	114	1 989.06	129
4 245.92	114	1 941.69	160
4 158.33	58	1 939.76	160
4 157.81	58	1 939.73	160
4 144.01	58	1 925.62	128
4 133.07	119	1 921.21	128
4 132.89	119	1 905.7	152
4 130.05	119	1 904.3	152
4 129.16	131	1 862.4	155
4 124.75	131	1 861.0	155
4 124.69	131	1 511.92	154
4 085.78	130	1 511.86	154
4 081.37	130	1 423.66	113
3 998.1	142	1 419.25	113
3 997.9	142	1 390.89	156
3 996.5	142	1 390.84	156
3 808.23	150	1 307.97	117
3 805.39	150	1 307.79	117
3 805.36	150	1 303.38	117
3 647.55	141	1 302.49	147
3 647.43	141	1 299.65	147
3 492.97	144		147
3 492.92	144	1 299.59	147
3 401.45	118	1 259.11 1 256.27	146
.) 4(11.4.)	118		

TABLE 43. Wavelength finding list for allowed lines for Mg II—Continued

TABLE 43. Wavelength finding list for allowed lines for Mg II—Continued

Wavenumber	Mult.	Wavenumber	Mult.
(cm ⁻¹)	No.	(cm ⁻¹)	No.
993.88	163	565.98	153
993.85	163	564.05	153
903.89	135	489.16	57
901.05	135	489.04	57
897.65	159	488.52	57
895.72	159	430.1	161
895.67	159	428.7	161
868.20	158	400.7	162
866.27	158	399.3	162
836.04	138	270.22	89
835.92	138	270.16	89
833.08	138	269.86	89
644.8	164	162.33	116
643.4	164	162.30	116
643.3	164	162.12	116
609.36	151	104.42	137
607.43	151	104.30	137

Table 44. Transition probabilities of allowed lines for Mg II (references for this table are as follows: 1=Taylor, 103=Taylor, 103

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	E_i – E_k (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
1	3s-3p	$^{2}S-^{2}P^{\circ}$	2 797.92	2 798.74	0.00–35 730.4	2–6	2.59+00	9.12-01	1.68+01	0.261	A+	2,3,4,6,7
			2 795.528 2 802.705	2 796.352 2 803.531	0.00–35 760. 88 0.00–35 669.31	2–4 2–2	2.60+00 2.57+00	6.08-01 3.03-01	1.12+01 5.60+00	0.085 -0.218		2,3,4,6,7 2,3,4,6,7
2	3s - 4p	$^{2}S-^{2}P^{\circ}$		1 240.08	0.00-80 639.8	2-6	1.41-02	9.73-04	7.94-03	-2.711	C	2,3,5,7
				1 239.925 1 240.395	0.00–80 650.02 0.00–80 619.50	2–4 2–2	1.35-02 1.52-02	6.21-04 3.51-04	5.07-03 2.87-03			2,3,5,7 2,3,5,7
3	3s-5p	2 S $-^2$ P $^{\circ}$		1 026.02	0.00-97 464.3	2-6	3.50-02	1.66-03	1.12-02	-2.479	В	2,3
				1 025.968 1 026.113	0.00–97 468.92 0.00–97 455.12	2–4 2–2	3.43-02 3.63-02	1.08-03 5.72-04	7.32-03 3.87-03			2,3 2,3
4	3s-6p	$^{2}S-^{2}P^{\circ}$		946.73	0.00–105 627.3	2-6	2.73-02	1.10-03	6.86-03	-2.658	В	2
				946.703 946.769	0.00–105 629.72 0.00–105 622.34	2–4 2–2	2.69-02 2.81-02	7.22-04 3.78-04	4.50-03 2.36-03			2 2
5	3s-7p	$^{2}S-^{2}P^{\circ}$		907.39	0.00–110 206.5	2-6	1.96-02	7.27-04	4.34-03	-2.837	C	2
				907.375 907.412	0.00–110 207.99 0.00–110 203.58	2–4 2–2	1.94-02 2.02-02	4.78-04 2.49-04	2.85-03 1.49-03			2 2
6	3s - 8p	$^{2}S-^{2}P^{\circ}$		884.70	0.00-113 032.1	2-6	1.40-02	4.92-04	2.87-03	-3.007	C	2
				884.697 884.719	0.00–113 033.09 0.00–113 030.25	2–4 2–2	1.38-02 1.44-02	3.24-04 1.68-04	1.89-03 9.81-04			2 2
7	3s - 9p	$^{2}S-^{2}P^{\circ}$		870.34	0.00-114 898.1	2-6	1.05-02	3.58-04	2.05-03	-3.145	C	2
				870.332 870.346	0.00–114 898.72 0.00–114 896.79	2–4 2–2	1.04-02 1.08-02	2.35-04 1.22-04	1.35-03 7.01-04			2 2
8	3p-4s	$^{2}P^{\circ}-^{2}S$	2 933.88	2 934.74	35 730.4–69 804.95	6–2	3.45+00	1.48-01	8.60+00	-0.052	A	2,3,6,7

543

Table 44. Transition probabilities of allowed lines for Mg II (references for this table are as follows: 1=Taylor, 103 = Taylor, 103 =

	Transition		λ_{air} λ_{vs}	ac (Å)	$E_i - E_k$		A_{ki}		S			
No.	array	Mult.	(Å) or σ	(cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	$\log gf$	Acc.	Sourc
				37.369	35 760.88-69 804.95	4-2	2.30+00	1.49 - 01	5.75+00			2,3,6,
			2 928.633 2 92	29.490	35 669.31–69 804.95	2–2	1.15+00	1.48 - 01	2.86+00	-0.529	A	2,3,6,
9	3p-3d	$^{2}P^{\circ}-^{2}D$	2 795.58 2 7	96.41	35 730.4–71 490.5	6-10	4.80+00	9.37-01	5.18+01	0.750	A	2,3,7
			2 797.998 2 79	98.823	35 760.88-71 490.19	4-6	4.79+00	8.44-01	3.11+01	0.528	A	2,3,7
			2 790.777 2 79	91.600	35 669.31–71 491.06	2-4	4.01 + 00	9.37 - 01	1.72+01	0.273	A	2,3,7
			2 797.930 2 79	98.754	35 760.88–71 491.06	4–4	7.98 - 01	9.38-02	3.46+00	-0.426	A	2,3,7
0	3p-5s	$^{2}P^{\circ}-^{2}S$	17	752.54	35 730.4–92 790.51	6–2	1.20+00	1.84-02	6.37-01	-0.957	A	2,3
			1 75	53.474	35 760.88-92 790.51	4-2	7.98 - 01	1.84-02	4.25-01	-1.133	A	2,3
			1 75	50.664	35 669.31–92 790.51	2-2	4.00 - 01	1.84-02	2.12-01	-1.434	A	2,3
1	3p-4d	$^{2}P^{\circ}-^{2}D$	17	36.70	35 730.4–93 310.8	6-10	5.11-01	3.85-02	1.32+00	-0.636	A	2,3,7
			1 73	37.628	35 760.88–93 310.59	4-6	5.09-01	3.46-02	7.91-01	-0.859	A	2,3,7
				34.852	35 669.31–93 311.11	2-4	4.29-01	3.87-02	4.42-01			2,3,7
				37.613	35 760.88–93 311.11	4-4	8.48 - 02	3.84-03	8.79-02			2,3,7
12	3 <i>p</i> – 6 <i>s</i>	$^{2}P^{\circ}-^{2}S$	1 4	82.22	35 730.4–103 196.75	6–2	5.78-01	6.34-03	1.86-01	-1.420	B+	2
			1.49	32.890	35 760.88–103 196.75	4-2	3.85-01	6.34-03	1.24-01	1 506	D⊥	2
				32.890 30.879	35 669.31–103 196.75	2-2	1.93-01	6.34-03	6.18-02			2
		2 % 2										
.3	3 3p-5d	$^{2}\text{P}^{\circ}-^{2}\text{D}$		77.33	35 730.4–103 419.8	6–10	1.31-01	7.14-03	2.08-01			2,3
				78.004	35 760.88–103 419.70	4–6	1.30 - 01	6.40 - 03	1.24 - 01			2,3
				76.000	35 669.31–103 420.00	2–4	1.10-01	7.21-03	7.01-02			2,3
			1 47	77.997	35 760.88–103 420.00	4–4	2.16-02	7.08 - 04	1.38-02	-2.548	В	2,3
4	3p-7s	$^{2}P^{\circ}-^{2}S$	13	68.85	35 730.4–108 784.33	6–2	3.25-01	3.04-03	8.23-02	-1.739	C+	2
			1 36	59.423	35 760.88-108 784.33	4–2	2.17 - 01	3.04 - 03	5.49 - 02			2
			1 36	57.708	35 669.31–108 784.33	2–2	1.08 - 01	3.04-03	2.74-02	-2.216	C+	2
5	3p-6d	$^{2}P^{\circ}-^{2}D$	13	66.69	35 730.4–108 900.1	6–10	5.38-02	2.51-03	6.77-02	-1.822	B+	2
			1 36	57.257	35 760.88-108 900.02	4-6	5.35-02	2.25-03	4.05 - 02	-2.046	B+	2
			1 36	55.544	35 669.31-108 900.20	2-4	4.53 - 02	2.53-03	2.28 - 02	-2.296	$\mathrm{B}+$	2
			1 36	57.254	35 760.88–108 900.20	4-4	8.84-03	2.48-04	4.46-03	-3.003	В	2
.6	3p-8s	$^{2}P^{\circ}-^{2}S$	13	08.92	35 730.4–112 129.20	6–2	2.01-01	1.72-03	4.46-02	-1.986	C+	2
			1 30	09.443	35 760.88-112 129.20	4-2	1.34-01	1.72-03	2.97-02	-2.162	C+	2
			1 30	07.875	35 669.31–112 129.20	2-2	6.72 - 02	1.72-03	1.49 - 02	-2.463	C+	2
7	3p - 7d	$^{2}P^{\circ}-^{2}D$	13	07.76	35 730.4–112 197.1	6–10	2.59-02	1.11-03	2.86-02	-2.177	C+	2
			1 30	08.281	35 760.88–112 197.05	4–6	2.58-02	9.92-04	1.71-02	-2.401	C±	2
				06.714	35 669.31–112 197.17	2–4	2.19-02	1.12-03	9.63-03			2
				08.279	35 760.88–112 197.17	4-4	4.25-03	1.09-04	1.88-03			2
8	3 <i>p</i> – 9 <i>s</i>	$^{2}P^{\circ}-^{2}S$	12	72.93	<i>35 730.4</i> –114 289.36	6–2	1.35-01	1.09-03	2.74-02	-2.184	C+	2
			1.00	73 402	35 760.88–114 289.36	4.2	8.97-02	1.09-03	1.83-02	_2 261	\mathbf{C}^{\perp}	2
				73.423 71.940	35 /60.88=114 289.36 35 669.31=114 289.36	4–2 2–2	8.97-02 4.49-02	1.09-03	9.13-03			2
		2 2 5										
19	3p-8d	$^{2}P^{\circ}-^{2}D$	1 2	72.23	35 730.4–114 332.7	6–10	1.45 - 02	5.87-04	1.48-02	-2.453	С	2
			1 27	72.721	35 760.88-114 332.68	4-6	1.44 - 02	5.26 - 04	8.81 - 03			2
				71.239	35 669.31–114 332.74	2–4	1.23 - 02	5.95 - 04	4.98 - 03			2
			1 27	72.720	35 760.88–114 332.74	4–4	2.38-03	5.78-05	9.69-04	-3.636	C	2
20	3p-10s	$^{2}P^{\circ}-^{2}S$	12	49.46	35 730.4–115 764.99	6–2	1.15-01	8.95-04	2.21-02	-2.270	В	2

Table 44. Transition probabilities of allowed lines for Mg II (references for this table are as follows: 1=Taylor, 103 2=Froese Fischer, 36 3=Siegel et al., 84 4=Ansbacher et al., 2 5=Theodosiou and Federman, 106 6=Johnson et al., 47 and 7=Froese Fischer. —Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				1 249.936	35 760.88–115 764.99	4–2	7.64-02	8.95-04	1.47-02			2
2.1		25° 25		1 248.507	35 669.31–115 764.99	2–2	3.83-02	8.95-04	7.36-03			2
21	3 <i>p</i> -9 <i>d</i>	$^{2}P^{\circ}-^{2}D$		1 249.00	35 730.4–115 794.4	6–10	1.06-02	4.15-04	1.02-02	-2.604	С	2
				1 249.477	35 760.88–115 794.39	4–6	1.06-02	3.71-04	6.11-03			2
				1 248.048 1 249.476	35 669.31–115 794.44 35 760.88–115 794.44	2–4 4–4	9.00-03 1.74-03	4.20-04 4.08-05	3.46-03 6.71-04			2 2
22	4s-4p	$^{2}S-^{2}P^{\circ}$	9 226.9	9 229.5	69 804.95–80 639.8	2–6	3.63-01	1.39+00	8.44+01	0.444		2,3,7
	·~ ·r	-										
			9 218.25 9 244.26	9 220.78 9 246.80	69 804.95–80 650.02 69 804.95–80 619.50	2–4 2–2	3.64-01 3.61-01	9.27-01 4.62-01	5.63+01 2.82+01	0.268		2,3,7 2,3,7
22		2a 25°										
23	4s-5p	$^{2}S-^{2}P^{\circ}$	3 614.38	3 615.41	69 804.95–97 464.3	2–6	1.71-03	1.01-03	2.40-02	-2.695	C+	2,3
			3 613.780	3 614.810	69 804.95–97 468.92	2–4	1.79 - 03	7.03 - 04	1.67 - 02			2,3
			3 615.583	3 616.614	69 804.95–97 455.12	2–2	1.56-03	3.06-04	7.28-03	-3.213	C+	2,3
24	4s-6p	$^{2}S-^{2}P^{\circ}$	2 790.73	2 791.55	69 804.95–105 627.3	2–6	3.47-04	1.22-04	2.24-03	-3.613	C+	2
			2 790.542	2 791.365	69 804.95–105 629.72	2-4	3.20-04	7.47 - 05	1.37-03	-3.826	C+	2
			2 791.117	2 791.940	69 804.95–105 622.34	2–2	4.02 - 04	4.70 - 05	8.63-04	-4.027	C+	2
25	4s-7p	$^{2}S-^{2}P^{\circ}$	2 474.40	2 475.15	69 804.95–110 206.5	2-6	9.50-04	2.62-04	4.27-03	-3.281	C	2
			2 474.314	2 475.061	69 804.95–110 207.99	2–4	9.15-04	1.68-04	2.74-03	-3.474	C	2
			2 474.584	2 475.331	69 804.95–110 203.58	2–2	1.02 - 03	9.36-05	1.53-03	-3.728	C	2
26	6 4s-8p	$^{2}S-^{2}P^{\circ}$	2 312.65	2 313.36	69 804.95–113 032.1	2-6	1.01-03	2.43-04	3.70-03	-3.313	C	2
			2 312.597	2 313.308	69 804.95–113 033.09	2–4	9.81-04	1.57-04	2.40-03	-3.503	С	2
			2 312.749	2 313.460	69 804.95–113 030.25	2–2	1.07 - 03	8.56-05	1.30-03			2
27	4s - 9p	$^{2}S-^{2}P^{\circ}$	2 216.94	2 217.63	69 804.95–114 898.1	2–6	9.18-04	2.03-04	2.96-03	-3.391	C	2
			2 216.911	2 217.601	69 804.95–114 898.72	2–4	8.95-04	1.32-04	1.93-03	-3.578	C	2
			2 217.006	2 217.696	69 804.95–114 896.79	2–2	9.63 - 04	7.10-05	1.04-03	-3.848	C	2
28	3d-4p	$^{2}D-^{2}P^{\circ}$	10 926.8	10 929.8	71 490.5–80 639.8	10-6	1.69-01	1.81-01	6.53+01	0.258	A	2,3,7
			10 914.24	10 917.23	71 490.19–80 650.02	6–4	1.52-01	1.82-01	3.91+01	0.038	A	2,3,7
			10 951.77	10 954.77	71 491.06-80 619.50	4–2	1.68 - 01	1.51 - 01	2.18+01	-0.219	A	2,3,7
			10 915.28	10 918.27	71 491.06–80 650.02	4–4	1.69 - 02	3.02 - 02	4.35+00	-0.918	A	2,3,7
29	3d-4f	$^{2}D-^{2}F^{\circ}$	4 481.21	4 482.46	71 490.5–93 799.7	10–14	2.33+00	9.81-01	1.45 + 02	0.992	A	2,7
			4 481.126	4 482.383	71 490.19–93 799.75	6-8	2.33+00	9.35-01	8.27+01	0.749	A	2,7
			4 481.325	4 482.582	71 491.06–93 799.63	4–6	2.17+00	9.81 - 01	5.79 + 01	0.594	A	2,7
			4 481.150	4 482.407	71 490.19–93 799.63	6–6	1.55 - 01	4.67 - 02	4.14+00	-0.553	A	2,7
30	3d - 5p	$^{2}D-^{2}P^{\circ}$	3 848.94	3 850.03	71 490.5–97 464.3	10-6	3.27 - 02	4.36-03	5.53-01	-1.361	A	2,3
			3 848.211	3 849.303	71 490.19–97 468.92	6-4	2.96-02	4.38-03	3.33-01	-1.580	A	2,3
			3 850.386	3 851.478	71 491.06–97 455.12	4-2	3.24 - 02	3.60 - 03	1.83 - 01	-1.842	A	2,3
			3 848.340	3 849.432	71 491.06–97 468.92	4–4	3.29 - 03	7.31 - 04	3.70-02	-2.534	B+	2,3
31	3d-5f	$^{2}D-^{2}F^{\circ}$	3 104.75	3 105.65	71 490.5–103 689.9	10–14	7.97-01	1.61-01	1.65+01	0.207	A	2
			3 104.715	3 105.616	71 490.19–103 689.92	6-8	7.97-01	1.54-01	9.42+00	-0.034	A	2
			3 104.805	3 105.706	71 491.06–103 689.86	4–6	7.44 - 01	1.61 - 01	6.60+00	-0.191	A	2
			3 104.721	3 105.622	71 490.19–103 689.86	6–6	5.31 - 02	7.68 - 03	4.71-01	-1.336	B+	2
32	3 <i>d</i> -6 <i>p</i>	$^{2}D-^{2}P^{\circ}$	2 928.54	2 929.39	71 490.5–105 627.3	10-6	1.58-02	1.22-03	1.18-01	-1.914	$\mathrm{B}+$	2

Table 44. Transition probabilities of allowed lines for Mg II (references for this table are as follows: 1=Taylor, 103 2=Froese Fischer, $3=\text{Siegel } et \ al.$, $4=\text{Ansbacher } et \ al.$, 2=Froese Fischer, $3=\text{Siegel } et \ al.$, $4=\text{Ansbacher } et \ al.$,

Transition		λ_{air}	λ _{vac} (Å)	$E_i - E_k$		A_{ki}		S			
array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	log gf	Acc.	Source
		2 928.299	2 929.156	71 490.19–105 629.72	6-4	1.43 - 02	1.22-03				2
		2 929.007	2 929.864	71 491.06–105 622.34	4–2	1.57 - 02	1.01 - 03				2
		2 928.374	2 929.230	71 491.06–105 629.72	4–4	1.59-03	2.04 - 04	7.89-03	-3.088	В	2
3 <i>d</i> -6 <i>f</i>	$^{2}D-^{2}F^{\circ}$	2 660.78	2 661.57	71 490.5–109 062.3	10–14	3.81-01	5.67-02	4.96+00	-0.246	A	2
		2 660.754	2 661.545	71 490.19–109 062.35	6-8	3.81 - 01	5.39-02	2.84+00	-0.490	A	2
		2 660.817	2 661.609	71 491.06–109 062.32	4-6	3.56 - 01	5.67 - 02	1.99+00	-0.644	A	2
		2 660.756	2 661.547	71 490.19–109 062.32	6-6	2.54 - 02	2.70-03	1.42-01	-1.790	B+	2
3 <i>d</i> -7 <i>p</i>	$^{2}D-^{2}P^{\circ}$	2 582.14	2 582.91	71 490.5–110 206.5	10-6	9.17-03	5.50-04	4.68-02	-2.260	C+	2
		2 582.019	2 582.791	71 490.19–110 207.99	6-4	8.28-03	5.52-04	2.82-02	-2.480	C+	2
		2 582.371	2 583.144	71 491.06-110 203.58	4-2	9.09 - 03	4.55 - 04	1.55 - 02	-2.740	C+	2
		2 582.077	2 582.849	71 491.06–110 207.99	4–4	9.23 - 04	9.23-05	3.14-03	-3.433	C	2
3 <i>d</i> -7 <i>f</i>	$^{2}D-^{2}F^{\circ}$	2 449.58	2 450.32	71 490.5–112 301.5	10–14	2.16-01	2.72-02	2.19+00	-0.565	B+	2
		2 449.561	2 450.303	71 490.19–112 301.47	6-8	2.16-01	2.59-02	1.25+00	-0.809	B+	2
		2 449.613	2 450.355	71 491.06-112 301.47	4-6	2.02 - 01	2.72 - 02	8.78 - 01	-0.963	B+	2
		2 449.561	2 450.303	71 490.19–112 301.47	6-6	1.44 - 02	1.30 - 03	6.27-02	-2.108	В	2
3 <i>d</i> -8 <i>p</i>	$^{2}D-^{2}P^{\circ}$	2 406.49	2 407.23	71 490.5–113 032.1	10-6	5.83-03	3.04-04	2.41-02	-2.517	C+	2
		2 406.418	2 407.150	71 490.19–113 033.09	6–4	5.26-03	3.05-04	1.45-02	-2.738	C+	2
		2 406.633	2 407.365	71 491.06-113 030.25	4-2	5.79-03	2.51 - 04	7.97-03	-2.998	C+	2
		2 406.469	2 407.201	71 491.06–113 033.09	4-4	5.87-04	5.10-05				2
3 <i>d</i> -8 <i>f</i>	$^{2}D-^{2}F^{\circ}$	2 329.58	2 330.29	71 490.5–114 403.6	10–14	1.36-01	1.55-02	1.19+00	-0.810	В	2
		2 329.562	2 330.277	71 490.19–114 403.55	6-8	1.36-01	1.48-02	6.79-01	-1.052	B+	2
		2 329.609	2 330.324	71 491.06-114 403.55	4-6	1.27 - 01	1.55 - 02	4.77 - 01	-1.208	В	2
		2 329.562	2 330.277	71 490.19–114 403.55	6-6	9.07 - 03	7.39 - 04	3.40-02	-2.353	C+	2
3 <i>d</i> -9 <i>p</i>	$^{2}D-^{2}P^{\circ}$	2 303.04	2 303.74	71 490.5–114 898.1	10-6	4.08-03	1.95-04	1.48-02	-2.710	C	2
		2 302.986	2 303.695	71 490.19–114 898.72	6-4	3.69-03	1.96-04	8.91-03	-2.930	C+	2
		2 303.134	2 303.843	71 491.06-114 896.79	4-2	4.05 - 03	1.61 - 04	4.88-03	-3.191	C	2
		2 303.032	2 303.741	71 491.06–114 898.72	4-4	4.11 - 04	3.27 - 05				2
3 <i>d</i> -9 <i>f</i>	$^{2}D-^{2}F^{\circ}$	2 253.89	2 254.58	71 490.5–115 844.6	10–14	1.07-01	1.14-02	8.50-01	-0.943	В	2
		2 253.869	2 254.567	71 490.19–115 844.60	6-8	1.07-01	1.09-02	4.85-01	-1.184	В	2
			2 254.611		4-6	1.00-01	1.15 - 02				2
		2 253.869	2 254.567	71 490.19–115 844.60	6-6	7.15 - 03	5.45 - 04	2.43-02	-2.485	C+	2
4p-5s	$^{2}P^{\circ}-^{2}S$	8 227.7	8 230.0	80 639.8–92 790.51	6–2	7.94-01	2.69-01	4.37+01	0.208	A	2,3
		8 234.64	8 236.90	80 650.02–92 790.51	4-2	5.29-01	2.69-01	2.92+01	0.032	A	2,3
		8 213.99	8 216.24	80 619.50–92 790.51	2–2	2.65 - 01	2.68 - 01	1.45+01	-0.271	A	2,3
4p - 4d	$^{2}P^{\circ}-^{2}D$	7 889.9	7 892.0	80 639.8–93 310.8	6-10	7.87-01	1.23+00	1.91+02	0.868	A+	2,3,7
		7 896.37	7 898.54	80 650.02–93 310.59	4-6	7.86-01	1.10+00	1.15+02	0.643	A+	2,3,7
		7 877.05	7 879.22	80 619.50-93 311.11	2-4	6.58-01	1.23 + 00	6.36+01	0.391		2,3,7
		7 896.04	7 898.21	80 650.02–93 311.11	4-4	1.31-01	1.23-01				2,3,7
4p-6s	$^{2}P^{\circ}-^{2}S$	4 431.99	4 433.22	80 639.8–103 196.75	6–2	3.16-01	3.10-02	2.72+00	-0.730	A	2
		4 433.988	4 435.233	80 650.02–103 196.75	4–2	2.10-01	3.10-02	1.81+00	-0.907	A	2
		4 427.994	4 429.237	80 619.50–103 196.75	2–2	1.05-01	3.10-02				2
An- 51	2 p ° 2 p										
4p-5a	r – D	4 308.39	4 309.82	00 039.0-103 419.8	0-10	1./3-01	8.55-02	1.24+00	-0.300	А	2,3
	array $3d-6f$ $3d-7p$ $3d-8f$ $3d-9p$ $3d-9f$ $4p-5s$ $4p-4d$	array Mult. $3d-6f$ $^{2}D^{-2}F^{\circ}$ $3d-7p$ $^{2}D^{-2}P^{\circ}$ $3d-8p$ $^{2}D^{-2}P^{\circ}$ $3d-8f$ $^{2}D^{-2}P^{\circ}$ $3d-9p$ $^{2}D^{-2}P^{\circ}$ $4p-5s$ $^{2}P^{\circ}-^{2}S$ $4p-4d$ $^{2}P^{\circ}-^{2}D$	array Mult. (Å) 2 928.299 2 929.007 2 928.374 3d-6f 2D-2F° 2 660.78 2 660.754 2 660.817 2 660.756 3d-7p 2D-2P° 2 582.14 2 582.019 2 582.371 2 582.077 3d-7f 2D-2F° 2 449.58 2 449.561 2 449.613 2 449.561 3d-8p 2D-2P° 2 406.49 2 406.418 2 406.633 2 406.469 3d-8f 2D-2F° 2 329.58 2 329.562 2 329.609 2 329.562 3 3d-9p 2D-2P° 2 303.04 2 302.986 2 303.134 2 303.032 3d-9f 2D-2F° 2 253.89 2 253.869 2 253.913 2 253.869 4 2 253.869 4 2 253.913 2 253.869 4 2	array Mult. (Å) or σ (cm ⁻¹) ^a $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	array Mult. (Å) or σ (cm ⁻¹) ^a (cm ⁻¹) 2 928.299 2 929.156 71 490.19-105 629.72 2 929.804 71 491.06-105 622.34 2 928.374 2 929.230 71 491.06-105 629.72 3 660.754 2 661.547 71 490.19-109 062.35 2 660.817 2 661.547 71 490.19-109 062.35 2 660.756 2 661.547 71 490.19-109 062.35 2 660.756 2 661.547 71 490.19-109 062.35 2 660.756 2 661.547 71 490.19-109 062.35 2 660.756 2 661.547 71 490.19-109 062.35 2 660.757 2 582.091 9 2582.791 71 490.19-110 207.99 2 582.371 2 583.144 71 491.06-110 203.58 2 582.077 2 582.849 71 491.06-110 203.58 2 582.077 2 582.849 71 491.06-110 207.99 2 582.371 2 583.144 71 491.06-110 203.58 2 582.077 2 582.849 71 491.06-110 203.58 2 449.613 2 450.335 71 490.19-112 301.47 2 449.613 2 450.335 71 490.19-112 301.47 2 449.613 2 450.335 71 490.19-112 301.47 2 449.616 2 450.303 71 490.19-112 301.47 2 449.661 2 2406.33 2 407.365 71 491.06-113 033.29 2 406.469 2 2407.201 71 490.19-113 033.09 2 406.633 2 407.365 71 491.06-113 033.29 2 406.469 2 2407.201 71 490.19-113 033.09 2 2406.469 2 2407.201 71 490.19-114 403.55 2 329.562 2 330.277 71 490.19-114 403.55 2 329.562 2 330.277 71 490.19-114 403.55 2 329.562 2 330.277 71 490.19-114 403.55 2 329.562 2 330.277 71 490.19-114 403.55 2 329.562 2 330.277 71 490.19-114 403.55 2 329.562 2 330.277 71 490.19-114 403.55 2 329.562 2 330.277 71 490.19-114 403.55 2 329.562 2 330.277 71 490.19-114 403.55 2 329.562 2 330.277 71 490.19-114 898.72 2 303.343 2 303.344 71 491.06-113 806.79 2 303.343 2 303.344 71 491.06-114 896.79 2 303.343 2 303.341 71 491.06-114 896.79 2 303.343 2 303.341 71 491.06-114 896.79 2 303.343 2 303.341 71 491.06-114 896.79 2 303.343 2 303.341 71 491.06-114 896.79 2 303.343 2 303.341 71 491.06-114 896.79 2 303.343 2 303.341 71 491.06-114 896.79 2 303.343 2 303.341 71 491.06-113 844.60 2 253.869 2 254.567 71 490.19-115 844.60 2 253.869 2 254.567 71 490.19-115 844.60 2 253.869 2 254.567 71 490.19-115 844.60 2 253.869 2 254.567 71 490.19-115 844.60 2 253.869 2 254.567 71 490.19-115 844.60 2 253.869 2 254.567 71 490.19-115 844.60 8 23.99 8 216.24	Array Mult.	array Mult. (Å) or σ (cm ⁻¹) ⁸ (cm ⁻¹) $g,-g_k$ $(10^8 s^{-3})$ 2 928.299 2 929.156 71 490.19-105 629.72 6-4 1.43-02 2928.374 2929.307 71 491.06-105 629.72 6-4 1.59-03 3d-6f $^2D^{-2}$ F 2 660.784 2 661.545 71 490.19-109 062.32 4-6 3.81-01 2 660.817 2 661.699 71 490.19-109 062.32 4-6 3.56-01 2.660.756 2 661.547 71 490.19-109 062.32 4-6 3.56-01 3d-7p $^2D^{-2}$ P 2 582.14 2 582.791 71 490.19-110 207.99 6-4 8.28-03 2 582.019 2 582.719 2 582.711 71 491.06-110 207.59 4-4 9.23-04 3d-7f $^2D^{-2}$ F 2 449.581 2 450.333 71 490.19-112 301.47 6-6 8.26-01 2 449.613 2 450.335 71 490.5-112 301.47 6-6 8.216-01 3 d-8p $^2D^{-2}$ F 2 406.49 2 407.23 71 490.5-113 032.1 10-6 5.83-03 3 d-8p $^2D^{-2}$ F 2	array Mult. $(\dot{\Lambda})$ or $(cm^{-1})^a$ (cm^{-1}) g_1, g_k $(10^b s^{-1})$ f_a 2 928,293 2929,156 71 490,19-105 629,72 6-4 1.43-02 1.22-03 2929,307 2929,864 71 491,06-105 622,74 4-4 1.59-03 2.04-04 2928,374 2929,230 71 491,06-105 622,72 4-4 1.59-03 2.04-04 200,000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mult	Mult

Table 44. Transition probabilities of allowed lines for Mg II (references for this table are as follows: 1=Taylor, 103 2=Froese Fischer, 36 3=Siegel et al., 84 4=Ansbacher et al., 2 5=Theodosiou and Federman, 106 6=Johnson et al., 47 and 7=Froese Fischer. —Continued

	Transition		λ_{air}	$\lambda_{vac} \; (\mathring{A})$	$E_i - E_k$		A_{ki}		S			
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm^{-1})	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	$\log gf$	Acc.	Source
			4 390.572	4 391.805	80 650.02–103 419.70	4–6	1.73-01	7.50-02	4.34+00	-0.523	Α	2,3
			4 384.637	4 385.869	80 619.50-103 420.00	2-4	1.45 - 01	8.38 - 02	2.42+00			2,3
			4 390.514	4 391.747	80 650.02–103 420.00	4-4	2.88 - 02	8.32 - 03	4.81 - 01	-1.478	A	2,3
44	4p - 7s	$^{2}P^{\circ}-^{2}S$	3 552.08	3 553.09	80 639.8–108 784.33	6–2	1.69-01	1.07-02	7.48-01	-1.192	В	2
			3 553.364	3 554.379	80 650.02–108 784.33	4-2	1.12-01	1.07-02	4.99-01	-1.369	В	2
			3 549.513	3 550.527	80 619.50–108 784.33	2-2	5.64-02	1.07 - 02	2.49-01			2
45	4 <i>p</i> -6 <i>d</i>	$^{2}P^{\circ}-^{2}D$	3 537.53	3 538.53	80 639.8–108 900.1	6–10	6.92-02	2.16-02	1.51+00	-0.887	A	2
			3 538.812	3 539.823	80 650.02-108 900.02	4–6	6.90-02	1.94-02	9.06-01	-1.110	A	2
			3 534.970	3 535.980	80 619.50-108 900.20	2-4	5.80-02	2.17-02	5.06-01	-1.363	B+	2
			3 538.789	3 539.800	80 650.02-108 900.20	4-4	1.15 - 02	2.15 - 03	1.00-01			2
46	4p - 8s	$^{2}P^{\circ}-^{2}S$	3 174.76	3 175.67	80 639.8–112 129.20	6–2	1.02-01	5.15-03	3.23-01	-1.510	В	2
			3 175.784	3 176.703	80 650.02–112 129.20	4-2	6.81-02	5.15-03	2.15-01	-1 686	B	2
			3 172.708	3 170.703	80 619.50–112 129.20	2–2	3.41-02	5.15-03	1.08-01			2
17	4 7.1	2p° 2p	3 167.93									
47	4p-7d	-PD	3 107.93	3 168.84	80 639.8–112 197.1	6–10	3.44-02	8.63-03	5.40-01	-1.286	В	2
			3 168.954	3 169.871	80 650.02-112 197.05	4–6	3.43 - 02	7.75 - 03	3.23 - 01			2
			3 165.879	3 166.795	80 619.50-112 197.17	2-4	2.89 - 02	8.68 - 03	1.81 - 01			2
			3 168.941	3 169.858	80 650.02–112 197.17	4–4	5.69-03	8.57 - 04	3.58 - 02	-2.465	C+	2
48	4 <i>p</i> – 9 <i>s</i>	$^{2}P^{\circ}-^{2}S$	2 970.94	2 971.81	80 639.8–114 289.36	6–2	6.75-02	2.98-03	1.75-01	-1.748	В	2
			2 971.842	2 972.710	80 650.02-114 289.36	4-2	4.49 - 02	2.98 - 03	1.17-01	-1.924	В	2
			2 969.148	2 970.015	80 619.50–114 289.36	2–2	2.25 - 02	2.98 - 03	5.83 - 02	-2.225	В	2
49	4p-8d	$^{2}P^{\circ}-^{2}D$	2 967.12	2 967.98	80 639.8–114 332.7	6–10	1.99-02	4.37-03	2.56-01	-1.581	В	2
			2 968.020	2 968.887	80 650.02-114 332.68	4-6	1.98-02	3.92-03	1.53-01	-1.805	В	2
			2 965.328	2 966.194	80 619.50-114 332.74	2-4	1.67 - 02	4.40 - 03	8.59 - 02	-2.056	В	2
			2 968.015	2 968.881	80 650.02-114 332.74	4-4	3.28 - 03	4.34 - 04	1.70 - 02	-2.760	C+	2
50	4p-10s	$^{2}P^{\circ}-^{2}S$	2 846.13	2 846.96	80 639.8–115 764.99	6–2	5.67 - 02	2.29-03	1.29-01	-1.862	B+	2
			2 846.952	2 847.788	80 650.02-115 764.99	4-2	3.77-02	2.29-03	8.60-02	-2.038	B+	2
			2 844.479	2 845.315	80 619.50–115 764.99	2–2	1.89-02	2.30-03	4.30-02			2
51	4 <i>p</i> -9 <i>d</i>	$^{2}P^{\circ}-^{2}D$	2 843.74	2 844.58	80 639.8–115 794.4	6–10	1.49-02	3.01-03	1.69-01	-1.743	В	2
			2 844.570	2 845.406	80 650.02–115 794.39	4–6	1.48-02	2.70-03	1.01-01	_1 067	P	2
			2 842.097		80 619.50–115 794.44	2-4	1.46-02	3.03-03	5.68-02			2
			2 844.566		80 650.02–115 794.44	4-4	2.46-03	2.99-04	1.12-02			2
52	5 <i>s</i> -5 <i>p</i>	$^{2}S-^{2}P^{\circ}$		4 673.8 cm ⁻¹	92 790.51–97 464.3	2–6	8.85-02	1.82+00	2.57+02	0.561		2,3
				1 670 11 am-1	02 700 51 07 469 02	2.4	8.88-02	1 22 : 00	1 71 : 02	0.207	٨	2
				4 678.41 cm ⁻¹ 4 664.61 cm ⁻¹	92 790.51–97 468.92 92 790.51–97 455.12	2–4 2–2	8.80-02 8.80-02	1.22+00 6.07-01	1.71+02 8.56+01	0.387 0.084		2 2 3
					92 190.31-91 433.12	2-2	8.80-02	0.07-01	0.50+01	0.004	A	2,3
53	5 <i>s</i> – 6 <i>p</i>	$^{2}S - ^{2}P^{\circ}$	7 788.0	7 790.1	92 790.51–105 627.3	2–6	1.93-03	5.27-03	2.70-01	-1.977	B+	2
			7 786.50	7 788.64	92 790.51–105 629.72	2-4	1.97 - 03	3.59 - 03	1.84 - 01			2
			7 790.98	7 793.12	92 790.51–105 622.34	2–2	1.84 - 03	1.68 - 03	8.61-02	-2.474	B+	2
54	5s-7p	2 S $-^2$ P $^{\circ}$	5 740.3	5 741.8	92 790.51–110 206.5	2–6	4.73-05	7.01-05	2.65-03	-3.853	C	2
			5 739.77	5 741.36	92 790.51-110 207.99	2-4	5.25-05	5.19-05	1.96-03	-3.984	C	2
			5 741.22	5 742.81	92 790.51-110 203.58	2-2	3.67-05	1.81 - 05	6.86-04			2
55	5s-8p	${}^{2}\mathbf{S} - {}^{2}\mathbf{p}^{\circ}$	4 938.93	4 940.32	92 790.51–113 032.1	2-6	1.59-05	1.75-05	5.68-04	_4 456	D+	2.
55	55 -6p	5- 1	4 938.703	4 940.082	92 790.51–113 033.09	2-4	1.33-05	9.72-06	3.16-04			
			T 730.103	7 770.002	72 170.51-115 055.09	2-4	1.55-05	7.14-00	5.10-04	- 7./11	וע	_

Table 44. Transition probabilities of allowed lines for Mg II (references for this table are as follows: 1=Taylor, 103 2=Froese Fischer, 36 3=Siegel et al., 84 4=Ansbacher et al., 2 5=Theodosiou and Federman, 106 6=Johnson et al., 47 and 7=Froese Fischer. —Continued

	Transition		λ_{air}	λ_{vac} (Å)	$E_i - E_k$		A_{ki}		S			
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	log gf	Acc.	Source
			4 939.396	4 940.775	92 790.51–113 030.25	2–2	2.11-05	7.73-06	2.52-04	-4.811	D+	2
56	5s-9p	$^{2}S-^{2}P^{\circ}$	4 522.07	4 523.33	92 790.51 <i>–114 898.1</i>	2-6	6.00-05	5.52-05	1.64-03	-3.957	C	2
			4 521.938	4 523.207	92 790.51-114 898.72	2-4	5.58-05	3.42-05	1.02-03	-4.165	C	2
			4 522.333	4 523.601	92 790.51–114 896.79	2–2	6.83 - 05	2.10-05	6.24-04	-4.377	C	2
57	4 <i>d</i> -4 <i>f</i>	$^{2}D-^{2}F^{\circ}$		488.9 cm ⁻¹	93 310.8–93 799.7	10–14	6.51-05	5.72-02	3.85+02	-0.243	A+	2,7
				489.16 cm ⁻¹	93 310.59–93 799.75	6-8	6.52-05	5.45-02	2.20+02	-0.485	A+	2,7
				$488.52~\text{cm}^{-1}$	93 311.11–93 799.63	4-6	6.07 - 05	5.72 - 02	1.54+02	-0.641	A+	2,7
				489.04 cm ⁻¹	93 310.59–93 799.63	6-6	4.35 - 06	2.72 - 03	1.10+01	-1.787	A	2,7
58	4 <i>d</i> -5 <i>p</i>	$^{2}D-^{2}P^{\circ}$		4 153.5 cm ⁻¹	93 310.8–97 464.3	10-6	6.95-02	3.62-01	2.87+02	0.559	A	2,3
			4	4 158.33 cm ⁻¹	93 310.59–97 468.92	6-4	6.27 - 02	3.63 - 01	1.72 + 02	0.338	A	2,3
			۷	4 144.01 cm ⁻¹	93 311.11–97 455.12	4-2	6.91 - 02	3.02 - 01	9.59 + 01	0.082	A	2,3
			2	4 157.81 cm ⁻¹	93 311.11–97 468.92	4–4	6.96-03	6.04 - 02	1.91 + 01	-0.617	A	2,3
59	4 <i>d</i> -5 <i>f</i>	$^{2}D-^{2}F^{\circ}$	9 632.1	9 634.7	93 310.8–103 689.9	10–14	4.21-01	8.21-01	2.60+02	0.914	A	2,3
			9 631.89	9 634.53	93 310.59–103 689.92	6-8	4.21-01	7.82 - 01	1.49+02	0.671	A	2,3
			9 632.43	9 635.07	93 311.11-103 689.86	4-6	3.93 - 01	8.20 - 01	1.04+02	0.516	A	2,3
			9 631.95	9 634.59	93 310.59–103 689.86	6-6	2.81 - 02	3.91 - 02	7.44+00	-0.630	A	2,3
60	4 <i>d</i> -6 <i>p</i>	$^{2}D-^{2}P^{\circ}$	8 117.0	8 119.2	93 310.8–105 627.3	10-6	1.35-02	8.02-03	2.14+00	-1.096	A	2
			8 115.22	8 117.46	93 310.59–105 629.72	6-4	1.22-02	8.05-03	1.29+00	-1.316	A	2
			8 120.43	8 122.67	93 311.11-105 622.34	4-2	1.34 - 02	6.62 - 03	7.09 - 01	-1.577	A	2
			8 115.57	8 117.80	93 311.11–105 629.72	4-4	1.36-03	1.35 - 03	1.44 - 01	-2.268	$\mathrm{B} +$	2
51	4 <i>d</i> -6 <i>f</i>	$^{2}D-^{2}F^{\circ}$	6 346.8	6 348.6	93 310.8–109 062.3	10–14	2.20-01	1.86-01	3.89+01	0.270	A	2
		$d-6f$ $^2D-^2F$	6 346.74	6 348.50	93 310.59–109 062.35	6-8	2.20-01	1.77-01	2.22+01	0.026	A	2
			6 346.96	6 348.72	93 311.11-109 062.32	4-6	2.05 - 01	1.86 - 01	1.56+01	-0.128	A	2
			6 346.75	6 348.51	93 310.59–109 062.32	6-6	1.47 - 02	8.86-03	1.11+00	-1.274	A	2
52	4 <i>d</i> -7 <i>p</i>	$^{2}D-^{2}P^{\circ}$	5 917.0	5 918.7	93 310.8–110 206.5	10-6	7.10-03	2.24-03	4.36-01	-1.650	В	2
			5 916.43	5 918.07	93 310.59–110 207.99	6-4	6.42-03	2.25-03	2.63-01	-1.870	В	2
			5 918.16	5 919.80	93 311.11-110 203.58	4-2	7.04 - 03	1.85 - 03	1.44-01	-2.131	В	2
			5 916.61	5 918.25	93 311.11–110 207.99	4-4	7.16-04	3.76-04	2.93 - 02	-2.823	C+	2
63	4 <i>d</i> -7 <i>f</i>	$^{2}D-^{2}F^{\circ}$	5 264.28	5 265.74	93 310.8–112 301.5	10–14	1.27-01	7.40-02	1.28+01	-0.131	B+	2
			5 264.220	5 265.685	93 310.59–112 301.47	6-8	1.27-01	7.05 - 02	7.33+00	-0.374	B+	2
			5 264.364	5 265.830	93 311.11-112 301.47	4-6	1.19-01	7.40 - 02	5.13+00			2
			5 264.220	5 265.685	93 310.59-112 301.47	6-6	8.47 - 03	3.52-03	3.66-01			2
54	4 <i>d</i> -8 <i>p</i>	$^{2}D-^{2}P^{\circ}$	5 069.23	5 070.66	93 310.8–113 032.1	10-6	4.39-03	1.02-03	1.70-01	-1.991	В	2
			5 068.938	5 070.351	93 310.59–113 033.09	6-4	3.97-03	1.02-03	1.02-01	-2.213	В	2
			5 069.802	5 071.215	93 311.11–113 030.25	4-2	4.35-03	8.39-04	5.61-02			2
			5 069.072	5 070.485	93 311.11–113 033.09	4-4	4.43 - 04	1.71 - 04	1.14-02	-3.165	C+	2
55	4 <i>d</i> -8 <i>f</i>	$^{2}D-^{2}F^{\circ}$	4 739.64	4 740.95	93 310.8–114 403.6	10–14	8.09-02	3.82-02	5.96+00	-0.418	B+	2
			4 739.593	4 740.918	93 310.59–114 403.55	6-8	8.09-02	3.63-02	3.40+00	-0.662	B+	2
			4 739.709	4 741.035	93 311.11–114 403.55	4–6	7.55-02	3.82-02	2.38+00			2
			4 739.593	4 740.918	93 310.59–114 403.55	6–6	5.39-03	1.82-03	1.70-01			2
56	4 <i>d</i> -9 <i>p</i>	$^{2}D-^{2}P^{\circ}$	4 631.06	4 632.35	93 310.8–114 898.1	10-6	3.04-03	5.87-04	8.95-02			2
			4 630.878	4 632.175	93 310.59–114 898.72	6–4	2.75-03	5.89-04	5.39-02	-2.452	В	2

Table 44. Transition probabilities of allowed lines for Mg II (references for this table are as follows: 1=Taylor, 103=Taylor, 103

	Transition		λ_{air}	λ _{vac} (Å)	E_i – E_k		A_{ki}		S			
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm^{-1})	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	$\log gf$	Acc.	Source
			4 631.404	4 632.701	93 311.11–114 896.79	4-2	3.01-03	4.84-04	2.95-02	-2.713	C+	2
			4 630.990	4 632.287	93 311.11–114 898.72	4–4	3.06 - 04	9.85-05	6.01-03	-3.405	C	2
67	4 <i>d</i> -9 <i>f</i>	$^{2}D-^{2}F^{\circ}$	4 436.53	4 437.78	93 310.8–115 844.6	10–14	6.38-02	2.64-02	3.85+00	-0.578	B+	2
			4 436.491	4 437.737	93 310.59–115 844.60	6-8	6.38-02	2.51-02	2.20+00	-0.822	$\mathrm{B}+$	2
			4 436.593	4 437.839	93 311.11–115 844.60	4-6	5.95 - 02	2.64 - 02	1.54+00	-0.976	$\mathrm{B}+$	2
			4 436.491	4 437.737	93 310.59–115 844.60	6–6	4.25 - 03	1.26-03	1.10-01	-2.121	В	2
68	4 <i>d</i> -10 <i>p</i>	$^{2}D-^{2}P^{\circ}$	4 368.7	4 369.8	93 310.8–116 195	10-6	2.74-03	4.70-04	6.76-02	-2.328	E+	1
			4 368.54	4 369.77	93 310.59–116 195.1	6-4	2.46 - 03	4.70 - 04	4.06-02	-2.550	D	LS
			4 368.91	4 370.13	93 311.11–116 193.7	4–2	2.74 - 03	3.92 - 04	2.26 - 02	-2.805	+	LS
			4 368.64	4 369.87	93 311.11–116 195.1	4–4	2.74 - 04	7.84 - 05	4.51-03	-3.504	E+	LS
69	4f-5d	$^{2}F^{\circ}-^{2}D$	10 392.0	10 394.9	93 799.7–103 419.8	14-10	1.05 - 02	1.22-02	5.84+00	-0.768	A	2
			10 392.22	10 395.06	93 799.75–103 419.70	8-6	1.00-02	1.22-02	3.33+00	-1.011	A	2
			10 391.76	10 394.61	93 799.63–103 420.00	6-4	1.06 - 02	1.14 - 02	2.34+00	-1.165	A	2
			10 392.09	10 394.93	93 799.63–103 419.70	6–6	5.00-04	8.10-04	1.66-01	-2.313	B+	2
70	4 <i>f</i> -6 <i>d</i>	$^2F^{\circ}-^2D$	6 620.5	6 622.3	93 799.7–108 900.1	14-10	4.60-03	2.16-03	6.59-01	-1.519	B+	2
			6 620.57	6 622.40	93 799.75–108 900.02	8-6	4.37-03	2.15-03	3.76-01	-1.764	B+	2
			6 620.44	6 622.27	93 799.63-108 900.20	6-4	4.61 - 03	2.02 - 03	2.65 - 01	-1.916	$\mathrm{B} +$	2
			6 620.52	6 622.35	93 799.63–108 900.02	6-6	2.19 - 04	1.44 - 04	1.88 - 02	-3.063	В	2
71	4 <i>f</i> -7 <i>d</i>	$^2F^{\circ}-^2D$	5 434.04	5 435.55	93 799.7–112 197.1	14-10	2.45-03	7.75-04	1.94-01	-1.965	В	2
			5 434.070	5 435.580	93 799.75–112 197.05	8-6	2.33-03	7.74-04	1.11-01	-2.208	В	2
			5 433.999	5 435.509	93 799.63-112 197.17	6-4	2.45 - 03	7.24 - 04	7.77-02	-2.362	В	2
			5 434.034	5 435.545	93 799.63–112 197.05	6-6	1.16-04	5.15-05	5.53-03	-3.510	C	2
72	4 <i>f</i> -8 <i>d</i>	$^2F^{\circ}-^2D$	4 868.85	4 870.21	93 799.7–114 332.7	14-10	1.49-03	3.77-04	8.47-02	-2.278	C+	2
			4 868.866	4 870.226	93 799.75–114 332.68	8-6	1.41-03	3.75-04	4.81-02	-2.523	C+	2
			4 868.823	4 870.183	93 799.63-114 332.74	6-4	1.50 - 03	3.55 - 04	3.41 - 02	-2.672	C+	2
			4 868.837	4 870.197	93 799.63–114 332.68	6-6	7.10-05	2.52 - 05	2.43-03	-3.820	C	2
73	4 <i>f</i> -9 <i>d</i>	$^2F^{\circ}-^2D$	4 545.27	4 546.55	93 799.7–115 794.4	14-10	1.15-03	2.55-04	5.35-02	-2.447	C+	2
			4 545.288	4 546.562	93 799.75–115 794.39	8-6	1.10-03	2.55-04	3.05-02	-2.690	C+	2
			4 545.253	4 546.527	93 799.63–115 794.44	6-4	1.15 - 03	2.38 - 04	2.14 - 02	-2.845	C+	2
			4 545.263	4 546.537	93 799.63–115 794.39	6–6	5.47 - 05	1.70 - 05	1.52-03	-3.991	C	2
74	5p-6s	$^{2}P^{\circ}-^{2}S$	17 439.8	17 444.5	97 464.3–103 196.75	6–2	2.56-01	3.89-01	1.34+02	0.368	A	2
			17 453.85	17 458.62	97 468.92–103 196.75	4-2	1.71-01	3.90-01	8.96+01	0.193	A	2
			17 411.90	17 416.66	97 455.12–103 196.75	2–2	8.53 - 02	3.88 - 01	4.45+01	-0.110	A	2
75	5 <i>p</i> – 5 <i>d</i>	$^{2}P^{\circ}-^{2}D$	16 786.6	16 791.2	97 464.3–103 419.8	6–10	2.10-01	1.48+00	4.90+02	0.948	A+	2,3
			16 799.93	16 804.52	97 468.92–103 419.70	4–6	2.09-01	1.33+00	2.94+02	0.726	A+	2,3
			16 760.22	16 764.80	97 455.12–103 420.00	2–4	1.75-01	1.48+00	1.63+02	0.471		2,3
			16 799.08	16 803.67	97 468.92–103 420.00	4-4	3.49-02	1.48-01	3.27+01			2,3
76	5 <i>p</i> -7 <i>s</i>	$^{2}P^{\circ}-^{2}S$	8 831.5	8 833.9	<i>97 464.3</i> –108 784.33	6–2	1.10-01	4.31-02	7.52+00	-0.587	B+	2
			8 835.08	8 837.51	97 468.92–108 784.33	4–2	7.36-02	4.31-02	5.01+00	-0.763	B+	2
			8 824.32	8 826.74	97 455.12–108 784.33	2–2	3.69 - 02	4.31 - 02	2.50+00			2
77	5 <i>p</i> -6 <i>d</i>	$^{2}\text{P}^{\circ}-^{2}\text{D}$	8 742.1	8 744.5	97 464.3–108 900.1	6–10	6.38-02	1.22-01	2.10+01			2
, ,	5p -0a	1 – D										
			8 745.66	8 748.06	97 468.92–108 900.02	4–6	6.37-02	1.10-01	1.26+01	-0.357	A	2

Table 44. Transition probabilities of allowed lines for Mg II (references for this table are as follows: 1=Taylor, 103 2=Froese Fischer, $3=\text{Siegel } et \ al.$, $4=\text{Ansbacher } et \ al.$, 2=Froese Fischer, $3=\text{Siegel } et \ al.$, $4=\text{Ansbacher } et \ al.$,

	Transition		λ_{air}	λ_{vac} (Å)	$E_i - E_k$		A_{ki}		S			
lo.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	$\log gf$	Acc.	Source
			8 734.98	8 737.38	97 455.12–108 900.20	2-4	5.34-02	1.22 - 01	7.03+00			2
			8 745.52	8 747.93	97 468.92–108 900.20	4–4	1.06 - 02	1.22 - 02	1.40+00	-1.312	A	2
78	5p-8s	$^{2}P^{\circ}-^{2}S$	6 817.1	6 819.0	97 464.3–112 129.20	6–2	6.32-02	1.47-02	1.98+00	-1.055	B+	2
			6 819.27	6 821.15	97 468.92–112 129.20	4-2	4.21-02	1.47-02	1.32+00	-1.231	B+	2
			6 812.86	6 814.74	97 455.12–112 129.20	2–2	2.11-02	1.47 - 02	6.60-01	-1.532	B+	2
79	5 <i>p</i> -7 <i>d</i>	$^{2}P^{\circ}-^{2}D$	6 785.7	6 787.6	97 464.3–112 197.1	6–10	2.97-02	3.42-02	4.59+00	-0.688	B+	2
			6 787.85	6 789.73	97 468.92–112 197.05	4-6	2.96-02	3.07-02	2.75+00	-0.911	B+	2
			6 781.45	6 783.32	97 455.12-112 197.17	2-4	2.49 - 02	3.43 - 02	1.53+00	-1.164	$\mathrm{B} +$	2
			6 787.80	6 789.67	97 468.92–112 197.17	4-4	4.92 - 03	3.40 - 03	3.04 - 01	-1.866	В	2
80	5 <i>p</i> – 9 <i>s</i>	$^{2}P^{\circ}-^{2}S$	5 941.9	5 943.5	<i>97 464.3</i> –114 289.36	6–2	4.06-02	7.17-03	8.42-01	-1.366	В	2
			5 943.50	5 945.15	97 468.92–114 289.36	4-2	2.71-02	7.17-03	5.61-01	-1 542	R+	2
			5 938.63	5 940.27	97 455.12–114 289.36	2–2	1.36-02	7.17 03	2.81-01			2
2.1	5 0.1	2p° 2p										
81	5p-8d	²P – ²D	5 926.6	5 928.2	97 464.3–114 332.7	6–10	1.67-02	1.47-02	1.72+00	-1.055	B+	2
			5 928.23	5 929.88	97 468.92–114 332.68	4-6	1.66 - 02	1.32 - 02	1.03+00	-1.277	B+	2
			5 923.36	5 925.01	97 455.12–114 332.74	2–4	1.40 - 02	1.47 - 02	5.74 - 01			2
			5 928.21	5 929.85	97 468.92–114 332.74	4–4	2.76 - 03	1.46-03	1.14 - 01	-2.234	В	2
32	5 <i>p</i> – 10 <i>s</i>	$^{2}P^{\circ}-^{2}S$	5 462.76	5 464.27	<i>97 464.3</i> –115 764.99	6–2	3.33-02	4.97-03	5.37-01	-1.525	B+	2
			5 464.136	5 465.655	97 468.92–115 764.99	4-2	2.22-02	4.97-03	3.58-01	-1.702	B+	2
			5 460.018	5 461.535	97 455.12–115 764.99	2-2	1.11 - 02	4.98 - 03	1.79-01	-2.002	B+	2
33	5 <i>p</i> -9 <i>d</i>	$^{2}P^{\circ}-^{2}D$	5 453.99	5 455.51	97 464.3–115 794.4	6–10	1.22-02	9.10-03	9.81-01	-1.263	В	2
			5 455.370	5 456.886	97 468.92–115 794.39	4-6	1.22-02	8.17-03	5.87-01	-1.486	B+	2
			5 451.250		97 455.12–115 794.44	2-4	1.03-02	9.14-03	3.28-01			2
			5 455.355	5 456.871	97 468.92–115 794.44	4-4	2.03 - 03	9.04-04	6.50-02	-2.442	В	2
84	5p-10d	$^{2}P^{\circ}-^{2}D$	5 160.08	5 161.50	97 464.3–116 838.5	6–10	5.24-03	3.49-03	3.56-01	-1.679	D	1
			5 161.310	5 162.748	97 468.92–116 838.45	4-6	5.24-03	3.14-03	2.13-01	-1.901	D	LS
			5 157.628	5 159.064	97 455.12–116 838.48	2-4	4.37 - 03	3.49 - 03	1.19-01	-2.156	D	LS
			5 161.302	5 162.740	97 468.92–116 838.48	4–4	8.73 - 04	3.49 - 04	2.37-02	-2.855	E+	LS
85	6s-6p	$^{2}S-^{2}P^{\circ}$		2 430.6 cm ⁻¹	103 196.75–105 627.3	2-6	2.94-02	2.24+00	6.07 + 02	0.651	A	2
				2 432.97 cm ⁻¹	103 196.75–105 629.72	2-4	2.95-02	1.49+00	4.05 + 02	0.474	A	2
				2 425.59 cm ⁻¹	103 196.75–105 622.34	2–2	2.93 - 02	7.46-01	2.03+02	0.174	A	2
86	6s-7p	$^{2}S-^{2}P^{\circ}$	14 261.9	14 265.8	103 196.75–110 206.5	2-6	1.13-03	1.03-02	9.68-01	-1.686	В	2
			14 258.91	14 262.81	103 196.75–110 207.99	2-4	1.15-03	6.99-03	6.56-01	-1.854	B+	2
			14 267.89	14 271.79	103 196.75–110 203.58	2–2	1.09-03	3.32-03	3.12-01			2
87	6s-8p	$^{2}S-^{2}P^{\circ}$	10 164.6	10 167.4	103 196.75– <i>113 032.1</i>	2-6	1.12-04	5.23-04	3.50-02	-2.980	C+	2
			10 163.60	10 166.38	103 196.75–113 033.09	2–4	1.18-04	3.64-04	2.44-02	_3 139	$C \perp$	2
			10 166.53	10 160.38	103 196.75–113 030.25	2-2	1.02-04	1.59-04	1.06-02			2
88	6s-9p			8 546.0	103 196.75–114 898.1	2–6	7.64-06	2.51-05	1.41-03			2
-	· · · · · · · · · · · · · · · · · ·											
			8 543.22 8 544.63	8 545.57 8 546.98	103 196.75–114 898.72 103 196.75–114 896.79	2–4 2–2	8.70-06 5.52-06	1.91-05 6.04-06	1.07-03 3.40-04			2 2
		2 2 2	0 274.03									
89	5 <i>d</i> -5 <i>f</i>	$^{2}D-^{2}F^{\circ}$		270.1 cm^{-1}	103 419.8–103 689.9	10–14	3.90-05	1.12-01	1.37+03	0.049	A	2
				$270.22~{\rm cm}^{-1}$	103 419.70–103 689.92	6-8	3.90-05	1.07 - 01	7.81 + 02	-0.192	A	2

Table 44. Transition probabilities of allowed lines for Mg II (references for this table are as follows: 1=Taylor, 103 2=Froese Fischer, 36 3=Siegel et al., 84 4=Ansbacher et al., 2 5=Theodosiou and Federman, 106 6=Johnson et al., 47 and 7=Froese Fischer. —Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				269.86 cm ⁻¹ 270.16 cm ⁻¹	103 420.00–103 689.86 103 419.70–103 689.86	4–6 6–6	3.63-05 2.60-06	1.12-01 5.34-03	5.47+02 3.91+01			2 2
90	5 <i>d</i> -6 <i>p</i>	$^{2}D-^{2}P^{\circ}$		2 207.5 cm ⁻¹	103 419.8–105 627.3	10-6	2.96-02	5.47-01	8.15+02	0.738	A	2
			2	2 210.02 cm ⁻¹	103 419.70–105 629.72	6–4	2.67-02	5.47-01	4.89+02	0.516	A	2
				2 202.34 cm ⁻¹	103 420.00-105 622.34	4-2	2.94-02	4.55 - 01	2.72+02	0.260		2
			2	2 209.72 cm ⁻¹	103 420.00–105 629.72	4–4	2.97-03	9.11-02	5.43+01	-0.438	A	2
91	5 <i>d</i> -6 <i>f</i>	$^{2}D-^{2}F^{\circ}$	17 717.7	17 722.6	103 419.8–109 062.3	10–14	1.18-01	7.75-01	4.52+02	0.889	A	2
			17 717.33	17 722.17	103 419.70–109 062.35	6-8	1.18 - 01	7.39 - 01	2.59+02	0.647	A	2
			17 718.37	17 723.21	103 420.00–109 062.32	4–6	1.09 - 01	7.73 - 01	1.81 + 02	0.490		2
			17 717.43	17 722.26	103 419.70–109 062.32	6–6	7.84-03	3.69-02	1.29+01	-0.655	A	2
92	5 <i>d</i> -7 <i>p</i>	$^{2}D-^{2}P^{\circ}$	14 730.7	14 734.7	103 419.8–110 206.5	10-6	5.57-03	1.09-02	5.28+00	-0.963	B+	2
			14 727.23	14 731.25	103 419.70-110 207.99	6-4	5.04 - 03	1.09 - 02	3.18+00	-1.184	$\mathrm{B}+$	2
			14 737.45	14 741.48	103 420.00-110 203.58	4-2	5.52 - 03	8.98 - 03	1.74+00	-1.445	B +	2
			14 727.88	14 731.90	103 420.00–110 207.99	4–4	5.62-04	1.83-03	3.55-01	-2.135	В	2
93	5 <i>d</i> -7 <i>f</i>	$^{2}D-^{2}F^{\circ}$	11 256.1	11 259.1	103 419.8–112 301.5	10–14	7.20-02	1.92-01	7.10+01	0.283	A	2
			11 255.93	11 259.02	103 419.70-112 301.47	6-8	7.20 - 02	1.83 - 01	4.06+01	0.041	A	2
			11 256.32	11 259.40	103 420.00-112 301.47	4-6	6.71 - 02	1.91 - 01	2.84 + 01	-0.117	A	2
			11 255.93	11 259.02	103 419.70–112 301.47	6-6	4.80-03	9.13-03	2.03+00	-1.261	B+	2
94	5 <i>d</i> -8 <i>p</i>	$^{2}D-^{2}P^{\circ}$	10 400.5	10 403.3	103 419.8–113 032.1	10-6	3.04-03	2.96-03	1.01+00	-1.529	В	2
			10 399.31	10 402.16	103 419.70-113 033.09	6-4	2.74-03	2.97-03	6.10-01	-1.749	B+	2
			10 402.71	10 405.56	103 420.00-113 030.25	4-2	3.01 - 03	2.44 - 03	3.35-01			2
			10 399.63	10 402.48	103 420.00-113 033.09	4–4	3.07 - 04	4.98 - 04	6.82-02			2
95	5 <i>d</i> -8 <i>f</i>	$^{2}D-^{2}F^{\circ}$	9 101.9	9 104.3	103 419.8–114 403.6	10–14	4.66-02	8.10-02	2.43+01	-0.092	$\mathrm{B}+$	2
			9 101.78	9 104.28	103 419.70-114 403.55	6-8	4.66-02	7.72-02	1.39+01	-0.334	B+	2
			9 102.03	9 104.52	103 420.00-114 403.55	4-6	4.34 - 02	8.10-02	9.71 + 00			2
			9 101.78	9 104.28	103 419.70–114 403.55	6–6	3.10-03	3.86-03	6.94-01	-1.635	B+	2
96	5 <i>d</i> -9 <i>p</i>	$^{2}D-^{2}P^{\circ}$	8 709.7	8 712.1	103 419.8–114 898.1	10-6	2.02-03	1.38-03	3.96-01	-1.860	В	2
			8 709.15	8 711.55	103 419.70–114 898.72	6-4	1.83-03	1.39-03	2.38-01	-2.079	В	2
			8 710.85	8 713.24	103 420.00-114 896.79	4-2	2.00 - 03	1.14 - 03	1.31-01	-2.341	В	2
			8 709.38	8 711.77	103 420.00–114 898.72	4–4	2.04-04	2.32-04	2.66-02	-3.032	C+	2
97	5 <i>d</i> -9 <i>f</i>	$^{2}D-^{2}F^{\circ}$	8 046.2	8 048.4	103 419.8–115 844.6	10–14	3.67-02	4.99-02	1.32+01	-0.302	B+	2
			8 046.14	8 048.35	103 419.70-115 844.60	6-8	3.67-02	4.75 - 02	7.55+00	-0.545	$\mathrm{B}+$	2
			8 046.34	8 048.55	103 420.00-115 844.60	4-6	3.42 - 02	4.98 - 02	5.28 + 00	-0.701	B+	2
			8 046.14	8 048.35	103 419.70–115 844.60	6-6	2.45 - 03	2.37 - 03	3.78 - 01	-1.847	В	2
98	5 <i>d</i> -10 <i>p</i>	$^{2}D-^{2}P^{\circ}$	7 826	7 828	103 419.8–116 195	10-6	1.88-03	1.04-03	2.68-01	-1.983	D	1
			7 825.4	7 827.5	103 419.70–116 195.1	6–4	1.70-03	1.04-03	1.61-01	-2.205	D	LS
			7 826.4	7 828.6	103 420.00–116 193.7	4–2	1.88-03	8.64-04	8.91-02			LS
			7 825.6	7 827.7	103 420.00-116 195.1	4–4	1.88-04	1.73-04	1.78-02			LS
99	5 <i>f</i> -6 <i>d</i>	$^{2}F^{\circ}-^{2}D$	19 188	19 193	103 689.9–108 900.1	14-10	7.93-03	3.13-02	2.77+01	-0.358	A	2
			19 188.3	19 193.5	103 689.92–108 900.02	8–6	7.54-03	3.12-02	1.58+01	-0.603	Α	2
			19 187.4	19 192.6	103 689.86–108 900.20	6–4	7.96-03	2.93-02	1.11+01			2
			19 188.0	19 193.3	103 689.86–108 900.02	6–6	3.77-04	2.08-03	7.89-01			2
00	5 <i>f</i> -7 <i>d</i>	${}^{2}F^{\circ}-{}^{2}D$	11 751.5	11 754.7	103 689.9–112 197.1	14–10	3.96-03	5.85-03	3.17+00			2
55	J iu	1 - D	11 / 51.5	11 / 54./	105 007.7 112 177.1	1 7 10	2.70 03	5.55 05	J.17 TUU	1.007	٠.	-

Table 44. Transition probabilities of allowed lines for Mg II (references for this table are as follows: 1=Taylor, 103=Taylor, 103

	Transition		λ_{air}	λ_{vac} (Å)	$E_i - E_k$		A_{ki}		S			
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	$\log gf$	Acc.	Source
			11 751.63	11 754.85	103 689.92–112 197.05	8-6	3.76-03	5.84 - 03	1.81 + 00			2
			11 751.38	11 754.60	103 689.86–112 197.17	6–4	3.97-03	5.48-03	1.27+00			2
			11 751.55	11 754.76	103 689.86–112 197.05	6–6	1.88-04	3.89-04	9.04-02	-2.632	В	2
101	5 <i>f</i> -8 <i>d</i>	$^{2}F^{\circ}-^{2}D$	9 393.4	9 396.0	103 689.9–114 332.7	14-10	2.29-03	2.17-03	9.38-01	-1.517	В	2
			9 393.48	9 396.06	103 689.92–114 332.68	8-6	2.18 - 03	2.16 - 03	5.34-01	-1.762	В	2
			9 393.38	9 395.95	103 689.86-114 332.74	6-4	2.30 - 03	2.03 - 03	3.77 - 01	-1.914	В	2
			9 393.43	9 396.01	103 689.86–114 332.68	6–6	1.09-04	1.44 - 04	2.68-02	-3.063	C+	2
02	5 <i>f</i> -9 <i>d</i>	$^2F^{\circ}-^2D$	8 259.1	8 261.4	103 689.9–115 794.4	14-10	1.70-03	1.24-03	4.74-01	-1.760	В	2
			8 259.14	8 261.41	103 689.92–115 794.39	8-6	1.62 - 03	1.24-03	2.70-01	-2.003	В	2
			8 259.07	8 261.34	103 689.86-115 794.44	6-4	1.71 - 03	1.16 - 03	1.90 - 01	-2.157	В	2
			8 259.10	8 261.37	103 689.86–115 794.39	6–6	8.09-05	8.28 - 05	1.35-02	-3.304	C+	2
103	5 <i>f</i> – 10 <i>d</i>	$^{2}F^{\circ}-^{2}D$	7 603.3	7 605.4	103 689.9–116 838.5	14-10	1.17-03	7.22-04	2.53-01	-1.995	D	1
			7 603.32	7 605.41	103 689.92–116 838.45	8-6	1.11 - 03	7.22 - 04	1.45-01			LS
			7 603.27	7 605.36	103 689.86-116 838.48	6–4	1.17 - 03	6.74 - 04	1.01 - 01			LS
			7 603.29	7 605.38	103 689.86–116 838.45	6–6	5.55-05	4.81 - 05	7.23-03	-3.540	E+	LS
04	6 <i>p</i> – 7 <i>s</i>	$^{2}P^{\circ}-^{2}S$		3 157.0 cm ⁻¹	<i>105 627.3</i> –108 784.33	6–2	1.01 - 01	5.07-01	3.18+02	0.483	A	2
			3	3 154.61 cm ⁻¹	105 629.72-108 784.33	4-2	6.75 - 02	5.08-01	2.12+02	0.308	A	2
			3	3 161.99 cm ⁻¹	105 622.34-108 784.33	2–2	3.38 - 02	5.06-01	1.05+02	0.005	A	2
05	6 <i>p</i> – 6 <i>d</i>	$^{2}P^{\circ}-^{2}D$		3 272.8 cm ⁻¹	105 627.3–108 900.1	6–10	7.25-02	1.69+00	1.02+03	1.006	A	2
			3	3 270.30 cm ⁻¹	105 629.72–108 900.02	4–6	7.24-02	1.52+00	6.13+02	0.784	Α	2
				3 277.86 cm ⁻¹	105 622.34-108 900.20	2-4	6.05 - 02	1.69+00	3.39 + 02	0.529		2
				3 270.48 cm ⁻¹	105 629.72–108 900.20	4–4	1.21-02	1.69-01	6.82+01			2
06	6 <i>p</i> – 8 <i>s</i>	$^{2}P^{\circ}-^{2}S$	15 375.8	15 380.1	<i>105 627.3</i> –112 129.20	6–2	4.65-02	5.50-02	1.67+01	-0.481	B+	2
			15 381.64	15 385.85	105 629.72-112 129.20	4–2	3.10-02	5.49-02	1.11+01	-0.658	B+	2
			15 364.20	15 368.40	105 622.34–112 129.20	2–2	1.55 - 02	5.50-02	5.56+00	-0.959	$\mathrm{B}+$	2
07	6 <i>p</i> -7 <i>d</i>	$^{2}P^{\circ}-^{2}D$	15 216.9	15 221.2	105 627.3–112 197.1	6–10	2.65-02	1.53-01	4.61+01	-0.037	B+	2
			15 222.73	15 226.89	105 629.72–112 197.05	4–6	2.64-02	1.38-01	2.76+01	-0.258	Α	2
			15 205.36	15 209.52	105 622.34-112 197.17	2-4	2.22 - 02	1.54 - 01	1.54+01	-0.511	B+	2
			15 222.45	15 226.61	105 629.72–112 197.17	4-4	4.40-03	1.53-02	3.07+00			2
08	6 <i>p</i> – 9 <i>s</i>	$^{2}P^{\circ}-^{2}S$	11 541.4	11 544.6	<i>105 627.3</i> –114 289.36	6–2	2.82-02	1.88-02	4.28+00	-0.948	B+	2
			11 544.66	11 547.82	105 629.72–114 289.36	4–2	1.88-02	1.88-02	2.85 + 00	-1.124	B+	2
			11 534.83	11 537.99	105 622.34–114 289.36	2–2	9.42-03	1.88-02	1.43+00			2
09	6 <i>p</i> – 8 <i>d</i>	$^{2}P^{\circ}-^{2}D$	11 483.9	11 487.1	105 627.3–114 332.7	6–10	1.38-02	4.56-02	1.03+01	-0.563	B+	2
			11 487.20	11 490.34	105 629.72–114 332.68	4–6	1.38-02	4.10-02	6.20+00	-0.785	B+	2
			11 477.39	11 480.53	105 622.34–114 332.74	2–4	1.16-02	4.57-02	3.46+00			2
			11 487.12	11 490.26	105 629.72–114 332.74	4-4	2.29-03	4.54-03	6.87-01			2
10	6p-10s	$^{2}P^{\circ}-^{2}S$	9 861.4	9 864.2	<i>105 627.3</i> –115 764.99	6–2	2.21-02	1.08-02	2.10+00			2
			9 863.83	9 866.54	105 629.72–115 764.99	4–2	1.47-02	1.08-02	1.40+00	_1 365	Α	2
			9 856.65	9 859.36	105 622.34–115 764.99	2–2	7.40 - 03	1.08-02	7.00-01			2
		2. 0. 2										
111	6 <i>p</i> – 9 <i>d</i>	$^{2}P^{\circ}-^{2}D$	9 832.9	9 835.6	105 627.3–115 794.4	6–10	9.65-03	2.33-02	4.53+00	-0.854	B+	2
			9 835.30	9 838.00	105 629.72–115 794.39	4–6	9.63 - 03	2.10-02	2.72+00	-1.076	B+	2

Table 44. Transition probabilities of allowed lines for Mg II (references for this table are as follows: 1=Taylor, 103=Taylor, 103

NT.	Transition	3.6.1.	λ _{air}	λ_{vac} (Å)	$E_i - E_k$		A_{ki}	C	S (-,)	1- "		C
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)			Sourc
			9 835.25	9 837.95	105 629.72–115 794.44	4–4	1.60-03	2.32-03	3.01-01	-2.032	В	2
12	6p-10d	$^{2}P^{\circ}-^{2}D$	8 917.2	8 919.7	105 627.3–116 838.5	6-10	4.41 - 03	8.77-03	1.55+00	-1.279	D+	1
			8 919.17	8 921.62	105 629.72–116 838.45	4–6	4.41-03	7.89-03	9.27-01	-1.501	D+	LS
			8 913.28	8 915.72	105 622.34-116 838.48	2-4	3.68 - 03	8.78 - 03	5.15 - 01	-1.755	E+	LS
			8 919.14	8 921.59	105 629.72–116 838.48	4–4	7.35 - 04	8.77 - 04	1.03-01	-2.455	D	LS
113	7s-7p	$^{2}S-^{2}P^{\circ}$		1 422.2 cm ⁻¹	108 784.33–110 206.5	2-6	1.19-02	2.65+00	1.23+03	0.724	A	2
			1	423.66 cm ⁻¹	108 784.33-110 207.99	2-4	1.20-02	1.77 + 00	8.18+02	0.549	A	2
			1	419.25 cm ⁻¹	108 784.33–110 203.58	2–2	1.19 - 02	8.83 - 01	4.10+02	0.247	A	2
14	7s-8p	2 S $-^2$ P $^{\circ}$		4 247.8 cm ⁻¹	108 784.33–113 032.1	2-6	6.30-04	1.57-02	2.43+00	-1.503	B+	2
			4	248.76 cm ⁻¹	108 784.33-113 033.09	2–4	6.39-04	1.06-02	1.65+00	-1.674	B+	2
				245.92 cm ⁻¹	108 784.33–113 030.25	2–2	6.11-04	5.08-03	7.87-01			2
15	7 <i>s</i> – 9 <i>p</i>	$^{2}S-^{2}P^{\circ}$	16 352.1	16 356.5	108 784.33–114 898.1	2-6	1.02-04	1.23-03	1.32-01	-2.609	В	2
			16 350.39	16 354.86	108 784.33–114 898.72	2–4	1.05-04	8.46-04	9.11-02	-2.772	В	2
			16 355.56	16 360.03	108 784.33–114 896.79	2-2	9.58-05	3.84-04	4.14-02	-3.115	C+	2
116	6 <i>d</i> -6 <i>f</i>	$^{2}D-^{2}F^{\circ}$		162.2 cm ⁻¹	108 900.1–109 062.3	10–14	2.05-05	1.63-01	3.31+03	0.212	A	2
				162.33 cm ⁻¹	108 900.02–109 062.35	6–8	2.05-05	1.56-01	1.89+03	-0.029	Α	2
				162.12 cm ⁻¹	108 900.20–109 062.32	4–6	1.91-05	1.63-01	1.33+03			2
				162.30 cm ⁻¹	108 900.02–109 062.32	6–6	1.37-06	7.78-03	9.47+01			2
17	6 <i>d</i> -7 <i>p</i>	$^{2}D-^{2}P^{\circ}$		1 306.4 cm ⁻¹	108 900.1–110 206.5	10-6	1.37-02	7.20-01	1.82+03	0.857	A	2
			1	307.97 cm ⁻¹	108 900.02–110 207.99	6–4	1.23-02	7.21-01	1.09+03	0.636	A	2
				303.38 cm ⁻¹	108 900.20-110 203.58	4-2	1.36-02	5.99-01	6.06 + 02	0.379		2
			1	307.79 cm ⁻¹	108 900.20-110 207.99	4-4	1.37 - 03	1.20-01	1.21+02			2
18	6 <i>d</i> -7 <i>f</i>	$^{2}D-^{2}F^{\circ}$		3 401.4 cm ⁻¹	108 900.1–112 301.5	10–14	4.13-02	7.49-01	7.25+02	0.874	A	2
			3	3 401.45 cm ⁻¹	108 900.02-112 301.47	6-8	4.14-02	7.15-01	4.15+02	0.632	A	2
				3 401.27 cm ⁻¹	108 900.20-112 301.47	4–6	3.85-02	7.48-01	2.90 + 02	0.476		2
				3 401.45 cm ⁻¹	108 900.02-112 301.47	6–6	2.76-03	3.57-02	2.07+01			2
19	6 <i>d</i> -8 <i>p</i>	$^{2}D-^{2}P^{\circ}$		4 132.0 cm ⁻¹	108 900.1–113 032.1	10-6	2.50-03	1.32-02	1.05+01	-0.879	$\mathrm{B}+$	2
			4	133.07 cm ⁻¹	108 900.02-113 033.09	6–4	2.26-03	1.32-02	6.33+00	-1.101	B+	2
				130.05 cm ⁻¹	108 900.20–113 030.25	4–2	2.48-03	1.09-02	3.47+00			2
				132.89 cm ⁻¹	108 900.20–113 033.09	4-4	2.53-04	2.22-03	7.07-01			2
20	6 <i>d</i> -8 <i>f</i>	$^{2}D-^{2}F^{\circ}$	18 165	18 170	108 900.1–114 403.6	10–14	2.82-02	1.95-01	1.17+02	0.290	A	2
			18 165.2	18 170.2	108 900.02–114 403.55	6–8	2.82-02	1.86-01	6.68+01	0.048	Α	2
			18 165.8	18 170.8	108 900.20–114 403.55	4–6	2.63-02	1.95-01	4.67+01			2
			18 165.2	18 170.2	108 900.02–114 403.55	6–6	1.88-03	9.30-03	3.34+00			2
21	6 <i>d</i> -9 <i>p</i>	$^{2}D-^{2}P^{\circ}$	16 667.7	16 672.2	108 900.1–114 898.1	10-6	1.43-03	3.58-03	1.97+00	-1.446	B+	2
			16 665.73	16 670.28	108 900.02–114 898.72	6–4	1.30-03	3.60-03	1.19+00	-1.666	B+	2
			16 671.59	16 676.14	108 900.20–114 896.79	4–2	1.42-03	2.95-03	6.49-01			2
			16 666.23	16 670.78	108 900.20–114 898.79	4–2	1.42-03	6.04-04	1.33-01			2
122	6 <i>d</i> -9 <i>f</i>	$^{2}D-^{2}F^{\circ}$	14 395.9	14 399.9	108 900.1–115 844.6	10–14	2.22-02	9.65-02	4.58+01	-0.015	B+	2
			14 205 70	1 4 200 72	100 000 02 115 044 60		2.22 02	0.20 02	2 (2 : 01	0.250		2
			14 395.78 14 396.16	14 399.72 14 400.09	108 900.02–115 844.60 108 900.20–115 844.60	6–8 4–6	2.22-02 $2.07-02$	9.20-02 9.65-02	2.62+01 1.83+01			2 2

Table 44. Transition probabilities of allowed lines for Mg II (references for this table are as follows: 1=Taylor, 103=Taylor, 103

No.	Transition array	Mult.	λ_{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	log gf	Acc	Source
123	6 <i>d</i> – 10 <i>p</i>	$^{2}D-^{2}P^{\circ}$		13 708	108 900.1–116 195	10-6	1.33-03	$\frac{Jik}{2.24-03}$	1.01+00			
123	0 <i>u</i> – 10 <i>p</i>	<i>D</i> - 1										
			13 704.1	13 707.9	108 900.02–116 195.1	6–4	1.19-03	2.24-03	6.07-01			LS
			13 707.1	13 710.8	108 900.20–116 193.7	4–2	1.33-03	1.87-03	3.38-01			LS
			13 704.5	13 708.2	108 900.20–116 195.1	4–4	1.33-04	3.74-04	6.75-02	-2.825	D	LS
124	6 <i>f</i> -7 <i>d</i>	$^{2}\text{F}^{\circ}-^{2}\text{D}$		3 134.8 cm ⁻¹	109 062.3–112 197.1	14–10	5.03-03	5.48-02	8.06+01	-0.115	A	2
				3 134.70 cm ⁻¹	109 062.35-112 197.05	8-6	4.78 - 03	5.47-02	4.59+01			2
				3 134.85 cm ⁻¹	109 062.32-112 197.17	6-4	5.05 - 03	5.13 - 02	3.23 + 01	-0.512	A	2
				3 134.73 cm ⁻¹	109 062.32–112 197.05	6–6	2.39 - 04	3.65-03	2.30+00	-1.660	B+	2
125	6 <i>f</i> -8 <i>d</i>	$^2F^{\circ}-^2D$	18 969	18 974	109 062.3–114 332.7	14-10	2.77-03	1.07-02	9.35+00	-0.824	B+	2
			18 969.0	18 974.1	109 062.35–114 332.68	8-6	2.64-03	1.07-02	5.33+00	-1.068	B+	2
			18 968.6	18 973.8	109 062.32-114 332.74	6-4	2.78 - 03	1.00 - 02	3.75+00	-1.222	B+	2
			18 968.9	18 974.0	109 062.32-114 332.68	6-6	1.32 - 04	7.12 - 04	2.67-01	-2.369	В	2
126	6 <i>f</i> -9 <i>d</i>	$^{2}F^{\circ}-^{2}D$	14 850.2	14 854.2	109 062.3–115 794.4	14-10	1.94-03	4.59-03	3.14+00	-1.192	B+	2
			14 850.28	14 854.34	109 062.35–115 794.39	8-6	1.85-03	4.58-03	1.79+00	-1.436	B+	2
			14 850.10		109 062.32-115 794.44	6–4	1.95-03	4.29-03	1.26+00			2
			14 850.21		109 062.32–115 794.39	6-6	9.23-05	3.05-04	8.96-02			2
127	6 <i>f</i> – 10 <i>d</i>	$^{2}F^{\circ}-^{2}D$	12 856.4	12 859.8	109 062.3–116 838.5	14-10	1.30-03	2.30-03	1.36+00	-1.492	D+	1
			12 856.40	12 859.92	109 062.35–116 838.45	8-6	1.24-03	2.30-03	7.79-01	-1.735	D+	LS
			12 856.30		109 062.32-116 838.48	6-4	1.30-03	2.15 - 03	5.46-01	-1.889	D+	LS
			12 856.35		109 062.32-116 838.45	6–6	6.17-05	1.53-04	3.89-02			LS
128	7p - 8s	$^{2}P^{\circ}-^{2}S$		1 922.7 cm ⁻¹	110 206.5–112 129.20	6–2	4.63-02	6.25-01	6.43+02	0.574	A	2
				1 921.21 cm ⁻¹	110 207.99–112 129.20	4-2	3.08-02	6.26-01	4.29+02	0.399	A	2
				1 925.62 cm ⁻¹	110 203.58-112 129.20	2–2	1.54 - 02	6.24-01	2.13+02	0.096	A	2
129	7 <i>p</i> -7 <i>d</i>	$^{2}P^{\circ}-^{2}D$		1 990.6 cm ⁻¹	110 206.5–112 197.1	6–10	3.03-02	1.91+00	1.90+03	1.059	A	2
				1 989.06 cm ⁻¹	110 207.99-112 197.05	4-6	3.03-02	1.72 + 00	1.14+03	0.838	Α	2
				1 993.59 cm ⁻¹	110 203.58-112 197.17	2-4	2.53-02	1.91+00	6.31+02	0.582		2
				1 989.18 cm ⁻¹	110 207.99–112 197.17	4-4	5.06-03	1.92-01	1.27+02			2
130	7 <i>p</i> – 9 <i>s</i>	$^{2}P^{\circ}-^{2}S$		4 082.9 cm ⁻¹	<i>110 206.5</i> –114 289.36	6–2	2.24-02	6.71-02	3.24+01	-0.395	B+	2
				4 081.37 cm ⁻¹	110 207.99-114 289.36	4-2	1.49-02	6.70-02	2.16+01	-0.572	$\mathrm{B}+$	2
				4 085.78 cm ⁻¹	110 203.58-114 289.36	2–2	7.47 - 03	6.71 - 02	1.08+01	-0.872	B+	2
131	7 <i>p</i> -8 <i>d</i>	$^{2}P^{\circ}-^{2}D$		4 126.2 cm ⁻¹	110 206.5–114 332.7	6-10	1.25-02	1.83-01	8.76+01	0.041	A	2
				4 124.69 cm ⁻¹	110 207.99-114 332.68	4-6	1.25-02	1.65-01	5.25+01	-0.180	A	2
				4 129.16 cm ⁻¹	110 203.58-114 332.74	2-4	1.04 - 02	1.83 - 01	2.93 + 01	-0.437	A	2
				4 124.75 cm ⁻¹	110 207.99-114 332.74	4-4	2.07 - 03	1.83 - 02	5.83 + 00	-1.135	B +	2
132	7p-10s	$^{2}P^{\circ}-^{2}S$	17 986	17 990	<i>110 206.5</i> –115 764.99	6–2	1.61 - 02	2.60-02	9.24+00			2
			17 990.4	17 995.3	110 207.99–115 764.99	4-2	1.07-02	2.60-02	6.16+00	-0.983	B+	2
			17 976.1	17 981.1	110 203.58-115 764.99	2–2	5.37-03	2.60-02	3.08+00	-1.284	$\mathrm{B}+$	2
133	7p - 9d	$^{2}P^{\circ}-^{2}D$	17 891	17 896	110 206.5–115 794.4	6-10	7.88-03	6.31-02	2.23+01	-0.422	B+	2
			17 895.7	17 900.6	110 207.99–115 794.39	4–6	7.87-03	5.67-02	1.34+01	-0.644	B+	2
			17 881.5	17 886.3	110 203.58–115 794.44	2-4	6.60-03	6.33-02	7.45+00			2
			17 895.6	17 900.5	110 207.99–115 794.44	4-4	1.31-03	6.29-03	1.48+00			
134	7p - 10d	$^{2}\text{P}^{\circ}$ – ^{2}D	15 074.4	15 078.4	110 206.5–116 838.5	6–10	3.75-03	2.13-02	6.35+00	-0.893	D	1

Table 44. Transition probabilities of allowed lines for Mg II (references for this table are as follows: 1=Taylor, 103=Taylor, 103

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	No.	Transition array	Mult.	$\begin{array}{ccc} \lambda_{air} & & \lambda_{vac} \; (\mathring{A}) \\ (\mathring{A}) & & \text{or} \; \sigma \; (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
18 18 18 18 18 18 18 18				15 077.79 15 081.91	110 207.99–116 838.45	4-6	3.75-03	1.92-02	3.81+00	-1.115	D	LS
12 12 12 13 13 14 15 15 15 15 15 15 15				15 067.70 15 071.82		2-4	3.13 - 03	2.13 - 02	2.11+00	-1.371	D	LS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				15 077.72 15 081.84	110 207.99–116 838.48	4–4	6.25 - 04	2.13-03	4.23-01	-2.070	E+	LS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	135	8s-8p	$^{2}S-^{2}P^{\circ}$	902.9 cm ⁻¹	112 129.20– <i>113 032.1</i>	2–6	5.55-03	3.06+00	2.23+03	0.787	A	2
$ \begin{array}{c} 368 8s - 9p ^2S - ^2P' \\ & 2768.9 \ cm^{-1} 112 129.20 - 114 898.71 \\ & 2769.52 \ cm^{-1} 112 129.20 - 114 898.72 \\ & 2769.59 \ cm^{-1} 112 129.20 - 114 898.72 \\ & 2769.59 \ cm^{-1} 112 129.20 - 114 898.72 \\ & 2769.59 \ cm^{-1} 112 129.20 - 114 898.72 \\ & 2769.59 \ cm^{-1} 112 129.20 - 114 898.72 \\ & 2769.59 \ cm^{-1} 112 197.05 - 112 301.47 \\ & 104.42 \ cm^{-1} 112 197.05 - 112 301.47 \\ & -104.42 \ cm^{-1} 112 197.05 - 114 403.55 \\ & -104.42 \ cm^{-1} 112 197.05 - 114 403.55 \\ & -104.42 \ cm^{-1} 112 197.05 - 114 403.55 \\ & -104.42 \ cm^{-1} 112 197.05 - 114 403.55 \\ & -104.42 \ cm^{-1} 112 197.05 - 114 403.55 \\ & -104.42 \ cm^{-1} 112 197.05 - 114 493.55 \\ & -104.42 \ cm^{-1} 112 197.05 - 114 493.55 \\ & -104.42 \ cm^{-1} 112 197.05 $				903.89 cm ⁻¹	112 129.20-113 033.09	2-4	5.56-03	2.04+00	1.49+03	0.611	A	2
2769.52 cm ⁻¹ 112 129.20-114 898.72 2-4 3.68-04 1.14-02 3.42+00 -1.541 B+ 2 2767.59 cm ⁻¹ 112 129.20-114 898.72 2-3 3.53-04 6.91-03 1.64+00 -1.859 B+ 2 2 2 2 2 2 2 2 2 2				901.05 cm ⁻¹	112 129.20–113 030.25	2–2	5.52-03	1.02+00	7.45 + 02	0.310	A	2
12 12 12 12 12 12 13 13	136	8s-9p	$^{2}S-^{2}P^{\circ}$	2 768.9 cm ⁻¹	112 129.20– <i>114</i> 898.1	2-6	3.63-04	2.13-02	5.06+00	-1.371	B+	2
104.42 cm ⁻¹ 112 197.05-112 301.47 6-8 1.10-05 2.12-01 6.67+03 0.326 A 2 104.42 cm ⁻¹ 112 197.05-112 301.47 6-8 1.10-05 2.02-01 3.81+03 0.084 A 2 104.30 cm ⁻¹ 112 197.05-112 301.47 6-6 1.02-05 2.11-01 2.67+03 0.074 A 2 104.30 cm ⁻¹ 112 197.05-112 301.47 6-6 7.33-07 1.01-02 1.91+02 -1.218 A 2 2 2 2 2 2 2 2 2				2 769.52 cm ⁻¹	112 129.20-114 898.72	2-4	3.68-04	1.44-02	3.42+00	-1.541	$\mathrm{B} +$	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2 767.59 cm ⁻¹	112 129.20–114 896.79	2-2	3.53 - 04	6.91-03	1.64+00	-1.859	B +	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	137	7 <i>d</i> -7 <i>f</i>	$^{2}D-^{2}F^{\circ}$	$104.4~{\rm cm^{-1}}$	112 197.1–112 301.5	10–14	1.10-05	2.12-01	6.67+03	0.326	A	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				104.42 cm ⁻¹	112 197.05–112 301.47	6-8	1.10-05	2.02-01	3.81 + 03	0.084	A	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				104.30 cm ⁻¹	112 197.17-112 301.47	4-6	1.02 - 05	2.11 - 01	2.67 + 03	-0.074	A	2
12 197.05-113 033.09				104.42 cm ⁻¹	112 197.05–112 301.47	6-6	7.33 - 07	1.01 - 02	1.91 + 02	-1.218	A	2
833.08 cm ⁻¹ 112 197.17-113 030.25 4-2 6.86-03 7.41-01 1.17+03 0.472 A 2	138	7 <i>d</i> -8 <i>p</i>	$^{2}D-^{2}P^{\circ}$	835.0 cm^{-1}	112 197.1–113 032.1	10-6	6.91-03	8.91-01	3.51+03	0.950	A	2
$ \begin{array}{c} 835.92\ \mathrm{cm}^{-1} & 112\ 197.17-113\ 033.09 & 4-4 & 6.92-04 & 1.48-01 & 2.34+02 & -0.228\ A & 2 \\ 2\ 206.50\ \mathrm{cm}^{-1} & 112\ 197.1-114\ 403.6 & 10-14 & 1.73-02 & 7.46-01 & 1.11+03 & 0.873\ A & 2 \\ 2\ 206.50\ \mathrm{cm}^{-1} & 112\ 197.05-114\ 403.55 & 6-8 & 1.73-02 & 7.12-01 & 6.37+02 & 0.631\ A & 2 \\ 2\ 206.50\ \mathrm{cm}^{-1} & 112\ 197.05-114\ 403.55 & 4-6 & 1.61-02 & 7.45-01 & 4.45+02 & 0.474\ A & 2 \\ 2\ 206.50\ \mathrm{cm}^{-1} & 112\ 197.05-114\ 403.55 & 6-6 & 1.16-03 & 3.56-02 & 3.19+01 & -0.670\ A & 2 \\ 2\ 206.50\ \mathrm{cm}^{-1} & 112\ 197.05-114\ 403.55 & 6-6 & 1.16-03 & 3.56-02 & 3.19+01 & -0.670\ A & 2 \\ 2\ 206.50\ \mathrm{cm}^{-1} & 112\ 197.05-114\ 403.55 & 6-6 & 1.16-03 & 3.56-02 & 3.19+01 & -0.670\ A & 2 \\ 2\ 206.50\ \mathrm{cm}^{-1} & 112\ 197.05-114\ 498.1 & 10-6 & 1.24-03 & 1.53-02 & 1.87+01 & -0.815\ B+ & 2 \\ 2\ 701.67\ \mathrm{cm}^{-1} & 112\ 197.15-114\ 898.72 & 6-4 & 1.13-03 & 1.54-02 & 1.13+01 & -1.034\ B+ & 2 \\ 2\ 206.50\ \mathrm{cm}^{-1} & 112\ 197.17-114\ 898.72 & 4-4 & 1.26-04 & 2.58-03 & 1.26+00 & -1.986\ B+ & 2 \\ 2\ 701.55\ \mathrm{cm}^{-1} & 112\ 197.17-115\ 844.60 & 6-6 & 8\ 1.39-02 & 2.19-01 & 1.98+02 & 0.340\ A & 2 \\ 3\ 647.55\ \mathrm{cm}^{-1} & 112\ 197.05-115\ 844.60 & 6-6 & 8\ 1.39-02 & 2.09-01 & 1.13+02 & 0.098\ A & 2 \\ 3\ 647.35\ \mathrm{cm}^{-1} & 112\ 197.05-115\ 844.60 & 6-6 & 9.27-04 & 1.04-02 & 5.66+00 & -1.205\ B+ & 2 \\ 42\ 7\ d-10p & {}^2D-{}^2P^* & 3\ 998\ \mathrm{cm}^{-1} & 112\ 197.17-116\ 195.1 & 6-4 & 9.08-04 & 5.68-03 & 4.68+00 & -1.246\ D & 1 \\ 3\ 998.1\ \mathrm{cm}^{-1} & 112\ 197.17-116\ 195.1 & 6-4 & 9.08-04 & 5.68-03 & 2.81+00 & -1.468\ D & 1.8 \\ 3\ 996.5\ \mathrm{cm}^{-1} & 112\ 197.17-116\ 195.1 & 6-4 & 9.08-04 & 5.68-03 & 2.81+00 & -1.468\ D & 1.8 \\ 3\ 997.5\ \mathrm{cm}^{-1} & 112\ 197.17-116\ 195.1 & 6-4 & 9.08-04 & 5.68-03 & 2.81+00 & -1.468\ D & 1.8 \\ 3\ 997.5\ \mathrm{cm}^{-1} & 112\ 197.17-116\ 195.1 & 6-4 & 9.08-04 & 5.68-03 & 2.81+00 & -1.468\ D & 1.8 \\ 43\ 3\ 7f-8d & {}^2F^{-2}D & 2\ 93.12\ \mathrm{cm}^{-1} & 112\ 301.47-114\ 332.74 & 6-4 & 3.15-03 & 7.63-02 & 7.42+01 & -0.339\ A & 2 \\ 2031.27\ \mathrm{cm}^{-1} & 112\ 301.47-114\ 332.$				836.04 cm ⁻¹	112 197.05-113 033.09	6-4	6.23 - 03	8.91-01	2.11+03	0.728	A	2
$ \begin{array}{c} 39 7d - 8f \\ & 2D - ^{2}F^{+} \\ & 2206.50 cm^{-1} \\ & 2206.50 cm^{-1} \\ & 112 197.05 - 114 403.65 \\ & 2206.38 cm^{-1} \\ & 112 197.17 - 114 403.55 \\ & 2206.50 cm^{-1} \\ & 112 197.17 - 114 403.55 \\ & 2206.50 cm^{-1} \\ & 112 197.17 - 114 403.55 \\ & 2206.50 cm^{-1} \\ & 112 197.05 - 114 403.55 \\ & 4-6 \\ & 1.61 - 02 \\ & 7.45 - 01 \\ & 4.45 + 02 \\ & 3.19 + 01 \\ & -0.670 A \\ & 2 \\ & 3.19 + 01 \\ & -0.670 A \\ & 2 \\ & 206.50 cm^{-1} \\ & 112 197.05 - 114 403.55 \\ & 6-6 \\ & 1.16 - 03 \\ & 3.56 - 02 \\ & 3.19 + 01 \\ & -0.670 A \\ & 2 \\ & 3.19 + 01 \\ & -0.670 A \\ & 2 \\ & 2.701.67 cm^{-1} \\ & 112 197.17 - 114 898.71 \\ & 2699.62 cm^{-1} \\ & 112 197.17 - 114 896.79 \\ & 4-2 \\ & 2.701.55 cm^{-1} \\ & 112 197.17 - 114 896.79 \\ & 4-2 \\ & 2.701.55 cm^{-1} \\ & 112 197.17 - 114 896.79 \\ & 4-2 \\ & 1.23 - 03 \\ & 1.23 - 03 \\ & 1.27 - 02 \\ & 2.58 - 03 \\ & 1.26 + 00 \\ & 2.58 - 03 \\ & 1.26 + 00 \\ & -1.986 B \\ & 2 \\ & 2.031.21 cm^{-1} \\ & 112 197.17 - 118 844.60 \\ & 4-6 \\ & 1.39 - 02 \\ & 2.09 - 01 \\ & 1.39 - 02 \\ & 2.19 - 01 \\ & -0.577 A \\ & 2.031.21 cm^{-1} \\ & 112 197.05 - 115 844.60 \\ & 6-6 \\ & 9.27 - 04 \\ & 1.04 - 02 \\ & 2.031.21 cm^{-1} \\ & 112 197.17 - 116 195.1 \\ & 4-4 \\ & 1.01 - 03 \\ & 3.647.55 cm^{-1} \\ & 112 197.17 - 116 195.1 \\ & 4-4 \\ & 1.01 - 03 \\ & 3.647.55 cm^{-1} \\ & 112 197.17 - 116 195.1 \\ & 4-4 \\ & 1.01 - 03 \\ & 3.668 - 03 \\ & 2.81 + 00 \\ & -1.205 B + 2 \\ & 2.031.21 cm^{-1} \\ & 112 197.17 - 116 195.1 \\ & 4-4 \\ & 1.01 - 04 \\ & 4-6 \\ & 1.30 - 02 \\ & 2.19 - 01 \\ & -1.04 - 02 \\ & 2.66 + 00 \\ & -1.205 B + 2 \\ & 2.031.21 cm^{-1} \\ & 112 197.17 - 116 195.1 \\ & 4-4 \\ & 1.01 - 04 \\ & 4-6 \\ & 1.30 - 02 \\ & 2.19 - 01 \\ & -1.04 - 02 \\ & 2.66 + 00 \\ & -1.205 B + 2 \\ & 2.031.21 cm^{-1} \\ & 112 197.17 - 116 195.1 \\ & 4-4 \\ & 1.01 - 04 \\ & 4-6 \\ & 1.30 - 02 \\ & 2.19 - 01 \\ & 1.34 + 01 \\ & 2.03 - 03 \\ & 1.56 + 00 \\ & 1.24 - 01 \\ & 1.34 + 01 \\ & 1.34 + 01 \\ & 1.34 + 01 \\ & 1.34 + 01 \\ & 1.34 + 01 \\ & 1.34 + 01 $				833.08 cm^{-1}	112 197.17-113 030.25	4-2	6.86 - 03	7.41 - 01	1.17 + 03	0.472	A	2
$ \begin{array}{c} 2\ 206.50\ \mathrm{cm^{-1}} \\ 2\ 206.50\ \mathrm{cm^{-1}} \\ 2\ 206.38\ \mathrm{cm^{-1}} \\ 2\ 206.38\ \mathrm{cm^{-1}} \\ 112\ 197.17-114\ 403.55 \\ 2\ 206.50\ \mathrm{cm^{-1}} \\ 112\ 197.17-114\ 403.55 \\ 2\ 206.50\ \mathrm{cm^{-1}} \\ 112\ 197.05-114\ 403.55 \\ 2\ 206.50\ \mathrm{cm^{-1}} \\ 112\ 197.05-114\ 403.55 \\ 6-6 \\ 1.16-03 \\ 3.56-02 \\ 3.19+01 \\ -0.670\ A \\ 2\ 3.19+01 \\ -0.670\ A \\ 2\ 3\ 4\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\$				$835.92~{\rm cm}^{-1}$	112 197.17–113 033.09	4-4	6.92 - 04	1.48 - 01	2.34+02	-0.228	A	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	139	7 <i>d</i> -8 <i>f</i>	$^{2}D-^{2}F^{\circ}$	2 206.5 cm ⁻¹	112 197.1–114 403.6	10–14	1.73-02	7.46-01	1.11+03	0.873	A	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2 206.50 cm ⁻¹	112 197.05–114 403.55	6-8	1.73-02	7.12-01	6.37 + 02	0.631	A	2
$ \begin{array}{c} 440 7d - 9p \\ & 2D - ^2P^{\circ} \\ & 2701.67 \ cm^{-1} \\ & 2701.67 \ cm^{-1} \\ & 112 \ 197.05 - 114 \ 898.1 \\ & 2701.55 \ cm^{-1} \\ & 112 \ 197.17 - 114 \ 898.7 \\ & 2701.55 \ cm^{-1} \\ & 112 \ 197.17 - 114 \ 898.7 \\ & 2701.55 \ cm^{-1} \\ & 112 \ 197.17 - 114 \ 898.7 \\ & 4 - 4 \\ & 1.26 - 04 \\ & 1.23 - 03 \\ & 1.27 - 02 \\ & 1.23 - 03 \\ & 1.27 - 02 \\ & 1.27 - 02 \\ & 1.13 + 01 \\ & 1.30 + 0 1 \\ & 1.30 + 0 1 \\ & 1.30 + 0 1 \\ & 1.30 - 02 \\ & 1.31 + 01 \\ & 1.30 - 01 \\ & 1.30 + 0 1 \\ &$				2 206.38 cm ⁻¹	112 197.17-114 403.55	4-6	1.61 - 02	7.45 - 01	4.45 + 02	0.474	A	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				$2\ 206.50\ cm^{-1}$	112 197.05–114 403.55	6-6	1.16-03	3.56-02	3.19+01	-0.670	A	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	140	7 <i>d</i> -9 <i>p</i>	$^{2}D-^{2}P^{\circ}$	2 701.0 cm ⁻¹	112 197.1–114 898.1	10-6	1.24-03	1.53-02	1.87+01	-0.815	B+	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2 701.67 cm ⁻¹	112 197.05-114 898.72	6-4	1.13-03	1.54-02	1.13+01	-1.034	$\mathrm{B}+$	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				2 699.62 cm ⁻¹	112 197.17-114 896.79	4-2	1.23 - 03	1.27 - 02	6.17+00	-1.294	B+	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				2 701.55 cm ⁻¹	112 197.17–114 898.72	4-4	1.26 - 04	2.58-03	1.26+00	-1.986	$\mathrm{B} +$	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	141	7 <i>d</i> -9 <i>f</i>	$^{2}D-^{2}F^{\circ}$	3 647.5 cm ⁻¹	112 197.1–115 844.6	10–14	1.39-02	2.19-01	1.98+02	0.340	A	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				3 647.55 cm ⁻¹	112 197.05–115 844.60	6-8	1.39-02	2.09-01	1.13+02	0.098	A	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				3 647.43 cm ⁻¹	112 197.17-115 844.60	4-6	1.30 - 02	2.19 - 01	7.91 + 01	-0.057	A	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				3 647.55 cm ⁻¹	112 197.05–115 844.60	6-6	9.27 - 04	1.04 - 02	5.66+00	-1.205	B+	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	142	7 <i>d</i> -10 <i>p</i>	$^{2}D-^{2}P^{\circ}$	$3~998~cm^{-1}$	112 197.1–116 195	10-6	1.01-03	5.68-03	4.68+00	-1.246	D	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				3 998.1 cm ⁻¹	112 197.05–116 195.1	6-4	9.08 - 04	5.68 - 03	2.81+00	-1.468	D	LS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				3 996.5 cm ⁻¹	112 197.17–116 193.7	4-2	1.01 - 03	4.73 - 03	1.56+00	-1.723	D	LS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				3 997.9 cm ⁻¹	112 197.17–116 195.1	4–4	1.01 - 04	9.47 - 04	3.12-01	-2.422	E+	LS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	143	7 <i>f</i> -8 <i>d</i>	$^{2}F^{\circ}-^{2}D$	$2~031.2~cm^{-1}$	112 301.5–114 332.7	14-10	3.14-03	8.15-02	1.85+02	0.057	A	2
$ 2 \ 031.21 \ \text{cm}^{-1} 112 \ 301.47 - 114 \ 332.68 6 - 6 1.49 - 04 5.43 - 03 5.28 + 00 -1.487 \text{B} + 2 $ $ 3 \ 492.9 \ \text{cm}^{-1} 112 \ 301.5 - 115 \ 794.4 14 - 10 2.03 - 03 1.78 - 02 2.35 + 01 -0.603 \text{B} + 2 $ $ 3 \ 492.92 \ \text{cm}^{-1} 112 \ 301.47 - 115 \ 794.39 8 - 6 1.93 - 03 1.77 - 02 1.34 + 01 -0.849 \text{B} + 2 $ $ 3 \ 492.97 \ \text{cm}^{-1} 112 \ 301.47 - 115 \ 794.44 6 - 4 2.03 - 03 1.66 - 02 9.40 + 00 -1.002 \text{B} + 2 $ $ 3 \ 492.92 \ \text{cm}^{-1} 112 \ 301.47 - 115 \ 794.39 6 - 6 9.63 - 05 1.18 - 03 6.69 - 01 -2.150 \text{B} + 2 $				$2\ 031.21\ cm^{-1}$	112 301.47–114 332.68	8-6	2.99-03	8.14-02	1.06+02	-0.186	A	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						6-4	3.15 - 03	7.63 - 02				2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				2 031.21 cm ⁻¹	112 301.47–114 332.68	6–6	1.49-04	5.43-03	5.28+00	-1.487	B+	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	144	7 <i>f</i> -9 <i>d</i>	$^{2}F^{\circ}-^{2}D$	3 492.9 cm ⁻¹	112 301.5–115 794.4	14-10	2.03-03	1.78-02	2.35+01	-0.603	B+	2
$3\ 492.92\ cm^{-1}$ $112\ 301.47-115\ 794.39$ $6-6$ $9.63-05$ $1.18-03$ $6.69-01$ $-2.150\ B+$ 2				3 492.92 cm ⁻¹	112 301.47-115 794.39	8-6	1.93-03	1.77-02	1.34+01	-0.849	$\mathrm{B} +$	2
				3 492.97 cm ⁻¹	112 301.47–115 794.44	6-4	2.03 - 03	1.66 - 02	9.40+00	-1.002	B +	2
45 $7f-10d$ $^{2}F^{\circ}-^{2}D$ 4537.0 cm^{-1} 112 301.5–116 838.5 14–10 1.36–03 7.08–03 7.19+00 –1.004 D 1				3 492.92 cm ⁻¹	112 301.47–115 794.39	6-6	9.63 - 05	1.18-03	6.69 - 01	-2.150	$\mathrm{B} +$	2
	145	7 <i>f</i> -10 <i>d</i>	$^2F^{\circ}-^2D$	4 537.0 cm ⁻¹	112 301.5–116 838.5	14-10	1.36-03	7.08-03	7.19+00	-1.004	D	1

Table 44. Transition probabilities of allowed lines for Mg II (references for this table are as follows: 1=Taylor, 103=Taylor, 103

	Transition		λ_{air} λ_{vac} (Å)	$E_i - E_k$		A_{ki}		S			
No.	array	Mult.	(Å) or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	log gf	Acc.	Source
			4 536.98 cm ⁻¹	112 301.47–116 838.45	8-6	1.30 - 03	7.08 - 03	4.11+00			LS
			4 537.01 cm ⁻¹	112 301.47–116 838.48	6–4	1.36-03	6.61-03	2.88+00			LS
			4 536.98 cm ⁻¹	112 301.47–116 838.45	6–6	6.48-05	4.72-04	2.05-01	-2.548	Е	LS
46	8p-9s	$^{2}P^{\circ}-^{2}S$	1 257.3 cm ⁻¹	113 032.1–114 289.36	6–2	2.35 - 02	7.44-01	1.17+03	0.650	A	2
			1 256.27 cm ⁻¹	113 033.09-114 289.36	4-2	1.57 - 02	7.45 - 01	7.81 + 02	0.474	A	2
			1 259.11 cm ⁻¹	113 030.25–114 289.36	2–2	7.85 - 03	7.43 - 01	3.88+02	0.172	A	2
47	8p-8d	$^{2}P^{\circ}-^{2}D$	$1~300.6~cm^{-1}$	113 032.1–114 332.7	6–10	1.44-02	2.13+00	3.24+03	1.107	A	2
			1 299.59 cm ⁻¹	113 033.09-114 332.68	4–6	1.44-02	1.92+00	1.95+03	0.885	A	2
			1 302.49 cm ⁻¹	113 030.25-114 332.74	2-4	1.21 - 02	2.13+00	1.08 + 03	0.629	A	2
			1 299.65 cm ⁻¹	113 033.09–114 332.74	4-4	2.41-03	2.14-01	2.17+02	_0.068	Δ	2
48	8p - 10s	$^{2}P^{\circ}-^{2}S$	2 732.9 cm ⁻¹	113 033.09=114 332.74	6–2	1.25-02	8.37-02	6.05+01			2
. 10	op 105	1 5									
			2 731.90 cm ⁻¹	113 033.09–115 764.99	4–2	8.33-03	8.36-02	4.03+01			2
			2 734.74 cm ⁻¹	113 030.25–115 764.99	2–2	4.18 - 03	8.38-02	2.02+01	-0.776	B+	2
49	8 <i>p</i> – 9 <i>d</i>	$^{2}P^{\circ}-^{2}D$	2 762.3 cm ⁻¹	113 032.1–115 794.4	6–10	6.79-03	2.22-01	1.59+02	0.125	A	2
			2 761.30 cm ⁻¹	113 033.09-115 794.39	4-6	6.78 - 03	2.00-01	9.54+01	-0.097	A	2
			2 764.19 cm ⁻¹	113 030.25-115 794.44	2-4	5.68 - 03	2.23 - 01	5.31 + 01	-0.351	A	2
			2 761.35 cm ⁻¹	113 033.09–115 794.44	4-4	1.13 - 03	2.22 - 02	1.06+01	-1.052	B+	2
50	8p-10d	$^{2}P^{\circ}-^{2}D$	3 806.4 cm ⁻¹	113 032.1–116 838.5	6-10	3.36-03	5.79-02	3.01+01	-0.459	D+	1
			3 805.36 cm ⁻¹	113 033.09–116 838.45	4-6	3.35-03	5.21-02	1.80+01	-0.681	D+	LS
			3 808.23 cm ⁻¹	113 030.25–116 838.48	2–4	2.81-03	5.80-02	1.00+01			LS
			3 805.39 cm ⁻¹	113 033.09–116 838.48	4-4	5.59-04	5.79-03	2.00+00			LS
51	9 <i>s</i> -9 <i>p</i>	$^{2}S-^{2}P^{\circ}$	$608.7~cm^{-1}$	114 289.36–114 898.1	2-6	2.82-03	3.43+00	3.71+03	0.836	A	2
			609.36 cm ⁻¹	114 289.36–114 898.72	2–4	2.83-03	2.29+00	2.47+03	0.661	Δ	2
			607.43 cm ⁻¹	114 289.36–114 896.79	2–2	2.81-03	1.14+00	1.24+03	0.358		2
52	9s - 10p	$^{2}S-^{2}P^{\circ}$	$1906\;cm^{-1}$	114 289.36–116 195	2–6	2.21-04	2.74-02	9.48+00			1
	I										
			1 905.7 cm ⁻¹	114 289.36–116 195.1	2–4	2.22-04	1.83-02	6.32+00			LS
			1 904.3 cm ⁻¹	114 289.36–116 193.7	2–2	2.21-04	9.13-03	3.16+00	-1.738	D	LS
53	8 <i>d</i> -9 <i>p</i>	$^{2}D-^{2}P^{\circ}$	565.4 cm^{-1}	114 332.7–114 898.1	10-6	3.72-03	1.05+00	6.10+03	1.021	A	2
			566.04 cm ⁻¹	114 332.68-114 898.72	6-4	3.36 - 03	1.05+00	3.66+03	0.799	A	2
			564.05 cm ⁻¹	114 332.74-114 896.79	4-2	3.70 - 03	8.72 - 01	2.04+03	0.543	A	2
			565.98 cm ⁻¹	114 332.74–114 898.72	4–4	3.73 - 04	1.74 - 01	4.06+02	-0.157	A	2
54	8 <i>d</i> -9 <i>f</i>	$^{2}D-^{2}F^{\circ}$	$1\ 511.9\ cm^{-1}$	114 332.7–115 844.6	10–14	8.66-03	7.95-01	1.73+03	0.900	A	2
			1 511.92 cm ⁻¹	114 332.68-115 844.60	6-8	8.67-03	7.58-01	9.90+02	0.658	A	2
			1 511.86 cm ⁻¹	114 332.74-115 844.60	4-6	8.06 - 03	7.93 - 01	6.91 + 02	0.501	A	2
			1 511.92 cm ⁻¹	114 332.68-115 844.60	6–6	5.78 - 04	3.79 - 02	4.95 + 01	-0.643	A	2
55	8 <i>d</i> -10 <i>p</i>	$^{2}D-^{2}P^{\circ}$	$1~862~cm^{-1}$	114 332.7–116 195	10-6	9.17-04	2.38-02	4.21+01	-0.623	D+	1
			1 862.4 cm ⁻¹	114 332.68–116 195.1	6–4	8.26-04	2.38-02	2.52+01	-0.845	C	LS
			1 861.0 cm ⁻¹	114 332.74–116 193.7	4–2	9.15-04	1.98-02	1.40+01			LS
			1 862.4 cm ⁻¹	114 332.74–116 195.1	4-4	9.16-05	3.96-03	2.80+00			LS
56	8 <i>f</i> -9 <i>d</i>	$^{2}F^{\circ}-^{2}D$	1 390.8 cm ⁻¹	114 403.6–115 794.4	14-10	2.07-03	1.15-01	3.80+02	0.207		2
	•										
			1 390.84 cm ⁻¹	114 403.55–115 794.39	8–6	1.97-03	1.15-01	2.17+02			2
			1 390.89 cm ⁻¹	114 403.55–115 794.44	6–4	2.08 - 03	1.07 - 01	1.53 + 02	-0.192	A	2

Table 44. Transition probabilities of allowed lines for Mg II (references for this table are as follows: 1=Taylor, 103 2=Froese Fischer, $3=\text{Siegel } et \ al.$, $4=\text{Ansbacher } et \ al.$, 2=Froese Fischer, $3=\text{Siegel } et \ al.$, $4=\text{Ansbacher } et \ al.$, 4=

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				1 390.84 cm ⁻¹	114 403.55–115 794.39	6-6	9.87-05	7.65-03	1.09+01	-1.338	B+	2
157	8 <i>f</i> – 10 <i>d</i>	$^{2}F^{\circ}-^{2}D$		2 434.9 cm ⁻¹	114 403.6–116 838.5	14-10	1.42-03	2.57-02	4.87+01	-0.444	D+	1
				2 434.90 cm ⁻¹	114 403.55–116 838.45	8-6	1.36-03	2.57-02	2.78+01	-0.687	С	LS
				2 434.93 cm ⁻¹	114 403.55-116 838.48	6-4	1.42 - 03	2.40 - 02	1.95 + 01	-0.842	D+	LS
				2 434.90 cm ⁻¹	114 403.55–116 838.45	6-6	6.76 - 05	1.71 - 03	1.39+00	-1.989	E+	LS
158	9p - 10s	$^{2}P^{\circ}-^{2}S$		866.9 cm ⁻¹	<i>114</i> 898. <i>1</i> –115 764.99	6–2	1.24-02	8.26-01	1.88+03	0.695	A	2
				866.27 cm ⁻¹	114 898.72–115 764.99	4–2	8.28-03	8.27-01	1.26+03	0.520	A	2
				868.20 cm ⁻¹	114 896.79–115 764.99	2-2	4.15 - 03	8.25-01	6.26+02	0.217	A	2
159	9 <i>p</i> -9 <i>d</i>	$^{2}P^{\circ}-^{2}D$		896.3 cm ⁻¹	114 898.1–115 794.4	6–10	7.34-03	2.28+00	5.03+03	1.136	A	2
				895.67 cm ⁻¹	114 898.72–115 794.39	4–6	7.33-03	2.06+00	3.02+03	0.916	Α	2
				897.65 cm ⁻¹	114 896.79-115 794.44	2-4	6.13 - 03	2.28+00	1.67 + 03	0.659	A	2
				$895.72~\text{cm}^{-1}$	114 898.72–115 794.44	4–4	1.22-03	2.29-01	3.36+02	-0.038	A	2
160	9p-10d	$^{2}P^{\circ}-^{2}D$		1 940.4 cm ⁻¹	114 898.1–116 838.5	6-10	3.32-03	2.20-01	2.24+02	0.121	C	1
				1 939.73 cm ⁻¹	114 898.72–116 838.45	4–6	3.31-03	1.98-01	1.34+02	-0.101	C	LS
				1 941.69 cm ⁻¹	114 896.79-116 838.48	2-4	2.78 - 03	2.21-01	7.49 + 01	-0.355	C	LS
				1 939.76 cm ⁻¹	114 898.72–116 838.48	4-4	5.52-04	2.20-02	1.49+01	-1.056	D+	LS
161	10s-10p	$^{2}S-^{2}P^{\circ}$		430 cm^{-1}	115 764.99–116 195	2-6	1.59-03	3.88+00	5.95+03	0.890	B+	1
				430.1 cm ⁻¹	115 764.99–116 195.1	2–4	1.60-03	2.59+00	3.96+03	0.714	A	LS
				$428.7~{\rm cm}^{-1}$	115 764.99–116 193.7	2–2	1.58 - 03	1.29+00	1.98+03	0.412	B +	LS
162	9 <i>d</i> -10 <i>p</i>	$^{2}D-^{2}P^{\circ}$		$401 \ cm^{-1}$	115 794.4–116 195	10-6	2.06-03	1.16+00	9.52+03	1.064	B+	1
				400.7 cm ⁻¹	115 794.39–116 195.1	6–4	1.86-03	1.16+00	5.72+03	0.843	B+	LS
				399.3 cm ⁻¹	115 794.44-116 193.7	4-2	2.04 - 03	9.60-01	3.17 + 03	0.584	В	LS
				$400.7~{\rm cm^{-1}}$	115 794.44–116 195.1	4-4	2.07 - 04	1.93-01	6.34+02	-0.112	В	LS
163	9f-10d	$^{2}F^{\circ}-^{2}D$		993.9 cm ⁻¹	115 844.6–116 838.5	14-10	1.53-03	1.66-01	7.70+02	0.366	C+	1
				993.85 cm ⁻¹	115 844.60–116 838.45	8-6	1.46-03	1.66-01	4.40+02	0.123	C+	LS
				993.88 cm ⁻¹	115 844.60-116 838.48	6-4	1.53 - 03	1.55-01	3.08+02	-0.032	C+	LS
				993.85 cm ⁻¹	115 844.60–116 838.45	6-6	7.25 - 05	1.10-02	2.19+01	-1.180	D+	LS
164	10 <i>p</i> – 10 <i>d</i>	$^{2}P^{\circ}-^{2}D$		644 cm^{-1}	116 195–116 838.5	6–10	4.61-03	2.78+00	8.52+03	1.222	B+	1
				643.3 cm ⁻¹	116 195.1–116 838.45	4–6	4.60-03	2.50+00	5.12+03	1.000	A	LS
				644.8 cm ⁻¹	116 193.7–116 838.48	2–4	3.85-03	2.78+00	2.84+03	0.745		LS
				643.4 cm ⁻¹	116 195.1–116 838.48	4-4	7.68-04	2.78-01	5.69+02	0.046		LS

^aWavelengths (Å) are always given nuless cm⁻¹ is indicated

11.2.3. Forbidden Transitions for Mg II

Wherever available we have used the data of Tachiev and Froese Fischer, 32 which result from extensive MCHF calculations with Breit-Pauli corrections to order α^2 . The calculations only extend to transitions from energy levels up to the 4d. Majumder $et\ al.$ 58 used a relativistic coupled cluster approach.

Only one transition is reported in more than one of the studies, ^{32,42,52,110} To estimate the accuracy of the forbidden lines from allowed lines, we isoelectronically averaged the logarithmic quality factors (see Sec. 4.1 of the Introduction) observed for lines from the lower-lying levels of Na-like ions

of Na, Mg, Al, and Si and applied the result to forbidden lines of Mg II, as described in the introduction. Thus these listed accuracies are less well established than for the spin-allowed lines.

11.2.4. References for Forbidden Transitions for Mg II

³²C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on Mar. 28, 2002).

⁴²M. Godefroid, C. E. Magnusson, P. O. Zetterberg, and I. Joelsson, Phys. Scr. **32**, 125 (1985).

TABLE 45. Wavelength finding list for forbidden lines for Mg II

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult No.
855.883	11	918.273	7	1 398.786	3	1 737.613	16
863.600	10	966.933	6	1 432.563	2	1 737.628	16
874.640	9	1 071.687	5	1 734.852	16		
891.289	8	1 239.925	4	1 734.868	16		
Wavelength	Mult.	Wavelength	Mult.	Wavelength	Mult.	Wavelength	Mult.
(air) (Å)	No.	(air) (Å)	No.	(air) (Å)	No.	(air) (Å)	No.
2 222.484	15	2 795.528	1	4 581.657	19	9 218.25	17
2 223.993	15	2 797.930	14	4 581.766	19	10 914.24	18
2 227.018	15	2 797.998	14	7 877.05	21	10 915.28	18
2 228.533	15	2 936.510	13	7 877.38	21	10 950.73	18
2 790.777	14	4 581.474	19	7 896.04	21	10 951.77	18
2 790.845	14	4 581.584	19	7 896.37	21		
Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.				
91.57	12	30.52	20				

⁵²B. Kundu and P. K. Mukherjee, Phys. Rev. A **35**, 980 (1987).

⁵⁸S. Majumder, G. Gopakumar, R. K. Chaudhuri, B. P. Das, H. Merlitz, U. S. Mahapatra, and D. Mukherjee, Eur. Phys. J. D 28, 3 (2004).

¹¹⁰C. E. Tull, M. Jackson, R. P. McEachran, and M. Cohen, Can. J. Phys. **50**, 1169 (1972).

TABLE 46. Transition probabilities of forbidden lines for Mg II (references for this table are as follows: 1 = Froese Fischer, $3^2 = \text{Fundo and Mukherjee}$, $3^2 = \text{Fundo and Mukher$

No.	Transition array	Mult.	$\lambda_{air} \ (\mathring{A})$	$\lambda_{ m vac}~({ m \AA})$ or $\sigma~({ m cm}^{-1})^{ m a}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	A_{ki} (s^{-1})	<i>S</i> (a.u.)	Acc.	Source
1	3s-3p	$^{2}S-^{2}P^{\circ}$									
	F		2 795.528	2 796.352	0.00-35 760.88	2-4	M2	3.80-03	1.74+02	B+	1
2	3s-4s	${}^{2}S - {}^{2}S$									
2	33-43	3- 3		1 432.563	0.00-69 804.95	2–2	M1	1.87-02	4.07-06	D	1
		2- 2-									
3	3s-3d	$^{2}S-^{2}D$		1 398.786	0.00-71 490.54	2–6	E2	8.77+03	2.52+02	D I	2.2
				1 396.760	0.00-71 490.34	2-0	E2	6.77+03	2.32+02	Б⊤	2,3
4	3s-4p	$^{2}\mathrm{S}-^{2}\mathrm{P}^{\circ}$									
				1 239.925	0.00-80 650.02	2–4	M2	4.33-05	3.40-02	D+	1
5	3s-4d	$^{2}S-^{2}D$									
				1 071.687	0.00-93 310.80	2-6	E2	1.04+03	7.84 + 00	A	2
6	3s-5d	${}^{2}S - {}^{2}D$									
	55 54	5 5		966.933	0.00-103 419.82	2-6	E2	1.97+02	8.94+01	B+	2
7	2 (1	2g 2p									
7	3s-6d	$^{2}S-^{2}D$		918.273	0.00-108 900.09	2–6	E2	2.69+01	9.41+02	R	2
				710.275	0.00 100 700.07	2 0	112	2.07101	J.41 1 02	ь	2
8	3s-7d	$^{2}S-^{2}D$								_	
				891.289	0.00–112 197.10	2–6	E2	4.25+00	1.28-02	C	1
9	3s-8d	$^{2}S-^{2}D$									
				874.640	0.00-114 332.70	2–6	E2	1.69+01	4.64 - 02	C	4
10	3-9d	${}^{2}S - {}^{2}D$									
				863.600	0.00-115 794.41	2-6	E2	9.75+00	2.51-02	D+	4
1.1	2 10.1	$^{2}S-^{2}D$									
11	3s-10d	-SD		855.883	0.00-116 838.46	2–6	E2	6.10+00	1.50-02	C+	4
				033.003	0.00 110 030.40	2 0	22	0.10100	1.50 02	Ci	7
12	3p-3p	$^{2}\mathbf{P}^{\circ}-^{2}\mathbf{P}^{\circ}$		04.55 -1	25 ((0.24 25 5(0.00		2.54		4.22 00		
				91.57 cm ⁻¹ 91.57 cm ⁻¹	35 669.31–35 760.88 35 669.31–35 760.88	2–4 2–4	M1 E2	6.90-06 2.66-11	1.33+00 $1.48+02$		1 1
				91.57 CIII	33 009.31–33 700.88	2-4	Ľ2	2.00-11	1.40+02	Λ	1
13	3p-4s	$^{2}P^{\circ}-^{2}S$									
			2 936.510	2 937.369	35 760.88–69 804.95	4–2	M2	2.85-03	8.37+01	B+	1
14	3p-3d	$^{2}P^{\circ}-^{2}D$									
			2 790.845	2 791.668	35 669.31–71 490.19	2-6	M2	1.63 - 03	1.11 + 02		1
			2 797.998	2 798.823	35 760.88–71 490.19	4–6	M2	8.82-03	6.09+02		1
			2 790.777 2 797.930	2 791.600 2 798.754	35 669.31–71 491.06 35 760.88–71 491.06	2–4 4–4	M2 M2	2.29-04 2.19-10	1.04+01 $1.01-05$	В	1
			2 191.930	2 196.134	33 700.88-71 491.00	4-4	IVIZ	2.19-10	1.01-03	E	1
15	3p-4p	$^{2}\text{P}^{\circ}-^{2}\text{P}^{\circ}$									
			2 227.018	2 227.710	35 760.88–80 650.02	4–4	M1	8.31-04	1.36-01		1
			2 227.018	2 227.710	35 760.88–80 650.02	4–4	E2	4.02+02	7.88+01	A	1
			2 223.993	2 224.685	35 669.31–80 619.50	2–2	M1	1.68-04	1.37-07		1
			2 228.533	2 229.226	35 760.88–80 619.50	4–2	M1	1.64-03	1.34-06		1
			2 228.533	2 229.226	35 760.88–80 619.50	4–2	E2	8.04 + 02	7.91 + 01		1
			2 222.484	2 223.175	35 669.31–80 650.02	2–4	M1	4.92 - 04	8.02 - 07		1
			2 222.484	2 223.175	35 669.31–80 650.02	2–4	E2	4.02+02	7.85 + 01	A	1
16	3p-4d	$^{2}P^{\circ}-^{2}D$									
				1 734.868	35 669.31–93 310.59	2-6	M2	4.70 - 04	2.98+00	C+	1
				1 737.628	35 760.88–93 310.59	4-6	M2	2.54 - 03	1.62+01	В	1
				1 734.852	35 669.31–93 311.11	2-4	M2	6.55 - 05	2.76 - 01	C	1
				1 737.613	35 760.88–93 311.11	4-4	M2	1.22-09	5.18-06	E	1
17	4s-4p	$^{2}S-^{2}P^{\circ}$									
- /	'P	~ 1									

TABLE 46. Transition probabilities of forbidden lines for Mg II (references for this table are as follows: 1=Froese Fischer,³² 2=Kundo and Mukherjee,⁵² 3=Godefroid *et al.*,⁴² and 4=Tull *et al.*,¹¹⁰)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	A_{ki} (s ⁻¹)	<i>S</i> (a.u.)	Acc.	Source
			9 218.25	9 220.78	69 804.95–80 650.02	2–4	M2	4.74-05	8.48+02	B+	1
18	3d-4p	$^{2}D-^{2}P^{\circ}$									
	1		10 950.73	10 953.73	71 490.19-80 619.50	6–2	M2	6.54-06	1.38+02	B+	1
			10 914.24	10 917.23	71 490.19-80 650.02	6-4	M2	1.82 - 05	7.56 + 02	B+	1
			10 951.77	10 954.77	71 491.06-80 619.50	4-2	M2	6.14-07	1.30+01	В	1
			10 915.28	10 918.27	71 491.06-80 650.02	4-4	M2	7.69 - 14	3.20-06	E	1
19	3d-4d	$^{2}D-^{2}D$									
			4 581.584	4 582.867	71 490.19-93 310.59	6-6	M1	2.03 - 05	4.34-07	E+	1
			4 581.584	4 582.867	71 490.19-93 310.59	6-6	E2	6.30+01	6.82 + 02	A	1
			4 581.657	4 582.941	71 491.06-93 311.11	4-4	M1	5.42-06	7.73 - 08	E+	1
			4 581.657	4 582.941	71 491.06-93 311.11	4-4	E2	5.51+01	3.98 + 02	A	1
			4 581.474	4 582.758	71 490.19-93 311.11	6-4	M1	1.95-06	2.79 + 08	E	1
			4 581.474	4 582.758	71 490.19-93 311.11	6-4	E2	2.36+01	1.71 + 02	A	1
			4 581.766	4 583.050	71 491.06-93 310.59	4-6	M1	3.74 - 07	8.00-09	E	1
			4 581.766	4 583.050	71 491.06–93 310.59	4-6	E2	1.57 + 01	1.71 + 02	A	1
20	4p - 4p	$^{2}\mathbf{P}^{\circ}-^{2}\mathbf{P}^{\circ}$									
				$30.52~{\rm cm}^{-1}$	80 619.50-80 650.02	2-4	M1	2.56 - 07	1.33+00	В	1
				$30.52~{\rm cm}^{-1}$	80 619.50-80 650.02	2-4	E2	2.61 - 12	3.53+03	A	1
21	4p - 4d	$^{2}P^{\circ}-^{2}D$									
	_		7 877.38	7 879.54	80 619.50-93 310.59	2-6	M2	3.32-05	4.06+02	$\mathrm{B} +$	1
			7 896.37	7 898.54	80 650.02-93 310.59	4-6	M2	1.80 - 04	2.22+03	A	1
			7 877.05	7 879.22	80 619.50-93 311.11	2-4	M2	4.67 - 06	3.80+01	B+	1
			7 896.04	7 898.21	80 650.02–93 311.11	4-4	M2	2.03 - 13	1.67-06	E	1

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

11.3. Mg III

Neon isoelectronic sequence Ground state: $1s^22s^22p^6$ 1S_0

Ionization energy: 80.1436 eV=646 402 cm⁻¹

11.3.1. Allowed Transitions for Mg III

Wherever available we have used the data of Tachiev and Froese Fischer, 96 which result from extensive MCHF calculations with Breit-Pauli corrections to order α^2 , with energy corrections (though it has not been demonstrated that these are more accurate than the *ab initio* results of Tachiev and Froese Fischer 92). The calculations only extend to transitions from energy levels up to the $2p^54s$. Hibbert *et al.* 45 applied the CIV3 code. Träbert 107 measured the lifetimes using the beam-foil technique. These sources are far from comprehensive, resulting in the relatively small number of lines presented below.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in two or more references, 10,45,92,96,107 as described in the general introduction (data from Tachiev and Froese Fischer 2 are cited only for lines not listed in Tachiev and Froese Fischer 5. For this purpose the spin-allowed and intercombination data were treated separately and each of these was in turn divided into two upper-level energy groups below and above

476 000 cm⁻¹. Estimated accuracies were substantially better for the lower energy groups. The isoelectronic pooling fit parameters of the intercombination lines were slightly inferior to those of the allowed lines (in which case the estimated accuracies are still generally lower, due to smaller line strengths).

11.3.2. References for Allowed Transitions for Mg III

¹⁰J. P. Buchet, M. C. Buchet-Poulizac, and P. Ceyzeriat, Phys. Lett. A **77**, 424 (1980).

⁴⁵A. Hibbert, M. Le Dourneuf, and M. Mohan, At. Data Nucl. Data Tables **53** 24 (1993).

⁹²G. Tachiev and C. Froese Fischer, http:// www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on Mar. 28, 2002).

⁹⁶G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, energy adjusted, downloaded on Sept. 3, 2003).

¹⁰⁷E. Träbert, Phys. Scr. **53**, 167 (1996).

Table 47. Wavelength finding list for allowed lines for Mg III

TABLE 47. Wavelength finding list for allowed lines for Mg III—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
(vac) (A)	NO.	(vac) (A)	NO.
186.514	4	1 747.555	21
187.197	3	1 748.921	21
231.734	2	1 757.170	20
234.264	1	1 757.880	41
1 229.374	52	1 760.405	34
1 239.835	51	1 761.742	29
1 274.829	45	1 763.793	41
1 350.153	54	1 772.974	35
1 365.788	54	1 775.143	39
1 378.711	53	1 775.950	20
1 393.394	46	1 783.25	39
1 405.177	46	1 787.92	40
1 422.121	46	1 791.37	34
1 431.135	57	1 793.22	20
1 435.546	55	1 794.57	39
1 439.773	57	1 800.65	28
1 443.737	57	1 803.10	20
1 446.257	10	1 806.63	39
1 447.264	47	1 807.64	40
1 454.048	19	1 808.65	27
1 458.185	56	1 820.42	39
1 462.315	47	1 820.91	20
1 467.199	48	1 826.76	39
1 482.670	48	1 828.98	20
1 483.715	18	1 838.32	27
1 493.110	49	1 839.89	33
1 506.832	49	1 847.57	38
1 550.818	16	1 858.19	9
1 572.713	17	1 868.21	26
1 586.242	17	1 879.49	9
1 592.364	17	1 887.33	26
1 626.096	25	1 896.30	8
1 635.954	23	1 901.56	32
1 642.835	23	1 901.58	9
1 646.803	24	1 908.50	9
1 648.829	25	1 918.77	37
1 652.221	23	1 921.37	32
1 659.239	23	1 923.89	9
1 663.287	24	1 930.36	32
1 675.696	23	1 930.67	7
1 679.467	23	1 937.84	9
1 687.080	24	1 938.94	37
1 697.274	22	1 941.49	37
1 703.105	31	1 941.51	8
1 703.728	23	1 954.83	37
1 704.376	21	1 962.15	37
1 714.789	22	1 971.52	37
1 722.039	21	1 977.55	7
1 730.706	21	1 977.33	8
1 730.778	36	1 979.32	50
1 731.785	29	1 717.73	50
1 738.834	21	Wavelength	Mult.
1 739.496	29	(air) (Å)	No.
1 743.947	30		
1 745.021	41	2 004.86	6
1 / 10.021	71	2 039.55	6

TABLE 47. Wavelength finding list for allowed lines for Mg III—Continued

TABLE 47. Wavelength finding list for allowed lines for Mg III—Continued

Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.
2 055.48	6	2 318.13	12
2 064.91	6	2 395.16	5
2 085.89	15	2 467.76	5
2 091.96	6	2 490.54	44
2 094.22	15	2 529.19	5
2 097.93	6	2 618.01	43
2 112.78	15	2 788.69	11
2 134.05	14	2 905.41	42
2 177.70	13		
2 273.43	12		

TABLE 48. Transition probabilities of allowed lines for Mg III (references for this table are as follows: 1 = Tachiev and Froese Fischer, 9^6 2 = Tachiev and Froese Fischer, 9^6 3 = Hibbert et al., 9^6 4 = Trabert, 9^6

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
1	$2p^6 - 2p^5 3s$	$^{1}S-^{3}P^{\circ}$										
				234.264	0-426 868.1	1–3	4.98+00	1.23-02	9.48-03	-1.910	C	1,5
2		$^{1}S-^{1}P^{\circ}$		231.734	0-431 530.0	1–3	9.12+01	2.20-01	1.68-01	-0.658	B+	1,4
3	$2p^6 - 2p^5 3d$	$^{1}S-^{3}D^{\circ}$		187.197	0–534 197.7	1.2	1 26 + 02	1.00 01	1.22-01	0.702	C	1
		1 1 0				1–3						
4		$^{1}S-^{1}P^{\circ}$		186.514	0–536 152.0	1–3	1.86+02	2.91-01	1.79-01	-0.536	C+	1
5	$2p^53s - 2p^53p$	$^{3}P^{\circ}-^{3}S$	2 433.3	2 434.1	426 295–467 378.5	9–3	2.53+00	7.48 - 02	5.40+00	-0.172	A	1
			2 395.16	2 395.89	425 640.3–467 378.5	5-3	1.67+00	8.63-02	3.40+00	-0.365	A	1
			2 467.76	2 468.50	426 868.1-467 378.5	3-3	6.91-01	6.31 - 02	1.54 + 00	-0.723	$\mathrm{B} +$	1
			2 529.19	2 529.95	427 852.1–467 378.5	1–3	1.89-01	5.44-02	4.53-01	-1.264	B+	1
6		$^{3}P^{\circ}-^{3}D$	2 071.9	2 072.6	426 295–474 544	9–15	4.15+00	4.45-01	2.73+01	0.603	A	1
			2 064.91	2 065.57	425 640.3–474 053.2	5–7	4.21+00	3.77-01	1.28+01	0.275	A	1
			2 091.96	2 092.62	426 868.1–474 655.0	3–5	2.57 + 00	2.82 - 01	5.82+00	-0.073	A	1
			2 097.93	2 098.60	427 852.1-475 502.9	1-3	1.50+00	2.98 - 01	2.06+00	-0.526	A	1
			2 039.55	2 040.20	425 640.3-474 655.0	5–5	1.54+00	9.61 - 02	3.23+00	-0.318	A	1
			2 055.48	2 056.14	426 868.1–475 502.9	3–3	2.35+00	1.49 - 01	3.02+00	-0.350	A	1
			2 004.86	2 005.51	425 640.3–475 502.9	5–3	3.33-01	1.21-02	3.98-01	-1.218	B+	1
7		$^{3}P^{\circ}-^{1}D$										
				1 977.55	426 868.1-477 435.7	3-5	4.94 - 01	4.82 - 02	9.42 - 01	-0.840	В	1
				1 930.67	425 640.3–477 435.7	5–5	1.70+00	9.49-02	3.02+00	-0.324	B+	1
8		${}^{3}P^{\circ} - {}^{1}P$										
				1 941.51	426 868.1–478 374.5	3–3	3.27 - 01	1.85 - 02	3.54 - 01	-1.256	В	1
				1 896.30	425 640.3–478 374.5	5–3	4.20 - 01	1.36 - 02	4.24 - 01	-1.167	В	1
				1 979.32	427 852.1–478 374.5	1–3	1.22+00	2.15-01	1.40+00	-0.668	B+	1
9		$^{3}P^{\circ}-^{3}P$		1 893.9	426 295–479 096	9_9	3.45+00	1.85-01	1.04+01	0.221	B+	1
				1 879.49	425 640.3–478 846.1	5-5	1.76+00	9.33-02	2.88+00	-0.331	$\mathrm{B} +$	1
				1 901.58	426 868.1-479 456.0	3-3	5.47-01	2.96-02	5.57-01	-1.052	В	1
				1 858.19	425 640.3-479 456.0	5-3	1.28+00	3.99-02	1.22+00	-0.700	В	1
				1 908.50	426 868.1-479 265.3	3-1	5.15+00	9.37-02	1.77 + 00	-0.551	$\mathrm{B} +$	1
				1 923.89	426 868.1-478 846.1	3-5	1.37 + 00	1.26-01	2.40+00	-0.423	$\mathrm{B} +$	1
				1 937.84	427 852.1–479 456.0	1-3	1.46+00	2.46-01	1.57+00	-0.609	В	1

TABLE 48. Transition probabilities of allowed lines for Mg III (references for this table are as follows: 1=Tachiev and Froese Fischer, 92 3=Hibbert et al., 45 4=Trabert, 107 and 5=Buchet et al. 10)—Continued

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3 9.69- -5 4.44- -3 1.27- -5 2.12-	-01 4.33-03 -03 1.13-03 -02 5.96-03 -02 9.88-04 +00 2.51-01 +00 1.61-01	3.11-02 3.137-01 4.2.22-02	-2.470 -1.748	C +	3
11 $^{1}P^{\circ} - ^{3}S$	-3 9.69- -5 4.44- -3 1.27- -5 2.12-	-03 1.13-03 -02 5.96-03 -02 9.88-04 +00 2.51-01	3.11-02 3.137-01 4.2.22-02	-2.470 -1.748	C +	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-5 4.44- -3 1.27- -5 2.12-	-02 5.96-03 -02 9.88-04 +00 2.51-01	1.37-01 2.22-02	-1.748	C+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-5 4.44- -3 1.27- -5 2.12-	-02 5.96-03 -02 9.88-04 +00 2.51-01	1.37-01 2.22-02	-1.748	C+	1
12 $^{1}P^{\circ} - ^{3}D$ $^{2}318.13$ $^{2}318.84$ $^{4}31530.0 - 474655.0$ $^{3} ^{2}273.43$ $^{2}274.13$ $^{4}31530.0 - 475502.9$ $^{3}-$ 13 $^{1}P^{\circ} - ^{1}D$ $^{2}177.70$ $^{2}178.38$ $^{4}31530.0 - 477435.7$ $^{3}-$ 14 $^{1}P^{\circ} - ^{1}P$ $^{2}134.05$ $^{2}134.72$ $^{4}31530.0 - 478374.5$ $^{3}-$ 15 $^{1}P^{\circ} - ^{3}P$ $^{2}085.89$ $^{2}086.55$ $^{4}31530.0 - 479456.0$ $^{3}-$	-3 1.27- -5 2.12-	-02 9.88-04 +00 2.51-01	2.22-02			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3 1.27- -5 2.12-	-02 9.88-04 +00 2.51-01	2.22-02			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3 1.27- -5 2.12-	-02 9.88-04 +00 2.51-01	2.22-02			1
13 ${}^{1}P^{\circ} - {}^{1}D$ 2 177.70 2 178.38 431 530.0–477 435.7 3- 14 ${}^{1}P^{\circ} - {}^{1}P$ 2 134.05 2 134.72 431 530.0–478 374.5 3- 15 ${}^{1}P^{\circ} - {}^{3}P$ 2 085.89 2 086.55 431 530.0–479 456.0 3-	-5 2.12-	+00 2.51-01		2.320		1
14			5.41 + 00			
15	-3 2.36-	+00 1.61-01		-0.123	B+	1
2 085.89 2 086.55 431 530.0–479 456.0 3-			3.40+00	-0.316	В	1
	-3 1.61-	+00 1.05-01	2.17 + 00	-0.502	$\mathrm{B} +$	1
2 094.22 2 094.89 431 530.0–479 265.3 3-	-1 1.21-	-01 2.65-03	5.49-02	-2.100	C+	1
2 112.78 2 113.45 431 530.0–478 846.1 3-	-5 1.69-	+00 1.88-01	3.93+00	-0.249	B+	1
16	-1 1.04-	+01 1.25-01	1.92+00	-0.426	B+	2
17 $2p^53p - 2p^53d$ $^3S - ^3P^{\circ}$ 1 579.37 467 378.5–530 695 3-	_9	+00 8.39-01	1.31+01	0.401	B+	1
	5 (00	+00 4.28-01	6.64 : 00	0.109	D.	1
		+00 4.28-01 +00 3.02-01				1
		+00 3.02-01 +00 1.08-01				1
	-1 0.55	+00 1.00-01	1.70+00	-0.40)	D	1
$^{3}S^{-1}D^{\circ}$ $^{1}483.715 467\ 378.5-534\ 776.9 3-$	-5 9.54-	-03 5.25-04	7.60 02	2 902	D	1
	-5 9.54-	-03 3.23-04	7.09-03	-2.003	D	1
$^{3}S^{-1}P^{\circ}$						
1 454.048 467 378.5–536 152.0 3-	-3 5.00-	-02 1.58-03	3 2.27-02	-2.324	D+	1
20 ${}^{3}D - {}^{3}P^{\circ}$ 1780.9 474 544–530 695 15	5–9 4.24-	-01 1.21-02	1.06+00	-0.741	C+	1
1 757.170 474 053.2–530 962.9 7-	-5 2.04-	-01 6.75-03	2.74-01	-1.326	C+	1
1 793.22 474 655.0–530 420.6 5-	-3 3.36-	-01 9.72-03	2.87-01	-1.313	C+	1
1 828.98 475 502.9–530 178.2 3-	-1 4.97-	-01 8.30-03	1.50-01	-1.604	C+	1
1 775.950 474 655.0–530 962.9 5-	-5 1.28-	-01 6.04-03	1.77-01	-1.520	C+	1
1 820.91 475 502.9–530 420.6 3-	-3 3.05-	-02 1.52 - 03	2.73 - 02	-2.341	C	1
1 803.10 475 502.9–530 962.9 3-	- 5 1.03-	-01 8.36-03	1.49-01	-1.601	C+	1
21 ${}^{3}D - {}^{3}F^{\circ}$ 1 742.58 474 544–531 930 15-	-21 1.07-	+01 6.80-01	5.85+01	1.009	A	1
1 738.834 474 053.2–531 563.0 7-	-9 1.14-	+01 6.63-01	2.66+01	0.667	Α	1
		+00 5.59-01		0.446		1
		+00 5.63-01		0.228		1
		+00 4.62-02				1
		+00 1.44-01				1
		-01 5.56-03				1
$^{3}D^{-1}F^{\circ}$						
	-7 4.76-	-01 2.94-02	8 29 - 01	-0.833	R	1
		+00 9.26-02				1
		+00 8.67-02				1
		-01 3.71-02				1
		-01 3.72-02				1
		+00 1.29-01				1
		-01 6.99-03				1
1 679.467 474 655.0–534 197.7 5-	-3 5.88-	-01 1.49-02	4.12-01	-1.128	В	1

Table 48. Transition probabilities of allowed lines for Mg III (references for this table are as follows: 1 = Tachiev and Froese Fischer, 96 2 = Tachiev and Froese Fischer, 92 $3 = \text{Hibbert } et \ al.$ 45 4 = Trabert, 107 and $5 = \text{Buchet } et \ al.$ 10)—Continued

Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
			1 659.239	474 655.0–534 923.6	5–7	8.48-01	4.90-02	1.34+00	-0.611	В	1
			1 675.696	475 502.9–535 179.6	3–5	4.19-01	2.94 - 02	4.86 - 01	-1.055	В	1
	$^{3}D-^{1}D^{\circ}$										
			1 663.287	474 655.0–534 776.9	5-5	1.68-01	6.96-03	1.91-01	-1.458	C	1
			1 646.803	474 053.2–534 776.9	7–5	3.96-02	1.15-03	4.36-02	-2.094	D+	1
			1 687.080	475 502.9–534 776.9	3–5	1.41+00	1.00 - 01	1.67 + 00	-0.523	В	1
	$^{3}D-^{1}P^{\circ}$										
			1 626.096	474 655.0–536 152.0	5–3	1.77-01	4.22-03	1.13-01	-1.676	C	1
			1 648.829	475 502.9–536 152.0	3–3	5.38-01	2.19-02	3.57 - 01	-1.182	C+	1
	$^{1}D-^{3}P^{\circ}$										
			1 887.33	477 435.7–530 420.6	5–3	7.56-01	2.42-02	7.53-01	-0.917	В	1
			1 868.21	477 435.7–530 962.9	5-5	1.94+00	1.02 - 01	3.12+00	-0.292	$\mathrm{B} +$	1
	$^{1}D-^{3}F^{\circ}$										
	<i>D</i> - 1		1 838.32	477 435.7–531 833.1	5–7	1.09+00	7.74-02	2.34+00	-0.412	В	1
			1 808.65	477 435.7–532 725.7	5–5						1
	¹D ¹E°		1 200 65	477 425 7 522 071 2	5 7	9 21 : 00	5 50 01	1.66 ± 0.1	0.446	٨	1
			1 800.03	477 433.7-332 971.2	3-7	6.21+00	3.39-01	1.00+01	0.440	А	1
	$^{1}D-^{3}D^{\circ}$										
											1
											1
			1 /39.490	4// 433.7–334 923.0	5-7	3.20-04	2.07-03	3.94-04	-3.983	E+	1
	$^{1}D-^{1}D^{\circ}$		1 743.947	477 435.7–534 776.9	5–5	3.76-01	1.71 - 02	4.92-01	-1.068	В	1
	$^{1}D-^{1}P^{\circ}$		1 703.105	477 435.7–536 152.0	5–3	1.71-01	4.47-03	1.25-01	-1.651	C+	1
	1p. 3p°										
	P- P		1 921 37	478 374 5-530 420 6	3_3	2 26-01	1 25-02	2 37-01	-1 426	C	1
											1
			1 901.56	478 374.5-530 962.9	3-5						1
	1 p 3 p °										
	r - r		1 839.89	478 374.5–532 725.7	3–5	4.55-01	3.85-02	7.00-01	-0.937	C±	1
	1_ 3_ °										
	'P-'D		1 760 405	479 274 5 525 170 (2.5	4.14 02	2.20 02	5 57 00	2.010	D.	1
											1
	1 1 0										
	$^{1}P-^{1}D^{\circ}$		1 772.974	478 374.5–534 776.9	3–5	7.67 + 00	6.02-01	1.06+01	0.257	A	1
	$^{1}P-^{1}P^{\circ}$		1 730.778	478 374.5–536 152.0	3–3	1.44+00	6.47 - 02	1.11+00	-0.712	C	1
	$^{3}\mathbf{p}_{-}^{3}\mathbf{p}^{\circ}$		1 938 0	479 096_530 695	9_9	2 21 ± 00	1 25-01	7 16+00	0.051	R	1
	1 – 1		1 230.0	477 070-330 073)-/	2.21+00	1.25-01	7.10+00	0.051	Ь	1
			1 918.77	478 846.1–530 962.9	5–5						1
											1
											1
											1
											1 1
	2 1 0		1 754.05	477 203.3 330 420.0	1 3	7.57 01	1.57 01	0.01 01	0.003	Ь	1
	$^{3}P-^{1}F^{\circ}$		1.047.57	470 046 1 500 071 0	5 7	274 02	2.68.02	0.15 00	1.070	0	
			1 847.57	4/8 846.1–532 9/1.2	5-7	3.74-02	2.68-03	8.15-02	-1.873	C	1
	$^{3}P-^{3}D^{\circ}$		1 793.2	479 096–534 864	9–15	7.57 + 00	6.08 - 01	3.23+01	0.738	A	1
			1 783 25	478 846 1_534 923 6	5_7	9.39±00	6.27=01	1.84+01	0 496	А	1
											1
			1 177.31	. 17 155.0 555 117.0	5 5	1.15 FOO	0.22 -01	1.10 FUI	0.2/1	4.1	•
		array Mult. 3D-1D° 3D-1P° 1D-3P° 1D-3F° 1D-1D° 1D-1P° 1D-1P° 1P-3P° 1P-3P° 1P-3P° 3P-1P° 3P-3P°	array Mult. (Å) ${}^{3}D^{-1}D^{\circ}$ ${}^{3}D^{-1}P^{\circ}$ ${}^{1}D^{-3}P^{\circ}$ ${}^{1}D^{-1}F^{\circ}$ ${}^{1}D^{-1}P^{\circ}$ ${}^{1}D^{-1}P^{\circ}$ ${}^{1}D^{-1}P^{\circ}$ ${}^{1}P^{-3}P^{\circ}$ ${}^{1}P^{-3}P^{\circ}$ ${}^{1}P^{-1}P^{\circ}$ ${}^{1}P^{-1}P^{\circ}$ ${}^{1}P^{-1}P^{\circ}$ ${}^{2}P^{-1}P^{\circ}$ ${}^{3}P^{-3}P^{\circ}$	array Mult. (Å) or σ (cm ⁻¹) ^a $1 659.239$ $1 675.696$ $^{3}D^{-1}D^{\circ}$ $1 663.287$ $1 646.803$ $1 687.080$ $^{3}D^{-1}P^{\circ}$ $1 626.096$ $1 648.829$ $^{1}D^{-3}P^{\circ}$ $1 887.33$ $1 868.21$ $^{1}D^{-3}F^{\circ}$ $1 838.32$ $1 808.65$ $^{1}D^{-1}F^{\circ}$ $1 800.65$ $^{1}D^{-3}D^{\circ}$ $1 731.785$ $1 761.742$ $1 739.496$ $^{1}D^{-1}P^{\circ}$ $1 703.105$ $^{1}P^{-3}P^{\circ}$ $1 921.37$ $1 930.36$ $1 901.56$ $^{1}P^{-3}P^{\circ}$ $1 839.89$ $^{1}P^{-3}D^{\circ}$ $1 7760.405$ $1 791.37$ $^{1}P^{-1}D^{\circ}$ $1 772.974$ $^{1}P^{-1}P^{\circ}$ $1 730.778$ $^{3}P^{-3}P^{\circ}$ $1 938.0$ $1 918.77$ $1 962.15$ $1 938.94$ $1 971.52$ $1 941.49$ $1 954.83$ $^{3}P^{-1}F^{\circ}$ $1 847.57$	Mult.	Mult.	array Mult. (Å) or σ (cm ⁻¹) ² (cm ⁻¹) $g_1 = g_1$ (10 ⁸ s ⁻¹) 1 659.239	array Mult. (A) or σ (cm ⁻¹)* (cm ⁻¹) g_1-g_1 (10 8 s ⁻¹) f_A	Mult	array Mult. (Å) or σ (cm ⁻¹)* (cm ⁻¹) $g_7 g_8$ (10*cs ⁻¹) f_{30} (a.m.) log gf 1692.29 476550-53451796 3-5 8.48=01 490-02 1.34+00 -0.611 1.675.696 475.502.9-5351796 3-5 4.19=01 2.94=02 4.86=01 -1.055 1.664.081 1.664.081 476.655.0-5347769 5-5 1.68=01 6.96=03 1.91=01 -1.458 1.664.083 474.6652.2-5347769 3-5 1.41+00 1.00=01 1.67+00 -0.523 1.67=0 1.675.696 474.6655.0-5347769 3-5 1.41+00 1.00=01 1.67+00 -0.523 1.625.096 475.502.9-536 152.0 3-3 3.38=01 2.19=02 3.57=01 -1.182 1.626.096 474.6655.0-536 152.0 3-3 3.38=01 2.19=02 3.57=01 -1.182 1.648.829 477.4357-530 42.0 5-3 1.77=01 4.22=03 1.13=01 -1.676 475.502.9-536 152.0 3-3 3.38=01 2.19=02 3.57=01 -1.182 1.648.829 477.4357-530 9.02.9 5-3 1.94=00 1.02=01 3.12±00 -0.292 1.02=01 1.676 1.888.21 477.4357-530 9.02.9 5-3 1.94±00 1.02=01 3.12±00 -0.292 1.02=01 1.02=0	Mult.

TABLE 48. Transition probabilities of allowed lines for Mg III (references for this table are as follows: 1 = Tachiev and Froese Fischer, 96 2 = Tachiev and Froese Fischer, 92 $3 = \text{Hibbert } et \ al.$ 45 4 = Trabert, 107 and $5 = \text{Buchet } et \ al.$ 10 —Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				1 820.42	479 265.3–534 197.7	1–3	2.98+00	4.44-01	2.66+00	-0.353	B+	1
				1 775.143	478 846.1-535 179.6	5–5	4.53-02	2.14-03	6.25 - 02	-1.971	C	1
				1 826.76	479 456.0-534 197.7	3–3	1.32-01	6.62-03	1.20 - 01	-1.702	C	1
				1 806.63	478 846.1–534 197.7	5–3	4.42-02	1.30-03	3.86-02	-2.187	C	1
40		$^{3}P-^{1}D^{\circ}$										
				1 807.64	479 456.0-534 776.9	3-5	4.62 - 02	3.77 - 03	6.73 - 02	-1.947	C	1
				1 787.92	478 846.1–534 776.9	5–5	1.46+00	6.99-02	2.06+00	-0.457	В	1
41		$^{3}P-^{1}P^{\circ}$										
				1 763.793	479 456.0–536 152.0	3–3	3.17+00	1.48 - 01	2.57 + 00	-0.353	B +	1
				1 745.021	478 846.1–536 152.0	5–3	5.37 - 02	1.47 - 03	4.23 - 02	-2.134	D+	1
				1 757.880	479 265.3–536 152.0	1–3	2.10+00	2.91-01	1.69+00	-0.536	В	1
42		$^{1}S-^{3}P^{\circ}$										
			2 905.41	2 906.26	496 012.1–530 420.6	1–3	6.84-03	2.60-03	2.49-02	-2.585	D	3
43		$^{1}\mathrm{S}-^{3}\mathrm{D}^{\circ}$										
			2 618.01	2 618.79	496 012.1–534 197.7	1–3	8.72-01	2.69-01	2.32+00	-0.570	В	3
44		$^{1}S-^{1}P^{\circ}$	2 490.54	2 491.29	496 012.1–536 152.0	1–3	1.61+00	4.48-01	3.67+00	-0.349	B+	2
45	$2p^{5}3p-$	$^{3}S-^{2}[3/2]^{\circ}$										
	$2p^{5}(^{2}P_{3/2}^{\circ})4s$			1 274.829	467 378.5–545 820.4	3–5	2.53+00	1.03-01	1.29+00	-0.510	В	1
46		$^{3}D-^{2}[3/2]^{\circ}$										
+0		D- [3/2]		1 422.121	475 502.9–545 820.4	3–5	1.80-01	9 11 - 03	1.28-01	-1 563	C	1
				1 405.177	474 655.0–545 820.4	5–5			1.06+00			
				1 393.394	474 053.2–545 820.4	7–5			4.26+00			
47		$^{1}D-^{2}[3/2]^{\circ}$										
		2 3		1 462.315	477 435.7–545 820.4	5–5	1.21 + 00	3.89-02	9.36-01	-0.711	C+	1
				1 447.264	477 435.7–546 531.6	5–3	2.22+00	4.18-02	9.95-01	-0.680	C+	1
48		$^{1}P-^{2}[3/2]^{\circ}$										
				1 482.670	478 374.5-545 820.4	3-5	1.55-01	8.52-03	1.25-01	-1.592	D+	1
				1 467.199	478 374.5–546 531.6	3–3	9.37-01	3.02-02	4.38-01	-1.043	C	1
49		$^{3}P-^{2}[3/2]^{\circ}$										
				1 506.832	479 456.0-545 820.4	3-5	3.91-01	2.22-02	3.31-01	-1.177	C	1
				1 493.110	478 846.1–545 820.4	5–5	1.02+00	3.41-02	8.37 - 01	-0.768	C+	1
50		$^{1}S-^{2}[3/2]^{\circ}$										
				1 979.43	496 012.1–546 531.6	1–3	4.10-01	7.23-02	4.71 - 01	-1.141	C	1
51	$2p^{5}3p-$	$^{3}S-^{2}[1/2]^{\circ}$										
	$2p^5(^2P_{1/2}^{\circ})4s$			1 239.835	467 378.5–548 034.4	3–1	1.82 + 00	1.40 .02	1.71-01	1 277	C	1
		2 20		1 239.033	407 378.3–348 034.4	3-1	1.62+00	1.40-02	1.71-01	-1.377	C	1
52		$^{3}S-^{2}[1/2]^{\circ}$		1 229.374	467 378.5–548 720.7	3–3	5.72_01	1 30-02	1.57-01	_1 400	D+	1
		35 254 (27°		1 227.374	407 370.3 340 720.7	3 3	3.72 01	1.50 02	1.57 01	1.40)	Di	
53		$^{3}D-^{2}[1/2]^{\circ}$		1 378.711	475 502.9–548 034.4	3–1	5.32+00	5.06-02	6.88-01	-0.819	C+	1
54		$^{3}D-^{2}[1/2]^{\circ}$										
54		D- [1/2]		1 365.788	475 502.9–548 720.7	3–3	2.75-01	7.69-03	1.04-01	-1.637	D+	1
				1 350.153	474 655.0–548 720.7	5–3			1.28-01			
55		$^{1}P-^{2}[1/2]^{\circ}$										
		F . 3		1 435.546	478 374.5–548 034.4	3–1	3.04+00	3.13-02	4.43-01	-1.027	C	1

TABLE 48. Transition probabilities of allowed lines for Mg III (references for this table are as follows: 1=Tachiev and Froese Fischer, 92 3=Hibbert et al., 45 4=Trabert, 107 and 5=Buchet et al. 10)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
56		$^{3}P-^{2}[1/2]^{\circ}$										
				1 458.185	479 456.0–548 034.4	3–1	3.21+00	3.41-02	4.91-01	-0.990	C+	1
57		$^{3}P-^{2}[1/2]^{\circ}$										
				1 439.773	479 265.3-548 720.7	1-3	3.54 - 01	3.30 - 02	1.56 - 01	-1.481	D+	1
				1 443.737	479 456.0-548 720.7	3-3	1.81 + 00	5.65 - 02	8.05 - 01	-0.771	C+	1
				1 431.135	478 846.1–548 720.7	5–3	4.30+00	7.92-02	1.87 + 00	-0.402	В	1

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

11.3.3. Forbidden Transitions for Mg III

Wherever available we have used the data of Tachiev and Froese Fischer, ⁹⁶ which result from extensive MCHF calculations with Breit-Pauli corrections to order α^2 . These calculations only extend to transitions from energy levels up to the $2p^54s$.

Only one transition was cited in both of Tachiev and Froese Fischer⁹⁶ and Landman.⁵³ To estimate the accuracy of the forbidden lines from allowed lines, we isoelectronically averaged the logarithmic quality factors (see Sec. 4.1 of the Introduction) observed for lines from the lower-lying levels of Ne-like ions of Na, Mg, Al, and Si and applied the result to forbidden lines of Mg III, as described in the introduction. Thus these listed accuracies are less well established than for the allowed lines.

11.3.4. References for Forbidden Transitions for Mg III

⁵³D. A. Landman, J. Quant. Spectrosc. Radiat. Transf. **34**, 365 (1985).

⁹⁶G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, energy adjusted, downloaded on Sept. 3, 2003).

TABLE 49. Wavelength finding list for forbidden lines for Mg III

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
210.679	2	234.940	1				
Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.
2 004.86	6	2 091.96	6	2 318.13	8	2 788.69	7
2 039.55	6	2 118.64	6	2 350.94	8	16 974.2	4
2 055.48	6	2 135.95	6	2 395.16	5		
2 064.91	6	2 273.43	8	2 467.76	5		
Wavenumber (cm ⁻¹)	Mult. No.						
4 661.9	4	2 211.8	3	984.0	3	601.8	9
3 677.9	4	1 227.8	3	847.9	9		

Table 50. Transition probabilities of forbidden lines for Mg III (references for this table are as follows: 1=Tachiev and Froese Fischer 96 and $2=Landman^{53}$)

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Type	A_{ki} (s ⁻¹)	<i>S</i> (a.u.)	Acc.	Source
1	$2p^6 - 2p^5 3s$	$^{1}S-^{3}P^{\circ}$									
				234.940	0-425 640.3	1-5	M2	7.62+00	1.83+00	C+	1,2
2	$2p^6 - 2p^5 3p$	${}^{1}S - {}^{3}D$									
2	zp - zp sp	5- D		210.679	0-474 655.0	1–5	E2	3.21+04	5.95-02	D+	1
		2_0 2_0									
3	$2p^53s - 2p^53s$	$^{3}P^{\circ}-^{3}P^{\circ}$		2 2 1 1 0 -1	125 (10.2, 125.052.1	~ ·	F-2	6.20 07	1.00 .01	ъ.	2
				2 211.8 cm ⁻¹	425 640.3–427 852.1	5–1	E2	6.38-07	1.08-01	D+	2
				1 227.8 cm ⁻¹	425 640.3–426 868.1	5–3	M1	3.95-02	2.37+00	В	1
				984.0 cm ⁻¹	426 868.1–427 852.1	3–1	M1	4.88 - 02	1.90+00	B+	1,2
4		$^{3}\text{P}^{\circ}-^{1}\text{P}^{\circ}$									
				4 661.9 cm ⁻¹	426 868.1-431 530.0	3–3	M1	6.56 - 02	7.21 - 02	D+	1
		1	6 974.2	16 978.8	425 640.3-431 530.0	5-3	M1	2.32 - 01	1.27 - 01	C	1
				3 677.9 cm ⁻¹	427 852.1–431 530.0	1-3	M1	4.53 - 02	1.01 - 01	D+	1
5	$2p^53s - 2p^53p$	$^{3}\text{P}^{\circ}-^{3}\text{S}$									
5	2p 33 2p 3p		2 395.16	2 395.89	425 640.3–467 378.5	5–3	M2	2.22-03	3.53+01	B+	1
			2 467.76	2 468.50	426 868.1–467 378.5	3–3	M2	1.59-04	2.94+00	C+	1
,		3n° 3n									
6		$^{3}P^{\circ}-^{3}D$	2 118.64	2 119.31	426 868.1–474 053.2	3–7	M2	3.43-03	6.88+01	A	1
			2 135.95	2 136.62	427 852.1–474 655.0	3-7 1-5	M2	7.72-04	1.15+01	A B+	1
			2 133.93	2 065.57	425 640.3–474 053.0	1–3 5–7	M2	4.69-03	8.28+01	A	1
			2 004.91	2 003.57	426 868.1–474 655.0	3–7	M2	4.09-03	6.36+00	В	1
			2 039.55	2 040.20	425 640.3–474 655.0	5–5 5–5	M2	2.82-05	3.34-01	D+	1
			2 055.48	2 056.14	426 868.1–475 502.9	3–3	M2	8.18-04	6.05+00	В	1
			2 004.86	2 005.51	425 640.3–475 502.9	5–3 5–3	M2	2.27-03	1.48+01	B+	1
			2 00 1.00	2 003.31	123 0 10.5 173 302.7	5 5	1412	2.27 03	1.10101	ъ,	1
7		$^{1}P^{\circ}-^{3}S$									
			2 788.69	2 789.52	431 530.0–467 378.5	3–3	M2	6.11 - 04	2.08 + 01	B+	1
8		$^{1}P^{\circ}-^{3}D$									
			2 350.94	2 351.66	431 530.0-474 053.2	3–7	M2	1.65-03	5.59+01	A	1
			2 318.13	2 318.84	431 530.0-474 655.0	3–5	M2	5.06-04	1.14+01	B+	1
			2 273.43	2 274.13	431 530.0–475 502.9	3–3	M2	5.45-05	6.67-01		1
0	252 252	3p 3p									
9	$2p^53p - 2p^53p$	$^{3}D-^{3}D$		601.8 cm ⁻¹	474 052 2 474 655 0	7.5	\ // 1	4.01 .02	4 17 : 00	D .1	1
				601.8 cm ⁻¹ 847.9 cm ⁻¹	474 053.2–474 655.0 474 655.0–475 502.9	7–5 5–3	M1 M1	4.91-03 $2.11-02$	4.17+00 $3.85+00$	B+ B+	1 1
				047.9 CIII	474 033.0-473 302.9	3-3	IVI I	2.11-02	3.83+00	DΤ	1

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

11.4. Mg IV

Fluorine isoelectronic sequence Ground state: $1s^22s^22p^5$ $^2P^o_{3/2}$

Ionization energy: 109.265 eV=881 285 cm⁻¹

11.4.1. Allowed Transitions for Mg IV

Only OP (Ref. 14) results were available for energy levels above the $2p^43d$. Wherever available we have used the data of Tachiev and Froese Fischer, ^{92,96} which result from extensive MCHF calculations with Breit-Pauli corrections to order α^2 , with energy adjustments.

The spin-allowed (non-OP) and intercombination data were treated separately and each of these was in turn divided into two upper-level energy groups below and above 610 000 cm⁻¹. Lines from the CI calculations of Biémont⁴ and the OP constituted fifth and sixth groups, respectively, and have been used only when more accurate sources were not available.

Except for the strongest transitions, the results for fluorinelike transitions by Blackford and Hibbert⁸ are not as accurate, as was demonstrated in later calculations for F-like Na III by McPeake and Hibbert⁵⁷ and by Tachiev and Froese Fischer⁹⁶ (Biémont⁷ contains results for many F-like spectra). To estimate accuracies for all but the low-lying spin-

allowed group, we scaled the pooling fit parameters found for F-like Na III by applying the logarithmic quality factor (see Sec. 4.1 of the Introduction), as described in the introduction. Thus the accuracies we list for these lines are somewhat less reliable. Energy levels labeled $2p^4(^3P)3p$ ($^2S^o$ and $^2P^o$), $2p^4(^1D)3p$ $^2P^o$, and $2p^4(^3P)3p$ 2F have a highly mixed composition in LS coupling, and therefore transitions from them have been assigned lower accuracies.

11.4.2. References for Allowed Transitions for Mg IV

⁷E. Biémont, Phys. Scr. **31**, 45 (1985).

⁸H. M. S. Blackford and A. Hibbert, At. Data Nucl. Data Tables **58** 101 (1994).

¹⁴K. Butler and C. J. Zeippen, http://legacy.gsfc.nasa.gov/ topbase, downloaded on July 28, 1995 (Opacity Project).

⁵⁷D. McPeake and A. Hibbert, J. Phys. B **33**, 2809 (2000).

⁹²G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on Mar. 28, 2002).

⁹⁶G. Tachiev and C. Froese Fischer, http:// www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, energy adjusted, downloaded on Sept. 3, 2003).

Table 51. Wavelength finding list for allowed lines for Mg IV $\,$

TABLE 51. Wavelength finding list for allowed lines for Mg IV—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
		200.040	40
124.416	17	269.310	19
124.525	16	294.497	18
124.540	16	295.395	18
124.641	15	320.994	1
124.650	15	323.307	1
124.762	17	608.45	76
124.871	16	608.68	76
124.988	15	611.13	76
124.998	15	611.67	76
129.710	13 14	612.52	76
129.857		614.15	76 123
129.968	14	618.92	123
129.979	13 13	619.06	123 107
130.086 130.345		631.27	107
	14 13	631.67	107
130.356	13	631.84	107
132.803 132.814	12	632.24 634.27	107
	12		
133.197	12	634.52	106 78
140.118	11	634.62	106
140.172		635.09	78
140.425	10	637.27	
140.473	9	639.77	77 77
140.522 140.557	11	642.89 644.72	77 77
140.866	10	650.65	110
140.914	9	653.63	109
140.963	9	654.05	109
146.526	8	655.05	110
146.838	8	656.84	108
146.952	7	657.11	108
147.006	8	658.07	109
147.000	7	661.32	109
147.032	6	661.59	108
147.234	8	680.30	105
147.400	6	685.11	105
147.497	6	737.724	115
147.535	7	773.854	32
147.885	6	774.082	32
147.983	6	784.021	32
160.228	5	784.256	32
160.802	5	800.409	71
171.651	4	803.072	71
171.655	4	803.741	71
172.310	4	806.595	71
180.069	3	809.979	71
180.614	3	811.273	71
180.795	3	814.869	71
181.344	3	827.11	122
183.165	2	827.22	103
183.440	2	827.37	122
183.916	2	833.24	104
183.918	2	834.35	104
184.193	2	834.33	103
269.282	19	838.26	103
207.202	19	030.20	103

TABLE 51. Wavelength finding list for allowed lines for Mg IV—Continued

TABLE 51. Wavelength finding list for allowed lines for Mg IV—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
(vac) (11)	110.	(vac) (ri)	110.
840.364	100	1 037.393	31
840.432	100	1 041.740	113
842.083	100	1 044.365	31
845.11	104	1 055.747	31
845.58	103	1 056.223	124
852.232	72	1 058.994	124
854.405	72	1 061.738	125
854.932	72	1 068.592	114
857.290	72	1 073.736	114
859.249	72	1 097.450	30
861.994	72	1 099.175	30
863.694	72	1 119.802	30
865.722	73	1 190.882	44
866.734	73	1 197.434	44
868.644	72	1 198.646	44
868.676	97	1 205.284	44
869.172	97	1 210.962	43
870.938	97	1 212.855	44
875.62	121	1 218.990	43
875.91	121	1 220.904	43
877.489	73	1 221.399	42
890.355	75	1 229.066	43
891.008	101	1 229.568	42
891.085	101	1 235.634	42
892.145	101	1 235.875	43
892.222	101	1 236.939	43
902.807	75	1 243.837	43
911.001	74	1 292.740	49
919.023	74	1 307.359	49
922.901	98	1 307.649	89
923.461	98	1 307.930	89
924.120	98	1 311.649	89
924.682	98	1 311.931	89
929.779	74	1 315.260	49
936.205	102	1 316.436	48
936.290	102	1 318.734	49
945.262	68	1 319.212	88
945.341	102	1 323.954	88
947.694	68	1 326.774	49
958.068	68	1 328.055	88
960.567	68	1 328.780	47
963.939	67	1 331.599	48
971.479	99	1 333.330	49
972.100	99	1 336.857	41
974.899	67	1 337.709	96
977.260	67	1 340.822	55
981.321	99	1 342.156	41
988.329	70	1 342.215	41
990.988	70	1 343.402	48
996.740	40	1 343.631	48
996.899	40	1 344.231	47
997.278	40	1 345.645	47
1 006.250	69	1 346.542	41
1 008.765	69	1 346.649	41
1 026.401	31	1 350.904	120

TABLE 51. Wavelength finding list for allowed lines for Mg IV—Continued

TABLE 51. Wavelength finding list for allowed lines for Mg IV—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
(12)		(100) (11)	
1 351.602	120	1 457.203	91
1 351.611	41	1 459.392	65
1 351.779	120	1 459.524	39
1 352.026	41	1 459.598	23
1 355.649	48	1 464.970	60
1 356.107	41	1 466.628	51
1 356.260	47	1 469.333	51
1 356.440	96	1 470.770	64
1 357.068	46	1 472.956	45
1 361.493	47	1 474.898	60
1 362.494	48	1 478.240	45
1 363.126	46	1 480.777	64
1 363.938	48	1 481.029	51
1 366.014	96	1 481.499	39
1 366.736	55	1 481.850	39
1 370.868	48	1 482.687	57
1 371.042	46	1 484.472	24
1 373.187	46	1 485.421	45
1 375.497	46	1 487.274	90
1 377.382	54	1 490.428	23
1 382.545	46	1 491.965	45
1 384.426	46	1 492.609	57
1 385.552	96	1 492.776	90
1 385.742	46	1 494.623	45
1 386.155	54	1 495.475	59
1 387.498	46	1 495.969	90
1 394.360	55	1 497.387	45
1 404.315	53	1 500.123	45
1 404.662	87	1 501.520	63
1 404.743	54	1 502.715	24
1 409.278	87	1 502.948	45
1 409.340	87	1 506.462	56
1 413.869	54	1 506.798	45
1 417.704	53	1 508.510	45
1 418.371	52	1 508.819	23
1 423.682	61	1 510.668	59
1 425.596	119	1 511.426	58
1 426.373	119	1 516.836	63
1 427.711	119	1 520.968	59
1 429.159	65	1 524.730	22
1 432.767	53	1 527.221	63
1 434.864	92	1 541.728	62
1 437.476	92	1 552.303	66
1 437.604	52	1 554.610	62
1 437.815	92	1 558.329	22
1 439.425	51	1 558.404	22
1 446.707	53	1 571.811	95
1 447.402	52	1 576.481	50
1 448.455	91	1 578.522	22
1 450.648	51	1 578.547	95
1 451.461	91	1 583.855	50
1 453.681	61	1 589.967	50
1 453.886	24	1 593.521	22
1 454.173	91	1 597.735	95
1 456.151	53	1 606.075	50

TABLE 51. Wavelength finding list for allowed lines for Mg IV—Continued

TABLE 51. Wavelength finding list for allowed lines for Mg IV—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (air) (Å)	Mult No.
1 607.097	38	2 475.86	118
1 607.510	38	2 642.66	82
1 610.799	38	2 652.69	82
1 611.214	38	2 747.96	82
1 611.269	94	2 788.59	81
1 612.427	50	2 799.76	81
1 617.628	93	2 824.80	81
1 620.142	50	2 836.26	81
1 624.139	93	2 961.95	80
1 638.522	94	2 974.55	80
1 640.891	21	3 060.44	80
1 645.099	93	3 084.46	86
1 651.833	93	3 185.93	86
1 658.851	21	3 228.86	86
1 669.563	21	3 242.53	117
1 679.958	21	3 246.55	117
1 683.000	21	3 275.43	117
1 692.675	21	3 285.11	85
1 698.788	21	3 335.48	85
1 699.654	29	3 339.14	36
1 701.262	79	3 340.24	86
1 702.368	79	3 340.93	36
1 703.360	21	3 415.11	116
1 707.467	28	3 419.58	116
1 749.484	29	3 442.63	84
1 757.763	28	3 454.46	85
1 797.28	27	3 524.25	84
1 800.16	37	3 580.85	84
1 807.75	37	3 657.35	84
1 808.28	37	3 661.65	83
1 844.15	27	3 718.34	84
1 853.09	27	3 735.19	83
1 874.58	20	3 738.18	35
1 893.89	20	3 740.42	35
1 906.72	20	3 805.54	83
1 925.74	20	3 946.88	35
1 936.93	20	3 949.37	35
1 946.12	20	4 452.08	34
1 946.76	26	4 523.52	34
1 956.55	20	4 526.79	34
1 960.91	26	4 634	131
1 986.61	26	4 662.72	34
Wavelength	Mult.	4 666.20	34
(air) (Å)	No.	4 858.74	34
(an) (A)	140.	4 924	131
2.011.76	24	6 662.5	33
2 011.76	26	6 893.1	33
2 026.88	26	6 900.7	33
2 276.29	25	7 161.7	33
2 303.46	25	7 169.9	33
2 332.70	25	10 804	127
2 366.61	25		
2 382.21	118		
2 384.38	118		
2 395.98	25		

TABLE 51. Wavelength finding list for allowed lines for Mg IV—Continued

TABLE 51. Wavelength finding list for allowed lines for Mg IV—Continued

Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.
4 222	126	2 396.3	111
4 066	128	1 866.2	112
4 004	128	1 828.0	112
3 781	126	1 002	132
3 256	129	940	132
2 855.8	111	416.7	112
2 817.6	111	378.5	112
2 556	130		

TABLE 52. Transition probabilities of allowed lines for Mg IV (references for this table are as follows: 1=Butler and Zeippen, 14 2=Tachiev and Froese Fischer, 96 3=Tachiev and Froese Fischer, 92 and $4=Biémont^7$)

No.	Transition array	Mult.	λ _{air} (Å)	$\lambda_{\text{vac}} (\mathring{A})$ or $\sigma (\text{cm}^{-1})^a$	$E_i - E_k$ (cm ⁻¹)	g_i-g_k	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
1	$2s^22p^5 - 2s2p^6$	$^{2}\text{P}^{\circ}-^{2}\text{S}$		321.76	<i>743</i> –311 532	6–2	1.68+02	8.71-02	5.54-01	-0.282	B+	2
				320.994	0-311 532	4-2	1.13+02	8.74-02	3.70-01	-0.456	B+	2
				323.307	2 228–311 532	2–2			1.84-01			2
2	2 22 5 2 4(3p)2	2p° 4p										
2	$2s^22p^5 - 2p^4(^3P)3s$	$^{2}P^{\circ}-^{4}P$		183.440	0–545 137.6	4-4	1 22 + 00	6.60 04	1.62-03	2 572	D±	2
				183.916	2 228–545 955.4	2-2			2.18-04			2
				183.165	0-545 955.4	4–2			1.46-05			2
				183.918	0-543 720.4	4-6			1.46-04			2
				184.193	2 228–545 137.6	2–4			1.62-04			2
3		$^{2}P^{\circ}-^{2}P$		180.67	743–554 225	6-6	2.47+02	1.21-01	4.31-01	-0.139	В	2
				180.614	0-553 666.1	4-4	2.09±02	1.02-01	2.43-01	_0.389	R+	2
				180.795	2 228–555 341.9	2–2			9.48-02			2
				180.069	0–555 341.9	4-2			4.91-02			2
				181.344	2 228-553 666.1	2-4			4.38-02			2
4	$2p^5 - 2p^4(^1D)3s$	$^{2}P^{\circ}-^{2}D$		171.87	743–582 569	6–10	9.66+01	7.13-02	2.42-01	-0.369	В	2
				171.655	0-582 562.4	4-6	9.66+01	6.40-02	1.45-01	-0.592	В	2
				172.310	2 228-582 578.4	2-4			8.53-02			2
				171.651	0-582 578.4	4-4	1.22+01	5.41 - 03	1.22-02	-1.665	В	2
5	$2p^5 - 2p^4(^1S)3s$	$^{2}P^{\circ}-^{2}S$		160.42	743–624 109.6	6–2	9.85+01	1.27-02	4.01-02	-1.118	D	2
				160.228	0-624 109.6	4-2	6.28+01	1.21-02	2.55-02	-1.315	D+	2
				160.802	2 228-624 109.6	2-2	3.56+01	1.38 - 02	1.46-02	-1.559	D	2
6	$2s^22p^5-2p^4(^3P)3d$	$^{2}P^{\circ}-^{4}P$										
				147.400	0-678 428.3	4–4			7.04 - 03			2
				147.983	2 228–677 980.0	2–2			9.94-05			2
				147.497	0–677 980.0	4–2			5.80 - 04			2
				147.254	0–679 100.8	4–6			2.73-02			2
				147.885	2 228–678 428.3	2–4	5.23+00	3.43-03	3.34-03	-2.164	Е	2
7		$^{2}P^{\circ}-^{2}D$		147.15	743–680 309	6–10	5.20+02	2.81-01	8.18-01	0.227	C	2
				146.952	0-680 493.2	4-6	5.12+02	2.49 - 01	4.81 - 01	-0.002	C+	2
				147.535	2 228-680 033.7	2-4	3.29+02	2.14-01	2.08-01	-0.369	C	2
				147.052	0-680 033.7	4–4	2.04+02	6.61 - 02	1.28 - 01	-0.578	C	2
8		$^{2}P^{\circ}-^{2}P$		146.79	743–681 990	6–6	2.90+02	9.38-02	2.72-01	-0.250	C	2
				146.526	0–682 472.8	4-4	1.17+02	3.78-02	7.29-02	-0.820	C	2

Table 52. Transition probabilities of allowed lines for Mg IV (references for this table are as follows: 1=Butler and Zeippen, 14 2=Tachiev and Froese Fischer, 96 3=Tachiev and Froese Fischer, 92 and $4=Bi\acute{e}mont^7$)—Continued

No.	Transition array	Mult.	$egin{array}{lll} \lambda_{air} & \lambda_{vac} \ (\mathring{A}) \ (\mathring{A}) & ext{or } \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
			147.320	2 228-681 023.3	2–2	1.59+02	5.17-02	5.02-02	-0.985	D+	2
			146.838	0-681 023.3	4-2	9.16+01	1.48 - 02	2.86-02	-1.228	D+	2
			147.006	2 228-682 472.8	2-4	1.92+02	1.24-01	1.20-01	-0.606	C	2
9	$2p^5 - 2p^4(^1D)3d$	$^{2}P^{\circ}-^{2}P$	140.65	743–711 715	6-6	6.40+02	1.90-01	5.27-01	0.057	D+	2,4
			140.522	0-711 632.7	4-4	4.59+02	1.36-01	2.52-01	-0.264	С	2
			140.914	2 228-711 880.5	2-2	3.94+02	1.17-01	1.09-01	-0.631	D	4
			140.473	0-711 880.5	4-2	4.05 + 02	6.00-02	1.11-01	-0.620	D	4
			140.963	2 228-711 632.7	2-4	1.01 + 02	6.01 - 02	5.58-02	-0.920	D	2
10		$^{2}P^{\circ}-^{2}S$	140.57	<i>743</i> –712 124.5	6–2	7.51+02	7.42-02	2.06-01	-0.351	C	2
			140.425	0-712 124.5	4-2	1.60+02	2.36-02	4.37-02	-1.025	D+	2
			140.866	2 228-712 124.5	2-2			1.62-01			2
11		$^{2}P^{\circ}-^{2}D$	140.30	743–713 520	6–10	2.98+02	1.46-01	4.06-01	-0.057	C	2
			140.172	0-713 411.0	4-6	2.85+02	1.26-01	2.32-01	-0.298	C	2
			140.557	2 228–713 682.5	2–4			1.43-01			2
			140.118	0-713 682.5	4-4			3.08 - 02			2
12	$2p^5 - 2p^4(^1S)3d$	$^{2}P^{\circ}-^{2}D$	132.94	743–752 958	6–10	1.06+02	4.68-02	1.23-01	-0.552	D+	3
			132.814	0-752 931.7	4-6	1.01+02	4.01-02	7.02-02	-0.795	D+	3
			133.197	2 228–752 997.4	2–4			4.50-02			3
			132.803	0–752 997.4	4-4			7.67-03			3
13	$2p^5 - 2p^4(^3P)4d$	$^{2}P^{\circ}-^{2}P$	129.93	743–770 417	6-6	4.31+02	1.09-01	2.80-01	-0.184	D	4
			129.710	0–770 948	4-4	8.06±01	2 03-02	3.47-02	-1 090	E+	4
			130.356	2 228–769 356	2–2			4.82-02			4
			129.979	0–769 356	4-2			2.64-02			4
			130.086	2 228–770 948	2-4			1.70-01			4
14		$^{2}P^{\circ}-^{2}D$	130.03	743–769 813	6–10	5.65+02	2.39-01	6.13-01	0.157	D	4
			129.857	0–770 075	4-6	5.61+02	2.13-01	3.64-01	-0.070	D+	4
			130.345	2 228–769 421	2–4			1.08-01			4
			129.968	0–769 421	4-4			1.42-01			4
15	$2p^5 - 2p^4(^1D)4d$	$^{2}P^{\circ}-^{2}P$	124.76	743–802 265	6-6	4.18+02	9.76-02	2.41-01	-0.232	D	4
			124.650	0-802 244	4-4	3.32+02	7.73-02	1.27-01	-0.510	D	4
			124.988	2 228-802 306	2–2			5.42-02			4
			124.641	0-802 306	4–2			3.04-02			4
			124.998	2 228-802 244	2-4	7.56+01	3.54-02	2.91-02	-1.150	E+	4
16		$^{2}P^{\circ}-^{2}D$	124.65	743–802 994	6–10	2.10+02	8.15-02	2.01-01	-0.311	D	4
			124.540	0-802 954	4-6	1.93+02	6.73-02	1.10-01	-0.570	D	4
			124.871	2 228-803 054	2-4	1.90+02	8.89-02	7.31 - 02	-0.750	D	4
			124.525	0-803 054	4-4			1.71-02			4
17		$^{2}P^{\circ}-^{2}S$	124.53	<i>743</i> –803 754	6–2	5.13+02	3.97-02	9.78-02	-0.623	E+	4
			124.416	0-803 754	4-2	3.26±02	3.78-02	6.20-02	_0.820	D	4
			124.762	2 228–803 754	2-2			3.58 - 02			4
18	$2s2p^6 - 2s^2 2p^4 (^1D)3p$	$^{2}S-^{2}P^{\circ}$	295.10	311 532–650 406	2–6			1.14-02			2
-	r (-) 2 P	·									
			295.395	311 532–650 061.6	2–4			7.51-03			2
			294.497	311 532–651 093.9	2–2	1.56+00	2.03-03	3.94-03	-2.391	E+	2

Table 52. Transition probabilities of allowed lines for Mg IV (references for this table are as follows: 1 = Butler and Zeippen, 14 2 = Tachiev and Froese Fischer, 96 3 = Tachiev and Froese Fischer, 92 and $4 = Bi\acute{e}mont^7$)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
19	$2s2p^6 - 2s^2 2p^4 (^1S)3p$	$^{2}S-^{2}P^{\circ}$		269.29	311 532–682 877	2–6	2.18+00	7.10-03	1.26-02	-1.848	D	2
				269.282	311 532–682 889.5	2-4	2.20+00	4.78-03	8.47-03	-2.020	D	2
				269.310	311 532–682 851.3	2–2		2.32-03				2
20	$2p^4(^3P)3s - 2p^4(^3P)3p$	$^4P-^4P^{\circ}$		1 911.5	544 565–596 880	12–12	3.77+00	2.07-01	1.56+01	0.395	B+	2
				1 893.89	543 720.4–596 521.8	6-6	3.04+00	1.64-01	6.12+00	-0.007	B+	2
				1 925.74	545 137.6–597 065.7	4-4	5.49 - 01	3.05 - 02	7.73 - 01	-0.914	B +	2
				1 936.93	545 955.4–597 583.6	2–2	4.86 - 01	2.73 - 02	3.49 - 01	-1.263	B +	2
				1 874.58	543 720.4–597 065.7	6-4	2.14+00	7.51 - 02	2.78+00	-0.346	B +	2
				1 906.72	545 137.6–597 583.6	4–2	3.29+00	8.96-02	2.25+00	-0.446	B +	2
				1 946.12	545 137.6–596 521.8	4-6	7.71 - 01	6.57 - 02	1.68+00	-0.580	B +	2
				1 956.55	545 955.4–597 065.7	2–4	1.11+00	1.28-01	1.65+00	-0.592	B+	2
21		$^4P-^4D^{\circ}$		1 685.58	544 565–603 892	12-20	5.58+00	3.96-01	2.64+01	0.677	B+	2
				1 683.000	543 720.4-603 138.1	6-8		3.19-01		0.282		2
				1 698.788	545 137.6-604 003.1	4–6		2.75 - 01		0.041		2
				1 703.360	545 955.4-604 662.9	2-4	2.59+00	2.25 - 01	2.52+00	-0.347	B+	2
				1 658.851	543 720.4-604 003.1	6–6		5.16 - 02				2
				1 679.958	545 137.6–604 662.9	4-4		1.18 - 01				2
				1 692.675	545 955.4-605 033.5	2–2		2.05 - 01				2
				1 640.891	543 720.4-604 662.9	6-4		4.33 - 03				2
				1 669.563	545 137.6–605 033.5	4–2	7.76-01	1.62-02	3.56-01	-1.188	B+	2
22		$^{4}P-^{2}D^{\circ}$										
				1 593.521	545 137.6-607 891.7	4-6	5.33 - 02	3.05 - 03	6.39 - 02	-1.914	D+	2
				1 578.522	545 955.4-609 305.8	2-4	1.32 - 02	9.83 - 04	1.02 - 02	-2.706	E+	2
				1 558.329	543 720.4-607 891.7	6–6	2.99 - 02	1.09 - 03	3.35 - 02	-2.184	D	2
				1 558.404	545 137.6–609 305.8	4-4	7.73 - 03	2.82 - 04	5.78 - 03	-2.948	E+	2
				1 524.730	543 720.4–609 305.8	6–4	4.81-03	1.12-04	3.36-03	-3.173	E	2
23		$^{4}P-^{4}S^{\circ}$		1 477.82	544 565-612 232.4	12–4	8.15+00	8.90-02	5.20+00	0.029	В	2
				1 459.598	543 720.4-612 232.4	6-4	3.72+00	7.92-02	2.28+00	-0.323	В	2
				1 490.428	545 137.6-612 232.4	4-4	2.83+00	9.42-02	1.85 + 00	-0.424	В	2
				1 508.819	545 955.4-612 232.4	2-4	1.57 + 00	1.07 - 01	1.06+00	-0.670	C+	2
24		$^{4}P-^{2}P^{\circ}$										
				1 484.472	545 137.6-612 501.6	4-4	5.94 - 02	1.96-03	3.84 - 02	-2.106	D	2
				1 453.886	543 720.4-612 501.6	6-4	6.13 - 02	1.29 - 03	3.72 - 02	-2.111	D	2
				1 502.715	545 955.4-612 501.6	2-4	1.07 - 02	7.26 - 04	7.18 - 03	-2.838	E+	2
25		$^{2}P-^{4}P^{\circ}$										
			2 303.46	2 304.17	553 666.1–597 065.7	4-4	8.34 - 05	6.63 - 06	2.01 - 04	-4.576	D	2
			2 366.61	2 367.33	555 341.9–597 583.6	2-2	7.24 - 04	6.08 - 05	9.48 - 04	-3.915	D+	2
			2 276.29	2 277.00	553 666.1–597 583.6	4–2	1.49-03	5.81 - 05	1.74 - 03	-3.634	D+	2
			2 332.70	2 333.41	553 666.1–596 521.8	4-6	3.85 - 04	4.72 - 05	1.45 - 03	-3.724	D+	2
			2 395.98	2 396.71	555 341.9–597 065.7	2–4	9.90-06	1.71 - 06	2.69 - 05	-5.466	E+	2
26		$^{2}P-^{4}D^{\circ}$										
				1 986.61	553 666.1–604 003.1	4-6	4.52-02	4.01-03	1.05-01	-1.795	C+	2
			2 026.88	2 027.53	555 341.9–604 662.9	2–4		1.65-03				2
			2 020.00	1 960.91	553 666.1–604 662.9	4-4		2.80-05				2
			2 011.76	2 012.41	555 341.9–605 033.5	2–2		6.59-05				2
			2 311.70	1 946.76	553 666.1–605 033.5	4-2		8.69-06				2
27		$^{2}P-^{2}D^{\circ}$		1 843.9	554 225–608 457	6–10	4.42+00	3.76-01	1.37+01	0.353	B+	2
21				1 013.7	55.445 GOO TS/	5 10	1. TZ F UU	5.70 -01	1.57 FUI	0.000	۱ ب	-

Table 52. Transition probabilities of allowed lines for Mg IV (references for this table are as follows: 1=Butler and Zeippen, 14 2=Tachiev and Froese Fischer, 96 3=Tachiev and Froese Fischer, 92 and $4=Bi\acute{e}mont^7$)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$A_{ki} \\ (10^8 \text{ s}^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				1 844.15	553 666.1–607 891.7	4-6	4.41+00	3.38-01	8.20+00	0.131	B+	2
				1 853.09	555 341.9–609 305.8	2–4	3.10+00	3.19 - 01	3.90+00	-0.195	В	2
				1 797.28	553 666.1–609 305.8	4–4	1.39+00	6.71 - 02	1.59+00	-0.571	В	2
28		$^{2}P-^{4}S^{\circ}$										
				1 707.467	553 666.1–612 232.4	4-4	6.00-02	2.62-03	5.89-02	-1.980	D	2
				1 757.763	555 341.9–612 232.4	2-4	1.32-02	1.22-03	1.41 - 02	-2.613	E+	2
29		$^{2}P-^{2}P^{\circ}$				6-4						
				1 699.654	553 666.1–612 501.6	4-4	2.90+00	1.26-01	2.81+00	-0.298	В	2
				1 749.484	555 341.9–612 501.6	2-4	1.30+00	1.19-01	1.37+00	-0.623	В	2
30	$2p^4(^3P)3s - 2p^4(^1D)3p$	$^{2}P-^{2}D^{\circ}$		1 104.92	554 225–644 729	6–10	5.98-03	1.83-03	3.98-02	-1.959	D	2
				1 097.450	553 666.1–644 786.4	4-6	4.39-02	1.19-03	1.72-02	-2.322	D	2
				1 119.802	555 341.9-644 643.4	2-4	2.02-02	7.58-04	5.59-03	-2.819	D	2
				1 099.175	553 666.1–644 643.4	4-4	6.51-02	1.18-03	1.71 - 02	-2.326	D	2
31		$^{2}P-^{2}P^{\circ}$		1 039.71	554 225–650 406	6-6	6.81+00	1.10-01	2.27+00	-0.180	C+	2
				1 037.393	553 666.1–650 061.6	4-4	5.71+00	9.22-02	1.26+00	-0.433	В	2
				1 044.365	555 341.9-651 093.9	2–2	4.53+00	7.41 - 02	5.10-01	-0.829	C+	2
				1 026.401	553 666.1-651 093.9	4-2	2.10+00	1.66-02	2.24-01	-1.178	C	2
				1 055.747	555 341.9–650 061.6	2-4	1.19+00	3.96-02	2.76-01	-1.101	C	2
32	$2p^4(^3P)3s-2p^4(^1S)3p$	$^{2}P-^{2}P^{\circ}$		777.29	554 225–682 877	6–6	5.78-01	5.23-03	8.04-02	-1.503	D+	2
				773.854	553 666.1-682 889.5	4-4	4.47-01	4.01-03	4.09-02	-1.795	D+	2
				784.256	555 341.9-682 851.3	2-2	4.28 - 01	3.95 - 03	2.04 - 02	-2.102	D	2
				774.082	553 666.1–682 851.3	4–2	2.20-01	9.88 - 04	1.01 - 02	-2.403	D	2
				784.021	555 341.9–682 889.5	2–4	9.48-02	1.75 - 03	9.02-03	-2.456	D	2
33	$2p^4(^1D)3s - 2p^4(^3P)3p$	$^{2}D-^{4}P^{\circ}$										
			6 893.1	6 895.0	582 562.4–597 065.7	6–4			7.18 - 04			2
			6 662.5	6 664.4	582 578.4–597 583.6	4–2	8.59-06		2.51-04			2
			7 161.7	7 163.6	582 562.4–596 521.8	6–6			1.52-04			2
			6 900.7	6 902.6	582 578.4–597 065.7	4–4			2.16-04			2
			7 169.9	7 171.9	582 578.4–596 521.8	4–6	1.45-07	1.67-07	1.58-05	-6.175	E+	2
34		$^{2}D-^{4}D^{\circ}$										
			4 662.72	4 664.03	582 562.4-604 003.1	6–6	9.51-06	3.10-06	2.86 - 04	-4.730	D	2
			4 526.79	4 528.06	582 578.4–604 662.9	4–4			2.79 - 04			2
			4 523.52	4 524.78	582 562.4–604 662.9	6–4			2.12-04			2
			4 452.08	4 453.33	582 578.4–605 033.5	4–2			1.56-04			2
			4 858.74 4 666.20	4 860.10 4 667.51	582 562.4–603 138.1 582 578.4–604 003.1	6–8 4–6			1.44-04 7.38-05			2 2
25		2p 2p°										
35		$^{2}D-^{2}D^{\circ}$	<i>3 861.6</i> 3 946.88	3 862.8 3 948.00	582 569–608 457 582 562.4–607 891.7	10–10 6–6			5.16-02 1.11-02			2 2
			3 740.42	3 741.48	582 578.4–609 305.8	4–4			2.35-02			2
			3 738.18	3 739.24	582 562.4–609 305.8	6–4			1.66-02			2
			3 949.37	3 950.49	582 578.4–607 891.7	4–6			4.56-04			2
36		$^{2}D-^{2}P^{\circ}$				10–4						
			2 220 14	2 240 10	500 560 4 610 501 6		1 45 01	1.60 .00	1.07 . 00	1.012	C :	2
			3 339.14 3 340.93	3 340.10 3 341.89	582 562.4–612 501.6 582 578.4–612 501.6	6–4 4–4			1.07+00 $1.08-01$			2 2
	- 4d- > - 4d -	2- 2 6	5 540.75									
37	$2p^4(^1D)3s - 2p^4(^1D)3p$	$^{2}D-^{2}F^{\circ}$		1 803.6	582 569–638 013	10–14	4.66+00	3.18-01	1.89+01	0.502	B+	2

Table 52. Transition probabilities of allowed lines for Mg IV (references for this table are as follows: 1 = Butler and Zeippen, 14 2 = Tachiev and Froese Fischer, 96 3 = Tachiev and Froese Fischer, 92 and $4 = Bi\acute{e}mont^7$)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				1 800.16	582 562.4-638 112.9	6-8	4.69+00	3.04-01	1.08+01	0.261	B+	2
				1 808.28	582 578.4-637 879.7	4-6	4.26+00	3.13 - 01	7.45 + 00	0.098	$\mathrm{B} +$	2
				1 807.75	582 562.4-637 879.7	6-6	3.68-01	1.80 - 02	6.44 - 01	-0.967	C+	2
38		$^{2}D-^{2}D^{\circ}$		1 608.74	582 569–644 729	10–10	6.47+00	2.51-01	1.33+01	0.400	B+	2
				1 607.097	582 562.4-644 786.4	6-6	5.97+00	2.31-01	7.34+00	0.142	$\mathrm{B} +$	2
				1 611.214	582 578.4-644 643.4	4-4	6.01+00	2.34-01	4.96+00	-0.029	$\mathrm{B} +$	2
				1 610.799	582 562.4-644 643.4	6-4	4.19 - 01	1.09 - 02	3.46 - 01	-1.184	C	2
				1 607.510	582 578.4-644 786.4	4-6	5.24-01	3.04 - 02	6.44 - 01	-0.915	C+	2
39		$^{2}D-^{2}P^{\circ}$		1 474.12	582 569–650 406	10-6	6.66+00	1.30-01	6.32+00	0.114	В	2
				1 481.499	582 562.4-650 061.6	6-4	6.16+00	1.35 - 01	3.96+00	-0.092	В	2
				1 459.524	582 578.4-651 093.9	4-2	6.94+00	1.11 - 01	2.13+00	-0.353	В	2
				1 481.850	582 578.4-650 061.6	4-4	3.64-01	1.20 - 02	2.34-01	-1.319	C	2
40	$2p^4(^1D)3s - 2p^4(^1S)3p$	$^{2}D-^{2}P^{\circ}$		996.93	582 569–682 877	10-6	3.86-02	3.45-04	1.13-02	-2.462	D	2
				996.740	582 562.4-682 889.5	6-4	4.13-02	4.10-04	8.07-03	-2.609	D	2
				997.278	582 578.4-682 851.3	4-2	1.68 - 02	1.25 - 04	1.65 - 03	-3.301	E+	2
				996.899	582 578.4–682 889.5	4-4	8.24-03	1.23 - 04	1.61 - 03	-3.308	E+	2
41	$2p^4(^3P)3p - 2p^4(^3P)3d$	$^{4}P^{\circ}-^{4}D$		1 348.35	596 880–671 045	12-20	1.11+01	5.06-01	2.70+01	0.783	B+	2
				1 346.542	596 521.8-670 786.1	6-8	1.07+01	3.87-01	1.03+01	0.366	B+	2
				1 352.026	597 065.7-671 028.8	4-6	6.59+00	2.71 - 01	4.82 + 00	0.035	$\mathrm{B} +$	2
				1 356.107	597 583.6-671 324.1	2-4	3.67+00	2.02-01	1.81 + 00	-0.394	В	2
				1 342.156	596 521.8-671 028.8	6-6	4.72+00	1.28-01	3.38+00	-0.115	В	2
				1 346.649	597 065.7-671 324.1	4-4			3.31+00			2
				1 351.611	597 583.6-671 569.4	2-2			2.21+00			2
				1 336.857	596 521.8–671 324.1	6–4			5.06-01			2
				1 342.215	597 065.7–671 569.4	4–2			6.34-01			2
42		$^{4}P^{\circ}-^{2}F$										
				1 235.634	596 521.8–677 451.9	6–8	1.71-02	5.23-04	1.28-02	-2.503	Ε±	2
				1 229.568	597 065.7–678 395.1	4-6			7.59-02			2
				1 221.399	596 521.8–678 395.1	6–6			9.31-02			2
43		$^{4}P^{\circ}-^{4}P$		1 222.35	596 880–678 690	12–12	7.17+00	1.61-01	7.76+00	0.286	В	2
				1 210.962	596 521.8–679 100.8	6–6	3.79+00	8.34-02	1.99+00	-0.301	В	2
				1 229.066	597 065.7–678 428.3	4-4			2.74-01			2
				1 243.837	597 583.6–677 980.0	2–2			3.53-01			2
				1 220.904	596 521.8–678 428.3	6–4			1.17+00			2
				1 235.875	597 065.7–677 980.0	4–2			1.31+00			2
				1 218.990	597 065.7–679 100.8	4-6			1.21+00			2
				1 236.939	597 583.6–678 428.3	2–4			1.45 + 00			2
44		$^{4}P^{\circ}-^{2}D$										
				1 198.646	597 065.7–680 493.2	4–6	1.93-01	6.22-03	9.82-02	-1.604	D+	2
				1 212.855	597 583.6–680 033.7	2–4			3.91-02			2
				1 190.882	596 521.8–680 493.2	6-6			1.39-01			2
				1 205.284	597 065.7–680 033.7	4-4			4.44-03			2
				1 197.434	596 521.8–680 033.7	6–4			2.18-02			2
45		$^{4}D^{\circ}-^{4}D$		1 489.14	603 892–671 045	20–20			8.87+00			2
				1 478.240	603 138.1–670 786.1	8-8	2 02 - 00	0.5702	3.73+00	_0 116	P	2
				1 478.240	604 003.1–671 028.8				3.73+00 $1.47+00$			2
						6–6 4 4						
				1 500.123	604 662.9–671 324.1	4–4	9.01-01	3.04-02	6.01-01	-0.915	C+	2

Table 52. Transition probabilities of allowed lines for Mg IV (references for this table are as follows: 1=Butler and Zeippen, 14 2=Tachiev and Froese Fischer, 96 3=Tachiev and Froese Fischer, 92 and $4=Bi\acute{e}mont^7$)—Continued

1 1 1 1 1 1 1 1 1 1	Transition		λ_{air}	λ_{vac} (Å)	$E_i - E_k$		A_{ki}		S		,	G
1472956 603 1381-671 2048 8.6-0 7.02-01 1.71-02 664-01 -0.884 C-1 1494.623 604 6623-671 8594 4-2 1.19-02 0.08-02 333-01 -0.997 C-1 1506.798 604 6623-671 8594 4-2 1.19-02 0.08-02 333-01 -1.097 C-1 1506.798 604 6623-671 028.8 4-6 0.391-01 200-02 336-01 -1.105 C-1 1506.798 604 6623-671 028.8 4-6 0.391-01 200-02 336-01 -1.105 C-1 1506.798 604 6623-671 028.8 4-6 0.391-01 200-02 336-01 -1.097 C-1 1508.510 605 033.5-671 3241 2-4 2-501 209-02 288-01 -1.237 C-1 1506.798 604 6623-676 1028.8 4-6 0.391-01 209-02 288-01 -1.237 C-1 1506.798 604 6623-676 1028.8 4-6 0.391-01 209-02 288-01 -1.237 C-1 1506.798 604 6623-676 1028.8 4-6 0.391-01 5.001-01 5.11-01 5.008 B-1 1387.498 604 6031-675 370.2 8-10 1.45-01 5.20-01 19040 0.019 B-1 1387.498 604 6031-676 820.4 4-6 1.07-01 4.60-01 8.40-00 0.265 B-1 1387.499 604 6629-676 826.4 4-6 1.07-01 5.87-01 5.34-00 0.265 B-1 1375.499 604 6629-676 826.4 4-6 1.07-01 5.87-01 5.34-00 0.265 B-1 1375.499 604 6629-676 826.4 4-6 1.07-01 5.87-01 5.34-00 0.265 B-1 1375.499 604 6629-678 395.1 4-6 2.02-01 1.01-01 3.02-02 0.009 B-1 1375.499 604 6629-678 395.1 4-6 5.32-01 1.01-03 3.02-02 -0.266 D-1 1365.65 604 6031-678 820.4 4-0 3.02-01 1.01-01 3.01-02 0.205 B-1 1356.250 604 6629-678 895.1 4-6 7.22-01 2.99-02 2.33-01 -0.922 C-1 1.009 B-1 1.	 array	Mult.	(A)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10° s ⁻¹)	f_{ik}	(a.u.)	$\log gf$	Acc.	Sourc
1485.421				1 502.948	605 033.5–671 569.4	2–2						2
1,94,623				1 472.956	603 138.1–671 028.8	8–6						2
1497.387 6040.03.1-670.786.1 6-8 2.65-01 1.19-02 3.52-01 -1.146 -1.007 -1.0												2
1 506.798												2
1 508.510 605 033.5-671 324.1 2-4 4.25-01 2.90-02 2.88-01 -1.237 C 1 6												2
166												2
1 384,426 603 138.1-675 370.2 8-10 1.45+01 5.20-01 1.90+01 0.619 BH 1.387,498 604 003.1-676 075.3 6-8 1.19+01 4.58-01 1.25+01 0.439 BH 1.382,545 605 033.5-677 363.9 2-4 1.02+01 5.87-01 5.34+00 0.025 BH 1.371,102 603 138.1-676 075.3 8-8 1.31+00 3.71-02 1.34+00 0.025 BH 1.373,187 604 003.1-676 826.4 6-6 3.08+00 8.70-02 1.34+00 0.025 BH 1.375,497 604 6629-677 365.9 4-4 3.92+00 1.11-01 2.01+00 0.0235 BH 1.375,098 603 138.1-676 826.4 8-6 5.32-02 1.10-03 3.94-02 2.035 BH 1.375,098 603 138.1-676 826.4 8-6 5.32-02 1.10-03 3.94-02 2.035 BH 1.355,008 603 138.1-676 826.4 8-6 5.32-02 1.10-03 3.94-02 2.035 BH 1.363,126 604 003.1-677 363.9 6-4 192-01 3.57-03 9.62-02 -1.669 CH 1.363,126 604 003.1-677 363.9 6-4 192-01 3.57-03 9.62-02 -1.669 CH 1.364,631 604 003.1-677 363.9 6-4 192-01 3.57-03 9.62-02 -1.669 CH 1.346,631 604 003.1-677 363.9 6-4 192-01 3.57-03 9.62-02 -1.669 CH 1.346,631 604 003.1-677 363.9 6-4 192-01 3.57-03 9.62-02 -1.669 CH 1.346,231 604 003.1-678 395.1 4-6 7.22-01 2.99-02 5.33-01 -0.922 CH 1.346,231 604 003.1-678 395.1 4-6 7.22-01 2.99-02 5.33-01 -0.922 CH 1.346,231 604 003.1-678 395.1 8-6 5.07-02 1.01-03 3.52-02 -2.003 DH 1.346,634 603 138.1-678 395.1 8-6 5.07-02 1.01-03 3.52-02 -2.003 DH 1.331,393 604 662.9-677 980.0 4-2 8.55-02 1.19-03 2.74-01 -1.200 CH 1.343,631 604 603.1-679 100.8 8-6 4.05-01 7.89-03 2.74-01 -1.200 CH 1.343,631 604 603.1-679 100.8 4-6 4.13-01 1.10-02 2.94-01 -1.173 CH 1.370,868 605 033.5-678 428.3 4-4 2.5-01 7.05-03 1.01-02 2.94-01 -1.173 CH 1.370,868 605 033.5-678 428.3 4-4 2.5-01 7.05-03 1.01-02 2.94-01 -1.173 CH 1.370,868 605 033.5-678 428.3 4-4 2.5-01 7.05-03 2.70-01 -1.560 CH 1.343,402 604 6629-679 100.8 4-6 4.39-01 5.5-07 0.00 1.1550 CH 1.352,609 604 603.1-680 493.2 4-6 4.86-02 4.20-01 8.02-03 -2.773 BH 1.381,3440 604 6629-680 033.7 4-4 4.82-02 4.27-00 1.1550 CH 1.352,609 604 603.1-680 493.2 4-6 4.10-70 1.15-02 2.94-01 -1.150 CH 1.352,609 604 603.1-680 493.2 4-6 4.10-70 1.15-02 4.2-2-30 DH 1.352,609 604 603 1.86-670 805.2 4-8 8.50-02 4.53-03 3.98-02 -2-207 DH 1.352,609 604 603 1.66				1 508.510	605 033.5–671 324.1	2–4	4.25-01	2.90-02	2.88-01	-1.237	С	2
1 387,498 604 063.1-676 075.3 6-8 1.99+01 4.88-01 1.25+01 0.439 B+ 1.385.742 605 033.5-677 363.9 2-4 1.02+01 5.87-01 5.34+00 0.707 B+ 1.371.042 603 138.1-676 075.3 8-8 1.31+00 3.71-02 1.34+00 0.078 B+ 1.371.042 603 138.1-676 075.3 8-8 1.31+00 3.71-02 1.34+00 0.078 B+ 1.371.042 604 031-167 862-4 6-6 6-6 5.32-02 1.0-03 3.04-02 2.06+00 0-0.328 B+ 1.357.068 603 138.1-676 826-4 6-6 5.32-02 1.0-03 3.04-02 2.06+00 0-0.353 B+ 1.357.068 604 003.1-677 363.9 4-4 3.92+00 1.11-01 2.01+00 0-0.353 B+ 1.357.068 604 003.1-677 363.9 4-4 3.92+00 1.11-01 2.01+00 0-0.353 B+ 1.357.068 604 003.1-677 363.9 4-4 1.92-01 3.37-03 3.04-02 2.0660 0-0.618 C+ 1.357.068 604 602.9-678 395.1 4-6 7.22-01 2.99-02 5.33-01 0-0.22 C+ 1.09-01 0-0.23 C+ 1.09-01 0-0.25 C+ 1.09-0		$^{4}D^{\circ}-^{4}F$		1 383.58	603 892–676 169	20–28	1.40+01	5.61-01	5.11+01	1.050	B+	2
1 385,742				1 384.426	603 138.1–675 370.2	8-10	1.45+01	5.20-01	1.90+01	0.619	$\mathrm{B} +$	2
1 382,545				1 387.498	604 003.1–676 075.3	6-8	1.19+01	4.58 - 01	1.25 + 01	0.439	B+	2
1 371.042 603 138.1-676 075.3 8-8 1.14-00 3.71-02 1.34+00 -0.528 B 1 373.187 604 003.1-676 826.4 6-6 3.08+00 8.70-0 2.36+00 -0.282 B 1 375.497 604 6029-677 363.9 4-4 3.92+00 1.11-01 2.01+00 -0.353 B 1 357.068 603 138.1-676 826.4 8-6 5.32-02 1.10-03 3.94-02 -2.056 D+ 1 363.126 604 003.1-677 363.9 6-4 1.92-01 3.57-03 9.62-02 -1.669 C 77 *D*-2F 1 361.493 604 003.1-677 451.9 6-8 1.08+00 4.02-02 1.08+00 -0.618 C+ 1 356.260 604 662.9-678 395.1 4-6 7.22-01 2.99-02 5.33-01 -0.922 C 1 345.645 603 138.1-677 451.9 8-8 2.21-01 6.00-03 2.13-01 1.519 C 1 344.231 604 0031.678 395.1 4-6 7.22-01 2.99-02 5.33-01 -0.922 C 1 345.645 603 138.1-678 395.1 8-6 3.07-02 1.01-03 3.52-02 -2.030 D 1 328.780 603 138.1-678 395.1 8-6 5.07-02 1.01-03 3.52-02 -2.030 D 1 338.780 603 138.1-678 395.1 8-6 5.07-02 1.01-03 3.52-02 -2.030 D 1 336.398 604 662.9-677 980.0 4-2 8.55-02 1.01-03 3.22-02 -2.030 D 1 331.599 604 003.1-679 100.8 8-6 4.05-01 7.89-03 2.74-00 -1.750 C 1 335.549 604 662.9-677 980.0 4-2 8.55-02 1.19-03 2.14-02 -2.332 D 1 331.399 604 003.1-679 100.8 6-6 4.16-2-01 2.92-03 7.74-02 -1.750 C 1 334.340 604 662.9-679 980.0 4-2 8.55-02 1.19-03 2.14-02 -2.332 D 1 331.399 604 602.9-678 428.3 4-2.56-01 7.050 3.1.66-01 1.150 C 1 334.340 604 662.9-679 100.8 4-2 8.55-02 1.19-03 2.14-02 -2.332 D 1 331.599 604 606.9-679 100.8 4-2 8.55-02 1.19-03 2.14-02 -1.682 C 1 334.340 604 662.9-680 93.7 4-4 2.56-01 7.00-3 1.26-01 -1.550 C 1 334.340 604 662.9-680 93.7 4-4 2.56-01 7.00-3 1.26-01 -1.550 C 1 335.540 604 606.9-680 93.7 4-4 4.82-02 1.27-03 2.22-02 -2.2394 D 1 315.260 604 603.1-860 493.2 4-6 1.39-01 5.65-03 1.26-01 -1.250 C 1 315.260 604 603.1-860 493.2 4-6 1.39-01 5.65-04 4.82-03 -2.255 E 1 315.260 604 603.1-860 493.2 4-6 1.18-02 4.62-04 8.02-03 -2.735 E 1 315.260 604 603.1-860 493.2 4-6 1.18-02 4.62-04 8.02-03 -2.735 E 1 315.260 604 603.1-860 493.2 4-6 1.18-02 4.62-04 8.02-03 -2.735 E 1 315.260 604 603.1-860 493.2 4-6 1.18-02 4.62-04 8.02-03 -2.735 E 1 315.260 604 603.1-860 49				1 385.742	604 662.9–676 826.4	4-6	1.07 + 01	4.60 - 01	8.40+00	0.265	B+	2
1 373,187				1 382.545	605 033.5-677 363.9	2-4	1.02+01	5.87 - 01	5.34+00	0.070	B +	2
1 375,497 604 662.9-677 363.9 4-4 3.92-00 1.11-01 2.01+00 -0.555 B 1.357.068 603 138.1-676 82.64 8-6 5.32-02 1.10-03 3.94-02 -2.056 D C 1.363.126 604 003.1-677 363.9 6-4 1.92-01 3.57-03 3.94-02 -2.056 D C C C C C C C C C				1 371.042	603 138.1–676 075.3	8-8	1.31+00	3.71 - 02	1.34+00	-0.528	В	2
1 357.068 603 138.1-670 826.4 8-6 5.32-02 1.10-03 3.94-02 -2.056 D+ 1363.126 604 003.1-677 363.9 6-4 1.92-01 3.57-03 9.62-02 -1.669 C C				1 373.187	604 003.1-676 826.4	6-6	3.08+00	8.70 - 02	2.36+00	-0.282	В	2
1 363.126 604 003.1-677 363.9 6-4 1.92-01 3.57-03 9.62-02 -1.669 C 4D'-2F 1 361.493 604 003.1-677 451.9 6-8 1.08+00 4.02-02 1.08+00 -0.618 C+ 1 356.260 604 662.9-678 395.1 4-6 7.22-01 2.99-02 5.33-01 -0.922 C 1 345.445 603 1381677 451.9 8-8 2.21-01 6.00-03 2.13-01 -1.319 C 1 344.231 604 003.1-678 395.1 6-6 3.06-02 8.29-04 2.20-02 -2.303 D 1 328.780 603 1381678 395.1 8-6 5.07-02 1.01-03 3.52-02 -2.093 D 1 336.94 603 382-678 690 20-12 8.35-01 1.34-02 1.18+00 -0.572 C 1 316.436 603 1381679 100.8 8-6 4.05-01 7.89-03 2.74-01 -1.00 C 1 343.331 604 003.1-678 428.3 6-4 1.62-01 1.29-03 2.74-01 -1.175 C 1 336.938 604 662.9-677 980.0 4-2 8.55-02 1.19-03 2.14-02 -2.322 D 1 331.599 604 003.1-679 100.8 6-6 4.21-01 1.12-02 2.94-01 -1.173 C 1 335.696 604 662.9-678 428.3 4-4 2.56-01 5.05-03 1.26-01 -1.550 C 1 370.868 605 033.5-677 980.0 2-2 3.70-01 1.04-02 9.41-02 -1.682 C 1 343.402 604 662.9-678 428.3 2-4 3.90-01 2.17-02 1.95-01 -1.363 C 9 4D'-2D 1 307.359 604 003.1-680 493.2 6-6 3.44-03 8.80-05 2.27-03 -3.277 E 1 326.774 604 662.9-680 033.7 4-4 4.82-02 1.27-03 2.22-02 -2.294 D 1 292.740 603 1381-680 493.2 6-6 3.44-03 8.80-05 2.27-03 -3.277 E 1 336.674 604 662.9-680 033.7 4-4 4.82-02 1.27-03 2.22-02 -2.294 D 1 292.740 603 1381-680 493.2 6-6 1.83-02 6.88-04 2.30-02 -2.365 D 1 315.26 604 003.1-680 033.7 6-4 1.07-02 8.85-04 8.82-02 -2.365 D 1 315.26 604 003.1-680 033.7 6-4 1.07-02 8.80-02 5.37-04 1.83-02 -2.365 D 1 315.26 604 003.1-680 033.7 6-4 1.07-02 6.88-04 8.02-03 -2.733 E+ 1 318.734 604 662.9-680 493.2 4-6 1.18-02 4.62-04 8.02-03 -2.733 E+ 1 318.734 604 662.9-680 493.2 4-6 1.18-02 4.62-04 8.02-03 -2.733 E+ 1 315.764.81 607 891.7-671 324.1 6-4 1.07-02 2.66-04 8.29-03 -2.735 E+ 1 316.2427 609 305.8-671 324.1 4-4 2.19-03 8.54-05 1.81-03 -3.466 E 1 576.481 607 891.7-671 324.1 6-4 1.07-02 2.66-04 8.29-03 -2.797 E+ 1 606.075 609 305.8-671 324.1 6-4 1.07-02 2.66-04 8.29-03 -2.797 E+ 1 606.075 609 305.8-671 324.1 6-4 1.07-02 2.66-04 8.29-03 -2.797 E+ 1 606.075 609 305.8-671 324.1 6-4 1.07-02 2.66-04 8.29-03 -2.797 E+ 1 60				1 375.497	604 662.9–677 363.9	4-4	3.92+00	1.11-01	2.01+00	-0.353	В	2
7 4D'-2F 1 361.493 604 003.1-677 451.9 6-8 1.08+00 4.02-02 1.08+00 -0.618 C+ 1 356.260 604 662.9-678 395.1 4-6 7.22-01 2.99-02 5.33-01 -0.922 C 1 345.645 603 138.1-677 451.9 8-8 2.21-01 6.00-03 2.13-01 -1.319 C 1 344.231 604 003.1-678 395.1 8-6 5.07-02 1.01-03 352-02 -2.303 D 1 328.780 603 138.1-678 395.1 8-6 5.07-02 1.01-03 352-02 -2.309 D 8 4D'-4P 1336.94 603 892-678 690 20-12 8.35-01 1.34-02 1.18+00 -0.572 C 1 343.631 604 003.1-678 428.3 6-4 4.05-01 7.89-03 2.74-01 -1.200 C 1 343.631 604 003.1-679 100.8 8-6 4.05-01 7.89-03 2.74-01 -1.200 C 1 343.631 604 003.1-679 100.8 8-6 4.05-01 7.89-03 2.74-01 -1.200 C 1 355.649 604 662.9-677 980.0 4-2 8.55-02 1.19-03 2.14-02 -2.322 D 1 370.868 605 033.5-677 980.0 4-2 8.55-02 1.19-03 2.14-02 -2.322 D 1 370.868 605 033.5-679 80.0 2-2 3.70-01 1.04-02 9.41-02 -1.650 C 1 343.402 604 662.9-679 100.8 4-6 1.39-01 5.65-03 9.99-02 -1.646 C 1 362.494 605 033.5-678 428.3 2-4 3.90-01 2.17-02 9.41-02 -1.628 C 1 362.494 605 033.5-678 428.3 2-4 3.90-01 2.17-02 1.95-01 -1.363 C 9 4D'-2D 1 307.359 604 003.1-680 493.2 6-6 3.44-03 8.80-05 2.27-03 -3.277 E 1 326.774 604 662.9-680 033.7 4-4 4.82-02 1.27-03 2.22-02 -2.294 D 1 326.774 604 662.9-680 033.7 4-4 4.82-02 1.27-03 2.22-02 -2.294 D 1 327.400 603 138.1-680 493.2 8-6 2.86-02 3.70-04 1.83-02 -2.367 D 1 331.5260 604 003.1-680 033.7 6-4 1.07-02 1.85-04 4.82-03 -2.955 E+ 1 338.734 604 662.9-680 033.7 6-4 1.07-02 1.85-04 4.82-03 -2.955 E+ 1 338.734 604 662.9-680 033.7 6-4 1.07-02 1.85-04 4.82-03 -2.935 E+ 1 338.734 604 662.9-680 033.7 6-4 1.07-02 2.66-04 8.02-03 -2.773 E+ 1 338.734 604 662.9-680 033.7 6-4 1.07-02 2.66-04 8.02-03 -2.773 E+ 1 366.628 607 891.7-671 028.8 6-6 1.83-02 6.88-04 2.15-02 -2.384 D 1 576.481 607 891.7-671 028.8 6-6 1.83-02 6.88-04 2.15-02 -2.384 D 1 589.967 607 891.7-671 028.8 6-6 1.83-02 6.80-04 3.13-03 -3.605 E 1 589.967 607 891.7-670 786.1 6-8 1.77-04 8.07-05 1.31-03 -3.605 E 1 589.967 607 891.7-670 786.1 6-8 1.77-03 8.94-05 2.81-03 -3.271 E 1 600.142 609 305.8-671 028.8 6-6 1.37-04 8.07-05 1.31-03 -3.060 E				1 357.068	603 138.1–676 826.4	8-6	5.32-02	1.10-03	3.94-02	-2.056	$\mathrm{D} +$	2
1 361.493 604 003.1-677 451.9 6-8 1.08+00 4.02-02 1.08+00 -0.618 C+ 1356.260 604 662.9-678 395.1 4-6 7.22-01 2.99-02 5.33-01 -0.922 C 1345.645 603 138.1-677 451.9 8-8 2.21-01 6.00-03 2.13-01 -1.319 C 1344.231 604 003.1-678 395.1 8-6 5.07-02 1.01-03 3.52-02 -2.030 D 1328.780 603 138.1-678 395.1 8-6 5.07-02 1.01-03 3.52-02 -2.030 D 8 4D^-4P 1.336.94 603 892-678 690 20-12 8.35-01 1.34-02 1.18+00 -0.572 C 1343.631 604 003.1-678 428.3 6-4 1.62-01 2.92-03 7.74-02 -1.756 C 1343.631 604 003.1-678 428.3 6-4 1.62-01 2.92-03 7.74-02 -1.756 C 1343.631 604 602.9-677 980.0 4-2 8.55-02 1.19-03 2.14-02 -2.322 D 1315.5649 604 662.9-677 980.0 4-2 8.55-02 1.19-03 2.14-02 -2.322 D 1315.5649 604 662.9-677 980.0 4-2 8.55-02 1.19-03 2.14-02 -1.550 C 1370.868 605 033.5-678 428.3 4-4 2.56-01 7.05-03 1.26-01 -1.550 C 1343.43.02 604 662.9-677 980.0 4-2 3.09-01 2.17-02 9.41-02 -1.682 C 1343.402 604 662.9-677 980.0 4-2 3.09-01 2.17-02 9.91-02 -1.682 C 1362.494 605 033.5-678 428.3 2-4 3.90-01 2.17-02 1.95-01 -1.363 C 1326.494 605 033.5-678 428.3 2-4 3.90-01 2.17-02 1.95-01 -1.363 C 1326.494 605 033.5-678 428.3 2-4 3.90-01 2.17-02 1.95-01 -1.363 C 1326.794 603 1381.680 493.2 4-6 8.80-02 5.37-04 18.8-02 2.22-02 -2.294 D 1315.260 604 003.1-680 033.7 6-4 1.07-02 1.85-04 4.82-03 -2.255 E 1318.734 604 662.9-680 493.2 4-6 1.18-02 4.62-04 8.02-03 -2.753 E 1318.734 604 662.9-680 493.2 4-6 1.18-02 4.52-04 8.02-03 -2.753 E 1576.481 607 891.7-671 324.1 4-4 2.19-03 8.84-05 1.81-03 -3.466 E 1576.481 607 891.7-671 324.1 4-4 2.19-03 8.84-05 1.81-03 -3.466 E 1576.481 607 891.7-671 324.1 4-4 2.19-03 8.84-05 1.81-03 -3.466 E 1576.481 607 891.7-671 324.1 4-4 2.19-03 8.84-05 1.81-03 -3.605 E 1589.967 607 891.7-671 324.1 4-4 2.19-03 8.84-05 1.81-03 -3.466 E 1576.481 607 891.7-671 324.1 6-8 1.77-03 8.94-05 2.81-03 -3.271 E 1589.967 607 891.7-671 324.1 6-8 1.77-03 8.94-05 2.81-03 -3.271 E 1589.967 607 891.7-671 324.1 6-8 1.77-03 8.94-05 2.81-03 -3.271 E 1589.967 607 891.7-671 324.1 6-8 1.77-03 8.94-05 2.81-03 -3.271 E 1589.967 607 891.7-671 324.1 6-8 1.77-03 8.94-				1 363.126	604 003.1–677 363.9	6–4	1.92-01	3.57-03	9.62-02	-1.669	C	2
1 356.260		$^{4}D^{\circ}-^{2}F$										
1 345.645				1 361.493	604 003.1-677 451.9	6-8	1.08+00	4.02-02	1.08+00	-0.618	C+	2
1 345.645 603 138.1-677 451.9 8-8 2.21-01 6.00-03 2.13-01 -1.319 C 1 344.231 604 003.1-678 395.1 6-6 3.06-02 8.29-04 2.20-02 -2.303 D 1 328.780 603 138.1-678 395.1 8-6 5.07-02 1.01-03 3.52-02 -2.093 D 1 328.780 603 138.1-678 395.1 8-6 5.07-02 1.01-03 3.52-02 -2.093 D 1 316.436 603 138.1-679 100.8 8-6 4.05-01 7.89-03 2.74-01 -1.200 C 1 1343.631 604 003.1-678 428.3 6-4 4.05-01 7.89-03 2.74-01 -1.200 C 1 1363.938 604 662.9-677 980.0 4-2 8.55-02 1.19-03 2.14-02 -2.322 D 1 331.599 604 003.1-679 100.8 6-6 4.21-01 1.12-02 2.94-01 -1.173 C 1 1355.649 604 662.9-678 98.3 4-4 2.56-01 7.05-03 1.26-01 1.550 C 1 370.868 605 033.5-679 80.0 2-2 3.70-01 1.04-02 9.41-02 -1.682 C 1 343.402 604 662.9-679 100.8 4-6 1.39-01 5.65-03 9.99-02 -1.646 C 1 342.494 605 033.5-678 98.03 2-4 3.90-01 2.17-02 1.95-01 -1.363 C 1 362.494 605 033.5-678 428.3 2-4 3.90-01 2.17-02 1.95-01 -1.363 C 1 362.494 605 033.5-678 428.3 2-4 3.90-01 2.17-02 1.95-01 -1.363 C 1 362.494 604 662.9-680 033.7 4-4 4.82-02 1.27-03 2.22-02 -2.294 D 1 2.92-740 603 138.1-680 493.2 8-6 2.86-02 5.37-04 1.83-02 -2.367 D 1 315.260 604 003.1-680 493.2 8-6 2.86-02 5.37-04 1.83-02 -2.367 D 1 315.260 604 003.1-680 033.7 4-4 4.82-02 1.27-03 2.22-02 -2.294 D 1 333.330 604 662.9-680 933.7 2-4 8.50-02 4.53-03 3.98-02 -2.036 D 1 315.260 604 003.1-680 033.7 2-4 8.50-02 4.53-03 3.98-02 -2.036 D 1 315.260 604 003.1-680 033.7 2-4 8.50-02 4.53-03 3.98-02 -2.036 D 1 315.260 604 003.1-680 033.7 2-4 8.50-02 4.53-03 3.98-02 -2.036 D 1 338.734 604 662.9-680 933.7 2-4 8.50-02 4.53-03 3.98-02 -2.037 D 1 5.66-03 605 033.5-680 033.7 2-4 8.50-02 4.53-03 3.98-02 -2.037 D 1 5.66-03 605 033.5-680 033.7 2-4 8.50-02 4.53-03 3.98-02 -2.036 D 1 5.66-03 605 033.5-680 033.7 2-4 8.50-02 4.53-03 3.98-02 -2.036 D 1 5.66-03 605 033.5-680 033.7 2-4 8.50-02 4.53-03 3.98-02 -2.036 D 1 5.66-03 605 033.5-680 033.7 2-4 8.50-02 4.53-03 3.98-02 -2.036 D 1 5.66-03 605 033.5-680 033.7 2-4 8.50-02 4.53-03 3.98-02 -2.036 D 1 5.66-03 605 033.5-680 033.7 2-4 8.50-02 4.53-03 3.98-02 -2.036 D 1 5.66-03 605 033.5-680 033.7 2-4 8				1 356.260			7.22-01	2.99-02	5.33-01	-0.922	C	2
1 344,231 604 003.1-678 395.1 6-6 3.06-02 8.29-04 2.20-02 -2.303 D 1 328,780 603 138.1-678 395.1 8-6 5.07-02 1.01-03 3.52-02 -2.093 D 8 4D^-4P 1 336.94 603 892-678 690 20-12 8.35-01 1.34-02 1.18+00 -0.572 C 1 316,436 603 138.1-679 100.8 8-6 4.05-01 7.89-03 2.74-01 -1.200 C 1 343,631 604 003.1-678 428.3 6-4 1.62-01 2.92-03 7.74-02 -1.756 C 1 363,938 604 662.9-677 980.0 4-2 8.55-02 1.19-03 2.14-02 -2.322 D 1 331,599 604 003.1-679 100.8 6-6 4.21-01 1.12-02 2.94-01 -1.173 C 1 355,649 604 662.9-678 428.3 4-4 2.56-01 7.05-03 1.26-01 -1.550 C 1 343,402 604 662.9-679 90.0 2-2 3.70-01 1.04-02 9.41-02 -1.682 C 1 343,402 604 662.9-679 100.8 4-6 1.39-01 5.65-03 9.99-02 -1.646 C 1 362.494 605 033.5-678 428.3 2-4 3.90-01 2.17-02 1.95-01 -1.363 C 9 4D^-2D 1 307.359 604 003.1-680 493.2 6-6 3.44-03 8.80-05 2.27-03 -3.277 E 1 326.774 604 662.9-680 033.7 4-4 4.82-02 1.27-03 2.22-02 -2.294 D 1 292.740 603 138.1-680 493.2 8-6 2.86-02 5.37-04 1.83-02 -2.367 D 1 315.260 604 003.1-680 033.7 6-4 1.07-02 1.85-04 4.82-03 -2.955 E+ 1 318.734 604 662.9-680 033.7 6-4 1.07-02 1.85-04 4.82-03 -2.955 E+ 1 318.734 604 662.9-680 033.7 6-4 1.07-02 1.85-04 4.82-03 -2.733 E+ 1 318.734 604 662.9-680 033.7 6-4 1.07-02 1.85-04 4.82-03 -2.255 E+ 1 318.734 604 662.9-680 033.7 6-4 1.07-02 1.85-04 4.82-03 -2.255 E+ 1 318.734 604 662.9-680 033.7 6-4 1.07-02 1.85-04 8.02-03 -2.733 E+ 1 315.606 604 003.1-680 033.7 6-4 1.07-02 1.85-04 4.82-03 -2.255 E+ 1 316.2427 609 305.8-671 928.8 6-6 1.83-02 4.53-03 3.98-02 -2.043 D 0 2D^-4D 1 583.855 607 891.7-671 028.8 6-6 1.83-02 6.8-04 2.15-02 -2.384 D 1 583.855 607 891.7-671 028.8 6-6 1.83-02 6.21-05 1.31-03 -3.466 E 1 576.481 607 891.7-671 028.8 6-6 1.83-02 6.21-05 1.31-03 -3.466 E 1 576.481 607 891.7-670 786.1 6-8 1.77-03 8.94-05 1.31-03 -3.466 E 1 589.967 607 891.7-670 786.1 6-8 1.77-03 8.94-05 1.31-03 -3.271 E 1 606.075 609 305.8-671 694.4 4-2 3.21-03 6.21-05 1.31-03 -3.271 E 1 606.075 609 305.8-671 694.8 4-2 3.21-03 6.21-05 1.31-03 -3.271 E 1 606.075 609 305.8-671 694.8 4-2 3.21-03 6.21-05 1.31-03 -3.271 E 1 60												2
1 328.780												2
1 316.436 603 138.1-679 100.8 8-6 4.05-01 7.89-03 2.74-01 -1.200 C 1 343.631 604 003.1-678 428.3 6-4 1.62-01 2.92-03 7.74-02 -1.756 C 1 363.938 604 662.9-677 98.00 4-2 8.55-02 1.19-03 2.14-02 -2.322 D 1 331.599 604 003.1-679 100.8 6-6 4.21-01 1.12-02 2.94-01 -1.173 C 1 355.649 604 662.9-678 428.3 4-4 2.56-01 7.05-03 1.26-01 -1.550 C 1 370.868 605 033.5-677 98.00 2-2 3.70-01 1.04-02 9.41-02 -1.682 C 1 343.402 604 662.9-679 100.8 4-6 1.39-01 5.65-03 9.99-02 -1.646 C 1 362.494 605 033.5-678 428.3 2-4 3.90-01 2.17-02 1.95-01 -1.363 C 9												2
1 343.631		$^{4}D^{\circ}-^{4}P$		1 336.94	603 892–678 690	20–12	8.35-01	1.34-02	1.18+00	-0.572	C	2
1 363.938 604 662.9-677 980.0 4-2 8.55-02 1.19-03 2.14-02 -2.322 D 1 331.599 604 003.1-679 100.8 6-6 4.21-01 1.12-02 2.94-01 -1.173 C 1 355.649 604 662.9-678 428.3 4-4 2.56-01 7.05-03 1.26-01 -1.550 C 1 370.868 605 033.5-677 980.0 2-2 3.70-01 1.04-02 9.41-02 -1.682 C 1 343.402 604 662.9-679 100.8 4-6 1.39-01 5.65-03 9.99-02 -1.646 C 1 362.494 605 033.5-678 428.3 2-4 3.90-01 2.17-02 1.95-01 -1.363 C 1 370.359 604 003.1-680 493.2 6-6 3.44-03 8.80-05 2.27-03 -3.277 E 1 326.774 604 662.9-680 033.7 4-4 4.82-02 1.27-03 2.22-02 -2.294 D 1 292.740 603 138.1-680 493.2 8-6 2.86-02 5.37-04 1.83-02 -2.367 D 1 315.260 604 003.1-680 033.7 6-4 1.07-02 1.85-04 4.82-03 -2.955 E+ 1 318.734 604 662.9-680 033.7 6-4 1.07-02 1.85-04 4.82-03 -2.955 E+ 1 318.734 604 662.9-680 033.7 2-4 8.50-02 4.53-03 3.98-02 -2.043 D 2 D*-4D 1 583.855 607 891.7-671 028.8 6-6 1.83-02 6.88-04 2.15-02 -2.384 D 1 576.481 607 891.7-671 324.1 4-4 2.19-03 8.54-05 1.81-03 -3.466 E 1 576.481 607 891.7-671 324.1 6-4 1.07-02 2.66-04 8.29-03 -2.797 E+ 1 606.075 609 305.8-671 569.4 4-2 3.21-03 6.21-05 1.31-03 -3.605 E 1 589.967 607 891.7-670 786.1 6-8 1.77-03 8.94-05 2.81-03 -3.271 E 1 600.075 609 305.8-671 028.8 4-6 1.37-04 8.07-06 1.72-04 -4.491 E 30 2 D*-4F				1 316.436	603 138.1–679 100.8	8-6	4.05 - 01	7.89-03	2.74-01	-1.200	C	2
1 331.599 604 003.1-679 100.8 6-6 4.21-01 1.12-02 2.94-01 -1.173 C 1 355.649 604 662.9-678 428.3 4-4 2.56-01 7.05-03 1.26-01 -1.550 C 1 370.868 605 033.5-677 980.0 2-2 3.70-01 1.04-02 9.41-02 -1.682 C 1 343.402 604 662.9-679 100.8 4-6 1.39-01 5.65-03 9.99-02 -1.646 C 1 362.494 605 033.5-678 428.3 2-4 3.90-01 2.17-02 1.95-01 -1.363 C 1 362.494 605 033.5-678 428.3 2-4 3.90-01 2.17-02 1.95-01 -1.363 C 1 362.494 604 662.9-680 033.7 4-4 4.82-02 1.27-03 2.22-02 -2.294 D 1 292.740 603 138.1-680 493.2 8-6 2.86-02 5.37-04 1.83-02 -2.367 D 1 315.260 604 003.1-680 033.7 4-4 4.82-02 1.27-03 2.22-02 -2.294 D 1 315.260 604 003.1-680 033.7 6-4 1.07-02 1.85-04 4.82-03 -2.955 E 1 318.734 604 662.9-680 033.7 2-4 8.50-02 4.53-03 3.98-02 -2.043 D 1 318.734 604 662.9-680 033.7 2-4 8.50-02 4.53-03 3.98-02 -2.043 D 1 583.855 607 891.7-671 028.8 6-6 1.83-02 6.88-04 2.15-02 -2.384 D 1 612.427 609 305.8-671 324.1 4-4 2.19-03 8.54-05 1.81-03 -3.466 E 1 576.481 607 891.7-671 324.1 6-4 1.07-02 2.66-04 8.29-03 -2.797 E 1 606.075 609 305.8-671 324.1 4-4 2.19-03 8.54-05 1.81-03 -3.466 E 1 576.481 607 891.7-670 786.1 6-8 1.77-03 8.94-05 2.81-03 -3.271 E 1 600.075 609 305.8-671 028.8 4-6 1.37-04 8.07-06 1.72-04 -4.491 E 1 2*D*-4*F				1 343.631	604 003.1-678 428.3	6-4	1.62 - 01	2.92 - 03	7.74 - 02	-1.756	C	2
$\begin{array}{c} 1\ 355.649 \\ 1\ 370.868 \\ 605\ 033.5-677\ 980.0 \\ 2-2 \\ 3.70-01 \\ 1.04-02 \\ 3.70-01 \\ 1.04-02 \\ 9.41-02 \\ -1.682 \\ 2 \\ -1.662 \\ -1.682 \\ 2 \\ -1.682 \\$				1 363.938	604 662.9-677 980.0	4-2	8.55 - 02	1.19-03	2.14-02	-2.322	D	2
$\begin{array}{c} 1370.868 \\ 1343.402 \\ 20136.494 \\ 2$				1 331.599	604 003.1-679 100.8	6-6	4.21 - 01	1.12-02	2.94-01	-1.173	C	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1 355.649	604 662.9-678 428.3	4-4	2.56-01	7.05-03	1.26-01	-1.550	C	2
$\begin{array}{c} 1\ 343.402 \\ 1\ 362.494 \\ \end{array} \begin{array}{c} 604\ 662.9-679\ 100.8 \\ 05\ 033.5-678\ 428.3 \\ \end{array} \begin{array}{c} 2-4 \\ \end{array} \begin{array}{c} 3.9-01 \\ 3.90-01 \\ \end{array} \begin{array}{c} 5.65-03 \\ \end{array} \begin{array}{c} 9.9-02 \\ 9.5-01 \\ \end{array} \begin{array}{c} -1.646 \\ \text{C} \\ \end{array} \begin{array}{c} \text{C} \\ \text{C} \\ \end{array} \begin{array}{c} 1\ 362.494 \\ \end{array} \begin{array}{c} 605\ 033.5-678\ 428.3 \\ \end{array} \begin{array}{c} 2-4 \\ \end{array} \begin{array}{c} 3.9-01 \\ \end{array} \begin{array}{c} 5.65-03 \\ \end{array} \begin{array}{c} 9.99-02 \\ -1.646 \\ \end{array} \begin{array}{c} -1.646 \\ \text{C} \\ \end{array} \begin{array}{c} \text{C} \\ \end{array} \begin{array}{c} 1362.494 \\ \end{array} \begin{array}{c} 605\ 033.5-678\ 428.3 \\ \end{array} \begin{array}{c} 2-4 \\ \end{array} \begin{array}{c} 3.9-01 \\ \end{array} \begin{array}{c} 2.17-02 \\ \end{array} \begin{array}{c} 1.95-01 \\ -1.363 \\ \end{array} \begin{array}{c} -1.363 \\ \end{array} \begin{array}{c} \text{C} \\ \end{array} \begin{array}{c} 9.99-02 \\ \end{array} \begin{array}{c} -1.646 \\ \end{array} \begin{array}{c} \text{C} \\ \end{array} \begin{array}{c} 1.307.359 \\ \end{array} \begin{array}{c} 604\ 003.1-680\ 493.2 \\ \end{array} \begin{array}{c} 6-6 \\ \end{array} \begin{array}{c} 3.44-03 \\ 4.82-02 \\ \end{array} \begin{array}{c} 8.80-05 \\ 2.27-03 \\ \end{array} \begin{array}{c} -2.27-03 \\ -2.294 \\ \end{array} \begin{array}{c} -2.294 \\ \end{array} \begin{array}{c} D \\ \end{array} \begin{array}{c} 1.326.774 \\ \end{array} \begin{array}{c} 604\ 662.9-680\ 033.7 \\ \end{array} \begin{array}{c} 4-4 \\ 4.82-02 \\ 2.86-02 \\ 5.37-04 \\ 1.83-02 \\ 3.98-02 \\ -2.043 \\ \end{array} \begin{array}{c} -2.367 \\ \end{array} \begin{array}{c} D \\ \end{array} \begin{array}{c} D \\ 3158.355 \\ \end{array} \begin{array}{c} 607\ 891.7-671\ 028.8 \\ 6-6 \\ \end{array} \begin{array}{c} 6-4 \\ 1.18-02 \\ 4.62-04 \\ 8.02-03 \\ 4.53-03 \\ \end{array} \begin{array}{c} 3.98-02 \\ -2.043 \\ \end{array} \begin{array}{c} -2.384 \\ D \\ 1.526.47 \\ \end{array} \begin{array}{c} 1.583.855 \\ 607\ 891.7-671\ 028.8 \\ 6-6 \\ 8.1671 \\ \end{array} \begin{array}{c} 6-6 \\ 1.83-02 \\ 8.54-05 \\ 1.81-03 \\ -3.277 \\ 8.54-05 \\ 1.81-03 \\ -3.279 \\ \end{array} \begin{array}{c} -2.384 \\ D \\ 1.576.481 \\ 607\ 891.7-671\ 324.1 \\ 6-4 \\ 1.07-02 \\ 3.21-03 \\ 6.21-05 \\ 1.31-03 \\ -3.279 \\ -2.397 \\ \end{array} \begin{array}{c} E \\ 1.589.967 \\ 607\ 891.7-670\ 786.1 \\ 6-8 \\ 1.37-04 \\ 8.07-06 \\ 1.72-04 \\ -4.491 \\ \end{array} \begin{array}{c} -2.384 \\ D \\ 1.620.142 \\ \end{array} \begin{array}{c} 2D^{\circ}-4F \\ \end{array} \begin{array}{c} 1.466.628 \\ 607\ 891.7-676\ 075.3 \\ 6-8 \\ 1.09+00 \\ 4.68-02 \\ 1.36+00 \\ -0.552 \\ \end{array} \begin{array}{c} -1.646 \\ -0.552 \\ -0.552 \\ \end{array} \begin{array}{c} -1.646 \\ -1.47-03 \\ -0.552 \\ \end{array} \begin{array}{c} -1.646 \\ -1.47-03 \\ -1.27-04 \\ -1.364 \\ -1.37-04 \\ -1.364 \\ $				1 370.868	605 033.5-677 980.0	2-2	3.70-01	1.04-02	9.41-02	-1.682	C	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1 343.402			1.39-01	5.65-03	9.99-02	-1.646	C	2
1 307.359 604 003.1-680 493.2 6-6 3.44-03 8.80-05 2.27-03 -3.277 E 1 326.774 604 662.9-680 033.7 4-4 4.82-02 1.27-03 2.22-02 -2.294 D 1 292.740 603 138.1-680 493.2 8-6 2.86-02 5.37-04 1.83-02 -2.367 D 1 315.260 604 003.1-680 033.7 6-4 1.07-02 1.85-04 4.82-03 -2.955 E+ 1 318.734 604 662.9-680 493.2 4-6 1.18-02 4.62-04 8.02-03 -2.733 E+ 1 333.330 605 033.5-680 033.7 2-4 8.50-02 4.53-03 3.98-02 -2.043 D 2D°-4D 1 583.855 607 891.7-671 028.8 6-6 1.83-02 6.88-04 2.15-02 -2.384 D 1 612.427 609 305.8-671 324.1 4-4 2.19-03 8.54-05 1.81-03 -3.466 E 1 576.481 607 891.7-671 324.1 6-4 1.07-02 2.66-04 8.29-03 -2.797 E+ 1 606.075 609 305.8-671 569.4 4-2 3.21-03 6.21-05 1.31-03 -3.605 E 1 589.967 607 891.7-670 786.1 6-8 1.77-03 8.94-05 2.81-03 -3.271 E 1 620.142 609 305.8-671 028.8 4-6 1.37-04 8.07-06 1.72-04 -4.491 E												2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{4}D^{\circ}-^{2}D$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1 307.359	604 003.1-680 493.2	6-6	3.44-03	8.80-05	2.27-03	-3.277	Е	2
1 292.740 603 138.1-680 493.2 8-6 2.86-02 5.37-04 1.83-02 -2.367 D 1 315.260 604 003.1-680 033.7 6-4 1.07-02 1.85-04 4.82-03 -2.955 E+ 1 318.734 604 662.9-680 493.2 4-6 1.18-02 4.62-04 8.02-03 -2.733 E+ 1 333.330 605 033.5-680 033.7 2-4 8.50-02 4.53-03 3.98-02 -2.043 D 0 2D°-4D 1 583.855 607 891.7-671 028.8 6-6 1.83-02 6.88-04 2.15-02 -2.384 D 1 612.427 609 305.8-671 324.1 4-4 2.19-03 8.54-05 1.81-03 -3.466 E 1 576.481 607 891.7-671 324.1 6-4 1.07-02 2.66-04 8.29-03 -2.797 E+ 1 606.075 609 305.8-671 569.4 4-2 3.21-03 6.21-05 1.31-03 -3.605 E 1 589.967 607 891.7-670 786.1 6-8 1.77-03 8.94-05 2.81-03 -3.271 E 1 620.142 609 305.8-671 028.8 4-6 1.37-04 8.07-06 1.72-04 -4.491 E												2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												2
1 583.855 607 891.7-671 028.8 6-6 1.83-02 6.88-04 2.15-02 -2.384 D 1 612.427 609 305.8-671 324.1 4-4 2.19-03 8.54-05 1.81-03 -3.466 E 1 576.481 607 891.7-671 324.1 6-4 1.07-02 2.66-04 8.29-03 -2.797 E+ 1 606.075 609 305.8-671 569.4 4-2 3.21-03 6.21-05 1.31-03 -3.605 E 1 589.967 607 891.7-670 786.1 6-8 1.77-03 8.94-05 2.81-03 -3.271 E 1 620.142 609 305.8-671 028.8 4-6 1.37-04 8.07-06 1.72-04 -4.491 E 1 2D°-4F												2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{2}D^{\circ}-^{4}D$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1 583 855	607 891 7–671 028 8	6–6	1.83-02	6.88-04	2.15-02	-2.384	D	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												2
$1620.142 \qquad 609\ 305.8-671\ 028.8 \qquad 4-6 \qquad 1.37-04 8.07-06 1.72-04 -4.491 E$ $1 \qquad \qquad ^2D^{\circ}-^4F \qquad \qquad \qquad 1466.628 \qquad 607\ 891.7-676\ 075.3 \qquad 6-8 \qquad 1.09+00 4.68-02 1.36+00 -0.552 C+$												2
2 D $^{\circ}$ - 4 F												2
1 466.628 607 891.7-676 075.3 6-8 1.09+00 4.68-02 1.36+00 -0.552 C+		25° 4-		1 020.142	007 303.0-0/1 026.8	+-0	1.37-04	0.07-00	1.74-04	-4.491	ப்	۷
		² D - ⁴ F										
1 481.029 609 305.8-676 826.4 4-6 4.25-01 2.09-02 4.08-01 -1.078 C												2
1.0.0				1 481.029	609 305.8–676 826.4	4–6	4.25 - 01	2.09 - 02	4.08 - 01	-1.078	C	2

Table 52. Transition probabilities of allowed lines for Mg IV (references for this table are as follows: 1=Butler and Zeippen, 14 2=Tachiev and Froese Fischer, 96 3=Tachiev and Froese Fischer, 92 and $4=Bi\acute{e}mont^7$)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				1 450.648	607 891.7–676 826.4	6–6	6.03-02	1.90-03	5.45-02	-1.943	D	2
				1 469.333	609 305.8-677 363.9	4-4			3.41-03			2
				1 439.425	607 891.7–677 363.9	6-4	8.62-04	1.79-05	5.08 - 04	-3.969	E	2
52		$^{2}D^{\circ}-^{2}F$		1 440.95	608 457–677 856	10–14	1.18+01	5.14-01	2.44+01	0.711	B+	2
				1 437.604	607 891.7–677 451.9	6-8	1.21+01	4.99-01	1.42+01	0.476	B+	2
				1 447.402	609 305.8-678 395.1	4-6	9.27 + 00	4.37-01	8.33 + 00	0.243	B+	2
				1 418.371	607 891.7–678 395.1	6-6			1.87 + 00			2
53		$^{2}D^{\circ}-^{4}P$										
				1 417.704	607 891.7–678 428.3	6–4	3.56-02	7.15-04	2.00-02	-2.368	D	2
				1 456.151	609 305.8-677 980.0	4-2	1.14 - 02	1.82 - 04	3.48 - 03	-3.138	E	2
				1 404.315	607 891.7-679 100.8	6-6	2.95-03	8.73-05	2.42-03	-3.281	E	2
				1 446.707	609 305.8-678 428.3	4-4	5.74-02	1.80-03	3.43-02	-2.143	D	2
				1 432.767	609 305.8-679 100.8	4-6	9.91-01	4.58-02	8.64-01	-0.737	C+	2
54		$^{2}D^{\circ}-^{2}D$		1 391.75	608 457–680 309	10–10	3.50+00	1.02-01	4.66+00	0.009	В	2
				1 377.382	607 891.7–680 493.2	6–6	1.91+00	5.43-02	1.48+00	-0.487	В	2
				1 413.869	609 305.8-680 033.7	4-4	3.30+00	9.88-02	1.84 + 00	-0.403	В	2
				1 386.155	607 891.7-680 033.7	6-4	6.31-01	1.21-02	3.32-01	-1.139	C	2
				1 404.743	609 305.8-680 493.2	4-6			1.01 + 00			2
55		$^{2}D^{\circ}-^{2}P$		1 359.95	608 457–681 990	10-6	7.58-01	1.26-02	5.65-01	-0.900	С	2
				1 340.822	607 891.7–682 472.8	6–4	2.78-01	4.99-03	1.32-01	-1.524	С	2
				1 394.360	609 305.8-681 023.3	4-2			2.61-01			2
				1 366.736	609 305.8-682 472.8	4-4			1.71-01			2
56		$^{2}P^{\circ}-^{4}F$										
				1 506.462	610 983.2–677 363.9	2–4	4.31-02	2.93-03	2.91-02	-2.232	D	2
57		$^{2}P^{\circ}-^{4}P$										
				1 482.687	610 983.2–678 428.3	2–4	9.55-02	6.29-03	6.14-02	-1.900	D	2
				1 492.609	610 983.2–677 980.0	2-2	1.33-02	4.43-04	4.36-03	-3.053	E+	2
58		$^4S^{\circ}-^2F$										
				1 511.426	612 232.4–678 395.1	4–6	2.20-01	1.13-02	2.25-01	-1.345	C	2
59		$^4S^{\circ}-^4P$		1 504.72	612 232.4–678 690	4–12	6.04+00	6.15-01	1.22+01	0.391	$\mathrm{B} +$	2
				1 495.475	612 232.4–679 100.8	4-6	6.08+00	3.06-01	6.02+00	0.088	$\mathrm{B} +$	2
				1 510.668	612 232.4-678 428.3	4-4	6.07 + 00	2.08 - 01	4.13+00	-0.080	$\mathrm{B} +$	2
				1 520.968	612 232.4–677 980.0	4-2	5.87+00	1.02 - 01	2.04+00	-0.389	В	2
60		$^{4}\text{S}^{\circ}-^{2}\text{D}$										
00		3 - D		1 464.970	612 232.4–680 493.2	4–6	1.00 ± 00	5 27 02	1.02+00	0.676	$C \perp$	2
				1 474.898	612 232.4–680 033.7	4-4			2.06-01			2
				1 474.070	012 232.4 000 033.7	7 7	3.23 01	1.00 02	2.00 01	1.373	C	2
61		$^{4}\text{S}^{\circ}-^{2}\text{P}$										
				1 423.682	612 232.4–682 472.8	4-4	4.70-02	1.43-03	2.68-02	-2.243	D	2
				1 453.681	612 232.4–681 023.3	4–2			1.56-02			2
60		2p° 4p										
62		$^{2}P^{\circ}-^{4}F$		1 554 610	(12.501.()77.02()	4.6	5.70 00	2 10 02	(25 02	1.007	D :	2
				1 554.610	612 501.6–676 826.4	4–6			6.35 - 02			2
63		$^{2}P^{\circ}-^{4}P$		1 541.728	612 501.6–677 363.9	4–4	2.94-02	1.03-03	2.13-02	-2.377	D	2
63		P - P										

Table 52. Transition probabilities of allowed lines for Mg IV (references for this table are as follows: 1=Butler and Zeippen, 14 2=Tachiev and Froese Fischer, 96 3=Tachiev and Froese Fischer, 92 and $4=Bi\acute{e}mont^7$)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				1 516.836	612 501.6–678 428.3	4-4	2.51-01	8.67-03	1.73-01	-1.460	С	2
				1 527.221	612 501.6-677 980.0	4-2	1.09 - 01	1.90-03	3.82-02	-2.119	D	2
				1 501.520	612 501.6–679 100.8	4–6	7.92-01	4.02 - 02	7.94-01	-0.794	C+	2
64		$^{2}P^{\circ}-^{2}D$				4–10						
				1 470.770	612 501.6-680 493.2	4-6	6.90+00	3.36-01	6.50+00	0.128	В	2
				1 480.777	612 501.6-680 033.7	4-4	1.80+00	5.93-02	1.16+00	-0.625	C+	2
65		$^{2}P^{\circ}-^{2}P$				4-6						
				1 429.159	612 501.6-682 472.8	4-4	2.48+00	7.60-02	1.43 + 00	-0.517	C+	2
				1 459.392	612 501.6-681 023.3	4-2	1.13+00	1.81 - 02	3.47-01	-1.140	C	2
66		$^2S^{\circ}-^4F$										
				1 552.303	612 943.5–677 363.9	2–4	2.61-02	1.89-03	1.93-02	-2.423	D	2
67	$2p^4(^3P)3p - 2p^4(^1D)3d$	$^{2}D^{\circ}-^{2}P$		968.45	608 457–711 715	10-6	2.56-01	2.16-03	6.88-02	-1.666	E+	2,4
				963.939	607 891.7–711 632.7	6-4	1.29-01	1.20-03	2.28 - 02	-2.143	D	2
				974.899	609 305.8–711 880.5	4–2			1.65 - 02			4
				977.260	609 305.8–711 632.7	4–4	1.61-01	2.30-03	2.96-02	-2.036	D	2
68		$^{2}D^{\circ}-^{2}D$		951.82	608 457–713 520	10–10	4.26-01	5.78-03	1.81-01	-1.238	D+	2
				947.694	607 891.7–713 411.0	6-6	3.75 - 01	5.05 - 03	9.46-02	-1.519	C	2
				958.068	609 305.8-713 682.5	4-4	2.95 - 01	4.06 - 03	5.13 - 02	-1.789	D+	2
				945.262	607 891.7–713 682.5	6–4	4.46 - 02	3.98 - 04	7.43 - 03	-2.622	D	2
				960.567	609 305.8–713 411.0	4–6	1.06-01	2.20-03	2.78 - 02	-2.056	D+	2
69		$^{2}P^{\circ}-^{2}P$				4–6						
				1 008.765	612 501.6–711 632.7	4-4	2.75+00	4.20-02	5.58-01	-0.775	C+	2
				1 006.250	612 501.6–711 880.5	4–2	2.62+00	1.99-02	2.63-01	-1.099	D+	4
70		$^{2}\text{P}^{\circ}-^{2}\text{D}$				4–10						
				990.988	612 501.6-713 411.0	4-6	9.82 - 01	2.17-02	2.83-01	-1.061	C	2
				988.329	612 501.6–713 682.5	4–4	3.01-01	4.40-03	5.73 - 02	-1.754	D+	2
71	$2p^4(^3P)3p - 2p^4(^3P)4s$	$^4P^{\circ}-^4P$		808.45	596 880–720 574	12–12	9.74+00	9.54-02	3.05+00	0.059	C	4
				811.273	596 521.8-719 784.8	6-6	7.90+00	7.80-02	1.25 + 00	-0.330	C+	4
				806.595	597 065.7-721 043.6	4-4	1.44+00	1.41 - 02	1.49 - 01	-1.249	D	4
				803.741	597 583.6–722 001.8	2–2	1.24+00	1.20 - 02	6.35 - 02	-1.620	D	4
				803.072	596 521.8–721 043.6	6–4			2.90-01			4
				800.409	597 065.7–722 001.8	4–2			3.10-01			4
				814.869	597 065.7–719 784.8	4–6			5.74-01			4
		4 0 4		809.979	597 583.6–721 043.6	2–4			4.13-01			4
72		$^{4}D^{\circ}-^{4}P$		857.03	603 892–720 574	20–12		9.86-02		0.295		4
				857.290	603 138.1–719 784.8	8–6			2.24+00			4
				854.405	604 003.1–721 043.6	6–4			1.32+00			4
				852.232 863.604	604 662.9–722 001.8	4–2			5.47-01			4
				863.694 850.240	604 003.1–719 784.8 604 662.9–721 043.6	6–6 4–4			3.50-01 5.27-01			4 4
				859.249 854.932	605 033.5–722 001.8	2-2			4.89-01			4
				868.644	604 662.9–719 784.8	4-6			2.67 - 02			4
				861.994	605 033.5–721 043.6	2-4			6.81 - 02			4
73		$^{2}D^{\circ}-^{2}P$		867.10	608 457–723 784	10-6			2.77+00			4

Table 52. Transition probabilities of allowed lines for Mg IV (references for this table are as follows: 1 = Butler and Zeippen, 14 2 = Tachiev and Froese Fischer, 96 3 = Tachiev and Froese Fischer, 92 and $4 = Bi\acute{e}mont^7$)—Continued

74	·		(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	$\log gf$	Acc.	Source
74				866.734	607 891.7–723 267.3	6–4	1.28+01	9.59-02	1.64+00	-0.240	C+	4
74				865.722	609 305.8-724 816.3	4-2	1.23+01	6.89-02	7.85 - 01	-0.560	C	4
74				877.489	609 305.8-723 267.3	4-4	2.54+00	2.94-02	3.39-01	-0.930	C	4
		$^{4}\text{S}^{\circ}$ $ ^{4}\text{P}$		923.01	612 232.4–720 574	4–12	2.56+00	9.81-02	1.19+00	-0.406	C	4
				929.779	612 232.4–719 784.8	4-6	2.29+00	4.45-02	5.44-01	-0.750	C	4
				919.023	612 232.4-721 043.6	4-4	2.60+00	3.30-02	3.99-01	-0.879	C	4
				911.001	612 232.4-722 001.8	4-2	3.34+00	2.08-02	2.49-01	-1.080	D+	4
75		$^{2}P^{\circ}-^{2}P$				4–6						
				902.807	612 501.6-723 267.3	4-4	6.18+00	7.55 - 02	8.98-01	-0.520	C	4
				890.355	612 501.6–724 816.3	4–2	5.30+00	3.15-02	3.69 - 01	-0.900	D+	4
76	$2p^4(^3P)3p - 2p^4(^3P)4d$	$^4D^{\circ}-^4F$				20–28						
				614.15	604 662.9–767 489	4-6	2.57+00	2.18-02	1.76-01	-1.059	D	4
				[612.5]	605 033.5-768 294	2-4		2.69-02				4
				611.67	604 003.1-767 489	6–6		3.48-03				4
				[611.1]	604 662.9–768 294	4–4		2.03-03				4
				608.45	603 138.1–767 489	8–6		1.65-04				LS
				[608.7]	604 003.1–768 294	6–4		2.30-05				4
77		$^{4}\text{S}^{\circ}$ $ ^{4}\text{P}$		641.6	612 232.4–768 086	4–12	1.99+00	3.68-02	3.11-01	-0.832	D	4
				(20.77	(12 222 4 769 520	1.6	1 (7 : 00	1.54.00	1 20 01	1 210	Б	4
				639.77	612 232.4–768 539	4–6		1.54-02				4
				642.89	612 232.4–767 780	4–4		1.22-02				4
				[644.7]	612 232.4–767 339	4–2	2.91+00	9.08-03	7.71-02	-1.440	D	4
78		$^{2}P^{\circ}-^{2}D$				4–10						
				634.62	612 501.6-770 075	4-6	5.26+00	4.76-02	3.98-01	-0.720	D+	4
				637.27	612 501.6–769 421	4-4	2.65+00	1.61-02	1.35-01	-1.191	E	4
79	$2p^4(^1S)3s-2p^4(^1S)3p$	$^{2}S-^{2}P^{\circ}$		1 701.63	624 109.6–682 877	2-6	5.48+00	7.13-01	7.99+00	0.154	$\mathrm{B} +$	2
				1 701.262	624 109.6-682 889.5	2-4	5.48 + 00	4.75-01	5.33+00	-0.022	B +	2
				1 702.368	624 109.6–682 851.3	2–2	5.47 + 00	2.38-01	2.66+00	-0.322	В	2
80	$2p^4(^1D)3p - 2p^4(^3P)3d$	$^{2}D^{\circ}-^{2}F$	3 017.8	3 018.7	644 729–677 856	10–14	2.32-03	4.44-04	4.41-02	-2.353	D	2
			3 060.44	3 061.33	644 786.4–677 451.9	6-8	1.16+03	2.18-04	1.32-02	-2.883	D	2
			2 961.95	2 962.81	644 643.4-678 395.1	4-6	1.09 - 03	2.16-04	8.42 - 03	-3.063	D	2
			2 974.55	2 975.42	644 786.4–678 395.1	6–6	2.89-03	3.84 - 04	2.25-02	-2.638	D+	2
81		$^{2}D^{\circ}-^{2}D$	2 809.7	2 810.6	644 729–680 309	10-10	2.00-02	2.36-03	2.19-01	-1.627	C	2
			2 799.76	2 800.59	644 786.4–680 493.2	6–6	1.60-02	1.88-03	1.04-01	-1.948	C	2
			2 824.80	2 825.63	644 643.4–680 033.7	4-4		2.35-03				2
			2 836.26	2 837.10	644 786.4–680 033.7	6–4		4.51-04				2
			2 788.59	2 789.42	644 643.4–680 493.2	4–6		5.55-05				2
82		$^{2}D^{\circ}-^{2}P$	2 683.0	2 683.8	644 729–681 990	10–6		9.79-04				2
02		D 1										
			2 652.69	2 653.48	644 786.4–682 472.8	6–4		5.91-04				2
			2 747.96	2 748.77	644 643.4–681 023.3	4–2		8.70-04				2
			2 642.66	2 643.45	644 643.4–682 472.8	4–4	6.59-03	6.90-04	2.40-02	-2.559	D+	2
83		$^{2}P^{\circ}-^{4}F$										
			3 735.19	3 736.25	650 061.6-676 826.4	4-6	2.77-03	8.70-04	4.28-02	-2.458	D	2
			3 805.54	3 806.62	651 093.9-677 363.9	2-4	1.75-03	7.60-04	1.90-02	-2.818	D	2
			3 661.65	3 662.70	650 061.6-677 363.9	4-4	6.87-04	1.38-04	6.66-03	-3.258	E+	2

Table 52. Transition probabilities of allowed lines for Mg IV (references for this table are as follows: 1=Butler and Zeippen, 14 2=Tachiev and Froese Fischer, 96 3=Tachiev and Froese Fischer, 92 and $4=Bi\acute{e}mont^7$)—Continued

lo.	Transition array	Mult.	λ _{air} (Å)	$\lambda_{\rm vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
34		$^{2}P^{\circ}-^{4}P$										
			3 524.25	3 525.26	650 061.6–678 428.3	4-4	1 67-03	3 11-04	1.44-02	-2 905	E+	2
			3 718.34	3 719.39	651 093.9–677 980.0	2–2			2.16-04			2
			3 580.85	3 581.87	650 061.6–677 980.0	4–2			5.81-04			2
			3 442.63	3 443.62	650 061.6-679 100.8	4-6			8.28-02			2
			3 657.35	3 658.39	651 093.9–678 428.3	2–4			1.29-02			2
35		$^{2}P^{\circ}-^{2}D$	3 343.1	3 344.1	650 406–680 309	6–10	1.52-01	4.24-02	2.80+00	-0.594	C+	2
			3 285.11	3 286.06	650 061.6-680 493.2	4-6	1.60-01	3.89-02	1.69+00	-0.808	В	2
			3 454.46	3 455.45	651 093.9-680 033.7	2-4	9.24 - 02	3.31-02	7.53 - 01	-1.179	C+	2
			3 335.48	3 336.44	650 061.6-680 033.7	4-4	4.95-02	8.26-03	3.63-01	-1.481	C	2
36		$^{2}P^{\circ}-^{2}P$	3 165.3	3 166.2	650 406–681 990	6–6	7.00-02	1.05-02	6.58-01	-1.201	С	2
			3 084.46	3 085.35	650 061.6–682 472.8	4–4			1.43-01			2
			3 340.24	3 341.20	651 093.9–681 023.3	2–2			1.06-01			2
									5.69-02			
			3 228.86 3 185.93	3 229.80 3 186.85	650 061.6–681 023.3 651 093.9–682 472.8	4–2 2–4			3.52-01			2 2
_	. 4/1-> 4/1->-	2_0 2_	3 163.93									
7	$2p^4(^1D)3p - 2p^4(^1D)3d$	$^{2}F^{\circ}-^{2}G$		1 407.33	638 013–709 069	14–18	1.36+01	5.20-01	3.37+01	0.862	B+	2
				1 409.340	638 112.9–709 068.1	8-10	1.36+01	5.05 - 01	1.87 + 01	0.606	B +	2
				1 404.662	637 879.7–709 071.2	6-8	1.32+01	5.20 - 01	1.44+01	0.494	$\mathrm{B} +$	2
				1 409.278	638 112.9–709 071.2	8-8	4.98-01	1.48-02	5.51-01	-0.927	C+	2
3		$^2F^{\circ}-^2D$		1 324.39	638 013–713 520	14-10	7.33-01	1.38-02	8.41-01	-0.714	C	2
				1 328.055	638 112.9–713 411.0	8-6	5.96-01	1.18-02	4.14-01	-1.025	C+	2
				1 319.212	637 879.7–713 682.5	6-4	7.78 - 01	1.35 - 02	3.52 - 01	-1.092	C+	2
				1 323.954	637 879.7–713 411.0	6–6	1.09-01	2.86-03	7.48-02	-1.765	C	2
9		$^{2}F^{\circ}-^{2}F$		1 310.05	638 013–714 346	14–14	5.77+00	1.48-01	8.96+00	0.316	В	2
				1 311.649	638 112.9–714 352.8	8-8	5.53+00	1.43-01	4.93+00	0.058	B +	2
				1 307.930	637 879.7–714 336.4	6-6	5.52+00	1.42 - 01	3.66+00	-0.070	В	2
				1 311.931	638 112.9-714 336.4	8-6	3.63 - 01	7.02 - 03	2.42 - 01	-1.251	C	2
				1 307.649	637 879.7–714 352.8	6–8	1.52-01	5.19-03	1.34-01	-1.507	C	2
0		$^{2}\text{D}^{\circ}-^{2}\text{P}$		1 492.85	644 729–711 715	10-6	2.77+00	5.55-02	2.73+00	-0.256	C+	2,4
				1 495.969	644 786.4–711 632.7	6–4	2.51+00	5.62-02	1.66+00	-0.472	В	2
				1 487.274	644 643.4–711 880.5	4–2	2.28+00	3.78 - 02	7.41 - 01	-0.820	C	4
				1 492.776	644 643.4–711 632.7	4–4	4.98-01	1.66-02	3.27-01	-1.178	C	2
1		$^{2}D^{\circ}-^{2}D$		1 453.69	644 729–713 520	10-10	8.07+00	2.56-01	1.22+01	0.408	В	2
				1 457.203	644 786.4–713 411.0	6-6	7.01+00	2.23-01	6.43+00	0.126	$\mathrm{B} +$	2
				1 448.455	644 643.4–713 682.5	4-4	6.94+00	2.18-01	4.16+00	-0.059	B +	2
				1 451.461	644 786.4–713 682.5	6-4	7.69 - 01	1.62 - 02	4.64 - 01	-1.012	C+	2
				1 454.173	644 643.4–713 411.0	4–6	1.29+00	6.15-02	1.18+00	-0.609	В	2
2		$^{2}D^{\circ}-^{2}F$		1 436.44	644 729–714 346	10–14	8.92+00	3.86-01	1.83 + 01	0.587	B+	2
				1 437.476	644 786.4–714 352.8	6-8	9.03+00	3.73-01	1.06+01	0.350	B+	2
				1 434.864	644 643.4-714 336.4	4-6	7.81 + 00	3.62 - 01	6.83+00	0.161	$\mathrm{B} +$	2
				1 437.815	644 786.4–714 336.4	6–6	9.69-01	3.00-02	8.53-01	-0.745	C+	2
3		$^{2}P^{\circ}-^{2}P$		1 631.07	650 406–711 715	6-6	5.97+00	2.38-01	7.67+00	0.155	В	2,4
-												
				1 624.139	650 061.6-711 632.7	4-4	4.80 + 00	1.90 - 01	4.06+00	-0.119	B +	2

Table 52. Transition probabilities of allowed lines for Mg IV (references for this table are as follows: 1 = Butler and Zeippen, 14 2 = Tachiev and Froese Fischer, 96 3 = Tachiev and Froese Fischer, 92 and $4 = Bi\acute{e}mont^7$)—Continued

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	$\lambda_{\rm vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				1 617.628	650 061.6–711 880.5	4–2	2 51 + 00		1.47+00	0.560	C±	4
				1 651.833	651 093.9–711 632.7	2–4			8.69-01			2
		2 % 2										
94		$^{2}P^{\circ}-^{2}S$		1 620.25	<i>650 406</i> –712 124.5	6–2	6.70+00	8.79-02	2.81 + 00	-0.278	В	2
				1 611.269	650 061.6-712 124.5	4-2	1.21+00	2.35-02	4.98-01	-1.027	C+	2
				1 638.522	651 093.9–712 124.5	2–2	5.33+00	2.14-01	2.31+00	-0.369	В	2
95		$^{2}P^{\circ}-^{2}D$		1 584.44	650 406–713 520	6-10	3.00+00	1.88-01	5.89+00	0.052	В	2
				1 578.547	650 061.6–713 411.0	4–6	2.81+00	1.57-01	3.27 + 00	-0.202	В	2
				1 597.735	651 093.9–713 682.5	2–4			2.02+00			2
				1 571.811	650 061.6-713 682.5	4-4			5.97-01			2
96	$2p^4(^1D)3p - 2p^4(^3P)4s$	$^{2}P^{\circ}-^{2}P$		1 362.81	650 406–723 784	6–6	4.97+00	1.38-01	3.72+00	-0.082	C+	4
				1 366.014	650 061.6–723 267.3	4-4	3 00 ± 00	1 12_01	2.01+00	_0.340	C +	4
				1 356.440	651 093.9–724 816.3	2-2			8.71-01			4
				1 337.709	650 061.6–724 816.3	4–2			4.72-01			4
				1 385.552	651 093.9–723 267.3	2–4			3.71-01			4
97	$2p^4(^{1}D)3p - 2p^4(^{1}S)3d$	$^{2}F^{\circ}-^{2}D$		869.98	638 013–752 958	14–10	1.86-01	1.50-03	6.03-02	-1.678	D+	3
	r ()-r r ()											
				870.938	638 112.9–752 931.7	8–6			3.48-02			3
				868.676	637 879.7–752 997.4	6–4			2.40-02			3
				869.172	637 879.7–752 931.7	6–6	8.08-03	9.16-05	1.57-03	-3.260	E+	3
98		$^{2}D^{\circ}-^{2}D$		923.97	644 729–752 958	10–10	1.12-01	1.43-03	4.35-02	-1.845	D	3
				924.682	644 786.4–752 931.7	6-6	1.10-01	1.41 - 03	2.57 - 02	-2.073	D+	3
				922.901	644 643.4–752 997.4	4–4	9.09 - 02	1.16-03	1.41 - 02	-2.333	D	3
				924.120	644 786.4–752 997.4	6–4			1.57 - 03			3
				923.461	644 643.4–752 931.7	4–6	8.97-03	1.72-04	2.09-03	-3.162	E+	3
99		$^{2}P^{\circ}-^{2}D$		975.11	650 406–752 958	6-10	1.27-01	3.03-03	5.83-02	-1.740	D+	3
				972.100	650 061.6-752 931.7	4-6	1.03 - 01	2.19-03	2.80 - 02	-2.057	D+	3
				981.321	651 093.9–752 997.4	2-4	1.36-01	3.94 - 03	2.55 - 02	-2.103	D+	3
				971.479	650 061.6–752 997.4	4–4	2.68-02	3.80 - 04	4.86-03	-2.818	D	3
.00	$2p^4(^1D)3p - 2p^4(^1D)4s$	$^2F^{\circ}-^2D$		841.35	638 013–756 870	14-10	1.25+01	9.48-02	3.68+00	0.123	C+	4
				842.083	638 112.9–756 866.1	8–6	1.19+01	9.48-02	2.10+00	-0.120	В	4
				840.364	637 879.7–756 875.8	6-4	1.24+01	8.75-02	1.45 + 00	-0.280	C+	4
				840.432	637 879.7–756 866.1	6-6	6.87-01	7.28 - 03	1.21 - 01	-1.360	D	4
101		$^{2}D^{\circ}-^{2}D$		891.74	644 729–756 870	10–10	8.52+00	1.02-01	2.98+00	0.009	C+	4
				892.222	644 786.4–756 866.1	6–6	7.85+00	9 37-02	1.65+00	-0.250	C+	4
				891.008	644 643.4–756 875.8	4-4			1.14+00			4
				892.145	644 786.4–756 875.8	6–4			1.37-01			4
				891.085	644 643.4–756 866.1	4-6			5.10-02			4
102		$^{2}P^{\circ}-^{2}D$		939.28	650 406–756 870	6–10	7.96+00	1.75-01	3.26+00	0.021	C+	4
				936.290	650 061.6–756 866.1	4–6	8 38±00	1.65_01	2.04+00	_0.180	C^{\perp}	4
				930.290	651 093.9–756 875.8	2-4			1.10+00			4
				936.205	650 061.6–756 875.8	4-4			1.15-01			4
103	$2p^4(^1D)3p - 2p^4(^3P)4d$	$^{2}P^{\circ}-^{2}P$		833.3	650 406–770 417	6–6			6.47-01			4
				827.22	650 061.6–770 948	4–4			6.68-02			4
				845.58	651 093.9–769 356	2–2			1.03-01			4
				838.26	650 061.6–769 356	4–2	8.84-01	4.00-03	5.14 - 02	-1.730	E+	4

Table 52. Transition probabilities of allowed lines for Mg IV (references for this table are as follows: 1=Butler and Zeippen, 14 2=Tachiev and Froese Fischer, 96 3=Tachiev and Froese Fischer, 92 and $4=Bi\acute{e}mont^7$)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				834.35	651 093.9–770 948	2–4	3.71+00	7.74-02	4.25-01	-0.810	D	4
104		$^{2}P^{\circ}-^{2}D$		837.5	650 406–769 813	6-10	5.45+00	9.55-02	1.58+00	-0.242	D+	4
				833.24	650 061.6–770 075	4-6	5.55+00	8.67-02	9.51-01	-0.460	С	4
				845.11	651 093.9-769 421	2-4	2.56+00	5.48 - 02	3.05 - 01	-0.960	D	4
				837.81	650 061.6–769 421	4–4	2.79+00	2.94-02	3.24-01	-0.930	D	4
105	$2p^4(^1D)3p - 2p^4(^1S)4s$	$^{2}P^{\circ}-^{2}S$		681.9	650 406–797 056	6–2	4.56+00	1.06-02	1.43-01	-1.197	D	4
				680.30	650 061.6-797 056	4-2	3.00+00	1.04-02	9.34-02	-1.381	D	4
				685.11	651 093.9–797 056	2–2			4.93-02			4
106	$2p^4(^1D)3p - 2p^4(^1D)4d$	$^{2}\text{D}^{\circ}-^{2}\text{P}$		634.8	644 729–802 265	10-6	1.51+00	5.48-03	1.14-01	-1.261	E+	4
				635.09	644 786.4-802 244	6–4	1.34+00	5.39-03	6.77-02	-1.490	D	4
				634.27	644 643.4–802 306	4–2			2.82-02			4
				634.52	644 643.4–802 244	4-4			1.86-02			4
107		$^{2}D^{\circ}-^{2}D$		631.9	644 729–802 994	10–10	2.61+00	1.56-02	3.25-01	-0.807	D	4
				632.24	644 786.4–802 954	6–6	1 92±00	1 15-02	1.44-01	-1 161	D	4
				631.27	644 643.4–803 054	4-4			9.72-02			4
				631.84	644 786.4–803 054	6–4			1.20-02			4
		2 0 2		631.67	644 643.4–802 954	4–6			7.21-02			4
108		$^{2}P^{\circ}-^{2}P$		658.5	650 406–802 265	6–6	9.64 + 00	6.27 - 02	8.15 - 01	-0.425	D+	4
				657.11	650 061.6-802 244	4-4	7.53+00	4.87 - 02	4.22 - 01	-0.710	C	4
				661.32	651 093.9-802 306	2-2	6.49 + 00	4.26 - 02	1.85 - 01	-1.070	D+	4
				656.84	650 061.6-802 306	4-2	3.87 + 00	1.25 - 02	1.08 - 01	-1.301	D	4
				661.59	651 093.9–802 244	2-4	1.74+00	2.29-02	9.96-02	-1.339	D	4
109		$^{2}P^{\circ}-^{2}D$		655.4	650 406–802 994	6-10	4.29+00	4.61-02	5.96-01	-0.558	D+	4
				654.05	650 061.6-802 954	4-6	3.76+00	3.61-02	3.11-01	-0.840	D+	4
				658.07	651 093.9-803 054	2-4			2.22-01			4
				653.63	650 061.6–803 054	4-4			6.35-02			4
110		$^{2}P^{\circ}-^{2}S$		652.1	650 406–803 754	6–2	8.19+00	1.74-02	2.24-01	-0.981	D	4
				650.65	650 061.6-803 754	4-2	5.09±00	1 61 - 02	1.38-01	_1 191	D	4
				655.05	651 093.9–803 754	2–2			8.59-02			4
111	$2p^4(^3P)3d - 2p^4(^1S)3p$	$^{2}D-^{2}P^{\circ}$		2 568 cm ⁻¹	680 309–682 877	10-6	3.29-06	4.49-05	5.76-02	-3.348	D	2
				2 396.3 cm ⁻¹	680 493.2–682 889.5	6–4	2.12-06	3.68-05	3.03-02	-3.656	D+	2
				2 817.6 cm ⁻¹	680 033.7-682 851.3	4-2	3.41-06	3.22-05	1.51-02	-3.890	D	2
				2 855.8 cm ⁻¹	680 033.7–682 889.5	4-4			1.22-02			2
112		$^{2}P-^{2}P^{\circ}$		887 cm^{-1}	681 990–682 877	6-6	1.32-07	2.52-05	5.60-02	-3.820	D	2
				416.7cm ⁻¹	682 472.8–682 889.5	4-4	7.19-09	6.21-06	1.96-02	-4.605	D	2
				1 828.0 cm ⁻¹	681 023.3-682 851.3	2-2	8.53 - 07	3.83 - 05	1.38 - 02	-4.116	D	2
				378.5 cm ⁻¹	682 472.8-682 851.3	4-2	9.67-01	5.06-06	1.76-02	-4.694	D	2
				1 866.2 cm ⁻¹	681 023.3-682 889.5	2-4	1.65-07	1.42-05	5.01-03	-4.547	D	2
113	$2p^4(^3P)3d-2p^4(^3P_2)4f$	$^{4}F-^{2}[5]^{\circ}$										1
114		$^{4}P-^{2}[1]^{\circ}$		1 041.740	675 370.2–771 363.4	10–12	3.97+01	7.75-01	2.66+01	0.889	C+	LS'
		- L*J										-
				1 068.592	677 980.0–771 561.1	2-2	2.68+01	4.59 - 01	3.23+00	-0.037	D+	LS'
				1 073.736	678 428.3–771 561.1	4-2	5.28+00	4.56-02	6.45 - 01	-0.739	E+	LS'
115	$2p^4(^3P)3d-2p^4(^3P_2)5f$	$^{4}F-^{2}[5]^{\circ}$										1

TABLE 52. Transition probabilities of allowed lines for Mg IV (references for this table are as follows: 1=Butler and Zeippen, 14 2=Tachiev and Froese Fischer, 96 3=Tachiev and Froese Fischer, 92 and 4=Biémont 7)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				737.724	675 370.2–810 922.2	10–12	1.50+01	1.47-01	3.57+00	0.167	D+	LS'
116	$2p^4(^1S)3p-2p^4(^1D)3d$	$^{2}P^{\circ}-^{2}S$	3 418.1	3 419.1	682 877-712 124.5	6–2	2.77-02	1.62-03	1.09-01	-2.012	D	2,3
			3 419.58	3 420.56	682 889.5-712 124.5	4-2	1.74 - 02	1.53-03	6.88-02	-2.213	D+	2
			3 415.11	3 416.09	682 851.3–712 124.5	2–2	1.03 - 02	1.80-03	4.05-02	-2.444	D	3
117		$^{2}P^{\circ}-^{2}D$	3 262.5	3 263.4	682 877–713 520	6-10	3.85-03	1.02-03	6.60-02	-2.213	D+	2
			3 275.43	3 276.38	682 889.5–713 411.0	4-6	3.35 - 03	8.10 - 04	3.49 - 02	-2.489	D+	2
			3 242.53	3 243.47	682 851.3-713 682.5	2-4	3.96 - 03	1.25 - 03	2.67 - 02	-2.602	D+	2
			3 246.55	3 247.49	682 889.5–713 682.5	4–4	6.54-04	1.03-04	4.42-03	-3.385	E+	2
118	$2p^4(^1S)3p - 2p^4(^3P)4s$	$^{2}P^{\circ}-^{2}P$	2 443.8	2 444.6	682 877–723 784	6-6	5.57-02	4.99-03	2.41-01	-1.524	D	4
			2 475.86	2 476.61	682 889.5–723 267.3	4-4	4.21 - 02	3.87 - 03	1.26-01	-1.810	D	4
			2 382.21	2 382.94	682 851.3-724 816.3	2-2	5.48 - 02	4.67 - 03	7.32 - 02	-2.030	D	4
			2 384.38	2 385.11	682 889.5-724 816.3	4-2	6.73 - 03	2.87 - 04	9.02 - 03	-2.940	E	4
			2 473.52	2 474.27	682 851.3–723 267.3	2–4	1.08 - 02	1.99-03	3.24-02	-2.400	E+	4
119	$2p^4(^1S)3p - 2p^4(^1S)3d$	$^{2}P^{\circ}-^{2}D$		1 426.92	682 877–752 958	6–10	1.34+01	6.80-01	1.92+01	0.611	B+	3
				1 427.711	682 889.5-752 931.7	4-6	1.34+01	6.12-01	1.15+01	0.389	B+	3
				1 425.596	682 851.3-752 997.4	2-4	1.12+01	6.80-01	6.39 + 00	0.134	B+	3
				1 426.373	682 889.5–752 997.4	4-4			1.28+00	-0.565	В	3
120	$2p^4(^1S)3p - 2p^4(^1D)4s$	$^{2}P^{\circ}-^{2}D$		1 351.48	682 877–756 870	6–10	6.66-01	3.04-02	8.12-01	-0.739	D+	4
				1 351.779	682 889.5–756 866.1	4-6	6.23-01	2.56-02	4.55-01	-0.990	С	4
				1 350.904	682 851.3-756 875.8	2–4			3.08-01			4
				1 351.602	682 889.5–756 875.8	4-4			4.88 - 02			4
121	$2p^4(^1S)3p - 2p^4(^1S)4s$	$^{2}P^{\circ}-^{2}S$		875.8	682 877–797 056	6–2	2.62+01	1.00-01	1.74+00	-0.222	C	4
				875.91	682 889.5–797 056	4-2	1.73+01	9.95-02	1.15+00	-0.400	C+	4
				875.62	682 851.3–797 056	2–2	8.88+00	1.02-01	5.89-01	-0.690	C	4
122	$2p^4(^1S)3p - 2p^4(^1D)4d$	$^{2}P^{\circ}-^{2}S$		827.3	682 877–803 754	6–2	2.43+00	8.30-03	1.36-01	-1.303	D	4
				827.37	682 889.5–803 754	4-2	1.69+00	8.67-03	9.44-02	-1.460	D	4
				827.11	682 851.3–803 754	2–2			4.12-02			4
123	$2p^4(^1S)3p-2p^4(^1S)4d$?	${}^{2}P^{\circ} - {}^{2}D$?		[619.0]	682 877–844 424	6–10			6.16-01			4
				619.06	682 889.5–844 424	4–6	5.66-01	4.87-03	3.97-02	-1.710	E+	4
				618.92	682 851.3-844 424	2-4	4.56+00	5.24-02	2.13-01	-0.980	D+	4
				619.06	682 889.5–844 424	4-4			3.62-01			4
124	$2p^4(^1D)3d-2p^4(^1D_2)4f$	${}^{2}P-{}^{2}[1]^{\circ}$										1
				1 058.994	711 880.5–806 309.7	2–2	1.18+01	1.98-01	1.38+00	-0.402	D	LS'
				1 056.223	711 632.7–806 309.7	4–2			6.91-01		E+	LS'
125		$^{2}S-^{2}[1]^{\circ}$										1
				1 061.738	712 124.5–806 309.7	2–2	1.84+01	3.11-01	2.17+00	-0.206	D+	LS'
126	$2p^4(^3P)4d-2p^4(^3P_2)4f$	$^{4}P-^{2}[1]^{\circ}$										1
	2 · · · · · · · · · · · · · · · · · · ·			[4 222]	7(7.220.771.5(1.1	2.2	7.52 00	(22.02	0.07 : 00	0.000	C	
				[4 222] 3 781 cm ⁻¹	767 339–771 561.1 767 780–771 561.1	2–2 4–2			9.87+00 $1.97+00$			LS′ LS′
127	$2p^4(^1S)4s-2p^4(^1D_2)4f$	$^{2}S - ^{2}[1]^{\circ}$		2 / 01 0 111	, , , , , , , , , , , , , , , , , , , ,		1.00 00	3.0. 03	1.,, 100	1.017	-	1
			10 804	10 806	797 056–806 309.7	2–2	6.91-03	1.21-02	8.61-01	-1.616	D	LS'
128	$2p^4(^1D)4d-2p^4(^1D_2)4f$	2 p_ 2Γ1 7 °					00	02	01		-	1
120	$2p \left(D_{j}\pi u^{-2}p \left(D_{2}\right) 4j \right)$	1 — [1]										
				4 004 cm ⁻¹	802 306-806 309.7	2–2	2.62 - 03	2.45 - 02	4.03+00	-1.310	D+	LS'

Table 52. Transition probabilities of allowed lines for Mg IV (references for this table are as follows: 1=Butler and Zeippen, 14 2=Tachiev and Froese Fischer, 96 3=Tachiev and Froese Fischer, 92 and $4=Bi\acute{e}mont^7$)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				4 066 cm ⁻¹	802 244-806 309.7	4–2	1.37-03	6.22-03	2.01+00	-1.604	D	LS'
129		$^{2}D - ^{2}[1]^{\circ}$										1
				3 256 cm ⁻¹	803 054-806 309.7	4-2	3.08-04	2.18-03	8.82-01	-2.059	D	LS'
130		$^{2}S - ^{2}[1]^{\circ}$										1
				$2556~{\rm cm}^{-1}$	803 754-806 309.7	2–2	9.58-04	2.20-02	5.67 + 00	-1.357	C	LS'
131	$2s^22p^4(^1D)5s - 2s2p^5(^3P^{\circ})3s$	$^{2}D-^{2}P^{\circ}$	4 824	4 825	822 734–843 458	10–6	1.76-01	3.69-02	5.86+00	-0.433	D+	1
			[4 925]	[4 926]	822 734-843 034	6-4	1.49-01	3.61-02	3.51+00	-0.664	D+	LS
			[4 634]	[4 636]	822 734-844 306	4-2	1.99 - 01	3.20-02	1.95 + 00	-0.893	D	LS
			[4 925]	[4 926]	822 734-843 034	4-4	1.65 - 02	6.02-03	3.91 - 01	-1.618	E+	LS
132	$2s2p^5(^3P^{\circ})3s - 2s^22p^4(^1D)5d?$	$^{2}P^{\circ}-^{2}P$?				4–6						1
	-			[940]	843 034-843 974	4-4	6.48-06	1.10-03	1.54+00	-2.357	D	LS
				[1 002]	843 034-844 036	4–2	3.15-06	2.35 - 04	3.09-01	-3.027	E+	LS

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

11.4.3. Forbidden Transitions for Mg IV

The only reference-quality data are from Tachiev and Froese Fischer, 92,96 which are the product of extensive MCHF calculations with Breit-Pauli corrections to order α^2 .

We divided the transitions into two groups having upper levels with energies below and above 610 000 cm⁻¹. We estimated the accuracies for each group by isoelectronically scaling the pooling fit parameters of allowed lines of Na III

involving the lower-lying and higher-lying levels, respectively. Thus the assigned accuracies are only rough estimates.

11.4.4. References for Forbidden Transitions for Mg IV

⁹²G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on Mar. 28, 2002).

⁹⁶G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, energy adjusted, downloaded on Sept. 3, 2003).

TABLE 53. Wavelength finding list for forbidden lines for Mg IV

Wavelength (vac) (Å)	Mult. No.						
160.228	6	931.328	28	1 558.329	16	1 744.680	24
171.651	5	940.369	28	1 558.404	16	1 749.484	26
171.655	5	943.785	28	1 578.522	16	1 757.763	25
172.310	5	953.071	28	1 593.521	16	1 797.28	23
172.314	5	960.558	28	1 607.097	39	1 800.16	38
180.069	4	1 026.401	29	1 607.510	39	1 800.68	38
180.614	4	1 037.393	29	1 610.799	39	1 807.75	38
181.344	4	1 055.747	29	1 611.214	39	1 808.28	38
183.165	3	1 444.604	20	1 614.562	16	1 844.15	23
183.440	3	1 453.886	19	1 630.973	15	1 853.09	23
183.918	3	1 459.183	40	1 640.891	15	1 856.56	14
184.193	3	1 459.524	40	1 658.851	15	1 874.58	14
184.675	3	1 459.598	18	1 669.563	15	1 893.89	14
320.994	2	1 474.798	20	1 679.958	15	1 902.96	23
350.221	8	1 481.499	40	1 683.000	15	1 906.72	14
350.890	8	1 481.850	40	1 686.984	27	1 925.74	14
368.941	7	1 484.472	19	1 698.788	15	1 946.12	14
368.962	7	1 486.706	17	1 699.654	26	1 946.76	22
718.550	30	1 490.428	18	1 701.262	53	1 956.55	14
718.748	30	1 502.715	19	1 703.360	15	1 960.91	22
725.943	30	1 508.819	18	1 707.467	25	1 977.60	14
726.144	30	1 518.704	17	1 722.721	15	1 986.61	22
730.278	30	1 524.730	16	1 724.123	15		

TABLE 53. Wavelength finding list for forbidden lines for Mg IV—Continued

Wavelength (air) (Å)	Mult. No.						
2 020.69	22	3 292.31	37	4 452.08	33	9 797.1	10
2 026.88	22	3 339.14	36	4 523.52	33	10 051.8	10
2 054.37	22	3 340.93	36	4 526.79	33	10 650.7	10
2 276.29	21	3 457.75	13	4 662.72	33	11 722.2	10
2 303.46	21	3 459.66	13	4 666.20	33	12 280.0	42
2 332.70	21	3 517.54	35	4 858.74	33	12 547.1	42
2 395.98	21	3 519.53	35	4 862.53	33	12 965.4	10
2 427.63	21	3 670.50	13	6 655.4	32	13 159.1	42
2 572.70	12	3 738.18	34	6 662.5	32	13 363.0	42
2 573.76	12	3 740.42	34	6 893.1	32	13 419.3	42
2 670.09	12	3 852.18	52	6 900.7	32	14 121.8	42
2 671.23	12	3 946.88	34	7 161.7	32	14 410.7	42
2 729.72	12	3 949.37	34	7 169.9	32	15 110.1	42
3 290.57	37	4 448.91	33	8 612.4	51	18 853	44
Wavenumber	Mult.	Wavenumber	Mult.	Wavenumber	Mult.	Wavenumber	Mult.
(cm ⁻¹)	No.						
4 753.6	44	3 195.8	46	1 032.3	56	370.6	43
4 642.9	44	2 228	1	865.0	43	233.2	54
4 609.9	46	1 960.3	49	817.8	9	143.0	55
4 272.3	44	1 675.8	11	659.8	43	38.2	57
3 888.6	44	1 518.4	48	543.9	41	16	31
3 637.7	47	1 417.2	9	517.9	41		
3 228.8	44	1 414.1	45	441.9	50		

TABLE 54. Transition probabilities of forbidden lines for Mg IV (references for this table are as follows: 1=Tachiev and Froese Fischer 96 and 2=Tachiev and Froese Fischer 92)

No.	Transition array	Mult.	λ _{air} (Å)	$\lambda_{\rm vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	Туре	A_{ki} (s ⁻¹)	S (a.u.)	Acc.	Source
	<u> </u>		()		(****)	01 OK	-71-	(- /	()		
1	$2p^5 - 2p^5$	$^{2}\text{P}^{\circ}-^{2}\text{P}^{\circ}$									
				2 228 cm ⁻¹	0–2 228	4–2	M1	1.99 - 01	1.33+00	В	1
				2 228 cm ⁻¹	0–2 228	4–2	E2	6.54 - 07	2.13-01	В	1
2	$2s^22p^5 - 2s2p^6$	$^{2}P^{\circ}-^{2}S$									
	1 1			320.994	0-311 532	4–2	M2	2.31+01	1.06+01	В	1
3	$2p^5 - 2p^4(^3P)3s$	$^{2}P^{\circ}-^{4}P$									
	I I ()			183.440	0-545 137.6	4-4	M2	1.64+00	9.13-02	C	1
				183.165	0-545 955.4	4-2	M2	6.40+00	1.77 - 01	C	1
				183.918	0-543 720.4	4-6	M2	2.63 + 01	2.23+00	C+	1
				184.193	2 228-545 137.6	2-4	M2	1.82 + 01	1.03 + 00	C+	1
				184.675	2 228-543 720.4	2-6	M2	6.57 + 00	5.68-01	C	1
4		$^{2}\text{P}^{\circ}-^{2}\text{P}$									
				180.614	0-553 666.1	4-4	M2	3.95+00	2.04-01	C	1
				180.069	0-555 341.9	4-2	M2	4.12+00	1.05 - 01	C	1
				181.344	2 228-553 666.1	2-4	M2	2.70+00	1.42-01	C	1
5	$2p^5 - 2p^4(^1D)3s$	$^{2}\text{P}^{\circ}-^{2}\text{D}$									
	F F ()			172.314	2 228-582 562.4	2-6	M2	1.82+01	1.11+00	C+	1
				171.655	0-582 562.4	4-6	M2	1.39 + 01	8.33-01	C+	1
				172.310	2 228-582 578.4	2-4	M2	1.14+00	4.66-02	D+	1
				171.651	0-582 578.4	4-4	M2	4.11+00	1.64-01	C	1
6	$2p^5 - 2p^4(^1S)3s$	$^{2}P^{\circ}-^{2}S$									

TABLE 54. Transition probabilities of forbidden lines for Mg IV (references for this table are as follows: 1 = Tachiev and Froese Fischer ⁹⁶ and 2 = Tachiev and Froese Fischer ⁹²)—Continued

7		Mult.	(Å)	or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Type	(s^{-1})	(a.u.)	Acc.	Sourc
7				160.228	0–624 109.6	4–2	M2	4.70+01	6.65-01	D+	1
	$2s2p^6 - 2s^2 2p^4 (^1D)3s$	$^2S-^2D$									
				368.962	311 532-582 562.4	2-6	E2	4.64+02	1.70 - 02	C	2
				368.941	311 532-582 578.4	2-4	M1	6.39 - 06	4.76 - 11	E	2
				368.941	311 532–582 578.4	2–4	E2	4.66+02	1.14-02	C	2
8	$2s2p^6 - 2s^2 2p^4 (^3P)3p$	2 S $-^4$ P $^{\circ}$									
				350.890	311 532-596 521.8	2-6	M2	4.10 - 03	8.77 - 03	D	2
				350.221	311 532–597 065.7	2–4	M2	1.02-03	1.45 - 03	E+	2
9	$2p^4(^3P)3s - 2p^4(^3P)3s$	4 P									
				1 417.2 cm ⁻¹	543 720.4-545 137.6	6-4	M1	6.87 - 02	3.58+00	B+	2
				817.8 cm ⁻¹	545 137.6–545 955.4	4–2	M1	2.45 - 02	3.32+00	B+	2
10		$^{4}P - ^{2}P$									
			11 722.2	11 725.4	545 137.6-553 666.1	4-4	M1	5.92 - 02	1.41 - 02	C	2
			10 650.7	10 653.6	545 955.4-555 341.9	2-2	M1	8.83 - 02	7.91 - 03	C	2
			10 051.8	10 054.6	543 720.4-553 666.1	6-4	M1	1.36 - 01	2.05 - 02	C	2
			9 797.1	9 799.8	545 137.6-555 341.9	4-2	M1	6.92 - 03	4.83 - 04	D+	2
			12 965.4	12 969.0	545 955.4–553 666.1	2-4	M1	2.93-02	9.47-03	C	2
11		$^{2}P-^{2}P$									
				1 675.8 cm ⁻¹	553 666.1–555 341.9	4–2	M1	8.46-02	1.33+00	В	2
12	$2p^4(^3P)3s - 2p^4(^1D)3s$	$^4P-^2D$									
			2 671.23	2 672.02	545 137.6-582 562.4	4-6	M1	2.44 - 01	1.04 - 03	D+	2
			2 729.72	2 730.52	545 955.4-582 578.4	2-4	M1	1.71 - 01	5.15 - 04	D+	2
			2 573.76	2 574.53	543 720.4-582 562.4	6-6	M1	1.82 + 00	6.91 - 03	C	2
			2 670.09	2 670.88	545 137.6-582 578.4	4-4	M1	7.95 - 01	2.25 - 03	D+	2
			2 572.70	2 573.47	543 720.4–582 578.4	6-4	M1	1.98-01	4.99-04	D+	2
13		$^{2}P-^{2}D$									
			3 459.66	3 460.65	553 666.1-582 562.4	4-6	M1	3.47 - 01	3.20 - 03	C	2
			3 670.50	3 671.54	555 341.9-582 578.4	2-4	M1	2.12 - 01	1.56-03	D+	2
			3 457.75	3 458.74	553 666.1–582 578.4	4-4	M1	7.65 - 01	4.70-03	C	2
14	$2p^4(^3P)3s - 2p^4(^3P)3p$	$^{4}P-^{4}P^{\circ}$									
				1 893.89	543 720.4-596 521.8	6-6	M2	5.78 - 03	5.66 + 01	B +	2
				1 925.74	545 137.6-597 065.7	4-4	M2	2.12 - 03	1.51 + 01	В	2
				1 856.56	543 720.4-597 583.6	6-2	M2	2.53 - 03	7.48 + 00	В	2
				1 874.58	543 720.4-597 065.7	6-4	M2	3.37 - 04	2.09+00	C+	2
				1 906.72	545 137.6-597 583.6	4-2	M2	1.91 - 03	6.47 + 00	В	2
				1 946.12	545 137.6-596 521.8	4-6	M2	1.38 - 05	1.55-01	C	2
				1 956.55	545 955.4-597 065.7	2–4	M2	6.30-04	4.85 + 00	В	2
				1 977.60	545 955.4–596 521.8	2–6	M2	3.68-04		В	2
15		$^{4}P-^{4}D^{\circ}$									
-		- 2		1 724.123	545 137.6-603 138.1	4-8	M2	3.14-03	2.57 + 01	B+	2
				1 722.721	545 955.4-604 003.1	2-6	M2	2.23 - 03	1.36+01	В	2
				1 683.000	543 720.4-603 138.1	6-8	M2	8.30-03	6.01 + 01	B+	2
				1 698.788	545 137.6-604 003.1	4-6	M2	4.13-03	2.35+01	B+	2
				1 703.360	545 955.4-604 662.9	2-4	M2	4.07-03	1.57 + 01	В	2
				1 658.851	543 720.4-604 003.1	6-6	M2	1.49-05	7.51-02	C	2
				1 679.958	545 137.6–604 662.9	4-4	M2	8.63-07	3.10-03		2
				1 640.891	543 720.4–604 662.9	6–4	M2	1.31-03	4.18+00	В	2
				1 669.563	545 137.6–605 033.5	4–2	M2	3.63-03	6.32+00	В	2
				1 630.973	543 720.4–605 033.5	6–2	M2	7.49-04	1.16+00		2
16		$^{4}P-^{2}D^{\circ}$									

Table 54. Transition probabilities of forbidden lines for Mg IV (references for this table are as follows: 1=Tachiev and Froese Fischer 96 and 2=Tachiev and Froese Fischer 92)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Type	A_{ki} (s ⁻¹)	S (a.u.)	Acc.	Sourc
				1 614.562	545 955.4-607 891.7	2–6	M2	1.76-03	7.79+00	C+	2
				1 593.521	545 137.6-607 891.7	4–6	M2	8.02-03	3.32+01	B+	2
				1 578.522	545 955.4–609 305.8	2–4	M2	1.23-02	3.23+01	B+	2
				1 558.329	543 720.4–607 891.7	6–6	M2	8.25-03	3.05 + 01	В	2
				1 558.404	545 137.6–609 305.8	4-4	M2	1.26-02	3.10+01	В	2
				1 524.730	543 720.4–609 305.8	6–4	M2	5.55-03	1.23+01	В	2
17		$^{4}P-^{2}P^{\circ}$									
17		P- P		1 486.706	543 720.4-610 983.2	6–2	M2	3.06-02	2.98+01	В	2
				1 518.704	545 137.6–610 983.2	4-2	M2	1.68-03	1.82+00		2
18		$^{4}P-^{4}S^{\circ}$									
18		P- S		1 459.598	543 720.4-612 232.4	6–4	M2	8.48-03	1.51+01	В	2
				1 490.428	545 137.6–612 232.4	4-4	M2	4.65-03	9.17+00	В	2
				1 508.819	545 955.4-612 232.4	2–4	M2	8.04-04	1.69+00		2
		4- 2-°									_
19		$^{4}P-^{2}P^{\circ}$		1 494 472	545 127 6 612 501 6	4 4	M2	6.75 05	1.31-01	E+	2
				1 484.472 1 453.886	545 137.6–612 501.6 543 720.4–612 501.6	4–4	M2 M2	6.75 - 05 $1.65 - 02$		Е∓ В	2
				1 502.715		6–4	M2	2.81-03	2.88+01 $5.79+00$		2
				1 302.713	545 955.4–612 501.6	2–4	NIZ	2.81-03	3.79+00	C+	2
20		$^{4}P-^{2}S^{\circ}$									
				1 444.604	543 720.4–612 943.5	6–2	M2	2.43 - 04	2.05 - 01	D	2
				1 474.798	545 137.6–612 943.5	4–2	M2	1.69-02	1.58 + 01	В	2
21		$^{2}P-^{4}P^{\circ}$									
			2 303.46	2 304.17	553 666.1-597 065.7	4-4	M2	1.08 - 04	1.88 + 00	C+	2
			2 276.29	2 277.00	553 666.1-597 583.6	4-2	M2	4.80 - 04	3.94+00	В	2
			2 332.70	2 333.41	553 666.1-596 521.8	4-6	M2	1.43 - 03	3.98 + 01	B +	2
			2 395.98	2 396.71	555 341.9-597 065.7	2-4	M2	8.04 - 04	1.71 + 01	В	2
			2 427.63	2 428.37	555 341.9–596 521.8	2-6	M2	2.21 - 04	7.53+00	В	2
22		$^{2}P-^{4}D^{\circ}$									
		ı D	2 020.69	2 021.35	553 666.1–603 138.1	4-8	M2	4.81-03	8.71+01	B+	2
			2 054.37	2 055.03	555 341.9-604 003.1	2-6	M2	1.58-03	2.32+01	B+	2
				1 986.61	553 666.1-604 003.1	4-6	M2	6.38-04	7.95 + 00	В	2
			2 026.88	2 027.53	555 341.9–604 662.9	2–4	M2	8.07-04	7.42 + 00	В	2
				1 960.91	553 666.1–604 662.9	4-4	M2	1.28-04	9.98-01	C+	2
				1 946.76	553 666.1–605 033.5	4–2	M2	3.23-04	1.21+00	C+	2
23		$^{2}P-^{2}D^{\circ}$									
23		r- D		1 902.96	555 341.9–607 891.7	2-6	M2	1.33-03	1.34+01	В	2
				1 844.15	553 666.1–607 891.7	4-6	M2	3.47-04	2.98+00	C	2
				1 853.09	555 341.9–609 305.8	2–4	M2	1.20-04	7.03-01	D+	2
				1 797.28	553 666.1–609 305.8	4-4	M2	3.29-04	1.66+00		2
		25 25°									
24		$^{2}P-^{2}P^{\circ}$		1 744.680	553 666.1–610 983.2	4–2	M2	1.90-04	4.11-01	D	2
				1 /44.000	333 000.1-010 983.2	4-2	IVIZ	1.90-04	4.11-01	D	2
25		$^{2}P-^{4}S^{\circ}$									
				1 707.467	553 666.1–612 232.4	4–4	M2	3.69 - 03	1.44 + 01	В	2
				1 757.763	555 341.9–612 232.4	2–4	M2	3.44 - 03	1.55 + 01	В	2
26		$^{2}P-^{2}P^{\circ}$									
				1 699.654	553 666.1-612 501.6	4-4	M2	1.31 - 03	4.97 + 00	C+	2
				1 749.484	555 341.9-612 501.6	2-4	M2	3.57-04	1.57 + 00	C	2
27		$^{2}P-^{2}S^{\circ}$									
<i>∠1</i>		P2		1 686.984	553 666.1–612 943.5	4–2	M2	2.85-03	5.23+00	C+	2
				1 000.704	200 000.1 012 773.3	T 2	1712	2.00 .00	J.23 F00	<u> </u>	_
	$2p^4(^3P)3s-2p^4(^1D)3p$	${}^{4}P - {}^{2}P^{\circ}$									

TABLE 54. Transition probabilities of forbidden lines for Mg IV (references for this table are as follows: 1=Tachiev and Froese Fischer 96 and 2=Tachiev and Froese Fischer 92)—Continued

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	$A_{ki} (s^{-1})$	S (a.u.)	Acc.	Source
				953.071	545 137.6–650 061.6	4–4	M2	2.08-03	4.40-01	D	2
				931.328	543 720.4-651 093.9	6–2	M2	2.62 - 02	2.46+00	C	2
				940.369	543 720.4-650 061.6	6-4	M2	4.79 - 02	9.45 + 00	В	2
				943.785	545 137.6-651 093.9	4-2	M2	4.54 - 02	4.56+00	C+	2
				960.558	545 955.4-650 061.6	2–4	M2	3.73-03	8.18 - 01	D+	2
29		$^{2}P-^{2}P^{\circ}$									
				1 037.393	553 666.1-650 061.6	4-4	M2	6.27 - 03	2.02+00	C	2
				1 026.401	553 666.1-651 093.9	4–2	M2	6.11 - 03	9.34 - 01	D+	2
				1 055.747	555 341.9-650 061.6	2–4	M2	2.11-03	7.42 - 01	D+	2
30	$2p^4(^3P)3s - 2p^4(^1S)3p$	$^{4}P-^{2}P^{\circ}$									
				725.943	545 137.6-682 889.5	4-4	M2	3.40 - 04	1.84 - 02	E	2
				718.748	543 720.4-682 851.3	6-2	M2	5.09 - 03	1.31 - 01	E+	2
				718.550	543 720.4-682 889.5	6-4	M2	7.78 - 03	4.00 - 01	D	2
				726.144	545 137.6-682 851.3	4-2	M2	8.85 - 03	2.40-01	D	2
				730.278	545 955.4-682 889.5	2-4	M2	5.19-04	2.89-02	E	2
31	$2p^4(^1D)3s - 2p^4(^1D)3s$	$^{2}D-^{2}D$									
	-F (-) - v -F (-) - v			16.0 cm ⁻¹	582 562.4-582 578.4	6–4	M1	6.62-08	2.40+00	$\mathrm{B}+$	2
32	$2p^4(^1D)3s - 2p^4(^3P)3p$	$^{2}D-^{4}P^{\circ}$									
,_	2p (D)35 2p (1)3p	Б 1	6 655.4	6 657.3	582 562.4–597 583.6	6–2	M2	2.90-11	5.08-05	Е	2
			6 893.1	6 895.0	582 562.4-597 065.7	6-4	M2	8.40 - 10	3.51 - 03	D	2
			6 662.5	6 664.4	582 578.4-597 583.6	4-2	M2	2.07 - 08	3.64 - 02	D+	2
			7 161.7	7 163.6	582 562.4-596 521.8	6-6	M2	2.70 - 09	2.05 - 02	D+	2
			6 900.7	6 902.6	582 578.4-597 065.7	4-4	M2	1.41 - 08	5.94-02	D+	2
			7 169.9	7 171.9	582 578.4–596 521.8	4-6	M2	4.38-09	3.34-02	D+	2
33		$^{2}D-^{4}D^{\circ}$									
			4 662.72	4 664.03	582 562.4-604 003.1	6-6	M2	4.72 - 09	4.19-03	D	2
			4 526.79	4 528.06	582 578.4-604 662.9	4–4	M2	1.12 - 08	5.70 - 03	D	2
			4 448.91	4 450.16	582 562.4-605 033.5	6–2	M2	2.09 - 08	4.89 - 03	D	2
			4 523.52	4 524.78	582 562.4-604 662.9	6-4	M2	1.70 - 08	8.65 - 03	D	2
			4 452.08	4 453.33	582 578.4-605 033.5	4-2	M2	4.14 - 09	9.72 - 04	E+	2
			4 858.74	4 860.10	582 562.4-603 138.1	6-8	M2	1.28 - 09	1.86 - 03	E+	2
			4 666.20	4 667.51	582 578.4-604 003.1	4-6	M2	7.88 - 09	7.03 - 03	D	2
			4 862.53	4 863.88	582 578.4-603 138.1	4-8	M2	4.68 - 10	6.84-04	E+	2
34		$^{2}D-^{2}D^{\circ}$									
			3 946.88	3 948.00	582 562.4-607 891.7	6-6	M2	4.97-07	1.92-01	D	2
			3 740.42	3 741.48	582 578.4-609 305.8	4-4	M2	4.86 - 07	9.56 - 02	E+	2
			3 738.18	3 739.24	582 562.4-609 305.8	6-4	M2	2.80 - 06	5.49 - 01	D+	2
			3 949.37	3 950.49	582 578.4-607 891.7	4-6	M2	2.27 - 07	8.79-02	E+	2
35		$^{2}D-^{2}P^{\circ}$									
			3 517.54	3 518.55	582 562.4-610 983.2	6-2	M2	5.07-05	3.67 + 00	C+	2
			3 519.53	3 520.53	582 578.4-610 983.2	4–2	M2	2.17-06	1.57 - 01	E+	2
36		$^{2}D-^{2}P^{\circ}$									
			3 339.14	3 340.10	582 562.4-612 501.6	6-4	M2	7.55-05	8.41+00	В	2
			3 340.93	3 341.89	582 578.4-612 501.6	4-4	M2	1.51-05	1.69+00		2
37		$^{2}D-^{2}S^{\circ}$									
J.		2 0	3 290.57	3 291.52	582 562.4-612 943.5	6–2	M2	1.33-04	6.89+00	C+	2
			3 292.31	3 293.25	582 578.4–612 943.5	4–2	M2	5.92-06	3.08-01		2
38	$2p^4(^1D)3s - 2p^4(^1D)3p$	$^{2}D-^{2}F^{\circ}$									
,0	2p (D)30 -2p (D)3p	D - 1		1 800.68	582 578.4-638 112.9	4-8	M2	1.10-02	1.12+02	B+	2
				1 800.16	582 562.4–638 112.9	6–8	M2	6.33-03	6.42+01		2
				1 000.10	302 202.1 030 112.7	0 0	1112	0.55 05	0.12101	٠.	-

Table 54. Transition probabilities of forbidden lines for Mg IV (references for this table are as follows: 1=Tachiev and Froese Fischer 96 and 2=Tachiev and Froese Fischer 92)—Continued

	Transition		λ_{air}	λ_{vac} (Å)	$E_i - E_k$			A_{ki}	S		
lo.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm^{-1})	$g_i - g_k$	Type	(s^{-1})	(a.u.)	Acc.	Source
				1 808.28	582 578.4-637 879.7	4-6	M2	1.19-03	9.23+00	В	2
				1 807.75	582 562.4-637 879.7	6-6	M2	2.16-03	1.68+01	В	2
`		$^{2}D-^{2}D^{\circ}$									
19		ט – ט		1 607.097	582 562.4-644 786.4	6–6	M2	1.42-02	6.12+01	B+	2
				1 611.214	582 578.4-644 643.4	4-4	M2	2.76-03	8.04+00	C+	2
				1 610.799	582 562.4-644 643.4	6-4	M2	1.37-02	3.98+01	B+	2
				1 607.510	582 578.4-644 786.4	4-6	M2	8.45-03	3.65+01	B+	2
				1 007.510	302 370.1 011 700.1	. 0	1412	0.15 05	5.05 1 01	ъ,	-
0		$^{2}D-^{2}P^{\circ}$									
				1 459.183	582 562.4–651 093.9	6–2	M2	3.89 - 02	3.45 + 01	B+	2
				1 481.499	582 562.4–650 061.6	6–4	M2	1.27-02	2.43 + 01	В	2
				1 459.524	582 578.4–651 093.9	4–2	M2	1.74-03	1.54+00	C	2
				1 481.850	582 578.4–650 061.6	4–4	M2	2.61 - 03	5.01+00	C+	2
1	$2p^4(^3P)3p - 2p^4(^3P)3p$	$^{4}P^{\circ} - ^{4}P^{\circ}$									
	1 ()-1 1 ()-1			543.9 cm ⁻¹	596 521.8-597 065.7	6-4	M1	3.91-03	3.60+00	B+	2
				517.9 cm ⁻¹	597 065.7-597 583.6	4-2	M1	6.21-03	3.31+00	B+	2
		4-0 4-0									
2		$^{4}P^{\circ}-^{4}D^{\circ}$	15 110 1	47.44.0	50 / 50 1 0 / 00 100 1		3.64			a .	
			15 110.1	15 114.2	596 521.8–603 138.1	6–8	M1	6.44-02	6.59-02		2
			14 410.7	14 414.6	597 065.7–604 003.1	4–6	M1	4.90-03	3.27-03	C	2
			14 121.8	14 125.7	597 583.6–604 662.9	2–4	M1	3.46-03	1.45-03	D+	2
			13 363.0	13 366.7	596 521.8–604 003.1	6–6	M1	4.14-02	2.20-02	C	2
			13 159.1	13 162.7	597 065.7–604 662.9	4-4	M1	8.45-02	2.86-02	С	2
			13 419.3	13 423.0	597 583.6–605 033.5	2–2	M1	1.26-01	2.26-02	С	2
			12 280.0	12 283.4	596 521.8–604 662.9	6–4	M1	5.56-02	1.53-02		2 2
			12 547.1	12 550.5	597 065.7–605 033.5	4–2	M1	9.38-02	1.38-02	C	2
13		$^{4}D^{\circ}-^{4}D^{\circ}$									
				865.0 cm^{-1}	603 138.1-604 003.1	8-6	M1	1.91 - 02	6.58+00	B+	2
				659.8 cm^{-1}	604 003.1-604 662.9	6-4	M1	1.58 - 02	8.16+00	B+	2
				370.6 cm ⁻¹	604 662.9-605 033.5	4-2	M1	4.05 - 03	5.91+00	B+	2
4		$^{4}D^{\circ}-^{2}D^{\circ}$									
4		ע – ע		3 888.6 cm ⁻¹	604 003.1-607 891.7	6 6	М1	1.33-02	5.04-02	D	2
				4 642.9 cm ⁻¹	604 662.9–609 305.8	6–6 4–4	M1 M1	1.72-02	2.55-02	D	2 2
				4 753.6 cm ⁻¹	603 138.1–607 891.7	8-6	M1	1.00-01	2.07-01		2
			18 853	18 858	604 003.1–609 305.8	6–4	M1	1.39-03	1.38-03	E	2
			10 033	3 228.8 cm ⁻¹	604 662.9–607 891.7	4–6	M1	1.82-02		D+	2
				4 272.3 cm ⁻¹	605 033.5–609 305.8	2–4	M1	3.56-02	6.77-02		2
				. 272.8 6111	000 00010 000 00010		1,11	0.00 02	0.77 02	_	-
15		$^{2}D^{\circ}-^{2}D^{\circ}$									
				1 414.1 cm ⁻¹	607 891.7–609 305.8	6–4	M1	4.59 - 02	2.40+00	В	2
6		$^{2}D^{\circ}-^{2}P^{\circ}$									
0		ъ 1		4 609.9 cm ⁻¹	607 891.7-612 501.6	6–4	M1	3.62-02	5.49-02	D	2
				3 195.8 cm ⁻¹	609 305.8-612 501.6	4-4	M1	2.16-02	9.80-02		2
7		$^{2}D^{\circ}-^{2}S^{\circ}$									
				3 637.7 cm ⁻¹	609 305.8-612 943.5	4–2	M1	1.34 - 02	2.06 - 02	D	2
-8		$^{2}P^{\circ}-^{2}P^{\circ}$									
0				1 518.4 cm ⁻¹	610 983.2-612 501.6	2-4	M1	1.15-02	4.88-01	C	2
					, 012001.0	- •		02	01	-	_
9		$^{2}\text{P}^{\circ}-^{2}\text{S}^{\circ}$									
				1 960.3 cm ⁻¹	610 983.2–612 943.5	2–2	M1	6.32 - 02	6.22 - 01	C	2
0		$^{2}\text{P}^{\circ}-^{2}\text{S}^{\circ}$									
J		1 – 3		441.9 cm ⁻¹	612 501.6-612 943.5	4-2	M1	9.44-04	8.11-01	C+	2
				771./ CIII	012 301.0 -012 773.3	<u>-</u>	1411	7. 11 -0 1	0.11-01	C 1	-

Table 54. Transition probabilities of forbidden lines for Mg IV (references for this table are as follows: 1=Tachiev and Froese Fischer⁹⁶ and 2=Tachiev and Froese Fischer⁹²)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ $(cm^{-1})^a$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	A_{ki} (s ⁻¹)	S (a.u.)	Acc.	Source
51	$2p^4(^3P)3p - 2p^4(^1S)3s$	$^{2}P^{\circ}-^{2}S$	8 612.4	8 614.7	612 501.6–624 109.6	4–2	M2	1.63-07	1.04+00	D+	2
52	$2p^4(^1S)3s - 2p^4(^1D)3p$	$^{2}S-^{2}P^{\circ}$	3 852.18	3 853.27	624 109.6–650 061.6	2–4	M2	9.85-07	2.25-01	D	2
53	$2p^4(^1S)3s - 2p^4(^1S)3p$	$^{2}S-^{2}P^{\circ}$		1 701.262	624 109.6–682 889.5	2–4	M2	2.25-02	8.59+01	B+	2
54	$2p^4(^1D)3p - 2p^4(^1D)3p$	${}^{2}F^{\circ} - {}^{2}F^{\circ}$		233.2 cm ⁻¹	637 879.7–638 112.9	6–8	M1	1.46-04	3.42+00	В	2
55		$^{2}D^{\circ}-^{2}D^{\circ}$		143.0 cm ⁻¹	644 643.4–644 786.4	4-6	M1	3.14-05	2.39+00	В	2
56		$^{2}P^{\circ}-^{2}P^{\circ}$		1 032.3 cm ⁻¹	650 061.6–651 093.9	4–2	M1	1.97-02	1.33+00	C+	2
57	$2p^4(^1S)3p - 2p^4(^1S)3p$	$^{2}P^{\circ}-^{2}P^{\circ}$		38.2 cm ⁻¹	682 851.3–682 889.5	2–4	M1	5.01-07	1.33+00	C+	2

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

11.5. Mg v

Oxygen isoelectronic sequence Ground state: $1s^22s^22p^4$ 3P_2

Ionization energy: 141.270 eV=1 139 420 cm⁻¹

11.5.1. Allowed Transitions for Mg V

Only OP (Ref. 14) calculations were available for lines from energy levels above the $2p^33d$. Wherever available we have used the data of Tachiev and Froese Fischer, 100,101 which are the product of extensive MCHF calculations with Breit-Pauli corrections to order α^2 . Second-order MBPT results from Vilkas *et al.* 119 were also available for some of the lowest transitions. Bogdanovich *et al.* 9 used a Hartree-Fock-Pauli approximation with correlation effects estimated by configuration interaction using a basis of transformed radial orbitals.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in two or more references, 9,14,100,101,119 as described in the introduction (data from Tachiev and Froese Fischer¹⁰¹ are cited only for lines not listed in Tachiev and Froese Fischer¹⁰⁰). For this purpose the spin-allowed (non-OP) and intercombination data were treated separately and each of these was in turn divided into two upper-level energy groups below and above 700 000 cm⁻¹. OP lines constituted a fifth group and have been used only when more accurate sources were not available, because spin-orbit effects are often significant for this spectrum.

Agreement between Tachiev and Froese Fischer¹⁰⁰ and Bogdanovich *et al.*⁹ was significantly stronger than for other spectra, and this was particularly notable for transitions from

higher-lying levels. This could indicate that MCHF calculations are generally more accurate than we have observed in comparisons with data sources for other spectra, or this degree of agreement might arise primarily from an underlying similarity of the two methods. We have chosen to treat uncertainties with each spectrum according to the degree of agreement of transitions found within it.

A NIST compilation of far-UV lines of Mg V was published recently. The estimated accuracies are different in some cases because a different method of evaluation was used.

11.5.2. References for Allowed Transitions for Mq V

⁹P. Bogdanovich, R. Karpushkiene, A. Momkauskaite, and A. Udris, Lith. Phys. J. **39**, 9 (1999).

¹⁴K. Butler and C. J. Zeippen, http://legacy.gsfc.nasa.gov/ topbase, downloaded on July 28, 1995 (Opacity Project).

⁷⁸L. I. Podobedova, D. E. Kelleher, J. Reader, and W. L. Wiese, J. Phys. Chem. Ref. Data **33**, 495 (2004).

⁸⁹G. Tachiev and C. Froese Fischer, Astron. Astrophys. **385**, 716 (2002).

100G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, energy adjusted, downloaded on Dec 23, 2003). See Tachiev and Froese Fischer (Ref. 89).

¹⁰¹G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, 2000, downloaded on Dec. 23, 2003).

¹¹⁹M. J. Vilkas, G. Merkelis, R. Kisielius, G. Gaigalas, A. Bernotas, and Z. Rudzikas, Phys. Scr. 49, 592 (1994).

Table 55. Wavelength finding list for allowed lines for Mg V $\,$

TABLE 55. Wavelength finding list for allowed lines for Mg V—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
92.432	50	111.239	27
92.584	50	111.410	27
92.648	50	111.460	27
95.554	51	111.486	27
95.798	48	111.552	27
95.896	47	113.194	57
95.917	47	113.202	57
95.962	48	113.210	57
96.030	48	113.277	20
96.060	47	113.402	57
96.081	47	113.409	57
96.149	47	113.515	57
97.392	46	113.699	19
97.561	46	113.821	33
97.632	46	113.930	19
98.232	42	113.946	18
98.269	42	113.988	17
98.404	42	114.026	19
98.441	42	114.052	17
98.476	42	114.178	18
98.626	41	114.197	17
98.629	41	114.220	17
98.635	41	114.284	17
98.800	41	114.317	17
98.803	41	114.488	16
98.872	41	114.722	16
99.066	49	114.759	15
101.670	45	114.764	15
101.781	44	114.782	15
102.073	43	114.819	16
103.902	38	114.994	15
103.906	38	114.999	15
103.938	36	115.016	32
103.939	36	115.092	15
103.942	36	115.362	31
104.099	38	115.396	31
104.131	36	115.443	31
104.132	36	115.534	30
104.179	38	118.083	25
104.211	36	118.809	24
104.447	39	118.856	23
107.653	37	118.925	23
109.162	40	119.399	22
109.800	35	119.443	34
110.015	35	119.694	21
110.104	35	119.699	21
110.771	29	119.719	21
110.802	29	121.645	14
110.846	29	121.656	14
110.929	28	121.658	14
110.990	29	121.921	14
111.022	29	121.923	14
111.081	29	122.033	14
111.149	28	125.600	26
111.189	27	126.282	56

TABLE 55. Wavelength finding list for allowed lines for Mg V—Continued

Table 55. Wavelength finding list for allowed lines for Mg V—Continued

126.540 56 345.143 68 126.682 56 345.143 68 121.663 10 345.552 68 132.163 10 345.554 68 132.176 10 345.564 68 132.475 10 345.797 68 132.475 10 345.797 68 132.492 10 351.089 1 132.492 10 352.201 1 135.628 55 333.000 1 135.628 55 333.000 1 135.628 55 333.200 1 135.647 55 345.225 1 135.661 55 335.329 1 135.661 55 335.329 1 135.661 55 335.329 1 135.661 55 337.3283 72 135.959 55 373.363 72 137.230 12 374.138 72 137.230 12 374.138 72 137.2407 8 374.222 72 137.407 8 374.222 72 137.407 8 374.366 72 137.411 8 376.665 53 137.741 8 376.665 53 137.745 8 378.160 73 137.745 8 378.160 73 137.745 8 378.366 73 138.756 11 378.752 73 145.386 73 138.756 11 378.752 73 145.386 13 378.959 62 146.083 7 379.075 62 146.083 7 379.075 62 152.285 54 338.406 58 338.346 73 338.356 135.257 54 339.076 54 339.076 58 338.363 59 338.364 73 338.365 59 338.364 73 338.365 59 338.365 5	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
126.682 56	126.540		245.072	60
132.163				
132,176				
132.475				
132,488				
132,492				
132.618				
135,628				
135.647 55 354.225 1 135.661 55 355.329 1 135.945 55 373.283 72 135.959 55 373.663 72 136.122 55 373.663 72 137.230 12 374.138 72 137.404 8 374.222 72 137.407 8 374.306 72 137.411 8 376.665 53 137.741 8 378.606 73 137.741 8 378.606 73 137.745 8 378.246 73 137.745 8 378.266 73 138.751 11 378.82 8 378.286 73 138.751 11 378.852 73 138.766 11 378.858 73 142.935 9 378.954 73 144.935 9 378.954 73 145.486 13 378.959 62 146.465 7 379.017 62 146.623 7 379.017 62 151.807 54 379.005 62 152.021 54 379.107 62 152.180 54 379.107 62 152.180 54 379.107 62 152.180 54 379.107 62 152.180 54 388.496 58 152.527 54 390.765 58 152.385 54 388.496 58 152.527 54 390.765 58 152.385 54 388.496 58 152.527 54 390.765 63 152.385 54 388.496 58 152.527 54 390.765 58 152.385 54 388.496 58 152.527 54 390.765 63 252.717 2 395.009 63 253.190 2 395.219 63 264.451 52 401.764 3 312.302 6 465.437 59 338.544 67 466.936 59 338.547 67 470.219 59 338.733 667 466.936 59 338.733 667 470.219 59 338.733 667 470.219 59 338.733 667 470.219 59 338.733 667 470.219 59 338.733 667 470.219 59 338.733 667 470.219 59 338.733 338.784 67 470.219 59 338.733 667 470.219 59 338.733 667 470.219 59 338.734 67 470.219 59 338.735 60 539.438 61 341.736 60 539.438 61 341.736 60 539.438 61 341.736 60 544.046 61 341.736 60 544.046 61 341.736 60 544.046 61				
135.66 55 355.29				
135.945				
135,059 55 373,569 72 136,122 55 373,653 72 137,230 12 374,138 72 137,404 8 374,222 72 137,404 8 374,222 72 137,401 8 374,306 72 137,411 8 376,665 53 137,741 8 378,246 73 137,741 8 378,246 73 137,745 8 378,246 73 137,782 8 378,246 73 137,882 8 378,246 73 138,758 73 138,756 11 378,672 73 138,766 11 378,758 73 142,935 9 378,954 73 145,486 13 378,959 62 146,603 7 379,004 73 146,623 7 379,004 73 146,623 7 379,005 62 151,807 54 379,105 62 152,152 54 379,107 62 152,152 54 379,107 62 152,152 54 379,213 62 251,584 2 395,076 58 152,257 54 388,496 58 152,257 54 388,496 58 152,257 54 388,496 58 152,257 54 388,496 58 152,257 54 388,496 58 152,257 54 390,765 58 152,257 59 393,854 59 393,854 59 393,854 59 393,854 59 393,854 59 393,854 59 393,854 59 393,854 59 393,855 59 393,855 59 393,855 59 393				
136,122 55 373,653 72 137,404 8 374,222 72 137,407 8 374,222 72 137,407 8 374,306 72 137,411 8 376,665 53 373,411 8 376,665 53 373,411 8 378,160 73 373,741 8 378,246 73 373,745 8 378,246 73 378,745 11 378,672 73 378,758 73 378,758 73 378,758 73 378,758 73 378,758 73 378,758 73 378,758 73 378,959 62 378,959 62 378,959 62 378,959 62 378,959 62 378,959 62 378,959 62 378,959 62 378,959 62 378,959 62 378,959 62 378,959 63 379,075 62 379,075 63 379,075				
137,230				
137,404 8 374,222 72 137,407 8 374,306 72 137,411 8 376,665 53 137,741 8 378,160 73 137,882 8 378,246 73 138,751 11 378,672 73 138,766 11 378,758 73 142,935 9 378,954 73 145,486 13 378,959 62 146,083 7 379,941 73 146,625 7 379,041 73 146,623 7 379,041 73 152,021 54 379,105 62 152,180 54 379,107 62 152,180 54 379,107 62 152,185 54 379,107 62 152,186 54 38,496 58 152,285 54 38,496 58 152,285 54 38,496 58 152,527 54 39,076 63 252,717 2 395,076 63 253,190 2 395,299 63 264,451 52 401,764 3 <t< td=""><td></td><td></td><td></td><td></td></t<>				
137,407 8 374,306 72 137,411 8 376,665 53 137,741 8 378,160 73 137,745 8 378,246 73 137,882 8 378,586 73 138,751 11 378,578 73 138,766 11 378,758 73 142,935 9 378,959 62 146,643 7 379,999 62 146,623 7 379,041 73 146,623 7 379,075 62 151,807 54 379,105 62 152,021 54 379,107 62 152,152 54 379,213 62 152,180 54 38,496 58 152,285 54 38,496 58 152,527 54 390,765 58 252,777 2 395,099 63 253,190 2 395,219 63 264,451 52 401,764 3 276,582 4 404,390 3 312,302 6 466,895 59 338,637 67 470,170 59 <td< td=""><td></td><td></td><td></td><td></td></td<>				
137.411 8 376.665 53 137.741 8 378.160 73 137.745 8 378.266 73 137.852 8 378.586 73 138.766 11 378.758 73 142.935 9 378.954 73 145.486 13 378.959 62 146.083 7 379.041 73 146.623 7 379.041 73 151.807 54 379.105 62 152.180 54 379.107 62 152.180 54 379.213 62 152.180 54 387.457 58 152.527 54 390.765 58 251.584 2 395.076 63 252.717 2 395.099 63 253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.347 59 338.647 67 470.130 59 338.734 67 470.130 59 338.733 67 470.130 59				
137,741 8 378,160 73 137,745 8 378,246 73 137,882 8 378,586 73 138,751 11 378,672 73 138,766 11 378,758 73 142,935 9 378,954 73 145,486 13 378,959 62 146,603 7 379,041 73 146,623 7 379,075 62 151,807 54 379,105 62 152,021 54 379,107 62 152,152 54 379,107 62 152,152 54 379,107 62 152,152 54 379,107 62 152,385 54 38,496 58 152,527 54 390,765 58 251,584 2 395,076 63 252,717 2 395,099 63 254,491 52 401,764 3 276,582 4 404,390 3 312,302 6 465,437 59 338,634 67 470,130 59 338,647 67 470,177 59				
137.745 8 378.246 73 137.882 8 378.586 73 138.751 11 378.672 73 138.766 11 378.758 73 142.935 9 378.954 73 145.486 13 378.959 62 146.083 7 378.999 62 146.465 7 379.011 73 146.623 7 379.075 62 151.807 54 379.105 62 152.021 54 379.107 62 152.180 54 379.213 62 152.180 54 387.457 58 152.385 54 388.496 58 152.527 54 390.765 58 252.717 2 395.099 63 252.717 2 395.099 63 252.717 2 395.099 63 252.717 2 395.099 63 252.717 2 395.099 63 3312.302 6 465.437 59 338.623 67 466.895 59 338.624 67 470.177 59				
137.882 8 378.586 73 138.761 11 378.672 73 138.766 11 378.758 73 142.935 9 378.954 73 145.486 13 378.959 62 146.083 7 378.999 62 146.653 7 379.041 73 146.623 7 379.105 62 152.021 54 379.105 62 152.021 54 379.107 62 152.180 54 379.213 62 152.180 54 387.457 58 152.385 54 388.496 58 152.385 54 380.496 58 251.584 2 395.076 63 252.717 2 395.099 63 253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.300 3 312.302 6 465.87 59 338.54 67 466.936 59 338.623 67 466.936 59 338.753 67 470.177 59				
138.751 11 378.758 73 138.766 11 378.758 73 142.935 9 378.954 73 145.486 13 378.959 62 146.083 7 378.999 62 146.623 7 379.075 62 151.807 54 379.105 62 152.021 54 379.107 62 152.152 54 379.213 62 152.180 54 387.457 58 152.385 54 388.496 58 152.527 54 390.765 58 251.584 2 395.076 63 252.717 2 395.099 63 253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.437 59 338.623 67 466.895 59 338.623 67 470.177 59 338.7				
138.766 11 378.758 73 142.935 9 378.954 73 145.486 13 378.959 62 146.083 7 378.999 62 146.465 7 379.041 73 146.623 7 379.075 62 151.807 54 379.105 62 152.021 54 379.107 62 152.152 54 379.213 62 152.180 54 387.457 58 152.385 54 388.496 58 152.527 54 390.765 58 251.584 2 395.076 63 252.717 2 395.099 63 253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.437 59 338.623 67 466.895 59 338.685 67 470.177 59 338.71				
142.935 9 378.954 73 145.486 13 378.959 62 146.083 7 379.041 73 146.623 7 379.075 62 151.807 54 379.105 62 152.021 54 379.107 62 152.152 54 379.213 62 152.180 54 387.457 58 152.385 54 388.496 58 152.527 54 390.765 58 251.584 2 395.076 63 252.717 2 395.099 63 253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.437 59 338.554 67 466.895 59 338.623 67 466.895 59 338.685 67 470.177 59 338.716 67 470.177 59 338.784 67 57 481.813 5 341.578 60 539.337 61 341.698 60 543.824 61				
145.486 13 378.959 62 146.083 7 378.999 62 146.465 7 379.041 73 146.623 7 379.075 62 151.807 54 379.107 62 152.021 54 379.107 62 152.152 54 379.213 62 152.180 54 387.457 58 152.385 54 388.496 58 152.527 54 390.765 58 251.584 2 395.076 63 252.717 2 395.099 63 253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.437 59 338.63 67 466.895 59 338.647 67 470.130 59 338.763 67 470.177 59 338.784 67 470.177 59 338.784 67 537.438 61 341.578 60 539.438 61 341.698 60 543.824 61				
146.083 7 378.999 62 146.465 7 379.041 73 146.623 7 379.075 62 151.807 54 379.105 62 152.021 54 379.107 62 152.152 54 379.213 62 152.180 54 387.457 58 152.385 54 388.496 58 152.527 54 390.765 58 251.584 2 395.076 63 252.717 2 395.099 63 253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.437 59 338.54 67 466.895 59 338.623 67 466.936 59 338.716 67 470.130 59 338.733 67 481.813 5 341.578 60 539.438 61 341.578				
146.465 7 379.041 73 146.623 7 379.075 62 151.807 54 379.105 62 152.021 54 379.107 62 152.152 54 379.213 62 152.180 54 387.457 58 152.385 54 388.496 58 152.527 54 390.765 58 251.584 2 395.076 63 252.717 2 395.099 63 253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.437 59 338.554 67 466.895 59 338.623 67 466.895 59 338.647 67 470.130 59 338.763 67 470.177 59 338.784 67 537.438 61 341.553 60 539.438 61 341.				
146.623 7 379.075 62 151.807 54 379.105 62 152.021 54 379.107 62 152.152 54 379.213 62 152.180 54 387.457 58 152.385 54 388.496 58 152.527 54 390.765 58 251.584 2 395.076 63 252.717 2 395.099 63 253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.437 59 338.623 67 466.895 59 338.647 67 466.895 59 338.716 67 470.177 59 338.753 67 481.813 5 341.553 60 539.438 61 341.578 60 539.438 61 341.698 60 543.824 61 341.698 60 544.046 61 341.720 60 60 671.01 89				
151.807 54 379.105 62 152.021 54 379.107 62 152.152 54 379.213 62 152.180 54 387.457 58 152.385 54 388.496 58 152.527 54 390.765 58 251.584 2 395.076 63 252.717 2 395.099 63 253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.437 59 338.554 67 466.936 59 338.623 67 466.936 59 338.685 67 470.130 59 338.716 67 470.177 59 338.753 67 481.813 5 338.754 67 57.438 61 341.578 60 539.438 61 341.578 60 539.438 61 341.674 60 539.438 61 341.698 60 544.046 61 341.720 60 544.046 61				
152.021 54 379.107 62 152.152 54 379.213 62 152.180 54 387.457 58 152.385 54 388.496 58 152.527 54 390.765 58 251.584 2 395.076 63 252.717 2 395.099 63 253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.437 59 338.623 67 466.936 59 338.647 67 466.936 59 338.716 67 470.130 59 338.753 67 481.813 5 338.784 67 537.438 61 341.578 60 539.377 61 341.578 60 539.438 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
152.152 54 379.213 62 152.180 54 387.457 58 152.385 54 388.496 58 152.527 54 390.765 58 251.584 2 395.076 63 252.717 2 395.099 63 253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.437 59 338.554 67 466.895 59 338.623 67 466.936 59 338.647 67 470.130 59 338.716 67 470.177 59 338.753 67 481.813 5 338.784 67 537.438 61 341.578 60 539.438 61 341.578 60 539.438 61 341.674 60 539.657 61 341.698 60 544.046 61 341.720 60 544.046 61 341.785 60 671.01 89				
152.180 54 387.457 58 152.385 54 388.496 58 152.527 54 390.765 58 251.584 2 395.076 63 252.717 2 395.099 63 253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.437 59 338.554 67 466.895 59 338.623 67 466.936 59 338.685 67 470.130 59 338.716 67 470.177 59 338.753 67 481.813 5 338.784 67 537.438 61 341.578 60 539.438 61 341.578 60 539.438 61 341.698 60 544.046 61 341.720 60 544.046 61 341.785 60 671.01 89				
152.385 54 388.496 58 152.527 54 390.765 58 251.584 2 395.076 63 252.717 2 395.099 63 253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.437 59 338.554 67 466.895 59 338.623 67 466.936 59 338.685 67 470.130 59 338.716 67 470.177 59 338.753 67 470.219 59 338.784 67 481.813 5 341.553 60 539.377 61 341.578 60 539.438 61 341.674 60 539.438 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
152.527 54 390.765 58 251.584 2 395.076 63 252.717 2 395.099 63 253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.437 59 338.554 67 466.895 59 338.623 67 466.936 59 338.685 67 470.130 59 338.716 67 470.177 59 338.753 67 481.813 5 338.784 67 537.438 61 341.578 60 539.377 61 341.578 60 539.438 61 341.698 60 534.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
251.584 2 395.076 63 252.717 2 395.099 63 253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.437 59 338.554 67 466.895 59 338.623 67 466.936 59 338.647 67 470.130 59 338.685 67 470.177 59 338.716 67 470.219 59 338.753 67 481.813 5 338.784 67 537.438 61 341.578 60 539.377 61 341.578 60 539.438 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
252.717 2 395.099 63 253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.437 59 338.554 67 466.895 59 338.623 67 466.936 59 338.685 67 470.130 59 338.716 67 470.177 59 338.753 67 481.813 5 338.784 67 537.438 61 341.573 60 539.377 61 341.578 60 539.438 61 341.674 60 539.438 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
253.190 2 395.219 63 264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.437 59 338.554 67 466.895 59 338.623 67 466.936 59 338.685 67 470.130 59 338.716 67 470.177 59 338.753 67 481.813 5 338.784 67 537.438 61 341.553 60 539.377 61 341.578 60 539.438 61 341.674 60 539.438 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
264.451 52 401.764 3 276.582 4 404.390 3 312.302 6 465.437 59 338.554 67 466.895 59 338.623 67 466.936 59 338.647 67 470.130 59 338.716 67 470.219 59 338.753 67 481.813 5 338.784 67 537.438 61 341.553 60 539.377 61 341.578 60 539.438 61 341.674 60 539.657 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
276.582 4 404.390 3 312.302 6 465.437 59 338.554 67 466.895 59 338.623 67 466.936 59 338.647 67 470.130 59 338.685 67 470.177 59 338.716 67 470.219 59 338.753 67 481.813 5 338.784 67 537.438 61 341.553 60 539.377 61 341.578 60 539.438 61 341.674 60 539.657 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
312.302 6 465.437 59 338.554 67 466.895 59 338.623 67 466.936 59 338.647 67 470.130 59 338.685 67 470.177 59 338.716 67 470.219 59 338.784 67 481.813 5 338.784 67 537.438 61 341.553 60 539.377 61 341.578 60 539.438 61 341.674 60 539.657 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
338.554 67 466.895 59 338.623 67 466.936 59 338.647 67 470.130 59 338.685 67 470.177 59 338.716 67 470.219 59 338.753 67 481.813 5 338.784 67 537.438 61 341.553 60 539.377 61 341.578 60 539.438 61 341.674 60 539.657 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
338.623 67 466.936 59 338.647 67 470.130 59 338.685 67 470.177 59 338.716 67 470.219 59 338.753 67 481.813 5 338.784 67 537.438 61 341.553 60 539.377 61 341.578 60 539.438 61 341.674 60 539.657 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
338.647 67 470.130 59 338.685 67 470.177 59 338.716 67 470.219 59 338.753 67 481.813 5 338.784 67 537.438 61 341.553 60 539.377 61 341.578 60 539.438 61 341.674 60 539.657 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
338.685 67 470.177 59 338.716 67 470.219 59 338.753 67 481.813 5 338.784 67 537.438 61 341.553 60 539.377 61 341.578 60 539.438 61 341.674 60 539.657 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
338.716 67 470.219 59 338.753 67 481.813 5 338.784 67 537.438 61 341.553 60 539.377 61 341.578 60 539.438 61 341.674 60 539.657 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
338.753 67 481.813 5 338.784 67 537.438 61 341.553 60 539.377 61 341.578 60 539.438 61 341.674 60 539.657 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
338.784 67 537.438 61 341.553 60 539.377 61 341.578 60 539.438 61 341.674 60 539.657 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
341.553 60 539.377 61 341.578 60 539.438 61 341.674 60 539.657 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
341.578 60 539.438 61 341.674 60 539.657 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
341.674 60 539.657 61 341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
341.698 60 543.824 61 341.720 60 544.046 61 341.785 60 671.01 89				
341.720 60 544.046 61 341.785 60 671.01 89			543.824	
341.785 60 671.01 89				
541.807 60 671.28 89	341.807	60	671.28	89
345.000 68 671.55 89	345.000	68	671.55	89

TABLE 55. Wavelength finding list for allowed lines for Mg V—Continued

TABLE 55. Wavelength finding list for allowed lines for Mg V—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
672.72	89	1 994.0	77
672.99	89		
707.06	83	Wavelength	Mult.
714.61	83	(air) (Å)	No.
718.15	83		
844.81	71	2 054.6	77
845.54	71	2 084.1	77
847.36	71	2 289.1	69
848.10	71	2 314.8	69
848.64	71	2 325.8	69
849.96	71	2 348.1	69
850.49	71	2 409.7	69
967.02	82	2 433.5	69
977.03	81	2 507.5	70
979.23	81	2 535.1	70
981.20	82	2 551.7	70
987.89	82	2 610.4	70
991.51	81	2 635.0	70
993.78	81	2 652.9	70
1 000.64	81	3 074.1	94
1 158.33	80	3 096.0	94
1 178.74	80	3 135.5	74
1 183.57	85	3 204.8	74
1 188.41	80	3 341.1	84
1 289.47	79	3 352.6	84
1 295.82	79	3 360.9	84
1 314.82	79	3 366.1	74
1 321.42	79	4 251.4	92
1 326.86	79	4 264.8	92
1 360.88	78	4 283.7	92
1 361.51	78	4 452.1	91
1 362.58	78	4 466.8	91
1 389.14	78	4 487.5	91
1 389.80	78	4 498.2	91
1 402.58	78	4 513.2	91
1 403.63	64	4 545.0	76
1 416.69	64	4 552.9	76 75
1 417.35	64	4 614.4	75 75
1 444.40	64	4 616.8	75 75
1 447.35	64	4 622.8	75
1 448.04	64	4 885.5	76 75
1 530.20	65	4 956.5	75 75
1 534.94	65	4 959.2	75 76
1 546.53	65	5 056.0	76 75
1 550.84	65	5 132.0	75
1 570.99	65	14 959	86
1 583.13	65	15 090	86
1 584.31	66	15 193 15 220	86
1 601.82	66	15 329	86
1 625.09	93	15 409	86
1 627.05	93	15 504	86
1 629.78	93	15 536	90
1 641.12	66	15 587	86
1 740.04	88	15 717	90

TABLE 55. Wavelength finding list for allowed lines for Mg V—Continued

TABLE 55. Wavelength finding list for allowed lines for Mg V—Continued

Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.
2 902	87	2 419	87
2 799	87	2 345	87
2 725	87		

Table 56. Transition probabilities of allowed lines for Mg V (references for this table are as follows: 1=Butler and Zeippen, 14 2=Tachiev and Froese Fischer, 100 3=Tachiev and Froese Fischer, 101 4=Vilkas et al., 119 and 5=Bogdanovich et al., 9

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
1	$2s^22p^4 - 2s2p^5$	$^{3}P - ^{3}P^{\circ}$		353.16	875–284 029	9_9	8.16+01	1.53-01	1.60+00	0.139	B+	2,4
				353.092	0.0-283 212.3	5–5	6.12+01	1.14-01	6.65-01	-0.244	B+	2,4
				353.300	1 783.1-284 828.3	3-3	2.04+01	3.81-02	1.33-01	-0.942	B +	2,4
				351.089	0.0-284 828.3	5-3	3.46 + 01	3.84-02	2.22-01	-0.717	$\mathrm{B} +$	2,4
				352.201	1 783.1-285 712.0	3-1	8.23 + 01	5.10-02	1.77-01	-0.815	$\mathrm{B} +$	2,4
				355.329	1 783.1-283 212.3	3-5	2.00+01	6.31-02	2.22-01	-0.723	B +	2,4
				354.225	2 521.8–284 828.3	1–3	2.69+01	1.52-01	1.77-01	-0.818	B+	2,4
2		${}^{3}P - {}^{1}P^{\circ}$										
				252.717	1 783.1–397 482	3-3	5.93 - 03	5.67-06	1.42 - 05	-4.769	D	2,4
				251.584	0.0-397 482	5-3	3.08 - 01	1.75 - 04	7.26 - 04	-3.058	C	2,4
				253.190	2 521.8–397 482	1–3	1.15-02	3.32-05	2.77 - 05	-4.479	D+	2,4
3		$^{1}D-^{3}P^{\circ}$										
				401.764	35 926–284 828.3	5–3	2.65 - 03	3.85 - 06	2.54 - 05	-4.716	D	2,4
				404.390	35 926–283 212.3	5–5	4.01 - 02	9.83-05	6.54 - 04	-3.308	C	2,4
4		$^{1}D-^{1}P^{\circ}$		276.582	35 926–397 482	5–3	3.12+02	2.15-01	9.79-01	0.031	B+	2,4
5		$^{1}S - ^{3}P^{\circ}$										
				481.813	77 279–284 828.3	1–3	5.79-03	6.04-05	9.59-05	-4.219	D+	2,4
6		$^{1}S-^{1}P^{\circ}$		312.302	77 279–397 482	1–3	1.89+01	8.27-02	8.50-02	-1.082	B+	2,4
7	$2p^4 - 2p^3(^4S^{\circ})3s$	$^{3}P-^{3}S^{\circ}$		146.27	875–684 541	9–3	5.19+02	5.55-02	2.40-01	-0.301	C+	2,5
				146.083	0.0-684 541	5–3	2.92+02	5.60-02	1.35-01	-0.553	C+	2,5
				146.465	1 783.1-684 541	3-3	1.70+02	5.48 - 02	7.93 - 02	-0.784	C+	2,5
				146.623	2 521.8–684 541	1–3	5.65 + 01	5.47-02	2.64-02	-1.262	C	2,5
8	$2p^4 - 2p^3(^2D^{\circ})3s$	$^{3}P-^{3}D^{\circ}$		137.57	875–727 757	9–15	1.63+02	7.71-02	3.14-01	-0.159	C+	2,5
				137.411	0.0–727 742	5–7	1.63+02	6.48-02	1.47-01	-0.489	C+	2,5
				137.745	1 783.1-727 763	3-5	1.15 + 02	5.45 - 02	7.41 - 02	-0.786	C+	2,5
				137.882	2 521.8-727 782	1-3	8.46 + 01	7.23 - 02	3.28 - 02	-1.141	C	2,5
				137.407	0.0-727 763	5-5	4.79 + 01	1.36 - 02	3.07 - 02	-1.167	C	2,5
				137.741	1 783.1-727 782	3-3	7.21 + 01	2.05 - 02	2.79 - 02	-1.211	C	2,5
				137.404	0.0–727 782	5–3	5.68+00	9.65-04	2.18 - 03	-2.317	D+	2,5
9		$^{1}D-^{1}D^{\circ}$		142.935	35 926–735 546	5–5	4.20+02	1.29-01	3.02-01	-0.190	C+	2,5
10	$2p^4 - 2p^3(^2P^{\circ})3s$	$^{3}P-^{3}P^{\circ}$		132.32	875–756 605	9_9	1.66+02	4.37-02	1.71-01	-0.405	C	2,5
				132.163	0.0-756 641	5-5	1.17+02	3.05-02	6.64-02	-0.817	C+	2,5
				132.488	1 783.1–756 566	3-3	3.98 + 01	1.05 - 02	1.37 - 02	-1.502	C	2,5
				132.176	0.0-756 566	5-3	6.38+01	1.00 - 02	2.18 - 02	-1.301	C	2,5
				132.492	1 783.1–756 545	3-1	1.66+02	1.45 - 02	1.90 - 02	-1.362	C	2,5
				132.475	1 783.1–756 641	3-5	4.98+01	2.18-02	2.86 - 02	-1.184	C	2,5
				132.618	2 521.8–756 566	1–3	6.30+01	4.98-02	2.17-02	-1.303	C	2,5
11		$^{1}D-^{3}P^{\circ}$										

Table 56. Transition probabilities of allowed lines for Mg V (references for this table are as follows: 1=Butler and Zeippen, ¹⁴ 2=Tachiev and Froese Fischer, ¹⁰⁰ 3=Tachiev and Froese Fischer, ¹⁰¹ 4=Vilkas *et al.*, ¹¹⁹ and 5=Bogdanovich *et al.* ⁹)—Continued

566 5-3 641 5-5 628 5-3 628 1-3 022 9-15 066 5-7 989 3-5 974 1-3 989 5-5 974 3-3 974 5-3 298 9-15	2.48+00 2.03+02 1.92+02 7.33+02 7.41+02 5.40+02 3.99+02 1.87+02 3.03+02	7.15-04 3.44-02 1.83-01 2.72-01 2.30-01 2.01-01 2.67-01 4.16-02 6.75-02 2.71-03	2.42-01 1.07-01 8.33-02 8.13-02 5.43-03	-2.447 -0.764 -0.738 0.389 0.061 -0.220 -0.573 -0.682 -0.694	D C+ C+ C+ B C+ C+ C+	2 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,
628 5-3 628 1-3 022 9-15 066 5-7 989 3-5 974 1-3 989 5-5 974 3-3 974 5-3 298 9-15 216 5-7	2.03+02 1.92+02 7.33+02 7.41+02 5.40+02 3.99+02 1.87+02 3.03+02 2.04+01	3.44-02 1.83-01 2.72-01 2.30-01 2.01-01 2.67-01 4.16-02 6.75-02 2.71-03	7.76-02 8.76-02 9.80-01 4.61-01 2.42-01 1.07-01 8.33-02 8.13-02 5.43-03	-0.764 -0.738 0.389 0.061 -0.220 -0.573 -0.682 -0.694	C+ C+ C+ B C+ C+ C+	2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5
628 1–3 022 9–15 066 5–7 989 3–5 974 1–3 989 5–5 974 3–3 974 5–3 298 9–15 216 5–7	1.92+02 7.33+02 7.41+02 5.40+02 3.99+02 1.87+02 3.03+02 2.04+01	1.83-01 2.72-01 2.30-01 2.01-01 2.67-01 4.16-02 6.75-02 2.71-03	8.76-02 9.80-01 4.61-01 2.42-01 1.07-01 8.33-02 8.13-02 5.43-03	-0.738 0.389 0.061 -0.220 -0.573 -0.682 -0.694	C+ C+ B C+ C+ C+ C+	2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5
022 9–15 066 5–7 989 3–5 974 1–3 989 5–5 974 3–3 974 5–3 298 9–15 216 5–7	7.33+02 7.41+02 5.40+02 3.99+02 1.87+02 3.03+02 2.04+01	2.72-01 2.30-01 2.01-01 2.67-01 4.16-02 6.75-02 2.71-03	9.80-01 4.61-01 2.42-01 1.07-01 8.33-02 8.13-02 5.43-03	0.389 0.061 -0.220 -0.573 -0.682 -0.694	C+ B C+ C+ C+ C+	2,5 2,5 2,5 2,5 2,5 2,5 2,5
066 5–7 989 3–5 974 1–3 989 5–5 974 3–3 974 5–3 298 9–15 216 5–7	7.41+02 5.40+02 3.99+02 1.87+02 3.03+02 2.04+01	2.30-01 2.01-01 2.67-01 4.16-02 6.75-02 2.71-03	4.61-01 2.42-01 1.07-01 8.33-02 8.13-02 5.43-03	0.061 -0.220 -0.573 -0.682 -0.694	B C+ C+ C+ C+	2,5 2,5 2,5 2,5 2,5
989 3–5 974 1–3 989 5–5 974 3–3 974 5–3 298 9–15 216 5–7	5.40+02 3.99+02 1.87+02 3.03+02 2.04+01	2.01-01 2.67-01 4.16-02 6.75-02 2.71-03	2.42-01 1.07-01 8.33-02 8.13-02 5.43-03	-0.220 -0.573 -0.682 -0.694	C+ C+ C+	2,5 2,5 2,5 2,5
989 3–5 974 1–3 989 5–5 974 3–3 974 5–3 298 9–15 216 5–7	5.40+02 3.99+02 1.87+02 3.03+02 2.04+01	2.01-01 2.67-01 4.16-02 6.75-02 2.71-03	2.42-01 1.07-01 8.33-02 8.13-02 5.43-03	-0.220 -0.573 -0.682 -0.694	C+ C+ C+	2,5 2,5 2,5 2,5
974 1–3 989 5–5 974 3–3 974 5–3 298 9–15 216 5–7	3.99+02 1.87+02 3.03+02 2.04+01	2.67-01 4.16-02 6.75-02 2.71-03	1.07-01 8.33-02 8.13-02 5.43-03	-0.573 -0.682 -0.694	C+ C+ C+	2,5 2,5 2,5
989 5–5 974 3–3 974 5–3 298 9–15 216 5–7	1.87+02 3.03+02 2.04+01	4.16-02 6.75-02 2.71-03	8.33-02 8.13-02 5.43-03	-0.682 -0.694	C+	2,5 2,5
974 3–3 974 5–3 298 9–15 216 5–7	3.03+02 2.04+01	6.75-02 2.71-03	8.13-02 5.43-03	-0.694	C+	2,5
974 5–3 298 9–15 216 5–7	2.04+01	2.71-03	5.43-03			
216 5–7	7.51+02	2.48 01				
216 5–7		4.40 TUI	8.44 - 01	0.349	$C\pm$	2,5
	7.01 + 02	2.19-01		0.039		2,5
						2,5
						2,5
						2,5
						2,5
390 5–3	1.40+01	1.66-03	3.13-03	-2.081	С	2,5
456 3–3	2.02+01	3.99 - 03	4.52 - 03	-1.922	D	2,5
456 5–3	1.41 + 01	1.66-03	3.14 - 03	-2.081	D	2,5
456 1–3	1.66+00	9.87-04	3.73 - 04	-3.006	E	2
032 9–9	1.43+03	2.79-01	9.44-01	0.400	C+	2,5
795 5–5	1.13+03	2.21-01	4.15-01	0.043	В	2,5
283 3–3	2.88 + 02	5.63-02	6.35 - 02	-0.772	C+	2,5
283 5–3	7.00+02	8.19-02	1.54 - 01	-0.388	В	2,5
463 3–1	1.36+03	8.83-02	9.96-02	-0.577	$C\pm$	2,5
						2,5
283 1–3						2,5
611 3.5	2.60±00	8 45 - 04	0.53_04	_2 506	Ε±	2,5
						2,5
						2,5
						2,5
						2,5
515 1–3	2.00+02	1.17-01	4.38-02	-0.932	В	2,5
791 5–7	6.34+00	1.71 - 03	3.18-03	-2.068	D	2,5
357 5–5	3.72-01	7.99-05	1.57-04	-3.398	E+	2,5
						2,5
216 5–7						2,3
456 5–3	7.54+02	9.66-02	1.90-01	-0.316	C+	2,5
283 5 2	1.42 + 01	1.91 .02	3.54 02	_2 042	D	2.5
						2,5
140 2-5	5.05+00	1.19-03	2.34-03	-2.225	ט	2,5
	456 5-3 456 1-3 032 9-9 795 5-5 283 3-3 283 5-3 463 3-1 795 3-5 283 1-3 611 3-5 611 5-5 515 9-3 515 5-3 515 1-3 791 5-7 357 5-5 390 5-3 216 5-7	390 1-3 4.02+02 357 5-5 1.65+02 390 3-3 2.69+02 390 5-3 1.40+01 456 3-3 2.02+01 456 5-3 1.41+01 456 1-3 1.66+00 032 9-9 1.43+03 795 5-5 1.13+03 283 3-3 2.88+02 283 5-3 7.00+02 463 3-1 1.36+03 795 3-5 3.37+02 283 1-3 3.95+02 611 3-5 2.60+00 611 5-5 1.15+01 515 9-3 1.50+03 515 5-3 7.55+02 515 3-3 5.49+02 515 1-3 2.00+02 791 5-7 6.34+00 357 5-3 5.37+00 216 5-7 1.51-01 456 5-3 7.5	390 1-3 4.02+02 2.39-01 357 5-5 1.65+02 3.25-02 390 3-3 2.69+02 5.34-02 390 5-3 1.40+01 1.66-03 456 3-3 2.02+01 3.99-03 456 5-3 1.41+01 1.66-03 456 1-3 1.66+00 9.87-04 032 9-9 1.43+03 2.79-01 795 5-5 1.13+03 2.21-01 283 3-3 2.88+02 5.63-02 283 5-3 7.00+02 8.19-02 463 3-1 1.36+03 8.83-02 795 3-5 3.37+02 1.10-01 283 1-3 3.95+02 2.32-01 611 3-5 2.60+00 8.45-04 611 5-5 1.15+01 2.23-03 515 5-3 7.55+02 8.78-02 515 3-3 5.49+02 1.07-01 515 1-3<	390 1-3 4.02+02 2.39-01 9.07-02 357 5-5 1.65+02 3.25-02 6.14-02 390 3-3 2.69+02 5.34-02 6.06-02 390 5-3 1.40+01 1.66-03 3.13-03 456 3-3 2.02+01 3.99-03 4.52-03 456 5-3 1.41+01 1.66-03 3.14-03 456 1-3 1.66+00 9.87-04 3.73-04 032 9-9 1.43+03 2.79-01 9.44-01 795 5-5 1.13+03 2.21-01 4.15-01 283 3-3 2.88+02 5.63-02 6.35-02 283 5-3 7.00+02 8.19-02 1.54-01 463 3-1 1.36+03 8.83-02 9.96-02 795 3-5 3.37+02 1.10-01 1.24-01 283 1-3 3.95+02 2.32-01 8.73-02 611 3-5 2.60+00 8.45-04 9.53-04 611 5-5 1.50+03 9.74-02 3.28-01 <td< td=""><td>390 1-3 4.02+02 2.39-01 9.07-02 -0.622 357 5-5 1.65+02 3.25-02 6.14-02 -0.789 390 3-3 2.69+02 5.34-02 6.06-02 -0.795 390 5-3 1.40+01 1.66-03 3.13-03 -2.081 456 3-3 2.02+01 3.99-03 4.52-03 -1.922 456 5-3 1.41+01 1.66-03 3.14-03 -2.081 456 1-3 1.66+00 9.87-04 3.73-04 -3.006 032 9-9 1.43+03 2.79-01 9.44-01 0.400 795 5-5 1.13+03 2.21-01 4.15-01 0.043 283 3-3 2.88+02 5.63-02 6.35-02 -0.772 283 5-3 7.00+02 8.19-02 1.54-01 -0.388 463 3-1 1.36+03 8.83-02 9.96-02 -0.577 795 3-5 3.37+02 1.10-01 1.24-01 -0.481 283 1-3 1.50+03 9.74-02 3.28-01<!--</td--><td>390 1-3 4.02+02 2.39-01 9.07-02 -0.622 C+ 357 5-5 1.65+02 3.25-02 6.14-02 -0.789 C+ 390 3-3 2.69+02 5.34-02 6.06-02 -0.795 C+ 390 5-3 1.40+01 1.66-03 3.13-03 -2.081 C 456 3-3 2.02+01 3.99-03 4.52-03 -1.922 D 456 5-3 1.41+01 1.66-03 3.14-03 -2.081 D 456 1-3 1.66+00 9.87-04 3.73-04 -3.006 E 032 9-9 1.43+03 2.79-01 9.44-01 0.400 C+ 795 5-5 1.13+03 2.21-01 4.15-01 0.043 B 283 3-3 2.88+02 5.63-02 6.35-02 -0.772 C+ 283 5-3 7.00+02 8.19-02 1.54-01 -0.388 B 463 3-1 1.36+03 8.83-02 9.96-02 -0.577 C+ 795 3-5</td></td></td<>	390 1-3 4.02+02 2.39-01 9.07-02 -0.622 357 5-5 1.65+02 3.25-02 6.14-02 -0.789 390 3-3 2.69+02 5.34-02 6.06-02 -0.795 390 5-3 1.40+01 1.66-03 3.13-03 -2.081 456 3-3 2.02+01 3.99-03 4.52-03 -1.922 456 5-3 1.41+01 1.66-03 3.14-03 -2.081 456 1-3 1.66+00 9.87-04 3.73-04 -3.006 032 9-9 1.43+03 2.79-01 9.44-01 0.400 795 5-5 1.13+03 2.21-01 4.15-01 0.043 283 3-3 2.88+02 5.63-02 6.35-02 -0.772 283 5-3 7.00+02 8.19-02 1.54-01 -0.388 463 3-1 1.36+03 8.83-02 9.96-02 -0.577 795 3-5 3.37+02 1.10-01 1.24-01 -0.481 283 1-3 1.50+03 9.74-02 3.28-01 </td <td>390 1-3 4.02+02 2.39-01 9.07-02 -0.622 C+ 357 5-5 1.65+02 3.25-02 6.14-02 -0.789 C+ 390 3-3 2.69+02 5.34-02 6.06-02 -0.795 C+ 390 5-3 1.40+01 1.66-03 3.13-03 -2.081 C 456 3-3 2.02+01 3.99-03 4.52-03 -1.922 D 456 5-3 1.41+01 1.66-03 3.14-03 -2.081 D 456 1-3 1.66+00 9.87-04 3.73-04 -3.006 E 032 9-9 1.43+03 2.79-01 9.44-01 0.400 C+ 795 5-5 1.13+03 2.21-01 4.15-01 0.043 B 283 3-3 2.88+02 5.63-02 6.35-02 -0.772 C+ 283 5-3 7.00+02 8.19-02 1.54-01 -0.388 B 463 3-1 1.36+03 8.83-02 9.96-02 -0.577 C+ 795 3-5</td>	390 1-3 4.02+02 2.39-01 9.07-02 -0.622 C+ 357 5-5 1.65+02 3.25-02 6.14-02 -0.789 C+ 390 3-3 2.69+02 5.34-02 6.06-02 -0.795 C+ 390 5-3 1.40+01 1.66-03 3.13-03 -2.081 C 456 3-3 2.02+01 3.99-03 4.52-03 -1.922 D 456 5-3 1.41+01 1.66-03 3.14-03 -2.081 D 456 1-3 1.66+00 9.87-04 3.73-04 -3.006 E 032 9-9 1.43+03 2.79-01 9.44-01 0.400 C+ 795 5-5 1.13+03 2.21-01 4.15-01 0.043 B 283 3-3 2.88+02 5.63-02 6.35-02 -0.772 C+ 283 5-3 7.00+02 8.19-02 1.54-01 -0.388 B 463 3-1 1.36+03 8.83-02 9.96-02 -0.577 C+ 795 3-5

Table 56. Transition probabilities of allowed lines for MgV (references for this table are as follows: 1=Butler and Zeippen, 14 2=Tachiev and Froese Fischer, 100 3=Tachiev and Froese Fischer, 101 4=Vilkas et al., 119 and 5=Bogdanovich et al., 9 —Continued

No.	array	Mult.	λ _{air} (Å)	$\lambda_{ m vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
24		$^{1}D-^{1}D^{\circ}$		118.809	35 926–877 611	5–5	9.01+02	1.91-01	3.73-01	-0.020	В	2,5
25		$^{1}D-^{1}F^{\circ}$		118.083	35 926–882 791	5–7	1.39+03	4.05-01	7.88-01	0.306	В	2,5
26		$^{1}S-^{1}P^{\circ}$		125.600	77 279–873 456	1–3	1.11+02	7.88-02	3.26-02	-1.103	C+	2,5
27	$2p^4 - 2p^3(^2P^{\circ})3d$	$^{3}P - ^{3}P^{\circ}$		111.32	875–899 165	9_9	2.77+02	5.14-02	1.70-01	-0.335	C+	2,5
				111.189	0.0-899 369	5–5	1.80+02	3.33-02	6.09-02	-0.779	C+	2,5
				111.460	1 783.1–898 962	3-3	1.06+02	1.98 - 02	2.18 - 02	-1.226	C+	2,5
				111.239	0.0-898 962	5–3	9.99+01	1.11 - 02	2.04 - 02	-1.256	C+	2,5
				111.486	1 783.1–898 757	3-1	3.69+02	2.29 - 02	2.52 - 02	-1.163	C+	2,5
				111.410	1 783.1–899 369	3–5			1.73 - 02			2,5
				111.552	2 521.8–898 962	1–3	1.17+02	6.55-02	2.40-02	-1.184	C+	2,5
28		$^{3}P-^{1}D^{\circ}$										
				111.149	1 783.1–901 474	3-5	2.60+02	8.02 - 02	8.81 - 02	-0.619	C	3,5
				110.929	0.0–901 474	5–5	5.96+01	1.10-02	2.01-02	-1.260	D+	3,5
29		$^{3}P-^{3}D^{\circ}$		110.92	875–902 394	9–15	5.53+02	1.70-01	5.59-01	0.185	C+	2,5
				110.846	0.0-902 152	5–7	6.06+02	1.56-01	2.85-01	-0.108	C+	2,5
				111.022	1 783.1-902 509	3-5	2.89 + 02	8.90-02	9.75-02	-0.573	C+	2,5
				111.081	2 521.8-902 766	1-3	4.23 + 02	2.35-01	8.58-02	-0.629	C+	2,5
				110.802	0.0-902 509	5-5	7.99 + 01	1.47 - 02	2.68 - 02	-1.134	C	2,5
				110.990	1 783.1-902 766	3-3	2.97 + 02	5.49-02	6.02 - 02	-0.783	C	2,5
				110.771	0.0–902 766	5–3	1.69+01	1.86-03	3.39-03	-2.032	D+	2,5
30		$^{1}D-^{1}D^{\circ}$		115.534	35 926–901 474	5–5	3.68+02	7.36-02	1.40-01	-0.434	C+	3,5
31		$^{1}D-^{3}D^{\circ}$										
				115.396	35 926-902 509	5-5	5.01 + 00	9.99-04	1.90-03	-2.301	E+	2
				115.362	35 926-902 766	5-3	5.16+02	6.18-02	1.17 - 01	-0.510	D+	2
				115.443	35 926–902 152	5–7	1.49-01	4.17-05	7.92-05	-3.681	E	2
32		$^{1}D-^{1}F^{\circ}$		115.016	35 926–905 370	5–7	9.91+02	2.75-01	5.21-01	0.138	В	2,5
33		$^{1}D-^{1}P^{\circ}$		113.821	35 926–914 500	5–3	6.53+01	7.61-03	1.43-02	-1.420	C	2,5
34		$^{1}S-^{1}P^{\circ}$		119.443	77 279–914 500	1–3	1.73+03	1.11+00	4.37-01	0.045	В	2,5
35	$2p^4 - 2p^3(^4S^{\circ})4s$	$^{3}P-^{3}S^{\circ}$		109.91	<i>875</i> –910 750	9–3	1.79+02	1.08-02	3.51-02	-1.012	D	1
				109.800	0.0-910 750	5–3	9.96+01	1.08-02	1.95-02	-1.268	D	LS
				110.015	1 783.1–910 750	3–3			1.17-02			LS
				110.104	2 521.8–910 750	1–3			3.88-03			LS
36	$2p^4 - 2p^3(^2D^{\circ})4s$	$^{3}P-^{3}D^{\circ}$		104.03	875–962 092	9–15	5.76+02	1.56-01	4.80-01	0.147	C	1
				103.942	0.0–962 075	5–7	5.78+02	1.31-01	2.24-01	-0.184	C	LS
				104.132	1 783.1-962 103	3-5	4.32+02	1.17-01	1.20-01	-0.455	C	LS
				104.211	2 521.8-962 114	1-3	3.17 + 02	1.55-01	5.32-02	-0.810	D+	LS
				103.939	0.0-962 103	5-5	1.44 + 02	2.33-02	3.99-02	-0.934	D+	LS
				104.131	1 783.1-962 114	3-3	2.39+02	3.88-02	3.99-02	-0.934	D+	LS
				103.938	0.0–962 114	5–3	1.61 + 01	1.56-03	2.67-03	-2.108	E	LS
37		$^{1}D-^{1}D^{\circ}$		107.653	35 926–964 836	5–5	1.39+02	2.42-02	4.29-02	-0.917	D+	1
38	$2p^4 - 2p^3(^4S^{\circ})4d$	$^{3}P-^{3}D^{\circ}$		104.00	875–962 425	9–15	5.77+02	1.56-01	4.80-01	0.147	C	1
				103.902	0.0–962 445	5–7	5.78+02	1.31-01	2.24-01	-0.184	C	LS
				104.099	1 783.1–962 407	3–5	4.32 ± 02	1.17 - 01	1.20 - 01	-0.455	C	LS

Table 56. Transition probabilities of allowed lines for MgV (references for this table are as follows: 1=Butler and Zeippen, ¹⁴ 2=Tachiev and Froese Fischer, ¹⁰⁰ 3=Tachiev and Froese Fischer, ¹⁰¹ 4=Vilkas *et al.*, ¹¹⁹ and 5=Bogdanovich *et al.* ⁹)—Continued

	Transition		λ_{air}	λ _{vac} (Å)	$E_i - E_k$		A_{ki}		S			
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	log gf	Acc.	Sourc
				103.906	0.0-962 407	5–5			4.00 - 02			LS
				104.099	1 783.1–962 407	3–3			4.00 - 02			LS
				103.906	0.0–962 407	5–3	1.61 + 01	1.56-03	2.67-03	-2.108	E	LS
39	$2p^4 - 2p^3(^2P^{\circ})4s$	$^{1}D-^{1}P^{\circ}$		104.447	35 926–993 349	5–3	8.01+01	7.86-03	1.35-02	-1.406	D	1
40		$^{1}S-^{1}P^{\circ}$		109.162	77 279–993 349	1–3	7.18+01	3.85-02	1.38-02	-1.415	D	1
41	$2p^4 - 2p^3(^2D^{\circ})4d$	$^{3}P-^{3}D^{\circ}$		98.72	875–1 013 877	9–15	1.60+02	3.90-02	1.14-01	-0.455	D	1
				98.635	0.0-1 013 839	5–7	1.61+02	3.28-02	5.33-02	-0.785	D+	LS
				98.803	1 783.1–1 013 897	3-5	1.20+02	2.92 - 02	2.85 - 02	-1.057	D	LS
				98.872	2 521.8-1 013 931	1-3	8.85 + 01	3.89 - 02	1.27 - 02	-1.410	E+	LS
				98.629	0.0-1 013 897	5-5	4.02 + 01	5.86-03	9.51-03	-1.533	E+	LS
				98.800	1 783.1-1 013 931	3-3	6.66+01	9.74-03	9.50-03	-1.534	E+	LS
				98.626	0.0-1 013 931	5–3	4.46+00	3.90-04	6.33-04	-2.710	E	LS
42		$^{3}P-^{3}P^{\circ}$				9_9						1
				98.269	0.0-1 017 620	5–5	2.07+02	2.99-02	4.84-02	-0.825	D+	LS
				98.404	1 783.1-1 018 000	3–3	6.86+01	9.96-03	9.68-03	-1.525	E+	LS
				98.232	0.0-1 018 000	5–3	1.15+02	9.98-03	1.61-02	-1.302	D	LS
				98.441	1 783.1-1 017 620	3–5			1.61-02			LS
				98.476	2 521.8–1 018 000	1–3			1.29-02			LS
43		$^{1}D-^{1}P^{\circ}$		102.073	35 926–1 015 615	5–3	3.86+02	3.62-02	6.08-02	-0.742	D+	1
44		$^{1}D-^{1}D^{\circ}$		101.781	35 926–1 018 430	5–5	6.34+02	9.85-02	1.65-01	-0.308	C	1
45		$^{1}D-^{1}F^{\circ}$		101.670	35 926–1 019 500	5–7	7.24+02	1.57-01	2.63-01	-0.105	C+	1
46	$2p^4 - 2p^3(^4S^{\circ})5d$?	$^{3}P-^{3}D^{\circ}$?		[97.5]	875–1 026 780	9–15	2.33+02	5.52-02	1.59-01	-0.304	D+	1
				97.392	0.0-1 026 780	5–7	2.33+02	4.64-02	7.44-02	-0.635	D+	LS
				97.561	1 783.1–1 026 780	3–5			3.99-02			LS
				97.632	2 521.8–1 026 780	1–3			1.77-02			LS
				97.392	0.0–1 026 780	5–5			1.33-02			LS
				97.561	1 783.1–1 026 780	3–3			1.33-02			LS
				97.392	0.0–1 026 780	5–3			8.87-04			LS
47	$2p^4 - 2p^3(^2P^{\circ})4d$?	$^{3}P - ^{3}P^{\circ}$?				9_9						1
				95.896	0.0-1 042 800	5–5	1.33+02	1.83-02	2.89-02	-1.039	D	LS
				96.081	1 783.1–1 042 570	3–3			5.77-03			LS
				95.917	0.0–1 042 570	5–3			9.62-03			LS
				96.060	1 783.1–1 042 800	3–5			9.58-03			LS
				96.149	2 521.8–1 042 570	1–3			7.69-03			LS
48		$^{3}P-^{3}D^{\circ}$?		[95.9]	875–1 043 860	9–15	3.27+02	7.52-02	2.14-01	-0.170	D+	1
				95.798	0.0-1 043 860	5–7	3.28+02	6.32-02	9.97-02	-0.500	С	LS
				95.962	1 783.1-1 043 860	3-5	2.45 + 02	5.64-02	5.35-02	-0.772	D+	LS
				96.030	2 521.8-1 043 860	1-3	1.81 + 02	7.51 - 02	2.37-02	-1.124	D	LS
				95.798	0.0-1 043 860	5–5			1.78-02			LS
				95.962	1 783.1-1 043 860	3–3			1.78-02			LS
				95.798	0.0–1 043 860	5–3			1.19-03			LS
49		$^{1}D-^{1}F^{\circ}$		[99.07]	35 926–1 045 350	5–7	4.36+02	8.99-02	1.47-01	-0.347	C	1
50	$2p^4 - 2p^3(^2D^{\circ})5d$?	$^{3}P - ^{3}P^{\circ}$?				9–9						1
				02.422	0.0 1.001.000	5 5	2 26 + 02	2.00 .02	4.41 02	_0.920	D±	16
				92.432	0.0–1 081 880	5–5			4.41-02			LS
				92.584	1 783.1–1 081 880	3–3	7.30+01	9.04-03	8.81-03	-1.339	E+	LS

Table 56. Transition probabilities of allowed lines for MgV (references for this table are as follows: 1=Butler and Zeippen, 14 2=Tachiev and Froese Fischer, 100 3=Tachiev and Froese Fischer, 101 4=Vilkas et al., 119 and 5=Bogdanovich et al., 9 —Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				92.432	0.0-1 081 880	5–3	1.26+02	9.66-03	1.47-02	-1.316	D	LS
				92.584	1 783.1–1 081 880	3-5	7.52+01	1.61 - 02	1.47 - 02	-1.316	D	LS
				92.648	2 521.8–1 081 880	1–3	9.97 + 01	3.85 - 02	1.17-02	-1.415	E+	LS
51		$^{1}D-^{1}F^{\circ}$		[95.55]	35 926–1 082 450	5–7	6.42+02	1.23-01	1.93-01	-0.211	C	1
52	$2s2p^5 - 2p^6$	$^{3}P^{\circ}-^{1}S$		264.451	284 828.3–662 970	3–1	6.58-02	2.30-05	6.01-05	-4.161	D	2,4
53		$^{1}P^{\circ}-^{1}S$		376.665	397 482–662 970	3–1	2.20+02	1.56-01	5.81-01	-0.330	B+	2,4
54	$2s2p^5 - 2s2p^4(^4P)3s$	$^{3}P^{\circ}-^{3}P$		152.17	284 029–941 190	9_9	2.94+02	1.02-01	4.60-01	-0.037	C	1
				152.152	283 212.3-940 449	5-5	2.20+02	7.65-02	1.92-01	-0.417	C	LS
				152.180	284 828.3-941 944	3-3	7.34 + 01	2.55-02	3.83 - 02	-1.116	D+	LS
				151.807	283 212.3-941 944	5–3	1.23 + 02	2.56-02	6.40-02	-0.893	D+	LS
				152.021	284 828.3-942 634	3-1	2.94+02	3.40-02	5.10-02	-0.991	D+	LS
				152.527	284 828.3-940 449	3–5			6.39-02			LS
				152.385	285 712.0–941 944	1–3			5.12-02			LS
55	$2s2p^5 - 2s2p^4(^2D)3s$	$^{3}P^{\circ}-^{3}D$		135.79	284 029–1 020 452	9–15	1.68+02	7.74-02	3.11-01	-0.157	D+	1
				135.628	283 212.3–1 020 522	5–7	1.69+02	6.51-02	1.45-01	-0.487	С	LS
				135.945	284 828.3-1 020 419	3-5	1.26+02	5.80-02	7.79-02	-0.759	D+	LS
				136.122	285 712.0-1 020 345	1–3	9.26+01	7.72-02	3.46-02	-1.112	D	LS
				135.647	283 212.3-1 020 419	5–5			2.59-02			LS
				135.959	284 828.3–1 020 345	3–3			2.59-02			LS
				135.661	283 212.3–1 020 345	5–3			1.73-03			LS
56	$2s2p^5 - 2s2p^4(^4P)3d$?	$^{3}P^{\circ}-^{3}D$?		[126.4]	284 029–1 075 090	9–15	1.10+03	4.38-01	1.64+00	0.596	C+	1
				126.282	283 212.3–1 075 090	5–7	1.10+03	3.68-01	7.65-01	0.265	В	LS
				126.540	284 828.3–1 075 090	3–5	8.20 + 02	3.28 - 01	4.10 - 01	-0.007	C+	LS
				126.682	285 712.0-1 075 090	1-3	6.05 + 02	4.37 - 01	1.82 - 01	-0.360	C	LS
				126.282	283 212.3-1 075 090	5-5	2.75 + 02	6.57 - 02	1.37 - 01	-0.483	C	LS
				126.540	284 828.3-1 075 090	3-3	4.54 + 02	1.09 - 01	1.36 - 01	-0.485	C	LS
				126.282	283 212.3–1 075 090	5–3	3.05+01	4.38-03	9.10-03	-1.660	E+	LS
57	$2s2p^5 - 2s2p^4(^2D)3d$	$^{3}P^{\circ}-^{3}D$		113.31	284 029–1 166 574	9–15	3.37+02	1.08-01	3.63-01	-0.012	C	1
				[113.21]	283 212.3–1 166 530	5–7	3.38+02	9.08-02	1.69-01	-0.343	C	LS
				[113.41]	284 828.3-1 166 590	3-5	2.52 + 02	8.09-02	9.06-02	-0.615	C	LS
				[113.52]	285 712.0-1 166 650	1-3	1.86 + 02	1.08 - 01	4.04-02	-0.967	D+	LS
				[113.20]	283 212.3-1 166 590	5-5	8.43 + 01	1.62-02	3.02 - 02	-1.092	D	LS
				[113.40]	284 828.3-1 166 650	3-3	1.40 + 02	2.70-02	3.02-02	-1.092	D	LS
				[113.19]	283 212.3-1 166 650	5–3			2.01-03			LS
58	$2s^{2}2p^{3}(^{4}S^{\circ})3s - 2s2p^{4}(^{4}P)3s$	$^{3}\text{S}^{\circ}$ – ^{3}P		389.64	684 541–941 190	3–9	2.51+01	1.72-01	6.61-01	-0.287	C+	1
				390.765	684 541–940 449	3–5	2.49+01	9.51-02	3.67-01	-0.545	C+	LS
				388.496	684 541–941 944	3–3	2.54+01	5.74 - 02	2.20-01	-0.764	C	LS
				387.457	684 541–942 634	3–1	2.56+01	1.92-02	7.35 - 02	-1.240	D+	LS
59	$2s^22p^3(^2D^{\circ})3s - 2s2p^4(^4P)3s$	$^{3}D^{\circ}-^{3}P$		468.53	727 757–941 190	15–9	3.70+00	7.30-03	1.69-01	-0.961	D+	1
	- '			470.130	727 742–940 449	7–5	3.08+00	7.28-03	7.89-02	-1.293	D+	LS
				466.895	727 763–941 944	5–3			4.22-02			LS
				465.437	727 782–942 634	3–1			1.88-02			LS
				470.177	727 763–940 449	5–5			1.41-02			LS
				466.936	727 782–941 944	3–3			1.41-02			LS
				470.219	727 782–940 449	3–5			9.38-04			LS
				170.217	121 102 740 447	5 5	5.00 -02	2.02 -04	7.50 ° 0 1	5.210		20

Table 56. Transition probabilities of allowed lines for MgV (references for this table are as follows: 1=Butler and Zeippen, ¹⁴ 2=Tachiev and Froese Fischer, ¹⁰⁰ 3=Tachiev and Froese Fischer, ¹⁰¹ 4=Vilkas *et al.*, ¹¹⁹ and 5=Bogdanovich *et al.* ⁹)—Continued

	Transition		λ_{air}	λ_{vac} (Å)	$E_i - E_k$		A_{ki}		S			
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	log gf	Acc.	Sour
50	$2s^22p^3(^2D^{\circ})3s - 2s2p^4(^2D)3s$	$^{3}D^{\circ}-^{3}D$		341.65	727 757–1 020 452	15–15	5.79+01	1.01-01	1.71+00	0.180	C+	1
				341.553	727 742–1 020 522	7–7	5.15+01	9.00-02	7.08 - 01	-0.201	В	LS
				341.698	727 763-1 020 419	5-5	4.02+01	7.04 - 02	3.96-01	-0.453	C+	LS
				341.807	727 782-1 020 345	3-3	4.33 + 01	7.59-02	2.56-01	-0.643	C+	LS
				341.674	727 742-1 020 419	7–5	9.04+00	1.13-02	8.90-02	-1.102	C	LS
				341.785	727 763-1 020 345	5-3	1.45 + 01	1.52-02	8.55-02	-1.119	C	LS
				341.578	727 763-1 020 522	5-7	6.45 + 00	1.58-02	8.88-02	-1.102	C	LS
				341.720	727 782–1 020 419	3–5	8.67 + 00	2.53 - 02	8.54-02	-1.120	C	LS
1	$2s^{2}2p^{3}(^{2}P^{\circ})3s - 2s2p^{4}(^{4}P)3s$	$^{3}P^{\circ}-^{3}P$		541.76	756 605–941 190	9_9	1.60+00	7.03-03	1.13-01	-1.199	D	1
				544.046	756 641–940 449	5-5	1.18+00	5.25-03	4.70-02	-1.581	D+	LS
				539.438	756 566-941 944	3-3	4.03 - 01	1.76-03	9.38-03	-2.277	E+	LS
				539.657	756 641-941 944	5-3	6.72-01	1.76-03	1.56-02	-2.056	D	LS
				537.438	756 566-942 634	3-1	1.64+00	2.36-03	1.25-02	-2.150	E+	LS
				543.824	756 566-940 449	3-5	3.95-01	2.92-03	1.57-02	-2.057	D	LS
				539.377	756 545–941 944	1–3	5.40-01	7.06-03	1.25 - 02	-2.151	E+	LS
52	$2s^22p^3(^2P^{\circ})3s - 2s2p^4(^2D)3s$	$^{3}P^{\circ}-^{3}D$		379.01	756 605–1 020 452	9–15	3.49+00	1.25-02	1.41-01	-0.949	D	1
				378.959	756 641–1 020 522	5–7	3 48+00	1.05-02	6.55-02	-1.280	D+	LS
				378.999	756 566–1 020 419	3–5			3.52-02			LS
				379.075	756 545–1 020 345	1–3			1.56-02			LS
				379.107	756 641–1 020 419	5–5			1.17-02			LS
				379.105	756 566–1 020 345	3–3			1.18-02			LS
				379.213	756 641–1 020 345	5–3			7.80-04			LS
3	$2s^22p^3(^4S^{\circ})3d - 2s2p^4(^4P)3d?$	$^{3}D^{\circ}-^{3}D$?		[395.1]	822 022–1 075 090	15–15	3.04+01	7.12-02	1.39+00	0.029	C+	1
				395.219	822 066–1 075 090	7–7	2.70+01	6.32-02	5.76-01	-0.354	В	LS
				395.099	821 989-1 075 090	5-5			3.22-01			LS
				395.076	821 974-1 075 090	3–3			2.08-01			LS
				395.219	822 066-1 075 090	7–5	4.73 + 00	7.92-03	7.21 - 02	-1.256	D+	LS
				395.099	821 989-1 075 090	5-3	7.62+00	1.07-02	6.96-02	-1.272	D+	LS
				395.099	821 989-1 075 090	5-7	3.39+00	1.11-02	7.22-02	-1.256	D+	LS
				395.076	821 974–1 075 090	3–5	4.56+00	1.78-02	6.95 - 02	-1.272	D+	LS
4	$2s^22p^3(^2D^{\circ})3d - 2s2p^4(^4P)3s$	$^{3}\text{D}^{\circ} - ^{3}\text{P}$		1 430.8	871 298–941 190	15–9	1.57-01	2.88-03	2.04-01	-1.365	D+	1
				1 444.40	871 216–940 449	7–5	1.28-01	2.86-03	9.52-02	-1.699	C	LS
				1 416.69	871 357-941 944	5-3	1.21-01	2.18-03	5.08-02	-1.963	D+	LS
				1 403.63	871 390-942 634	3-1	1.66-01	1.63-03	2.26-02	-2.311	D	LS
				1 447.35	871 357-940 449	5-5	2.27-02	7.13-04	1.70-02	-2.448	D	LS
				1 417.35	871 390-941 944	3-3	4.02 - 02	1.21-03	1.69-02	-2.440	D	LS
				1 448.04	871 390–940 449	3–5	1.51 - 03	7.91 - 05	1.13-03	-3.625	E	LS
5		$^{3}P^{\circ}-^{3}P$		1 558.6	877 032–941 190	9–9	2.34-01	8.54-03	3.94-01	-1.114	D+	1
				1 570.99	876 795–940 449	5–5	1.72-01	6.35-03	1.64-01	-1.498	C	LS
				1 546.53	877 283–941 944	3-3	6.00 - 02	2.15-03	3.28 - 02	-2.190	D	LS
				1 534.94	876 795–941 944	5-3	1.02 - 01	2.17-03	5.48 - 02	-1.965	D+	LS
				1 530.20	877 283–942 634	3-1	2.48 - 01	2.90-03	4.38 - 02	-2.060	D+	LS
				1 583.13	877 283–940 449	3-5	5.59-02	3.50 - 03	5.47 - 02	-1.979	D+	LS
				1 550.84	877 463-941 944	1-3	7.03_02	8.58-03	4 38 _ 02	_2.067	D^{\perp}	LS

Table 56. Transition probabilities of allowed lines for MgV (references for this table are as follows: 1=Butler and Zeippen, 14 2=Tachiev and Froese Fischer, 100 3=Tachiev and Froese Fischer, 101 4=Vilkas et al., 119 and 5=Bogdanovich et al., 9 —Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
66		$^{3}\text{S}^{\circ}$ – ^{3}P		1 621.4	879 515–941 190	3–9	7.80-02	9.22-03	1.48-01	-1.558	D+	1
				1 641.12	879 515-940 449	3-5	7.52-02	5.06-03	8.20-02	-1.819	D+	LS
				1 601.82	879 515-941 944	3-3	8.08 - 02	3.11-03	4.92-02	-2.030	D+	LS
				1 584.31	879 515–942 634	3–1	8.37-02	1.05-03	1.64-02	-2.502	D	LS
67	$2s^22p^3(^2D^{\circ})3d - 2s2p^4(^2D)3d$	$^{3}D^{\circ} - ^{3}D$		338.67	871 298–1 166 574	15–15	1.29+01	2.22-02	3.71-01	-0.478	D+	1
				[338.62]	871 216–1 166 530	7–7	1.15+01	1.97-02	1.54-01	-0.860	C	LS
				[338.72]	871 357-1 166 590	5-5	8.95+00	1.54 - 02	8.59 - 02	-1.114	C	LS
				[338.69]	871 390-1 166 650	3-3	9.71 + 00	1.67 - 02	5.59-02	-1.300	D+	LS
				[338.55]	871 216-1 166 590	7–5	2.01+00	2.47-03	1.93 - 02	-1.762	D	LS
				[338.65]	871 357-1 166 650	5-3	3.23+00	3.33-03	1.86 - 02	-1.779	D	LS
				[338.78]	871 357-1 166 530	5-7	1.44 + 00	3.46-03	1.93-02	-1.762	D	LS
				[338.75]	871 390–1 166 590	3–5	1.94+00	5.55-03	1.86-02	-1.779	D	LS
68		$^{3}P^{\circ}-^{3}D$		345.37	877 032–1 166 574	9–15	1.76+01	5.23-02	5.35-01	-0.327	C	1
				[345.14]	876 795–1 166 530	5–7	1.76+01	4.40-02	2.50-01	-0.658	C+	LS
				[345.65]	877 283-1 166 590	3-5	1.31 + 01	3.92-02	1.34-01	-0.930	C	LS
				[345.80]	877 463-1 166 650	1-3	9.71 + 00	5.22-02	5.94-02	-1.282	D+	LS
				[345.07]	876 795-1 166 590	5-5	4.40+00	7.85-03	4.46-02	-1.406	D+	LS
				[345.58]	877 283-1 166 650	3-3			4.47-02			LS
				[345.00]	876 795–1 166 650	5–3			2.98-03			LS
69	$2s^{2}2p^{3}(^{2}P^{\circ})3d - 2s2p^{4}(^{4}P)3s$	$^{3}P^{\circ} - ^{3}P$	2 379	2 380	899 165–941 1 90	9_9	1.14-02	9.68-04	6.83-02	-2.060	E+	1
			2 433.5	2 434.3	899 369–940 449	5–5	7.99-03	7.10-04	2.84-02	-2.450	D	LS
			2 325.8	2 326.6	898 962-941 944	3-3	3.06-03	2.48-04	5.70-03	-3.128	E+	LS
			2 348.1	2 348.8	899 369-941 944	5-3	4.94-03	2.45-04	9.47-03	-2.912	E+	LS
			2 289.1	2 289.8	898 962-942 634	3-1			7.58-03			LS
			2 409.7	2 410.4	898 962–940 449	3–5			9.47-03			LS
			2 314.8	2 315.5	898 757–941 944	1–3			7.58-03			LS
70		$^{3}\text{D}^{\circ}-^{3}\text{P}$	2 577	2 578	902 394–941 190	15–9	2.29-02	1.37-03	1.75-01	-1.687	D+	1
			2 610.4	2 611.2	902 152–940 449	7–5	1.85-02	1.35-03	8.12-02	-2.025	D+	LS
			2 535.1	2 535.8	902 509-941 944	5-3	1.82 - 02	1.05-03	4.38-02	-2.280	D+	LS
			2 507.5	2 508.3	902 766-942 634	3-1	2.49 - 02	7.83-04	1.94-02	-2.629	D	LS
			2 635.0	2 635.7	902 509-940 449	5-5	3.22-03	3.35-04	1.45-02	-2.776	D	LS
			2 551.7	2 552.5	902 766-941 944	3-3	5.91-03	5.77-04	1.45-02	-2.762	D	LS
			2 652.9	2 653.7	902 766–940 449	3–5	2.10-04	3.70-05	9.70-04	-3.955	E	LS
71	$2s^22p^3(^2P^{\circ})3d - 2s2p^4(^2D)3s$	$^{3}D^{\circ}-^{3}D$		847.0	902 394–1 020 452	15–15	1.78-01	1.92-03	8.02-02	-1.541	D	1
				844.81	902 152–1 020 522	7–7	1.60-01	1.71-03	3.33-02	-1.922	D	LS
				848.10	902 509-1 020 419	5-5	1.23 - 01	1.33 - 03	1.86 - 02	-2.177	D	LS
				850.49	902 766-1 020 345	3-3	1.32 - 01	1.43 - 03	1.20 - 02	-2.368	E+	LS
				845.54	902 152-1 020 419	7–5	2.80 - 02	2.14-04	4.17 - 03	-2.824	E+	LS
				848.64	902 509-1 020 345	5-3	4.43 - 02	2.87-04	4.01 - 03	-2.843	E	LS
				847.36	902 509-1 020 522	5–7	1.98 - 02	2.99-04	4.17-03	-2.825	E+	LS
				849.96	902 766–1 020 419	3–5	2.65 - 06	4.78-04	4.01-03	-2.843	E	LS
72	$2s^22p^3(^2P^{\circ})3d - 2s2p^4(^2D)3d$	$^{3}P^{\circ}-^{3}D$		373.96	899 165–1 166 574	9–15	2.98+00	1.04-02	1.15-01	-1.029	D	1
				[374.31]	899 369–1 166 530	5–7	2.97+00	8.73-03	5.38-02	-1.360	D+	LS
				[373.65]	898 962–1 166 590	3–5			2.88 - 02			LS
				[575.05]	070 702 1 100 370	5 5	2.2 11 00	7.00 03	2.00 02	1.051		20

TABLE 56. Transition probabilities of allowed lines for Mg V (references for this table are as follows: 1=Butler and Zeippen, ¹⁴ 2=Tachiev and Froese Fischer, ¹⁰⁰ 3=Tachiev and Froese Fischer, ¹⁰¹ 4=Vilkas *et al.*, ¹¹⁹ and 5=Bogdanovich *et al.* ⁹)—Continued

No	Transition	N // - 1 +	λ _{air}	$\lambda_{\text{vac}} (\mathring{A})$ or $\sigma (\text{cm}^{-1})^a$	$E_i - E_k$	a -	A_{ki} (10^8 s^{-1})	ſ	S	100 - 1	A	C ~
No.	array	Mult.	(Å)	or σ (cm ·)	(cm ⁻¹)	$g_i - g_k$	(10° s ·)	f_{ik}	(a.u.)	$\log gf$	Acc.	Sourc
				[373.28]	898 757–1 166 650	1–3			1.28 - 02			LS
				[374.22]	899 369–1 166 590	5–5			9.61 - 03			LS
				[373.57]	898 962–1 166 650	3–3			9.59-03			LS
				[374.14]	899 369–1 166 650	5–3	8.26-02	1.04-04	6.40-04	-3.284	Е	LS
73		$^{3}D^{\circ}-^{3}D$		378.53	902 394–1 166 574	15–15	4.66+00	1.00-02	1.87-01	-0.824	D	1
				[378.25]	902 152–1 166 530	7–7			7.76-02			LS
				[378.67]	902 509–1 166 590	5–5			4.34 - 02			LS
				[378.95]	902 766–1 166 650	3–3			2.81 - 02			LS
				[378.16]	902 152–1 166 590	7–5			9.76-03			LS
				[378.59]	902 509–1 166 650	5–3			9.35-03			LS
				[378.76]	902 509–1 166 530	5–7			9.73 - 03			LS
				[379.04]	902 766–1 166 590	3–5	6.96-01	2.50-03	9.36-03	-2.125	E+	LS
74	$2s^{2}2p^{3}(^{4}S^{\circ})4s - 2s2p^{4}(^{4}P)3s$	$^{3}\text{S}^{\circ} - ^{3}\text{P}$	3 284	3 285	910 750– <i>941 190</i>	3–9	2.85-02	1.38-02	4.48-01	-1.383	С	1
			3 366.1	3 367.1	910 750-940 449	3–5	2.64-02	7.48-03	2.49-01	-1.649	C+	LS
			3 204.8	3 205.7	910 750–941 944	3–3			1.49-01			LS
			3 135.5	3 136.4	910 750–942 634	3–1			4.99-02			LS
75	$2s2p^{4}(^{4}P)3s - 2s^{2}2p^{3}(^{2}D^{\circ})4s$	$^{3}P-^{3}D^{\circ}$	4 783	4 784	941 190–962 092	9–15	2.09-02	1.20-02	1.69+00	-0.967	C+	1
			4 622.8	4 624.1	940 449–962 075	5–7	2 32 _ 02	1.04_02	7.92-01	_1 284	R	LS
			4 959.2	4 960.6	941 944–962 103	3–5			4.24-01			LS
				5 133.5					1.88-01			
			5 132.0		942 634–962 114	1–3			1.41-01			LS
			4 616.8	4 618.1	940 449–962 103	5–5						LS
			4 956.5 4 614.4	4 957.9 4 615.7	941 944–962 114 940 449–962 114	3–3 5–3			1.41-01 $9.42-03$			LS LS
76	$2s2p^{4}(^{4}P)3s - 2s^{2}2p^{3}(^{4}S^{\circ})4d$	$^{3}P-^{3}D^{\circ}$	4 708	4 709	941 190–962 425	9–15	2.19-02	1.22-02	1.70+00	-0.959	C+	1
			4 5 4 5 0	4.546.2	040 440 062 445	5 7	2.44 02	1.06 .02	7.02 .01	1.076	D	1.0
			4 545.0	4 546.3	940 449–962 445	5–7			7.93-01			LS
			4 885.5	4 886.9 5 057.4	941 944–962 407	3–5			4.24-01 1.88-01			LS
			5 056.0		942 634–962 407	1–3						LS
			4 552.9	4 554.1	940 449–962 407	5–5			1.41 - 01			LS LS
			4 885.5 4 552.9	4 886.9 4 554.1	941 944–962 407 940 449–962 407	3–3 5–3			1.41-01 9.45-03			LS
77	$2s2p^4(^4P)3s - 2s^22p^3(^2P^{\circ})4s$	$^{3}P - ^{3}P^{\circ}$	2 023	2 024	941 190–990 600	9–9	3.36-01	2.07-02	1.24+00	-0.730	C	1
				[1 004]	040 440 000 600		2.62 01	1.57.00	5 15 01	1 105	C.	1.0
			[2.055]	[1 994]	940 449–990 600	5–5			5.15-01			LS
			[2 055]	[2 055]	941 944–990 600	3–3			1.03-01			LS
			F= 0 = = 1	[1 994]	940 449–990 600	5–3			1.72-01			LS
			[2 055]	[2 055]	941 944–990 600	3–1			1.38-01			LS
			[2 055]	[2 055]	941 944–990 600	3–5			1.72-01			LS
			[2 084]	[2 084]	942 634–990 600	1–3	1.03 - 01	2.01-02	1.38-01	-1.697	С	LS
78	$2s2p^{4}(^{4}P)3s - 2s^{2}2p^{3}(^{2}D^{\circ})4d$	$^{3}P-^{3}D^{\circ}$		1 375.8	941 190–1 013 877	9–15	4.74-01	2.24-02	9.13-01	-0.696	С	1
				1 362.58	940 449–1 013 839	5–7	4.88-01	1.90-02	4.26-01	-1.022	C+	LS
				1 389.80	941 944-1 013 897	3-5			2.28-01			LS
				1 402.58	942 634-1 013 931	1–3			1.02-01			LS
				1 361.51	940 449–1 013 897	5–5			7.62-02			LS
				1 389.14	941 944–1 013 931	3–3			7.61-02			LS
				1 360.88	940 449–1 013 931	5–3			5.08-03			LS
				1 300.88	940 449-1 013 931	3-3	1.30-02	2.27-04	5.08-03	-2.945	E+	

Table 56. Transition probabilities of allowed lines for Mg V (references for this table are as follows: 1=Butler and Zeippen, 14 2=Tachiev and Froese Fischer, 100 3=Tachiev and Froese Fischer, 101 4=Vilkas et al, 119 and 5=Bogdanovich et al. 9)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
79		$^{3}P-^{3}P^{\circ}$				9–9						1
				1 295.82	940 449–1 017 620	5–5	2.94+00	7.39-02	1.58+00	-0.432	B+	LS
				1 314.82	941 944–1 018 000	3–3			3.16-01			LS
				1 289.47	940 449-1 018 000	5-3			5.24-01			LS
				1 321.42	941 944-1 017 620	3-5	9.24-01	4.03-02	5.26-01	-0.918	C+	LS
				1 326.86	942 634–1 018 000	1–3	1.21+00	9.62-02	4.20-01	-1.017	C+	LS
80	$2s2p^4(^4P)3s - 2s^22p^3(^4S^{\circ})5d?$	$^{3}P-^{3}D^{\circ}$?		[1 168]	941 190–1 026 780	9–15	3.37-01	1.15-02	3.98-01	-0.985	C	1
				1 158.33	940 449–1 026 780	5–7	3.46-01	9.73-03	1.86-01	-1.313	C	LS
				1 178.74	941 944-1 026 780	3-5	2.46 - 01	8.54-03	9.94 - 02	-1.591	C	LS
				1 188.41	942 634-1 026 780	1-3	1.78 - 01	1.13 - 02	4.42 - 02	-1.947	D+	LS
				1 158.33	940 449–1 026 780	5-5	8.65 - 02	1.74 - 03	3.32 - 02	-2.060	D	LS
				1 178.74	941 944–1 026 780	3–3	1.37 - 01	2.85 - 03	3.32 - 02	-2.068	D	LS
				1 158.33	940 449–1 026 780	5–3	9.61-03	1.16-04	2.21-03	-3.237	E	LS
81	$2s2p^{4}(^{4}P)3s - 2s^{2}2p^{3}(^{2}P^{\circ})4d?$	$^{3}P-^{3}P^{\circ}$?				9_9						1
				977.03	940 449-1 042 800	5–5	5.03-01	7.20-03	1.16-01	-1.444	C	LS
				993.78	941 944-1 042 570	3–3	1.59-01	2.36-03	2.32-02	-2.150	D	LS
				979.23	940 449-1 042 570	5–3	2.77-01	2.39-03	3.85-02	-1.923	D+	LS
				991.51	941 944-1 042 800	3-5	1.60-01	3.94-03	3.86-02	-1.927	D+	LS
				1 000.64	942 634–1 042 570	1-3			3.09-02			LS
82		$^{3}P-^{3}D^{\circ}$?		[974]	941 190–1 043 860	9–15	7.83-01	1.86-02	5.36-01	-0.776	C	1
				967.02	940 449–1 043 860	5–7			2.50-01			LS
				981.20	941 944–1 043 860	3–5			1.34 - 01			LS
				987.89	942 634–1 043 860	1–3			5.95 - 02			LS
				967.02	940 449–1 043 860	5–5			4.47 - 02			LS
				981.20	941 944–1 043 860	3–3			4.47 - 02			LS
				967.02	940 449–1 043 860	5–3	2.22-02	1.87-04	2.98-03	-3.029	Е	LS
83	$2s2p^4(^4P)3s - 2s^22p^3(^2D^{\circ})5d?$	$^{3}P - ^{3}P^{\circ}$?				9_9						1
				707.06	940 449–1 081 880	5–5	2.74-01	2.05-03	2.39-02	-1.989	D	LS
				714.61	941 944–1 081 880	3–3			4.76 - 03			LS
				707.06	940 449–1 081 880	5–3			7.94 - 03			LS
				714.61	941 944–1 081 880	3–5			7.90-03			LS
84	$2s^22p^3(^2P^{\circ})4s-$	$^{3}P^{\circ}-^{3}D$	3 349	718.15 3 350	942 634–1 081 880 990 600–1 020 452	1–3 9–15			6.36-03 $7.95+00$			LS 1
	$2s2p^4(^2D)3s$		Fa a 443	Fa a (a)								
			[3 341]	[3 342]	990 600–1 020 522	5–7			3.71+00			LS
			[3 353]	[3 354]	990 600–1 020 419	3–5			1.99+00			LS
			[3 361]	[3 362]	990 600–1 020 345	1–3			8.83-01			LS
			[3 353]	[3 354]	990 600–1 020 419	5–5			6.62-01			LS
			[3 361]	[3 362]	990 600–1 020 345	3–3			6.61-01			LS
85	$2s^22p^3(^2P^{\circ})4s - 2s2p^4(^4P)3d?$	$^{3}P^{\circ}-^{3}D$?	[3 361]	[3 362] [1 184]	990 600–1 020 345 990 600–1 075 090	5–3 9–15			4.42-02 1.57-01			LS 1
	x \ /			[1 102 7]	000 600 1 075 000	5 7	1 20 01	2.76 02	722 02	1.726	D.	16
				[1 183.6]	990 600–1 075 090	5–7			7.33-02			LS
				[1 183.6]	990 600–1 075 090	3–5			3.93-02			LS
				[1 183.6]	990 600–1 075 090	1–3	/.11-02	4.48-03	1.75 - 02	-2.349	ע	LS

TABLE 56. Transition probabilities of allowed lines for Mg V (references for this table are as follows: 1=Butler and Zeippen, ¹⁴ 2=Tachiev and Froese Fischer, ¹⁰⁰ 3=Tachiev and Froese Fischer, ¹⁰¹ 4=Vilkas *et al.*, ¹¹⁹ and 5=Bogdanovich *et al.* ⁹)—Continued

No.	Transition array	Mult.	$\lambda_{air} \ (\mathring{A})$	$\lambda_{\mathrm{vac}} (\mathring{A})$ or $\sigma (\mathrm{cm}^{-1})^{\mathrm{a}}$	E_i – E_k (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Sourc
				[1 183.6]	990 600–1 075 090	5–5	3 20-02	6.72-04	1 31 - 02	-2 474	E+	LS
				[1 183.6]	990 600–1 075 090	3–3		1.12-03				LS
				[1 183.6]	990 600–1 075 090	5–3		4.48-05				LS
				[1 105.0]	770 000 T 075 070	3 3	3.30 03	4.40 03	0.75 04	3.030	L	Lo
6	$2s^22p^3(^2D^{\circ})4d - 2s2p^4(^2D)3s$	$^{3}D^{\circ}-^{3}D$ 1	5 200	15 209	1 013 877–1 020 452	15–15	5.27-04	1.83-03	1.37+00	-1.561	C+	1
		1	4 959	14 963	1 013 839–1 020 522	7–7	4.92-04	1.65-03	5.69-01	-1.937	В	LS
		1	5 329	15 333	1 013 897-1 020 419	5-5	3.57 - 04	1.26 - 03	3.18 - 01	-2.201	C+	LS
		1	5 587	15 591	1 013 931-1 020 345	3-3	3.68 - 04	1.34 - 03	2.06-01	-2.396	C	LS
		1	5 193	15 198	1 013 839-1 020 419	7–5	8.25 - 05	2.04 - 04	7.14 - 02	-2.845	D+	LS
		1	5 504	15 509	1 013 897-1 020 345	5-3	1.24 - 04	2.69-04	6.87 - 02	-2.871	D+	LS
		1	5 090	15 094	1 013 897-1 020 522	5–7	6.02 - 05	2.88 - 04	7.16-02	-2.842	D+	LS
		1	5 409	15 413	1 013 931-1 020 419	3-5	7.61 - 05	4.52-04	6.88-02	-2.868	D+	LS
7		$^{3}P^{\circ}-^{3}D$				9–15						1
				2 902 cm ⁻¹	1 017 620–1 020 522	5–7	1 42 - 05	3.54-04	2.01 - 01	-2 752	C	LS
				2 419 cm ⁻¹	1 018 000–1 020 419	3–5		2.63-04				LS
				2 799 cm ⁻¹	1 017 620–1 020 419	5–5		6.09-05				LS
				2 345 cm ⁻¹	1 018 000–1 020 345	3–3		8.51-05				LS
				2 725 cm ⁻¹	1 017 620–1 020 345	5–3		3.95-06				LS
8	$2s^22p^3(^2D^{\circ})4d-$	${}^{3}P^{\circ} - {}^{3}D$?		2 /23 CIII	1 017 020-1 020 343	9–15	3.20-07	3.93-00	2.39-03	-4.704	L	1
	$2s2p^{4}(^{4}P)3d$?											
				1 740.04	1 017 620–1 075 090	5–7	4.78 - 01	3.04 - 02	8.71 - 01	-0.818	В	LS
				1 751.62	1 018 000-1 075 090	3–5	3.52 - 01	2.70 - 02	4.67 - 01	-1.092	C+	LS
				1 740.04	1 017 620-1 075 090	5-5	1.20 - 01	5.44 - 03	1.56 - 01	-1.565	C	LS
				1 751.62	1 018 000-1 075 090	3-3	1.96 - 01	9.00 - 03	1.56-01	-1.569	C	LS
				1 740.04	1 017 620–1 075 090	5-3	1.33-02	3.62-04	1.04 - 02	-2.742	E+	LS
9	$2s^22p^3(^2D^{\circ})4d - 2s^22p^4(^2D)3d$	$^{3}P^{\circ}-^{3}D$				9–15						1
				[671.5]	1 017 620–1 166 530	5–7	2.42-01	2.29-03	2.53-02	-1.941	D	LS
				[673.0]	1 018 000-1 166 590	3–5	1.80-01		1.36-02			LS
				[671.3]	1 017 620–1 166 590	5–5		4.09-04				LS
				[672.7]	1 018 000–1 166 650	3–3		6.81-04				LS
				[671.0]	1 017 620–1 166 650	5–3		2.73-05				LS
0	$2s2p^4(^2D)3s - 2s^22p^3(^4S^{\circ})5d?$	$^{3}D - ^{3}D^{\circ}?[15]$	5 800]	[15 803]	1 020 452–1 026 780	15–15	5.17-05	1.94-04	1.51-01	-2.536	D	1
		1	5 975	15 980	1 020 522–1 026 780	7–7	4.44_05	1.70-04	6.26_02	_2 024	DΤ	LS
					1 020 322-1 020 780			1.70-04				
			5 717 5 536	15 721		5–5						LS
				15 540	1 020 345–1 026 780	3–3		1.48-04				LS
			5 975	15 980	1 020 522–1 026 780	7–5		2.13-05				LS
			5 717	15 721	1 020 419–1 026 780	5–3		2.92-05				LS
			5 717	15 721	1 020 419–1 026 780	5–7		3.03-05				LS
1	$2s2p^4(^2D)3s -$	$^{3}D-^{3}P^{\circ}?$	5 536	15 540	1 020 345–1 026 780	3–5 15–9	8.13-00	4.92-05	7.55-05	-3.831	E+	LS 1
	$2s^22p^3(^2P^\circ)4d?$		4.465	4 400 =	1 000 500 1 010 600		2.45.05	504 O:		2 125	ъ.	1.0
			4 487.5		1 020 522–1 042 800	7–5		5.34-04				LS
			4 513.2		1 020 419–1 042 570	5–3		3.99-04				LS
			4 466.8		1 020 419–1 042 800	5–5		1.34-04				LS
			4 498.2		1 020 345–1 042 570	3–3		2.22-04				LS
			4 452.1	4 453.4	1 020 345–1 042 800	3–5	3.03 - 05	1.50 - 05	6.60 - 04	-4.347	E	LS

Table 56. Transition probabilities of allowed lines for Mg V (references for this table are as follows: 1=Butler and Zeippen, 14 2=Tachiev and Froese Fischer, 100 3=Tachiev and Froese Fischer, 101 4=Vilkas *et al.*, 119 and 5=Bogdanovich *et al.* 9)—Continued

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
92		$^{3}D-^{3}D^{\circ}$?	[4 271]	[4 272]	1 020 452–1 043 860	15–15	3.40-02	9.31-03	1.96+00	-0.855	C+	1
			4 283.7	4 284.9	1 020 522-1 043 860	7–7	3.00-02	8.25-03	8.15-01	-1.238	В	LS
			4 264.8	4 266.0	1 020 419-1 043 860	5-5	2.38 - 02	6.49 - 03	4.56 - 01	-1.489	C+	LS
			4 251.4	4 252.6	1 020 345-1 043 860	3-3	2.59 - 02	7.01 - 03	2.94 - 01	-1.677	C+	LS
			4 283.7	4 284.9	1 020 522-1 043 860	7–5	5.24-03	1.03 - 03	1.02 - 01	-2.142	C	LS
			4 264.8	4 266.0	1 020 419-1 043 860	5-3	8.55 - 03	1.40 - 03	9.83 - 02	-2.155	C	LS
			4 264.8	4 266.0	1 020 419-1 043 860	5–7	3.80 - 03	1.45 - 03	1.02 - 01	-2.140	C	LS
			4 251.4	4 252.6	1 020 345–1 043 860	3–5	5.18 - 03	2.34-03	9.83 - 02	-2.154	C	LS
93	$2s2p^4(^2D)3s - 2s^22p^3(^2D^{\circ})5d?$	$^{3}D-^{3}P^{\circ}$?				15–9						1
				1 629.78	1 020 522-1 081 880	7–5	6.96-01	1.98-02	7.44-01	-0.858	В	LS
				1 627.05	1 020 419-1 081 880	5-3	6.26 - 01	1.49 - 02	3.99-01	-1.128	C+	LS
				1 627.05	1 020 419-1 081 880	5-5	1.25 - 01	4.95 - 03	1.33 - 01	-1.606	C	LS
				1 625.09	1 020 345-1 081 880	3-3	2.09 - 01	8.26-03	1.33 - 01	-1.606	C	LS
				1 625.09	1 020 345–1 081 880	3–5	8.35 - 03	5.51 - 04	8.84 - 03	-2.782	E+	LS
94	$2s^22p^3(^2P^{\circ})4d? - 2s2p^4(^4P)3d?$	$^{3}P^{\circ}? - ^{3}D?$				9–15						1
			3 096.0	3 096.9	1 042 800–1 075 090	5–7	3.36-03	6.77-04	3.45-02	-2.470	D	LS
			3 074.1	3 075.0	1 042 570-1 075 090	3-5	2.58-03	6.09-04	1.85-02	-2.738	D	LS
			3 096.0	3 096.9	1 042 800-1 075 090	5–5	8.42-04	1.21-04	6.17-03	-3.218	E+	LS
			3 074.1	3 075.0	1 042 570-1 075 090	3-3	1.43-03	2.03-04	6.17-03	-3.215	E+	LS
			3 096.0	3 096.9	1 042 800-1 075 090	5-3	9.34-05	8.06-06	4.11 - 04	-4.395	E	LS

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

11.5.3. Forbidden Transitions for Mg V

The Tachiev and Froese Fischer⁹⁶ results are the product of extensive MCHF calculations with Breit-Pauli corrections to order α^2 , with energy corrections. Gaigalas *et al.*³⁹ used a second-order MBPT to compute transition rates. As part of the Iron Project, Galavis *et al.*⁴⁰ used the SUPERSTRUCTURE code with configuration interaction, relativistic effects, and semiempirical energy corrections.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) of each of the lines for which a transition rate is quoted by two or more references, ^{39,40,92,96} as discussed in the general introduction. However, Gaigalas *et al.*³⁹ and Galavis *et al.*⁴⁰ contain only data for transitions from energy levels below 400 000 cm⁻¹. To estimate the accuracy of lines from higher-lying levels of Tachiev and Froese Fischer, ⁹² we isoelectronically averaged the logarithmic quality factors (see Sec. 4.1 of the Introduction) observed for lines from the lower-lying levels of O-like ions of Na, Mg, and Si and scaled them for lines from high-lying levels, as described in the introduction. Thus the listed accuracies for these higher-lying transitions are less well established than for those from lower levels.

11.5.4. References for Forbidden Transitions for Mg V

Astrophys., Suppl. Ser. 123, 159 (1997).

⁹⁶G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, energy adjusted, downloaded on Sept. 3, 2003). See Tachiev and Froese Fischer (Ref. 89).

TABLE 57. Wavelength finding list for forbidden lines for Mg V

Wavelength (vac) (Å)	Mult. No.	
130.783	17	
131.088	17	
132.163	16	
132.176	16	
132.180	16	
132.475	16	
132.488	16	
132.605	16	
135.953	14	
136.284	14	

³⁹G. Gaigalas, J. Kaniauskas, R. Kisielius, G. Merkelis, and M. J. Vilkas, Phys. Scr. 49, 135 (1994).

⁴⁰M. E. Galavis, C. Mendoza, and C. J. Zeippen, Astron.

⁸⁹G. Tachiev and C. Froese Fischer, Astron. Astrophys. **385**, 716 (2002).

⁹²G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, *ab initio*, downloaded on Mar. 28, 2002). Tachiev and Froese Fischer (See Ref. 89).

Table 57. Wavelength finding list for forbidden lines for Mg V—Continued Table 57. Wavelength finding list for forbidden lines for Mg V—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
136.421	14	400.343	7
137.404	13	401.764	7
137.407	13	404.390	7
137.411	13	485.594	9
137.741	13	875.12	21
137.745	13	887.68	21
137.749	13	894.69	21
137.885	13	1 294.01	3
138.751	18	1 324.58	3
138.766	18		
138.770	18	Wavelength	Mult.
144.539	15	(air) (Å)	No.
144.543	15		
144.547	15	2 417.5	4
146.083	12	2 711.8	26
146.465	12	2 713.2	26
147.197	19	2 782.7	2
150.836	10	2 928.0	2
151.243	10	2 992.8	2
159.478	11	3 459.3	25
224.937	23	3 461.9	25
224.946	23	3 464.1	25
224.957	23	3 470.9	25
225.757	23	3 473.2	25
225.767	23	3 475.7	25
225.778	23	4 739.1	27
226.209	23	4 756.0	27
226.218	23	Wavenumber	Multi.
251.584	6	(cm^{-1})	No.
252.717	6		
263.326	22	2 521.8	1
276.582	8	2 499.7	20
350.003	5	1 783.1	1
351.089	5	1 616.0	20
353.092	5	883.7	20
353.300	5	738.7	1
355.329 356.264	5 5	75	28

Table 58. Transition probabilities of forbidden lines for Mg V (reference for this table are as follow: 1 = Tachiev and Froese Fischer, 96 2 = Tachiev and Froese Fischer, 92 3 = Gaigalas et al., 39 and 4 = Galavis et al. 40)

	Transition		λ_{air}	λ_{vac} (Å)	$E_i - E_k$			A_{ki}	S		_
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	Type	(s ⁻¹)	(a.u.)	Acc.	Source
1	$2p^4 - 2p^4$	${}^{3}P - {}^{3}P$									
				2 521.8 cm ⁻¹	0.0-2 521.8	5-1	E2	9.74 - 07	8.52 - 02	B+	1,3,4
				1 783.1 cm ⁻¹	0.0-1 783.1	5-3	M1	1.27 - 01	2.50+00	A	1,3,4
				1 783.1 cm ⁻¹	0.0-1 783.1	5-3	E2	1.28 - 07	1.90 - 01	B+	1,3
				738.7 cm ⁻¹	1 783.1–2 521.8	3-1	M1	2.19 - 02	2.01+00	A	1,3,4
2		$^{3}P - ^{1}D$									
_		1 D	2 992.8	2 993.6	2 521.8-35 926	1-5	E2	5.20-05	5.58-05	C±	1,3,4
			2 928.0	2 928.9	1 783.1–35 926	3–5	M1	5.36-01	2.50-03	В	1,3,4
			2 928.0	2 928.9	1 783.1–35 926	3–5	E2	1.99-04	1.92-04		1,3
			2 782.7	2 783.5	0.0–35 926	5–5	M1	1.87+00	7.49-03	В	1,3,4
			2 782.7	2 783.5	0.0–35 926	5–5	E2	1.71-03	1.28-03		1,3
2		$^{3}P-^{1}S$									
3		P-'S		1 294.01	0.0–77 279	5–1	E2	2.46-02	7.98-05	$C \perp$	1,3,4
				1 324.58	1 783.1–77 279	3–1	M1	2.40-02 $2.15+01$	1.85-03		1,3,4
				1 324.36	1 765.1-77 279	3-1	IVII	2.13 + 01	1.03-03	Б	1,3,4
4		${}^{1}D - {}^{1}S$									
			2 417.5	2 418.2	35 926–77 279	5-1	E2	4.09+00	3.02 - 01	B+	1,3,4
5	$2s^22p^4 - 2s2p^5$	${}^{3}P - {}^{3}P^{\circ}$									
	_F _F			353.092	0.0-283 212.3	5–5	M2	6.60+00	1.22+01	В	2
				353.300	1 783.1–284 828.3	3–3	M2	4.31 + 00	4.77 + 00	В	2
				350.003	0.0–285 712.0	5-1	M2	4.13+00	1.45 + 00	В	2
				351.089	0.0-284 828.3	5–3	M2	4.79-03	5.14-03	C	2
				355.329	1 783.1–283 212.3	3–5	M2	5.70-04	1.08-03	D+	2
				356.264	2 521.8-283 212.3	1–5	M2	9.14-01	1.76+00		2
		2- 1-0									
6		$^{3}P-^{1}P^{\circ}$		252 545	4 500 4 205 402	2.2	3.50	4.00.04	224 00		
				252.717	1 783.1–397 482	3–3	M2	1.09+01	2.26+00	В	2
				251.584	0.0–397 482	5–3	M2	3.22+01	6.54+00	В	2
7		$^{1}D-^{3}P^{\circ}$									
				400.343	35 926-285 712.0	5-1	M2	4.25 + 00	2.93+00	В	2
				401.764	35 926-284 828.3	5-3	M2	2.98+00	6.28 + 00	В	2
				404.390	35 926–283 212.3	5-5	M2	1.22+00	4.43 + 00	В	2
0		$^{1}D-^{1}P^{\circ}$									
8		D- P		276.582	35 926–397 482	5–3	M2	3.72-01	1.21-01	$C \bot$	2
				270.382	33 920-397 482	3–3	IVIZ	3.72-01	1.21-01	C+	2
9		$^{1}S-^{3}P^{\circ}$									
				485.594	77 279–283 212.3	1-5	M2	5.52 - 01	5.00+00	В	2
10	$2s^22p^4-2p^6$	$^{3}P-^{1}S$									
10	2s 2p - 2p	P- 3		150.836	0.0–662 970	5–1	E2	3.57 + 02	2.49-05	C	2,3
				151.243	1 783.1–662 970	3–1	M1	3.37+02 $3.15+01$	4.04-06		2,3
				131.243	1 703.1-002 770	3-1	IVII	3.13+01	4.04-00	L	2,3
11		$^{1}D-^{1}S$									
				159.478	35 926–662 970	5-1	E2	2.74+05	2.52 - 02	В	2,3
12	$2p^4 - 2p^3(^4S^{\circ})3s$	$^{3}P-^{3}S^{\circ}$									
12	2p - 2p (3)33	1 – 5		146.083	0.0-684 541	5–3	M2	1.43+01	1.92-01	D	2
				146.465	1 783.1–684 541	3–3	M2	4.49+00	6.10-02		2
				1.0.103	1,00.1 001011	5 5	1712	12 1 00	0.10 02	2 '	-
13	$2p^4 - 2p^3(^2D^{\circ})3s$	$^{3}P - ^{3}D^{\circ}$									
				137.749	1 783.1–727 742	3–7	M2	1.54+01	3.59-01		2
				137.885	2 521.8–727 763	1–5	M2	1.42 + 01	2.37 - 01		2
				127 411	0.0-727 742	5–7	M2	3.22 + 01	7.41 - 01	C	2
				137.411			1012				2
				137.745	1 783.1–727 763	3–5	M2	1.70+01	2.82-01	D+	2
									2.82-01	D+ E	

Table 58. Transition probabilities of forbidden lines for Mg V (reference for this table are as follow: 1 = Tachiev and Froese Fischer, 96 2 = Tachiev and Froese Fischer, 92 3 = Gaigalas et al., 39 and 4 = Galavis et al. 40)—Continued

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	$\lambda_{\rm vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	$A_{ki} \\ (s^{-1})$	S (a.u.)	Acc.	Source
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				137.404	0.0–727 782	5–3	M2	7.27+00	7.17-02	D	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$^{3}P-^{1}D^{\circ}$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				136.421	2 521.8-735 546	1-5	M2	7.66+00	1.21-01	D	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				136.284	1 783.1-735 546	3-5	M2		3.15-01	D+	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						5-5	M2			D+	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$^{1}D - ^{3}D^{\circ}$									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		D- D		144.543	35 926-727 763	5–5	M2.	475+01	1.01+00	С	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										D+	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										C	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2n^4 - 2n^3(^2D^{\circ}) 2n$	3 p 3 p °									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2p^3-2p^3(P)3s$	r- r		132 163	0.0-756.641	5_5	М2	5.84±01	7 89-01	C	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										D+	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										D	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										E	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										E	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										D	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3p 1p°									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		³ P- ¹ P		121 000	1 702 1 764 620	2 2	142	2.06 - 01	1.61 .01	D	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											2 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				130.783	0.0-704 028	5-5	IVI Z	0.18+01	4.76-01	D+	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$^{1}D-^{3}P^{\circ}$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				138.770	35 926–756 545	5-1	M2	6.91 + 01	2.39 - 01	D+	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						5–3	M2			D+	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				138.751	35 926–756 641	5–5	M2	1.73 + 01	2.98-01	D+	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$^{1}S-^{3}P^{\circ}$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				147.197	77 279–756 641	1-5	M2	2.74+01	6.36-01	C	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2s2n^5 - 2s2n^5$	$^{3}\mathbf{p}^{\circ}-^{3}\mathbf{p}^{\circ}$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	232p 232p	1 1		2 499.7 cm ⁻¹	283 212.3–285 712.0	5-1	E2	9.03-07	8.26-02	В	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1 616.0 cm ⁻¹	283 212.3-284 828.3	5-3	M1	9.57-02	2.52+00	A	2,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										В	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				883.7 cm^{-1}	284 828.3–285 712.0	3-1	M1	3.70 - 02	1.99+00	A	2,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$3\mathbf{p}^{\circ} 1\mathbf{p}^{\circ}$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 - 1		887.68	284 828 3-397 482	3_3	M1	1.95+00	1.52-04	C±	2,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											2,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					285 712.0–397 482		M1				2,3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2°2n5_2n6	3p°_1c									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2s2p^{x}-2p^{x}$	r – 3		263.326	283 212 3-662 970	5–1	M2.	9.02+01	7.66+00	В	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	2 0 2 0		203.320	203 212.3 002 770	5 1	1112	7.02 1 01	7.00 1 00	Ь	-
225.778 284 828.3-727 742 3-7 E2 1.56+03 5.73-03 226.218 285 712.0-727 763 1-5 E2 1.44+03 3.80-03 224.957 283 212.3-727 742 5-7 M1 2.55-04 7.55-10 224.957 283 212.3-727 742 5-7 E2 3.16+03 1.14-02		$^{3}P^{\circ} - ^{3}D^{\circ}$									
226.218 285 712.0-727 763 1-5 E2 1.44+03 3.80-03 224.957 283 212.3-727 742 5-7 M1 2.55-04 7.55-10 224.957 283 212.3-727 742 5-7 E2 3.16+03 1.14-02	23 2p (D)38			225.778	284 828 3_727 742	3–7	E2	1.56+03	5.73-03	D	2
224.957 283 212.3-727 742 5-7 M1 2.55-04 7.55-10 224.957 283 212.3-727 742 5-7 E2 3.16+03 1.14-02											2
224.957 283 212.3–727 742 5–7 E2 3.16+03 1.14–02											2
										D	2
											2
225.767 284 828.3-727 763 3-5 E2 3.08+02 8.07-04											2
										E	2
										E	2
										D	2
225.757 284 828.3–727 782 3–3 M1 3.35–04 4.29–10											2

Table 58. Transition probabilities of forbidden lines for Mg V (reference for this table are as follow: 1 = Tachiev and Froese Fischer, 96 2 = Tachiev and Froese Fischer, 92 3 = Gaigalas et al., 39 and 4 = Galavis et al., 40 —Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Type	$A_{ki} \ (\mathrm{s}^{-1})$	S (a.u.)	Acc.	Source
				225.757	284 828.3–727 782	3–3	E2	3.38+03	5.30-03	D	2
				224.937	283 212.3-727 782	5-3	M1	2.75 - 04	3.47 - 10	Е	2
				224.937	283 212.3–727 782	5–3	E2	1.34+03	2.07 - 03	E+	2
24	$2p^3(^2D^{\circ})3s - 2p^3(^2D^{\circ})3s$	$^{3}D^{\circ} - ^{3}D^{\circ}$									
	-			21 cm ⁻¹	727 742–727 763	7–5	M1	2.32 - 07	4.65 + 00	B+	2
				19 cm ⁻¹	727 763–727 782	5–3	M1	2.77 - 07	4.49+00	B +	2
25	$2p^{3}(^{2}\text{D}^{\circ})3s - 2p^{3}(^{2}\text{P}^{\circ})3s$	$^{3}\text{D}^{\circ} - ^{3}\text{P}^{\circ}$									
	* ` ′		3 459.3	3 460.3	727 742–756 641	7–5	M1	1.77 + 00	1.36-02	D	2
			3 470.9	3 471.9	727 763–756 566	5–3	M1	7.08 - 05	3.30 - 07	E	2
			3 475.7	3 476.7	727 782–756 545	3-1	M1	2.08+00	3.24 - 03	E+	2
			3 461.9	3 462.8	727 763-756 641	5-5	M1	1.26+00	9.69-03	D	2
			3 473.2	3 474.2	727 782–756 566	3-3	M1	2.07 + 00	9.65 - 03	D	2
			3 464.1	3 465.1	727 782–756 641	3–5	M1	3.36-01	2.59-03	E+	2
26		$^{3}\text{D}^{\circ}-^{1}\text{P}^{\circ}$									
			2 711.8	2 712.6	727 763–764 628	5–3	M1	3.98 + 00	8.84-03	D	2
			2 713.2	2 714.0	727 782–764 628	3–3	M1	1.35+00	3.01 - 03	E+	2
27		$^{1}\text{D}^{\circ} - ^{3}\text{P}^{\circ}$									
			4 756.0	4 757.4	735 546-756 566	5-3	M1	7.70 - 01	9.22-03	D	2
			4 739.1	4 740.5	735 546–756 641	5–5	M1	1.39+00	2.75 - 02	D+	2
28	$2p^{3}(^{2}P^{\circ})3s - 2p^{3}(^{2}P^{\circ})3s$	$^{3}P^{\circ} - ^{3}P^{\circ}$									
				75 cm ⁻¹	756 566-756 641	3-5	M1	5.67-06	2.49 + 00	В	2
				21 cm ⁻¹	756 545–756 566	1-3	M1	1.66 - 07	2.00+00	В	2

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

11.6. Mg vi

Nitrogen isoelectronic sequence Ground state: $1s^22s^22p^3 {}^4S_{3/2}^0$

Ionization energy: 186.76 eV=1 506 300 cm⁻¹

11.6.1. Allowed Transitions for Mg VI

Only OP (Ref. 11) results were available for energy levels above the $2p^23d$. Wherever available we have used the data of Tachiev and Froese Fischer, ⁹⁹ which are the product of extensive MCHF calculations with Breit-Pauli corrections to order α^2 . Also we found the MBPT calculations of Merkelis *et al.* ⁶⁵ to agree very well with those of Tachiev and Froese Fischer, ⁹⁹ though only transitions from low-lying energy levels were available.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in two or more references, \$11,65,95,99\$ as described in the general introduction (data from Tachiev and Froese Fischer are cited only for lines not listed in Tachiev and Froese Fischer Fischer For this purpose the spinallowed (non-OP) and intercombination data were treated separately and each of these were in turn divided into two upper-level energy groups below and above 700 000 cm⁻¹. OP lines constituted a fifth group.

To estimate the accuracy of lines from higher-lying levels of Tachiev and Froese Fischer⁹⁹ (and Tachiev and Froese Fischer⁹⁵ for the few lines unique to it), we isoelectronically averaged the logarithmic quality factors (see Sec. 4.1 of the Introduction) observed for lines from the lower-lying levels of N-like ions of Na, Mg, Al, and Si and scaled them for lines from high-lying levels, as described in the introduction. Thus the listed accuracies for these higher-lying transitions are less well established than for those from lower levels. All transitions involving energy levels labeled $2s2p^3(^5S^\circ)3s^4S^\circ_{3/2}$ or $2p^2(^3P)3d^4P$ were excluded from the fitting because these yielded consistently poorer RSDM's than the other transitions.

A NIST compilation of far-UV lines of Mg VI was published recently.⁷⁸ The estimated accuracies are different in some cases because a different method of evaluation was used.

11.6.2. References for Allowed Transitions for Mg VI

- ¹¹V. M. Burke and D. L. Lennon. http://legacy.gsfc.nasa.gov/topbase, downloaded on July 28, 1995 (Opacity Project).
- ⁶⁵G. Merkelis, M. J. Vilkas, and R. Kisielius, Phys. Scr. **56**, 41 (1997).
- ⁷⁸L. I. Podobedova, D. E. Kelleher, J. Reader, and W. L. Wiese, J. Phys. Chem. Ref. Data 33, 495 (2004).
- ⁹⁵G. Tachiev and C. Froese Fischer, http:// www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on Sept. 3, 2003).
- ⁹⁹G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, energy adjusted, downloaded on Dec. 10, 2003). See G. Tachiev and C. Froese Fischer, Astron. Astrophys. 385, 716 (2002).

TABLE 59. Wavelength finding list for allowed lines for Mg VI

TABLE 33. Wavelength initing its	t for anowed fines for fvig v1
Wavelength	Mult.
(vac) (Å)	No.
55.240	5 0
75.248	50
75.249	50
75.334	49
75.335	49
75.834	46
75.890	46
76.901	51
76.908	51
77.405	48
77.510	48
77.511	48
79.817	36
79.830	36
79.857	36
80.027	47
80.034	47
80.724	42
80.725	42
80.930	41
80.931	41
81.106	40
81.107	40
82.467	45
82.475	45
82.629	44
82.636	44
82.845	43
82.853	43
83.124	38
83.125	38
83.403	37
83.518	37
83.519	37
83.560	32
84.722	35
84.723	35
85.153	39
85.575	34
85.576	34
85.622	34
88.825	69
88.954	69
89.023	69
89.642	33
89.651	33
90.897	29
93.499	30
93.500	30
95.385	17
95.421	17
95.483	17
96.064	31
96.074	31
96.159	67
96.238	66

TABLE 59. Wavelength finding list for allowed lines for Mg VI—Continued

TABLE 59. Wavelength finding list for allowed lines for Mg VI—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
96.256	25	108.441	60
96.258	25 25	111.173	16
96.303	25	111.175	16
96.311	67	111.552	11
96.390	66	111.746	11
96.391	67	111.864	11
96.470	66	113.190	14
96.670	65	113.192	14
96.704	65	114.407	57
96.797	65	114.622	57
96.823	65	114.735	57
96.857	65	116.967	12
96.879	65	116.969	12
96.904	65	116.971	15
96.940	24	116.986	15
96.942	24	117.228	12
96.973	24	117.532	61
96.975	24	117.538	61
97.249	23	117.573	61
97.251	23	121.010	13
97.278	23	121.026	13
98.497	28	121.287	13
98.507	28	121.303	13
98.978	27 27	123.596	58
98.988 99.026	27 27	123.602	58 56
99.026	27	125.205 125.462	56
99.279	20	125.598	56
99.280	20	126.461	62
99.335	20	126.501	62
99.337	20	130.312	63
99.712	26	130.354	63
99.736	26	130.643	63
99.746	26	130.686	63
100.703	19	137.807	59
100.902	19	138.178	59
100.903	19	234.118	3
101.491	18	235.189	3
101.553	18	246.981	52
101.555	18	247.511	52
102.188	22	247.574	52
102.236	22	248.581	52
102.247	22	248.866	2
104.519	21	249.118	52
104.531	21	253.839	75 7.5
104.587	21	254.453	75 75
104.599	21	255.460	75
105.405 105.410	68 68	268.989 270.392	6
105.502	68	270.404	6 6
107.822	64	291.363	10
107.822	64	291.455	10
108.013	64	293.023	10
108.148	60	293.116	10
108.339	60	306.326	92

TABLE 59. Wavelength finding list for allowed lines for Mg VI—Continued

TABLE 59. Wavelength finding list for allowed lines for Mg VI—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
306.965	92	426.821	88
307.333	92	427.277	88
314.562	9	427.314	88
314.670	9	428.357	124
319.816	53	431.146	123
322.460	53	436.142	55
322.504	53	437.790	91
339.778	98	438.443	71
349.117	5	438.885	91
349.137	5	439.874	55
349.168	5	440.276	71
349.189	5	440.567	91
351.902	74	441.156	55
352.212	74	443.302	71
354.258	74	444.974	55
354.572	74	447.507	112
358.847	73	456.767	122
360.075	73	471.676	76
362.096	73	478.103	78
365.484	113	478.675	78
367.607	97	484.896	96
368.922	97	485.390	96
387.788	8	486.381	96
387.951	8	490.436	104
388.014	8	491.280	104
394.089	77	493.389	104
394.477	77	512.618	4
395.803	54	514.859	4
399.281	1	514.903	4
399.928	54	519.232	4
400.667	1	519.278	4
403.310	1	532.652	111
409.752	87	535.074	110
411.218	87	547.885	109
412.490	72	548.697	109
413.070	87	549.813	109
413.514	86	594.04	138
414.216	86	600.49	7
414.559	87	600.88	7
415.662	90	603.63	7
415.731	72	603.94	126
416.840	90	604.03	7
417.136	89	604.05	140
417.519	90	607.13	126
418.323	89	610.06	7
419.006	89	654.88	70
421.124	85	655.65	81
421.603	85	656.73	81
421.852	85	658.33	81
422.262	85	658.98	70
422.333	85	659.41	81
425.369	88	665.78	70
426.040	88	666.22	95
426.112	88	684.65	136
426.603	88	689.23	136

TABLE 59. Wavelength finding list for allowed lines for Mg VI—Continued

TABLE 59. Wavelength finding list for allowed lines for Mg VI—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
(07.70	121	1.260.26	117
697.79	121	1 368.36	116
708.37	137	1 380.07	107
709.62	137	1 380.45	116
713.52	120	1 401.15	153
727.43	119	1 409.44	153
766.11	84	1 413.63	153
767.58	84	1 477.32	125
769.47	84	1 481.48	99
784.93	82	1 482.80	125
787.46	82	1 488.10	99
788.21	144	1 488.32	145
798.08	83	1 502.63	145
802.44	83	1 507.84	145
804.96	83	1 519.76	132
822.91	154	1 522.53	145
825.76	154	1 555.94	100
827.20	154	1 564.46	100
943.31	102	1 734.30	162
945.54	102	1 751.93	101
946.43	102	1 760.87	162
957.67	79	1 767.10	101
959.79	135	1 788.6	162
962.09	135	1 816.9	162
966.09	118	1 825.5	146
975.99	79	1 854.9	160
981.74	118	1 868.8	94
982.13	134	1 884.7	161
	134	1 004./	101
984.54		Wavelength	Mult.
1 011.94	103	(air) (Å)	No.
1 013.58	133	-	
1 014.51	103	2 055.7	115
1 016.16	133	2 277.2	159
1 016.98	103	2 305.6	129
1 019.58	103	2 305.0	129
1 070.66	105		159
1 073.19	163	2 323.2	
1 073.54	105	2 616.3	148
1 083.31	163	2 663.0	148
1 097.09	143	2 728.4	156
1 107.42	142	2 756.3	156
1 126.25	80	2 802.7	156
1 133.53	80	2 804.2	151
1 167.41	141	2 832.0	156
1 172.47	141	2 837.7	151
1 178.55	117	2 853.9	156
1 245.95	131	2 854.7	151
1 249.22	131	2 872.7	150
1 255.81	131	2 907.8	150
1 290.82	139	2 925.7	150
1 294.33	139	2 954.2	147
1 300.56	130	2 978.0	147
1 301.41	139	3 011.2	147
1 311.99	139	3 013.9	147
1 311.77			147
	100	2 020.0	
1 328.90 1 338.33	108 114	3 038.6 3 047.0	167

TABLE 59. Wavelength finding list for allowed lines for Mg VI—Continued

TABLE 59. Wavelength finding list for allowed lines for Mg VI—Continued

Wavelength	Mult.	Wavelength	Mult.
(air) (Å)	No.	(air) (Å)	No.
3 160.6	157	14 002	128
3 202.1	152	14 510	128
3 247.9	158	16 916	165
3 260.6	157		26.1
3 314.7	149	Wavenumber	Mult.
3 331.3	149	(cm ⁻¹)	No.
3 353.6	158	4 940	165
3 354.7	149	2 160	164
3 355.9	149	1 740	93
3 361.5	149	1 390	155
3 385.4	149	1 350	93
3 403.9	149	1 290	164
4 143.1	127	670	93
4 571.2	106	520	155
5 765	166		

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1 = Burke and Lennon, 11 = Burke and Froese Fischer, 11 = Burke and 11 = Burke and

No.	Transition aray	Mult.	λ_{air} λ_{vac} (Å) (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
1	$2s^22p^3-2s2p^4$	$^{4}\text{S}^{\circ}$ $ ^{4}\text{P}$	401.75	0.0–248 910	4–12	2.71+01	1.97-01	1.04+00	-0.103	B+	2,4
	_F _F	-									
			403.310	0.0–247 948	4–6			5.20-01			2,4
			400.667	0.0–249 584	4–4			3.47 - 01			2,4
			399.281	0.0–250 450	4–2	2.77 + 01	3.31-02	1.74-01	-0.878	B+	2,4
2		$^{4}\text{S}^{\circ}-^{2}\text{S}$									
			248.866	0.0-401 822	4–2	2.21-02	1.03 - 05	3.36-05	-4.385	C	2,4
3		$^{4}\text{S}^{\circ}-^{2}\text{P}$									
			235.189	0.0-425 190	4-4	4.31-02	3.57-05	1.11-04	-3.845	C	2,4
			234.118	0.0-427 135	4-2	1.30-02	5.33-06	1.64-05	-4.671	D	2,4
4		$^{2}\text{D}^{\circ}-{}^{4}\text{P}$									
•		2 1	514.859	55 356-249 584	6–4	1.85-04	4.89-07	4.97-06	-5.533	D	2,4
			512.618	55 372.8-250 450	4-2	3.34-04	6.57-07	4.44-06	-5.580	C	2,4
			519.232	55 356–247 948	6–6			1.25-04			2,4
			514.903	55 372.8–249 584	4-4			1.37-05			2,4
			519.278	55 372.8–247 948	4–6			2.14-05			2,4
5		$^{2}D^{\circ}-^{2}D$	349.16	55 363–341 768	10-10	6.43+01	1.17-01	1.35+00	0.068	A	2,4
			349.168	55 356–341 751	6-6	6.00+01	1.10-01	7.56-01	-0.180	Α	2,4
			349.137	55 372.8-341 793	4-4	6.00+01	1.10-01	5.04-01	-0.357	A	2,4
			349.117	55 356-341 793	6-4	5.76+00	7.02-03	4.84-02	-1.376	B+	2,4
			349.189	55 372.8–341 751	4-6	3.28+00	8.99-03	4.13-02	-1.444	${\bf B} +$	2,4
6		$^{2}D^{\circ}-^{2}P$	269.92	55 363-425 838	10-6	2.55+02	1.67-01	1.49+00	0.223	A	2,4
			270.392	55 356-425 190	6-4	2.31+02	1.69-01	9.01-01	0.006	Α	2,4
			268.989	55 372.8-427 135	4-2	2.43 + 02	1.32-01	4.66-01	-0.277	A	2,4
			270.404	55 372.8-425 190	4-4	3.03+01	3.33-02	1.18-01	-0.875	A	2,4
7		$^{2}\text{P}^{\circ}-^{4}\text{P}$									
•			604.03	84 028.4-249 584	4-4	2.31-03	1.26-05	1.01-04	-4.298	В	2,4
			600.49	83 920.0–250 450	2-2			1.87-05			2,4
			600.88	84 028.4–250 450	4–2			1.09-06			2,4

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

No.	Transition aray	Mult.	λ_{air} λ_{vac} (Å) (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	a a	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	log af	Δ 00	Source
NO.	aray	Muit.	(A) or o (cm)	(CIII)	$g_i - g_k$	(10 8)	Jik	(a.u.)	log gj	Acc.	Source
			610.06	84 028.4–247 948	4–6			9.92-05			2,4
			603.63	83 920.0–249 584	2–4	1.33-05	1.46-07	5.78-07	-6.535	E+	2,4
8		$^{2}P^{\circ}-^{2}D$	387.93	83 992–341 768	6–10	9.09+00	3.42-02	2.62-01	-0.688	B+	2,4
			388.014	84 028.4–341 751	4-6	9.76+00	3.30-02	1.69-01	-0.879	$\mathrm{B} +$	2,4
			387.788	83 920.0–341 793	2–4	7.41 + 00	3.34 - 02	8.53 - 02	-1.175	B+	2,4
			387.951	84 028.4–341 793	4–4	6.90-01	1.56-03	7.96-03	-2.205	B+	2,4
9		$^{2}P^{\circ}-^{2}S$	314.63	83 992–401 822	6–2	1.41+02	6.98-02	4.34-01	-0.378	A	2,4
			314.670	84 028.4-401 822	4-2	8.88 + 01	6.59-02	2.73 - 01	-0.579	A	2,4
			314.562	83 920.0–401 822	2-2	5.24+01	7.77 - 02	1.61-01	-0.809	$\mathrm{B} +$	2,4
10		$^{2}P^{\circ}-^{2}P$	292.53	83 992–425 838	6-6	7.21+01	9.26-02	5.35-01	-0.255	B+	2,4
			293.116	84 028.4-425 190	4-4	5.38+01	6.92-02	2.67-01	-0.558	A	2,4
			291.363	83 920.0-427 135	2-2	4.23 + 01	5.39-02	1.03-01	-0.967	B +	2,4
			291.455	84 028.4-427 135	4-2	4.23 + 01	2.69-02	1.03-01	-0.968	$\mathrm{B} +$	2,4
			293.023	83 920.0–425 190	2–4	1.22+01	3.15-02	6.08 - 02	-1.201	$\mathrm{B}+$	2,4
11	$2p^3 - 2p^2(^3P)3s$	$^{4}\text{S}^{\circ}$ $ ^{4}\text{P}$	111.67	0.0-895 507	4–12	2.23+02	1.25-01	1.84-01	-0.301	C	2
			111.552	0.0-896 440	4-6	2.24+02	6.27-02	9.21-02	-0.601	С	2
			111.746	0.0-894 890	4-4	2.22+02	4.16-02	6.12-02	-0.779	C	2
			111.864	0.0-893 940	4–2	2.21+02	2.07-02	3.05-02	-1.082	D+	2
12		$^2D^{\circ}-^2P$	117.05	55 363–909 670	10-6	3.73+02	4.60-02	1.77-01	-0.337	C	2
			116.967	55 356-910 300	6–4	3.42+02	4.68-02	1.08-01	-0.552	С	2
			117.228	55 372.8-908 410	4-2	3.97 + 02	4.09-02	6.32-02	-0.786	C	2
			116.969	55 372.8-910 300	4-4	1.82+01	3.72-03	5.73-03	-1.827	D	2
13		$^{2}P^{\circ}-^{2}P$	121.11	83 992–909 670	6-6	2.81+02	6.18-02	1.48-01	-0.431	C	2
			121.026	84 028.4-910 300	4-4	2.40+02	5.27-02	8.39-02	-0.676	C	2
			121.287	83 920.0-908 410	2-2	1.83 + 02	4.03 - 02	3.22-02	-1.094	D+	2
			121.303	84 028.4-908 410	4-2	7.44 + 01	8.21 - 03	1.31 - 02	-1.484	D+	2
			121.010	83 920.0–910 300	2-4	5.30+01	2.33-02	1.85 - 02	-1.332	D+	2
14	$2p^3 - 2p^2(^1D)3s$	$^{2}D^{\circ}-^{2}D$	113.19	55 363-938 830	10–10	2.99+02	5.75-02	2.14-01	-0.240	C	2
			113.190	55 356-938 830	6-6	2.81+02	5.39-02	1.21-01	-0.490	C	2
			113.192	55 372.8-938 830	4-4			7.60-02			2
			113.190	55 356-938 830	6-4	2.11 + 01	2.70-03	6.04-03	-1.790	D	2
			113.192	55 372.8–938 830	4-6	2.69+01	7.74-03	1.15-02	-1.509	D	2
15		$^{2}P^{\circ}-^{2}D$	116.98	83 992–938 830	6–10	1.08+02	3.68-02	8.50-02	-0.656	D+	2
			116.986	84 028.4–938 830	4–6	9.96+01	3.07-02	4.72-02	-0.911	C	2
			116.971	83 920.0-938 830	2-4	8.26+01	3.39-02	2.61-02	-1.169	D+	2
			116.986	84 028.4–938 830	4-4	3.70+01	7.59-03	1.17-02	-1.518	D	2
16	$2p^3 - 2p^2(^1S)3s$	$^{2}P^{\circ}-^{2}S$	111.18	83 992–983 420	6–2	3.92+02	2.42-02	5.32-02	-0.838	D+	2
			[111.19]	84 028.4–983 420	4-2	2.54+02	2.36-02	3.45-02	-1.025	D+	2
			[111.17]	83 920.0–983 420	2-2			1.87-02			
17	$2p^3 - 2p^2(^3P)3d$	$^4S^{\circ}-^4P$	95.45	0.0–1 047 715	4–12	3.04+03	1.24+00	1.56+00	0.695	C+	3
			95.483	0.0-1 047 310	4-6	3.00+03	6.16-01	7.74-01	0.392	В	3
			95.421	0.0-1 047 990	4-4		4.17-01		0.222		3
			95.385	0.0-1 048 380	4-2		2.11-01				

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

No.	Transition aray	Mult.	λ_{air} λ_{vac} (Å) (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	$f_{\mathrm{i}k}$	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
18		$^{2}\text{D}^{\circ} - ^{2}\text{P}$	101.53	55 363–1 040 267	10–6	1.91+02	1.77-02	5.92-02	-0.752	D+	3
			101.553	55 356-1 040 060	6-4	1.69+02	1.74-02	3.49-02	-0.981	D+	3
			101.491	55 372.8-1 040 680	4-2	1.23 + 02	9.51-03	1.27-02	-1.420	D+	3
			101.555	55 372.8-1 040 060	4-4	5.63 + 01	8.71-03	1.17-02	-1.458	D	3
19		$^{2}D^{\circ}-^{2}F$	100.79	55 363–1 047 540	10–14	8.36+02	1.78-01	5.92-01	0.250	C+	3
			100.703	55 356-1 048 380	6-8	8.44+02	1.71-01	3.40-01	0.011	C+	3
			100.903	55 372.8–1 046 420	4–6			2.34 - 01			3
			100.902	55 356–1 046 420	6–6	5.58 + 01	8.52-03	1.70-02	-1.291	D+	3
20		$^{2}D^{\circ}-^{2}D$	99.30	55 363–1 062 392	10-10	8.25+02	1.22-01	3.99-01	0.086	C	3
			99.279	55 356-1 062 620	6–6			2.19-01			3
			99.337	55 372.8–1 062 050	4–4			1.15-01			3
			99.335	55 356–1 062 050	6–4			1.87-02			3
			99.280	55 372.8–1 062 620	4–6	1.58+02	3.50-02	4.58-02	-0.854	С	3
21		$^{2}P^{\circ}-^{2}P$	104.57	83 992–1 040 267	6–6	6.43+02	1.05-01	2.18-01	-0.201	C	3
			104.599	84 028.4-1 040 060	4-4	5.30+02	8.70 - 02	1.20-01	-0.458	C	3
			104.519	83 920.0–1 040 680	2–2	4.06+02	6.65 - 02	4.57 - 02	-0.876	C	3
			104.531	84 028.4-1 040 680	4-2	2.12+02	1.73 - 02	2.39 - 02	-1.160	D+	3
			104.587	83 920.0–1 040 060	2–4	1.25 + 02	4.11-02	2.83-02	-1.085	D+	3
22		$^{2}P^{\circ}-^{2}D$	102.21	83 992–1 062 392	6–10	1.13+03	2.94-01	5.94-01	0.246	C+	3
			102.188	84 028.4-1 062 620	4-6	1.07 + 03	2.51-01	3.38-01	0.002	C+	3
			102.236	83 920.0-1 062 050	2-4	9.48 + 02	2.97-01	2.00-01	-0.226	C+	3
			102.247	84 028.4–1 062 050	4–4	2.63 + 02	4.12-02	5.54-02	-0.783	C	3
23	$2p^3 - 2p^2(^1D)3d$	$^{2}D^{\circ}-^{2}F$	97.27	55 363–1 083 469	10–14	2.85 + 03	5.66-01	1.81+00	0.753	В	3
			97.278	55 356-1 083 340	6-8	2.76+03	5.23-01	1.00+00	0.497	В	3
			97.251	55 372.8-1 083 640	4-6	2.59 + 03	5.50 - 01	7.04 - 01	0.342	В	3
			97.249	55 356-1 083 640	6–6	3.79 + 02	5.37-02	1.03-01	-0.492	C	3
24		$^{2}D^{\circ}-^{2}D$	96.95	55 363–1 086 780	10–10	1.44+03	2.03-01	6.48-01	0.307	C+	3
			96.940	55 356-1 086 920	6-6	1.18+03	1.66-01	3.18-01	-0.002	C+	3
			96.975	55 372.8-1 086 570	4-4	1.40+03	1.98 - 01	2.53 - 01	-0.101	C+	3
			96.973	55 356-1 086 570	6-4	1.68+02	1.57 - 02	3.02 - 02	-1.026	D+	3
			96.942	55 372.8–1 086 920	4–6	1.76+02	3.73-02	4.76-02	-0.826	C	3
25		$^{2}D^{\circ}-^{2}P$	96.27	55 363–1 094 087	10-6	5.82+02	4.85-02	1.54-01	-0.314	C	3
			96.256	55 356-1 094 250	6-4	5.01 + 02	4.64-02	8.82-02	-0.555	C	3
			96.303	55 372.8-1 093 760	4-2	6.65 + 02	4.63 - 02	5.87-02	-0.732	C	3
			96.258	55 372.8–1 094 250	4–4	3.93+01	5.46-03	6.93-03	-1.661	D	3
26		$^{2}P^{\circ}-^{2}D$	99.72	83 992–1 086 780	6–10	9.97+02	2.48-01	4.88-01	0.173	C+	3
			99.712	84 028.4–1 086 920	4-6			3.19-01			3
			99.736	83 920.0–1 086 570	2–4			1.50 - 01			3
			99.746	84 028.4–1 086 570	4–4	9.65+01	1.44-02	1.89-02	-1.240	D+	3
27		$^{2}P^{\circ}-^{2}P$	99.00	83 992–1 094 087	6–6	1.31+03	1.93-01	3.77-01	0.064	C	3
			98.988	84 028.4-1 094 250	4-4	1.15+03	1.69-01	2.21-01	-0.170	C+	3
			99.026	83 920.0-1 093 760	2-2			8.34-02			3
			99.036	84 028.4-1 093 760	4-2	3.35+02	2.47-02	3.21-02	-1.005	D+	3
			98.978	83 920.0–1 094 250	2–4	2.12+02	6.22-02	4.05-02	-0.905	D+	3

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

No.	Transition aray	Mult.	$\begin{array}{ccc} \lambda_{air} & \lambda_{vac} \ (\mbox{Å}) \\ (\mbox{Å}) & or \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \; {\rm s}^{-1}) \end{array}$	$f_{\mathrm{i}k}$	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
28	$2p^3 - 2p^2(^1D)3d$?	$^{2}\text{P}^{\circ}$ $-^{2}\text{S}$?	[98.5]	83 992–1 099 180	6–2	1.47+03	7.11-02	1.38-01	-0.370	С	3
			98.507	84 028.4–1 099 180	4-2	1.01+03	7.37-02	9.56-02	-0.530	C	3
			98.497	83 920.0–1 099 180	2–2	4.52 + 02	6.58-02	4.27-02	-0.881	C	3
29	$2s^22p^3-2s2p^3(^5S^{\circ})3p$	$^4S^{\circ} - ^4P$	90.90	0.0–1 100 150	4-12	4.41+02	1.64-01	1.96-01	-0.183	C	3
			90.897	0.0-1 100 150	4-6	4.45+02	8.27-02	9.90-02	-0.480	C	3
			90.897	0.0-1 100 150	4-4	4.39+02	5.44 - 02	6.51 - 02	-0.662	C	3
			90.897	0.0–1 100 150	4–2	4.34 + 02	2.69-02	3.22-02	-0.968	D+	3
30	$2p^3 - 2p^2(^1S)3d$	$^{2}D^{\circ}-^{2}D$	93.50	55 363–1 124 890	10-10	2.96+01	3.88-03	1.19-02	-1.411	D	3
			93.499	55 356-1 124 890	6-6	2.71+01	3.55-03	6.56-03	-1.672	D	3
			93.500	55 372.8-1 124 890	4-4	2.07 + 01	2.71 - 03	3.34-03	-1.965	D	3
			93.499	55 356-1 124 890	6-4	3.03+00	2.65 - 04	4.89 - 04	-2.799	E+	3
			93.500	55 372.8–1 124 890	4–6	6.34+00	1.25 - 03	1.53-03	-2.301	E+	3
31		$^{2}P^{\circ}-^{2}D$	96.07	83 992–1 124 890	6–10	1.14+03	2.64-01	5.01-01	0.200	C+	3
			96.074	84 028.4-1 124 890	4-6	1.11+03	2.30-01	2.91-01	-0.036	C+	3
			96.064	83 920.0-1 124 890	2-4	9.99 + 02	2.77-01	1.75 - 01	-0.256	C	3
			96.074	84 028.4–1 124 890	4–4	1.98 + 02	2.74-02	3.47-02	-0.960	D+	3
32	$2p^3 - 2p^2(^3P)4s$	$^4S^{\circ} - ^4P$			4–12						1
			[83.56]	0.0–1 196 740	4-6	7.13+01	1.12-02	1.23-02	-1.349	D	LS
33		$^{2}P^{\circ}-^{2}P$			6-6						1
			89.651	84 028.4-1 199 470	4-4	1.55+02	1.87-02	2.21-02	-1.126	D	LS
			89.642	83 920.0–1 199 470	2-4			4.42-03			LS
34	$2s^22p^3 - 2s2p^3(^3D^{\circ})3p$	$^{2}D^{\circ}-^{2}F$	85.60	55 363–1 223 554	10–14	6.89+02	1.06-01	2.99-01	0.025	C	1
			[85.62]	55 356-1 223 280	6-8	6.89 + 02	1.01-01	1.71-01	-0.218	C	LS
			[85.58]	55 372.8-1 223 920	4-6	6.44 + 02	1.06-01	1.19-01	-0.373	C	LS
			[85.58]	55 356-1 223 920	6-6	4.58 + 01	5.03-03	8.50-03	-1.520	E+	LS
35	$2p^3 - 2p^2(^1D)4s$	$^2D^{\circ}-^2D$	84.72	55 363–1 235 690	10-10	3.69+02	3.98-02	1.11-01	-0.400	D+	1
			84.722	55 356-1 235 690	6-6	3.45 + 02	3.71-02	6.21-02	-0.652	D+	LS
			84.723	55 372.8-1 235 690	4-4	3.33+02	3.58-02	3.99-02	-0.844	D+	LS
			84.722	55 356-1 235 690	6-4	3.69+01	2.65 - 03	4.43-03	-1.799	E+	LS
			84.723	55 372.8–1 235 690	4–6	2.46+01	3.97-03	4.43-03	-1.799	E+	LS
36	$2p^3 - 2p^2(^3P)4d$	$^4S^{\circ}-^4P$	79.84	0.0–1 252 485	4–12	7.73 + 02	2.22-01	2.33-01	-0.052	C	1
			79.857	0.0-1 252 240	4-6	7.74+02	1.11-01	1.17-01	-0.353	C	LS
			79.830	0.0-1 252 660	4-4			7.76-02			LS
			79.817	0.0-1 252 870	4–2	7.73 + 02	3.69-02	3.88-02	-0.831	D+	LS
37		$^{2}D^{\circ}-^{2}F$	83.45	55 363–1 253 643	10–14	6.91+02	1.01-01	2.77-01	0.004	C	1
			[83.40]	55 356-1 254 350	6-8	6.92+02	9.62-02	1.58-01	-0.239	C	LS
			[83.52]	55 372.8-1 252 700	4-6			1.11-01			LS
			[83.52]	55 356-1 252 700	6-6			7.92-03			LS
38		$^{2}D^{\circ}-^{2}D$			10–10						1
			[83.12]	55 356–1 258 380	6–6	2.23+02	2.31-02	3.79-02	-0.858	D+	LS
			[83.13]	55 372.8–1 258 380	4–6			2.70-02			LS
39		$^{2}P^{\circ}-^{2}D$			6–10						1
-		_									

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

No.	Transition aray	Mult.	λ_{air} λ_{vac} (Å) (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	$f_{\mathrm{i}k}$	S (a.u.)	$\log gf$	Acc.	Source
			[85.15]	84 028.4–1 258 380	4-6	7.05+01	1.15-02	1.29-02	-1.337	D	LS
40	$2p^3 - 2p^2(^1D)4d$	$^{2}D^{\circ}-^{2}F$	81.11	55 363-1 288 310	10–14	8.60+02	1.19-01	3.17-01	0.076	C	1
			[81.11]	55 356-1 288 310	6-8	8.59+02	1.13-01	1.81-01	-0.169	C	LS
			[81.11]	55 372.8-1 288 310	4-6	8.04 + 02	1.19 - 01	1.27 - 01	-0.322	C	LS
			[81.11]	55 356-1 288 310	6–6	5.74+01	5.66-03	9.07-03	-1.469	D	LS
41		$^{2}D^{\circ}-^{2}D$	80.93	55 363–1 290 990	10-10	5.87+02	5.76-02	1.54-01	-0.240	D+	1
			80.930	55 356-1 290 990	6-6	5.48+02	5.38-02	8.60-02	-0.491	C	LS
			80.931	55 372.8–1 290 990	4–4	5.29 + 02	5.19 - 02	5.53 - 02	-0.683	D+	LS
			80.930	55 356-1 290 990	6-4	5.87 + 01	3.84 - 03	6.14 - 03	-1.638	E+	LS
			80.931	55 372.8–1 290 990	4–6	3.91+01	5.76-03	6.14-03	-1.638	E+	LS
42		$^{2}D^{\circ}-^{2}P$	80.72	55 363–1 294 150	10-6	2.78+02	1.63-02	4.33-02	-0.788	D	1
			[80.72]	55 356-1 294 150	6-4	2.50+02	1.63-02	2.60-02	-1.010	D	LS
			[80.72]	55 372.8–1 294 150	4–2	2.78 + 02	1.36 - 02	1.45 - 02	-1.264	D	LS
			[80.72]	55 372.8–1 294 150	4–4	2.78 + 01	2.72-03	2.89-03	-1.963	E+	LS
43		$^{2}P^{\circ}-^{2}D$	82.85	83 992–1 290 990	6–10	2.18+02	3.73-02	6.11-02	-0.650	D	1
			82.853	84 028.4-1 290 990	4-6	2.18+02	3.36-02	3.67-02	-0.872	D+	LS
			82.845	83 920.0-1 290 990	2-4	1.81 + 02	3.73-02	2.03-02	-1.127	D	LS
			82.853	84 028.4–1 290 990	4-4	3.62+01	3.73-03	4.07-03	-1.826	E+	LS
44		$^{2}P^{\circ}-^{2}P$	82.63	83 992–1 294 150	6-6	4.74+02	4.85-02	7.91-02	-0.536	D	1
			[82.64]	84 028.4–1 294 150	4-4	3.95+02	4.04-02	4.40-02	-0.792	D+	LS
			[82.63]	83 920.0-1 294 150	2-2	3.16+02	3.23-02	1.76-02	-1.190	D	LS
			[82.64]	84 028.4-1 294 150	4-2	1.58 + 02	8.08-03	8.79-03	-1.491	D	LS
			[82.63]	83 920.0–1 294 150	2-4	7.91 + 01	1.62-02	8.81-03	-1.489	D	LS
45		$^{2}P^{\circ}-^{2}S$	82.47	83 992–1 296 520	6–2	2.69+02	9.16-03	1.49-02	-1.260	E+	1
			[82.47]	84 028.4-1 296 520	4-2	1.80+02	9.16-03	9.95-03	-1.436	D	LS
			[82.47]	83 920.0–1 296 520	2–2	8.98+01	9.16-03	4.97-03	-1.737	E+	LS
46	$2p^3 - 2p^2(^3P)5s$	$^{4}\text{S}^{\circ}$ $-^{4}\text{P}$			4-12						1
			[75.83]	0.0-1 318 670	4–6	1.01+02	1.31-02	1.31-02	-1.281	D	LS
			[75.89]	0.0–1 317 700	4-4	1.01 + 02	8.74-03	8.73-03	-1.456	D	LS
47	$2p^3 - 2p^2(^1S)4d$	$^{2}P^{\circ}-^{2}D$	80.03	83 992–1 333 500	6–10	3.43+02	5.49-02	8.68-02	-0.482	D+	1
			[80.03]	84 028.4-1 333 500	4-6	3.43+02	4.94-02	5.21-02	-0.704	D+	LS
			[80.03]	83 920.0-1 333 500	2-4	2.86 + 02	5.49-02	2.89-02	-0.959	D	LS
			[80.03]	84 028.4-1 333 500	4-4	5.72 + 01	5.49-03	5.79-03	-1.658	E+	LS
48	$2p^3 - 2p^2(^3P)5d$	$^{2}\text{D}^{\circ}-^{2}\text{F}$	77.45	55 363–1 346 510	10-14	4.57 + 02	5.75-02	1.47-01	-0.240	D+	1
			[77.41]	55 356-1 347 260	6-8	4.58+02	5.48-02	8.38-02	-0.483	C	LS
			[77.51]	55 372.8-1 345 510	4-6	4.25 + 02	5.74-02	5.86-02	-0.639	D+	LS
			[77.51]	55 356-1 345 510	6-6	3.03+01	2.73 - 03	4.18-03	-1.786	E+	LS
49	$2p^3 - 2p^2(^1D)5d$	$^{2}D^{\circ}-^{2}F$	75.33	55 363–1 382 780	10–14	2.73+02	3.26-02	8.08-02	-0.487	D+	1
			[75.33]	55 356–1 382 780	6-8	2.73+02	3.10-02	4.61-02	-0.730	D+	LS
			[75.33]	55 372.8-1 382 780	4-6			3.23-02			LS
			[75.33]	55 356-1 382 780	6-6			2.31-03			LS
50	$2p^3 - 2p^2(^1D)5d$?	$^{2}D^{\circ}-^{2}D$?	[75.3]	55 363–1 384 290	10-10	3.28+02	2.79-02	6.90-02	-0.554	D	1
			75.248	55 356-1 384 290	6-6	3.06+02	2.60-02	3.86-02	-0.807	D+	LS

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

No.	Transition aray	Mult.	$\begin{array}{ccc} \lambda_{air} & \lambda_{vac} \ (\mbox{Å}) \\ (\mbox{Å}) & or \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	$f_{\mathrm{i}k}$	S (a.u.)	$\log gf$	Acc.	Source
			75.249 75.248	55 372.8–1 384 290 55 356–1 384 290	4–4 6–4			2.49-02 2.76-03			LS LS
			75.249	55 372.8–1 384 290	4-6			2.76-03			LS
51		${}^{2}P^{\circ} - {}^{2}D$?	[76.9]	83 992–1 384 290	6–10			2.07-02			1
			76.009	94 029 4 1 294 200	1.6	0.25 ± 01	1 22 02	1 25 .02	1 200	D	1.0
			76.908 76.901	84 028.4–1 384 290 83 920.0–1 384 290	4–6 2–4			1.25-02 $6.89-03$			LS LS
			76.901	84 028.4–1 384 290	2–4 4–4			1.38-03			LS
52	$2s2p^4 - 2p^5$	$^{4}P-^{2}P^{\circ}$	701,700	0.020150.250		1.00 . 01	1.00 00	1.00 00	2.20	_	25
	• •		248.581	249 584–651 867	1 1	9 66 02	202.06	2.63-05	4.404	Е⊥	4
			247.511	250 450–654 473	4–4 2–2			1.45-05			4
			247.574	247 948–651 867	6–4			1.04-04			4
			246.981	249 584–654 473	4-2			3.00-06			4
			249.118	250 450–651 867	2–4			7.01-06			4
53		$^{2}\mathrm{D}-^{2}\mathrm{P}^{\circ}$	321.58	341 768–652 736	10–6		1.01-01		0.004		4
33		D I									
			322.460	341 751–651 867	6–4			6.42-01			4
			319.816	341 793–654 473	4–2			3.50-01			4
			322.504	341 793–651 867	4–4			7.81-02			4
54		$^{2}S-^{2}P^{\circ}$	398.54	401 822–652 736	2–6	5.30+00	3.79-02	9.94-02	-1.120	B+	4
			399.928	401 822-651 867	2-4	6.17+00	2.96-02	7.79 - 02	-1.228	B+	4
			395.803	401 822–654 473	2–2	3.51+00	8.25-03	2.15-02	-1.783	B+	4
55		$^{2}P-^{2}P^{\circ}$	440.73	425 838–652 736	6-6	6.87+01	2.00-01	1.74+00	0.079	B+	4
			441.156	425 190–651 867	4-4	5.67+01	1.65-01	9.61-01	-0.180	B+	4
			439.874	427 135–654 473	2-2	4.74 + 01	1.37 - 01	3.98 - 01	-0.562	$\mathrm{B} +$	4
			436.142	425 190–654 473	4–2	2.45 + 01	3.50 - 02	2.01-01	-0.854	$\mathrm{B} +$	4
			444.974	427 135–651 867	2–4	1.04+01	6.20-02	1.82-01	-0.907	B+	4
56	$2s2p^4 - 2s2p^3(^5S^\circ)3s$	$^{4}P-^{4}S^{\circ}$	125.36	<i>248 910</i> –1 046 640	12-4	4.84+02	3.80-02	1.88-01	-0.341	C	2
			125.205	247 948-1 046 640	6-4	2.44+02	3.82-02	9.46-02	-0.640	C	2
			125.462	249 584–1 046 640	4-4	1.60+02	3.78 - 02	6.25 - 02	-0.820	C	2
			125.598	250 450–1 046 640	2–4	7.97+01	3.77-02	3.12-02	-1.123	D+	2
57	$2s2p^4 - 2s2p^3(^3D^{\circ})3s$	$^{4}P-^{4}D^{\circ}$	114.53	248 910–1 122 020	12-20	2.89+02	9.48-02	4.29-01	0.056	D+	1
			114.407	247 948-1 122 020	6-8	2.90+02	7.60-02	1.72-01	-0.341	C	LS
			114.622	249 584-1 122 020	4–6	2.02+02	5.97 - 02	9.01 - 02	-0.622	C	LS
			114.735	250 450–1 122 020	2–4	1.20+02	4.73 - 02	3.57 - 02	-1.024	D+	LS
			114.407	247 948-1 122 020	6–6	8.71 + 01	1.71 - 02	3.86 - 02	-0.989	D+	LS
			114.622	249 584–1 122 020	4–4			4.57 - 02			LS
			114.735	250 450–1 122 020	2–2			3.57 - 02			LS
			114.407	247 948–1 122 020	6–4			4.29-03			LS
			114.622	249 584–1 122 020	4–2	4.81+01	4.74-03	7.15-03	-1.722	E+	LS
58		$^{2}D-^{2}D^{\circ}$	123.60	341 768–1 150 840	10–10	3.82+02	8.74-02	3.56-01	-0.058	C	1
			123.596	341 751–1 150 840	6-6	3.56+02	8.16-02	1.99-01	-0.310	C	LS
			123.602	341 793–1 150 840	4-4	3.43 + 02	7.86 - 02	1.28-01	-0.503	C	LS
			123.596	341 751–1 150 840	6-4			1.42-02			LS
			123.602	341 793–1 150 840	4–6	2.54+01	8.74-03	1.42-02	-1.456	D	LS
59		$^{2}P-^{2}D^{\circ}$	137.93	425 838–1 150 840	6–10	1.89+01	8.98-03	2.45-02	-1.269	D	1
			137.807	425 190–1 150 840	4–6	1.89+01	8.09-03	1.47-02	-1.490	D	LS

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

Transition		λ_{air} λ_{vac} (Å)	$E_i - E_k$		A_{ki}		S			
aray	Mult.	(Å) or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	$f_{\mathrm{i}k}$	(a.u.)	$\log gf$	Acc.	Source
		138.178	427 135–1 150 840	2–4	1.57+01	8.97-03	8.16-03	-1.746	E+	LS
		137.807	425 190–1 150 840	4-4	3.16+00	8.99-04	1.63-03	-2.444	E	LS
202n4 202n3(3p°)20	$^{4}\mathbf{p}$ $^{4}\mathbf{p}^{\circ}$	109.26	248 010 1 172 610	12 12	2 11 + 02	5.46 02	2.24 01	0.194	DΤ	1
2s2p -2s2p (P)3s	P- P	100.20	246 910–1 172 010	12-12	3.11+02	3.40-02	2.34-01	-0.184	DΤ	1
		108.148	247 948-1 172 610	6-6	2.18+02	3.83 - 02	8.18-02	-0.639	D+	LS
		108.339	249 584-1 172 610	4–4	4.14+01	7.28 - 03	1.04 - 02	-1.536	D	LS
		108.441	250 450–1 172 610	2–2						LS
			247 948–1 172 610	6–4						LS
		108.339	249 584–1 172 610	4–2						LS
										LS
		108.441	250 450–1 172 610	2–4	1.29+02	4.54-02	3.24-02	-1.042	D+	LS
	$^{2}D-^{2}P^{\circ}$	117.55	341 768–1 192 497	10-6	2.29+02	2.84-02	1.10-01	-0.547	D+	1
		117.532	341 751–1 192 580	6-4	2.06+02	2.84-02	6.59-02	-0.769	D+	LS
		117.573	341 793-1 192 330	4-2	2.29 + 02	2.37-02	3.67-02	-1.023	D+	LS
		117.538	341 793–1 192 580	4-4	2.29+01	4.74-03	7.34-03	-1.722	E+	LS
	2 S $-^2$ P $^{\circ}$	126.47	401 822 <i>–1 192 497</i>	2-6	1.66+02	1.20-01	9.97-02	-0.620	D+	1
		126.461	401 922 1 102 590	2.4	1.66 ± 02	7.09 02	6.64 02	0.707	D±	LS
										LS
		120.301	401 822-1 192 330	2–2	1.00+02	3.99-02	3.32-02	-1.098	D⊤	LS
	$^{2}P-^{2}P^{\circ}$	130.44	425 838–1 192 497	6–6	3.56+01	9.09-03	2.34-02	-1.263	E+	1
		130.312	425 190–1 192 580	4-4	2.98+01	7.58 - 03	1.30-02	-1.518	D	LS
		130.686	427 135–1 192 330	2–2	2.36+01	6.05 - 03	5.21 - 03	-1.917	E+	LS
		130.354	425 190–1 192 330	4–2	1.19+01	1.52 - 03	2.61 - 03	-2.216	E+	LS
		130.643	427 135–1 192 580	2–4	5.92+00	3.03-03	2.61-03	-2.218	E+	LS
$2s2p^4 - 2s2p^3(^5S^{\circ})3d$	$^4P - ^4D^{\circ}$	107.93	248 910–1 175 400	12-20	1.11+03	3.24-01	1.38+00	0.590	C	1
		107.822	247 948-1 175 400	6-8	1.11+03	2.59-01	5.52-01	0.191	C+	LS
		108.013	249 584-1 175 400	4-6	7.78 + 02	2.04-01	2.90-01	-0.088	C	LS
		108.114	250 450-1 175 400	2-4	4.62 + 02	1.62-01	1.15-01	-0.489	C	LS
		107.822	247 948-1 175 400	6-6	3.34+02	5.83-02	1.24-01	-0.456	C	LS
		108.013	249 584-1 175 400	4-4	5.89 + 02	1.03 - 01	1.47 - 01	-0.385	C	LS
		108.114	250 450-1 175 400	2-2	9.24+02	1.62-01	1.15-01	-0.489	C	LS
		107.822	247 948-1 175 400	6-4	5.58+01	6.48-03	1.38-02	-1.410	D	LS
		108.013	249 584-1 175 400	4-2	1.85 + 02	1.62-02	2.30-02	-1.188	D	LS
$2s2p^4 - 2s2p^3(^3D^{\circ})3d$	$^4P - ^4P^{\circ}$	96.77	248 910–1 282 260	12-12	2.53+03	3.55-01	1.36+00	0.629	C	1
		96.704	247 948-1 282 030	6–6	1.78+03	2.49-01	4.76-01	0.174	C+	LS
										LS
										LS
										LS
										LS
										LS
		96.904	250 450-1 282 400	2–4						LS
	$^{4}\mathrm{P} - ^{4}\mathrm{D}^{\circ}$	96.33		12–20						1
	_									LS
										LS
										LS
										LS
										LS
										LS
										LS
		70.230	21/ 210 1 20/ 040	5 7	5.70 FUI	J.JT -03	1.05 -02	1.470		20
	aray $2s2p^4 - 2s2p^3(^3P^{\circ})3s$ $2s2p^4 - 2s2p^3(^5S^{\circ})3d$	aray Mult. $2s2p^4-2s2p^3(^3P^{\circ})3s$ $^4P-^4P^{\circ}$ $^2D-^2P^{\circ}$ $^2S-^2P^{\circ}$ $^2P-^2P^{\circ}$ $^2S-^2P^{\circ}$	aray Mult. (Å) or σ (cm ⁻¹) ^a $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	aray Mult. (Å) or σ (cm ⁻¹) ⁸ (cm ⁻¹) 138.178 427 135-1 150 840 137.807 425 190-1 150 840 2 $s2p^4$ -2 $s2p^3$ (³ P')3 s ⁴ P- ⁴ P* 108.26 248 910-1 172 610 108.339 249 584-1 172 610 108.339 249 584-1 172 610 108.339 249 584-1 172 610 108.339 249 584-1 172 610 108.339 249 584-1 172 610 108.339 249 584-1 172 610 108.339 249 584-1 172 610 108.339 249 584-1 172 610 117.532 341 751-1 192 580 117.573 341 793-1 192 580 117.573 341 793-1 192 580 117.573 341 793-1 192 580 117.573 341 793-1 192 580 117.573 341 793-1 192 580 117.532 341 751-1 192 580 117.532 341 751-1 192 580 117.533 341 793-1 192 580 117.534 341 793-1 192 580 117.535 341 793-1 192 580 126.401 401 822-1 192 330 130.544 425 838-1 192 497 130.646 427 135-1 192 330 130.643 427 135-1 192 580 130.686 427 135-1 192 580 130.686 427 135-1 192 580 130.686 427 135-1 192 580 130.686 427 135-1 192 580 130.681 425 190-1 192 380 130.684 327 185-1 192 580 130.681 425 190-1 192 380 130.684 327 185-1 192 580 130.881 425 190-1 192 380 130.681 425 190-1 192 380 130.681 425 190-1 192 380 130.681 425 190-1 192 380 130.681 427 185-1 192 580 107.822 247 948-1 175 400 108.113 249 584-1 175 400 108.113 249 584-1 175 400 108.114 250 450-1 175 400 108.113 249 584-1 175 400 108.113 249 584-1 175 400 108.113 249 584-1 175 400 108.114 250 450-1 175 400 108.115 249 584-1 175 400 108.112 250 450-1 175 400 108.113 249 584-1 175 400 108.114 250 450-1 175 400 108.115 249 584-1 175 400 108.115 249 584-1 175 400 108.116 250 450-1 175 400 108.117 250 450-1 175 400 108.118 250 450-1 175 400 108.119 250 450-1 187 400 108.119 250 450-1 187 400 108.12 274 948-1 282 670 96.879 250 450-1 282 400 96.879 250 450-1 282 400 96.879 250 450-1 282 400 96.990 249 584-1 282 070 96.870 250 450-1 287 040 96.390 249 584-1 282 070 96.390 249 584-1 282 070 96.390 249 584-1 282 070 96.390 249 584-1 282 070 96.390 249 584-1 282 070 96.390 249 584-1 282 070 96.390 249 584-1 282 070 96.390 249 584-1 282 070 96.470 250 450-1 287 040	aray Mult. (Å) or σ (cm ⁻¹) ² (cm ⁻¹) $g_1 - g_4$ $2s2p^4 - 2s2p^3(^3P^3)3s$ $^4P - ^4P^5$ 108.26 $248910 - 1172610$ $12 - 12$ 108.148 $247948 - 1172610$ $4 - 4$ 108.339 $24984 - 1172610$ $4 - 4$ 108.339 $24984 - 1172610$ $4 - 4$ 108.339 $24984 - 1172610$ $4 - 4$ 108.339 $24984 - 1172610$ $4 - 4$ 108.339 $24984 - 1172610$ $4 - 4$ 108.339 $24984 - 1172610$ $4 - 4$ 108.339 $24984 - 1172610$ $4 - 2$ 108.339 $24984 - 1172610$ $4 - 2$ 108.339 $24984 - 1172610$ $4 - 2$ 108.339 $24984 - 1172610$ $4 - 2$ 108.339 $24984 - 1172610$ $4 - 2$ 108.339 $24984 - 1172610$ $4 - 2$ 108.339 $24984 - 1172610$ $4 - 2$ 108.339 $24984 - 1172610$ $4 - 2$ 108.339 $108 - 1172610$ $2 - 2$ 108.339 $108 - 1172610$ $2 - 2$ 117.532 $341768 - 1192497$ $10 - 6$ 117.533 $341793 - 1192580$ $6 - 4$ 117.533 $341793 - 1192580$ $4 - 2$ 117.538 $341793 - 1192580$ $4 - 2$ 117.538 $341793 - 1192580$ $2 - 2$ 117.538 $341793 - 1192580$ $2 - 2$ 117.538 $341793 - 1192580$ $2 - 2$ 117.538 $341793 - 1192580$ $2 - 2$ 117.538 $341793 - 1192580$ $2 - 2$ 117.538 $341793 - 1192580$ $2 - 2$ 117.538 $341793 - 1192580$ $2 - 2$ 117.538 $341793 - 1192580$ $2 - 2$ 117.538 $341793 - 1192580$ $2 - 2$ 117.538 $341793 - 1192580$ $2 - 2$ 117.538 $341793 - 1192580$ $2 - 2$ 117.539 117.540 1	aray Mult. (Å) or σ (cm ⁻¹)* (cm ⁻²) $g_1 = g_2$ (10 ⁸ s ⁻²) 138.178 427 135-1 150 840 2-4 1.57+601 2 $s2p^4 = 2s2p^3(^3P)^3s$ $^4P = ^4P^2$ 108.26 248 910-1 170 840 14-4 3.16+00 108.339 249 584-1 172 610 6-6 2.18+02 108.339 249 584-1 172 610 6-6 2.18+02 108.434 257 945-1 172 610 6-4 4.14+01 108.441 250 450-1 172 610 6-4 2.28+00 108.339 249 584-1 172 610 6-4 2.28+00 108.339 249 584-1 172 610 6-4 2.28+00 108.339 249 584-1 172 610 6-4 2.28+00 108.339 249 584-1 172 610 6-4 2.28+00 108.341 250 450-1 172 610 2-4 1.29+02 108.341 250 450-1 172 610 2-4 1.29+02 117.553 341 768-1 192 497 10-6 2.29+02 117.553 341 768-1 192 497 10-6 2.29+02 117.573 341 793-1 192 580 6-4 2.06+02 117.573 341 793-1 192 580 6-4 2.06+02 117.573 341 793-1 192 580 2-2 1.66+02 126.461 401 822-1 192 580 2-4 1.66+02 126.501 401 822-1 192 330 2-2 1.66+02 126.501 401 822-1 192 330 2-2 1.66+02 126.501 401 822-1 192 330 2-2 1.66+02 126.501 401 822-1 192 330 2-2 1.66+02 126.501 401 822-1 192 330 2-2 1.66+02 126.501 401 822-1 192 580 4-4 2.98+01 130.634 427 135-1 192 330 4-2 1.99+01 130.634 427 135-1 192 330 4-2 1.99+01 130.634 427 135-1 192 330 4-2 2.36+01 130.634 427 135-1 192 330 4-2 2.36+01 130.634 427 135-1 192 330 4-2 2.36+01 130.631 249 584-1 175 400 4-6 7.88+02 108.114 250 450-1 175 400 4-6 7.88+02 108.113 249 584-1 175 400 4-6 7.88+02 108.114 250 450-1 175 400 4-6 7.88+02 108.113 249 584-1 175 400 4-6 7.88+02 108.114 250 450-1 175 400 4-6 7.88+02 108.114 250 450-1 175 400 4-2 2.94+02 107.822 247 948-1 175 400 4-6 7.88+02 108.114 250 450-1 175 400 4-2 2.05+00 108.114 250 450-1 175 400 4-2 2.05+00 108.114 250 450-1 175 400 4-2 2.05+00 108.114 250 450-1 175 400 4-2 2.05+00 108.114 250 450-1 175 400 4-2 2.05+00 108.114 250 450-1 175 400 4-2 2.05+00 108.114 250 450-1 175 400 4-2 2.05+00 108.114 250 450-1 175 400 4-2 2.05+00 108.114 250 450-1 175 400 4-2 2.05+00 108.114 250 450-1 175 400 4-2 2.05+00 108.114 250 450-1 175 400 4-2 2.05+00 108.114 250 450-1 175 400 4-2 2.05+00 108.114 250 450-1 175 4	aray Mult (Å) or σ (cm ⁻¹)* (cm ⁻²) $\xi_r g_A$ (10) ξ^{-1} f_B (10) $\xi^{-1} g_A$ (10) $\xi^{-1} g_A$ (10) $\xi^{-1} g_A$ (11) $\xi^{-1} g_A$ (11) $\xi^{-1} g_A$ (12) $\xi^{-1} g_A$ (12) $\xi^{-1} g_A$ (13) $\xi^{-1} g_A$ (13) $\xi^{-1} g_A$ (13) $\xi^{-1} g_A$ (14) $\xi^{-1} g_A$ (15) $\xi^{-1} g_A$ (15) $\xi^{-1} g_A$ (15) $\xi^{-1} g_A$ (16) $\xi^{-1} g_A$ (16) $\xi^{-1} g_A$ (16) $\xi^{-1} g_A$ (17) $\xi^{-1} $	aray Mult. (λ) or α (cm ⁻¹) (cm ⁻¹) g_{-} g_{-} (10^{8} c) 1 g_{-} g_{-} (10 ⁸ c) 1 g_{-} $g_$	Second S	138.18 (A) or or (cm ⁻¹) (cm ⁻¹)

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

No.	Transition aray	Mult.	$\begin{array}{ccc} \lambda_{air} & \lambda_{vac} \ (\mathring{A}) \\ (\mathring{A}) & or \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	$f_{\mathrm{i}k}$	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			96.390	249 584–1 287 040	4–2	1.98+02	1.38-02	1.75-02	-1.258	D	LS
67		$^4P - ^4S^{\circ}$	96.25	248 910–1 287 890	12-4	2.65+03	1.22-01	4.66-01	0.166	C	1
			[96.16]	247 948-1 287 890	6–4	1.33+03	1.23-01	2.34-01	-0.132	C	LS
			[96.31]	249 584-1 287 890	4-4	8.77 + 02	1.22-01	1.55-01	-0.312	C	LS
			[96.39]	250 450–1 287 890	2-4	4.38 + 02	1.22-01	7.74-02	-0.613	D+	LS
68		$^{2}D-^{2}F^{\circ}$	105.46	341 768–1 289 973	10–14	1.60+03	3.73-01	1.29+00	0.572	C+	1
			[105.50]	341 751–1 289 600	6-8	1.60+03	3.55-01	7.40-01	0.328	C+	LS
			[105.41]	341 793–1 290 470	4-6	1.49 + 03	3.73 - 01	5.18 - 01	0.174	C+	LS
			[105.41]	341 751–1 290 470	6–6	1.07 + 02	1.78 - 02	3.71 - 02	-0.971	D+	LS
69	$2s2p^4 - 2s2p^3(^5S^{\circ})4d$	$^4P-^4D^{\circ}$	88.90	248 910–1 373 760	12-20	8.86+02	1.75-01	6.14-01	0.322	C	1
			88.825	247 948-1 373 760	6-8	8.88+02	1.40-01	2.46-01	-0.076	C	LS
			88.954	249 584-1 373 760	4-6	6.18 + 02	1.10-01	1.29 - 01	-0.357	C	LS
			89.023	250 450-1 373 760	2-4	3.68+02	8.74-02	5.12-02	-0.757	D+	LS
			88.825	247 948-1 373 760	6-6	2.66+02	3.15-02	5.53-02	-0.724	D+	LS
			88.954	249 584-1 373 760	4-4	4.72 + 02	5.60-02	6.56-02	-0.650	D+	LS
			89.023	250 450-1 373 760	2-2	7.36 + 02	8.74 - 02	5.12-02	-0.757	D+	LS
			88.825	247 948-1 373 760	6-4	4.44 + 01	3.50-03	6.14-03	-1.678	E+	LS
			88.954	249 584–1 373 760	4–2	1.47 + 02	8.74 - 03	1.02-02	-1.456	D	LS
70	$2s^22p^2(^3P)3s-2s2p^3(^5S^{\circ})3s$	$^4P - ^4S^{\circ}$	661.7	895 507–1 046 640	12-4	5.64+00	1.23-02	3.22-01	-0.831	C	2
			665.78	896 440–1 046 640	6-4	2.76+00	1.22-02	1.61-01	-1.135	C	2
			658.98	894 890-1 046 640	4-4	1.90+00	1.24 - 02	1.07 - 01	-1.305	C	2
			654.88	893 940–1 046 640	2-4	9.75-01	1.25 - 02	5.40-02	-1.602	C	2
71	$2s^22p^2(^3P)3s - 2s2p^3(^3D^{\circ})3s$	$^4P-^4D^{\circ}$	441.48	895 507–1 122 020	12–20	2.41+01	1.17-01	2.05+00	0.147	C+	1
			443.302	896 440–1 122 020	6-8	2.38+01	9.35-02	8.19-01	-0.251	C+	LS
			440.276	894 890-1 122 020	4-6	1.70+01	7.41 - 02	4.30-01	-0.528	C+	LS
			438.443	893 940-1 122 020	2-4	1.03 + 01	5.91-02	1.71-01	-0.927	C	LS
			443.302	896 440-1 122 020	6-6	7.13 + 00	2.10-02	1.84-01	-0.900	C	LS
			440.276	894 890-1 122 020	4-4	1.30+01	3.77-02	2.19-01	-0.822	C	LS
			438.443	893 940-1 122 020	2-2	2.05 + 01	5.91-02	1.71-01	-0.927	C	LS
			443.302	896 440-1 122 020	6-4	1.19+00	2.34-03	2.05-02	-1.853	D	LS
			440.276	894 890–1 122 020	4-2	4.05+00	5.88-03	3.41-02	-1.629	D+	LS
72		$^{2}P-^{2}D^{\circ}$	414.65	909 670–1 150 840	6–10	1.15+01	4.95-02	4.05-01	-0.527	C	1
			415.731	910 300-1 150 840	4-6	1.14+01	4.44-02	2.43-01	-0.751	C	LS
			412.490	908 410-1 150 840	2-4	9.74 + 00	4.97-02	1.35-01	-1.003	C	LS
			415.731	910 300–1 150 840	4-4	1.91 + 00	4.94-03	2.70-02	-1.704	D	LS
73	$2s^22p^2(^3P)3s-2s2p^3(^3P^\circ)3s$	$^4P - ^4P^{\circ}$	360.88	895 507–1 172 610	12–12	6.93+01	1.35-01	1.93+00	0.210	C+	1
			362.096	896 440–1 172 610	6-6	4.81+01	9.45-02	6.76-01	-0.246	C+	LS
			360.075	894 890-1 172 610	4-4	9.31 + 00	1.81 - 02	8.58-02	-1.140	C	LS
			358.847	893 940-1 172 610	2-2	1.18+01	2.27-02	5.36-02	-1.343	D+	LS
			362.096	896 440-1 172 610	6-4			2.90-01			LS
			360.075	894 890-1 172 610	4-2	5.81 + 01	5.65-02	2.68-01	-0.646	C	LS
			360.075	894 890-1 172 610	4-6			2.90-01			LS
			358.847	893 940–1 172 610	2–4			2.67-01			LS
74		$^{2}P-^{2}P^{\circ}$	353.57	909 670–1 192 497	6-6	3.73+01	6.99-02	4.88-01	-0.377	C	1
			354.258	910 300–1 192 580	4-4	3.09+01	5.82-02	2.72-01	-0.633	C	LS

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

No.	Transition aray	Mult.	$\begin{array}{ccc} \lambda_{air} & \lambda_{vac} \ (\mathring{A}) \\ (\mathring{A}) & or \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	$f_{\mathrm{i}k}$	S (a.u.)	$\log gf$	Acc.	Source
			352.212	908 410–1 192 330	2–2	2.52+01	4.68-02	1.09-01	-1.029	С	LS
			354.572	910 300–1 192 330	4-2	1.23 + 01	1.16-02	5.42 - 02	-1.333	D+	LS
			351.902	908 410–1 192 580	2-4	6.30+00	2.34-02	5.42-02	-1.330	D+	LS
75	$2s^22p^2(^3P)3s - 2s2p^3(^3D^\circ)3d$	$^{4}P - ^{4}S^{\circ}$	254.85	895 507–1 287 890	12–4	1.02+01	3.30-03	3.32-02	-1.402	D	1
			[255.46]	896 440–1 287 890	6–4	5.04+00	3.29-03	1.66-02	-1.705	D	LS
			[254.45]	894 890-1 287 890	4-4	3.41 + 00	3.31-03	1.11-02	-1.878	D	LS
			[253.84]	893 940–1 287 890	2-4	1.72 + 00	3.32-03	5.55-03	-2.178	E+	LS
76	$2s^22p^2(^1D)3s - 2s2p^3(^3D^{\circ})3s$	$^{2}D-^{2}D^{\circ}$	471.68	938 830–1 150 840	10–10	3.20+00	1.07-02	1.66-01	-0.971	D+	1
			471.676	938 830–1 150 840	6–6	2.99+00	9.96-03	9.28-02	-1.224	С	LS
			471.676	938 830-1 150 840	4-4			5.97-02			LS
			471.676	938 830-1 150 840	6-4	3.20-01	7.12-04	6.63-03	-2.369	E+	LS
			471.676	938 830-1 150 840	4-6	2.14-01	1.07-03	6.65-03	-2.369	E+	LS
77	$2s^22p^2(^1D)3s - 2s2p^3(^3P^\circ)3s$	$^{2}D-^{2}P^{\circ}$	394.22	938 830–1 192 497	10-6	2.23+00	3.12-03	4.05-02	-1.506	D	1
	232p (1)33										
			394.089	938 830–1 192 580	6–4			2.43 - 02			LS
			394.477	938 830–1 192 330	4–2			1.35 - 02			LS
			394.089	938 830–1 192 580	4–4			2.70 - 03			LS
78	$2s^22p^2(^1S)3s-2s2p^3(^3P^\circ)3s$	$^{2}\mathrm{S}-^{2}\mathrm{P}^{\circ}$	478.29	983 420– <i>1 192 497</i>	2–6	1.25 + 00	1.28-02	4.04-02	-1.592	D	1
			[478.10]	983 420-1 192 580	2-4	1.25+00	8.56-03	2.69-02	-1.766	D	LS
			[478.68]	983 420–1 192 330	2-2			1.35-02			LS
79	$2s^22p^2(^3P)3d - 2s2p^3(^3D^{\circ})3s$	$^{2}F-^{2}D^{\circ}$	968.1	1 047 540–1 150 840	14–10	8.85-02	8.88-04	3.96-02	-1.905	D	1
			975.99	1 048 380–1 150 840	8-6	8.23-02	8 81 – 04	2.26-02	-2.152	D	LS
			957.67	1 046 420–1 150 840	6–4			1.59-02			LS
			957.67	1 046 420-1 150 840	6–6			1.13-03			LS
80		$^{2}D-^{2}D^{\circ}$	1 130.6	1 062 392–1 150 840	10–10			4.44-02			1
00		ББ									
			1 133.53	1 062 620–1 150 840	6–6			2.49 - 02			LS
			1 126.25	1 062 050–1 150 840	4–4	5.68 - 02	1.08-03	1.60-02	-2.365	D	LS
			1 133.53	1 062 620-1 150 840	6-4	6.18-03	7.93-05	1.78-03	-3.323	E	LS
			1 126.25	1 062 050–1 150 840	4–6	4.21 - 03	1.20 - 04	1.78 - 03	-3.319	E	LS
81	$2s^22p^2(^3P)3d-2s2p^3(^3P^\circ)3s$	$^{2}P-^{2}P^{\circ}$	656.9	1 040 267–1 192 497	6-6	2.26-01	1.46-03	1.90-02	-2.057	E+	1
			655.65	1 040 060-1 192 580	4-4	1.89-01	1.22-03	1.05-02	-2.312	D	LS
			659.41	1 040 680-1 192 330	2-2	1.49-01	9.74-04	4.23-03	-2.710	E+	LS
			656.73	1 040 060-1 192 330	4-2			2.11-03			LS
			658.33	1 040 680–1 192 580	2-4	3.76-02	4.88-04	2.12-03	-3.011	E+	LS
82		$^4D-^4P^{\circ}$			20–12						1
			[784.9]	1 045 210–1 172 610	6-4	1.61-01	9.93-04	1.54-02	-2.225	D	LS
			[784.9]	1 045 210-1 172 610	4-2	1.28 - 01	5.91-04	6.11-03	-2.626	E+	LS
			[784.9]	1 045 210-1 172 610	6-6			6.60-03			LS
			[784.9]	1 045 210–1 172 610	4-4			7.82-03			LS
			[787.5]	1 045 620–1 172 610	2–2			6.12-03			LS
			[784.9]	1 045 210–1 172 610	4-6			7.33-04			LS
			[787.5]	1 045 620–1 172 610	2–4			1.22-03			LS
Q2		$^{4}P-^{4}P^{\circ}$			12 12						
83		P- 'P	800.7	1 047 715–1 172 610	12–12	1.24-01	1.19-03	3.77 - 02	-1.845	E+	1

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

No.	Transition aray	Mult.	$\begin{array}{ccc} \lambda_{air} & \lambda_{vac} \ (\mbox{Å}) \\ (\mbox{Å}) & or \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	$f_{\mathrm{i}k}$	S (a.u.)	$\log gf$	Acc.	Sourc
			798.08	1 047 310-1 172 610	6–6	8.75-02	8.36-04	1.32-02	-2.300	D	LS
			802.44	1 047 990-1 172 610	4-4	1.64 - 02	1.58-04	1.67-03	-3.199	E	LS
			804.96	1 048 380-1 172 610	2-2	2.03 - 02	1.97-04	1.04-03	-3.405	E	LS
			798.08	1 047 310-1 172 610	6-4	5.62-02	3.58-04	5.64-03	-2.668	E+	LS
			802.44	1 047 990-1 172 610	4-2	1.03 - 01	4.95 - 04	5.23-03	-2.703	E+	LS
			802.44	1 047 990-1 172 610	4-6	3.69 - 02	5.35 - 04	5.65-03	-2.670	E+	LS
			804.96	1 048 380–1 172 610	2–4	5.08 - 02	9.87-04	5.23-03	-2.705	E+	LS
84		$^{2}D-^{2}P^{\circ}$	768.6	1 062 392–1 192 497	10-6	2.50-01	1.33-03	3.37-02	-1.876	D	1
			769.47	1 062 620-1 192 580	6-4	2.25 - 01	1.33 - 03	2.02-02	-2.098	D	LS
			767.58	1 062 050-1 192 330	4-2	2.51 - 01	1.11-03	1.12-02	-2.353	D	LS
			766.11	1 062 050–1 192 580	4–4	2.53-02	2.23-04	2.25-03	-3.050	E+	LS
85	$2s^22p^2(^3P)3d - 2s2p^3(^3D^{\circ})3d$	$^4D-^4P^{\circ}$			20–12						1
			[421.60]	1 045 210-1 282 400	6–4	9.12-01	1.62-03	1.35-02	-2.012	D	LS
			[421.12]	1 045 210-1 282 670	4-2	7.27 - 01	9.67-04	5.36-03	-2.413	E+	LS
			[422.26]	1 045 210-1 282 030	6-6	2.60 - 01	6.94-04	5.79-03	-2.380	E+	LS
			[421.60]	1 045 210-1 282 400	4-4	4.65 - 01	1.24-03	6.88-03	-2.305	E+	LS
			[421.85]	1 045 620-1 282 670	2-2	7.23 - 01	1.93-03	5.36-03	-2.413	E+	LS
			[422.26]	1 045 210-1 282 030	4-6	2.89 - 02	1.16-04	6.45-04	-3.333	Е	LS
			[422.33]	1 045 620–1 282 400	2–4	7.22-02	3.86-04	1.07-03	-3.112	E	LS
86		$^4D - ^4D^{\circ}$			20-20						1
			[413.51]	1 045 210-1 287 040	6-6	4.68 + 00	1.20-02	9.80-02	-1.143	C	LS
			[413.51]	1 045 210-1 287 040	4-4	3.26+00	8.35 - 03	4.55 - 02	-1.476	D+	LS
			[414.22]	1 045 620-1 287 040	2-2	4.04+00	1.04 - 02	2.84 - 02	-1.682	D	LS
			[413.51]	1 045 210-1 287 040	6-4	2.85 + 00	4.87 - 03	3.98-02	-1.534	D+	LS
			[413.51]	1 045 210-1 287 040	4-2	4.07 + 00	5.22-03	2.84 - 02	-1.680	D	LS
			[413.51]	1 045 210-1 287 040	6-8	1.16+00	3.97-03	3.24 - 02	-1.623	D+	LS
			[413.51]	1 045 210-1 287 040	4-6	1.90+00	7.31-03	3.98-02	-1.534	D+	LS
			[414.22]	1 045 620–1 287 040	2-4	2.02+00	1.04-02	2.84-02	-1.682	D	LS
87		$^2F-^2F^{\circ}$	412.49	1 047 540–1 289 973	14-14	1.31+01	3.35-02	6.36-01	-0.329	C	1
			[414.56]	1 048 380-1 289 600	8-8	1.14+01	2.94-02	3.21-01	-0.629	C+	LS
			[409.75]	1 046 420-1 290 470	6-6	1.43 + 01	3.60-02	2.91-01	-0.666	C	LS
			[413.07]	1 048 380-1 290 470	8-6	5.68 - 01	1.09-03	1.19-02	-2.059	D	LS
			[411.22]	1 046 420–1 289 600	6-8	4.32-01	1.46-03	1.19-02	-2.057	D	LS
88		$^{4}P-^{4}P^{\circ}$	426.36	1 047 715–1 282 260	12–12	1.50+01	4.08-02	6.87-01	-0.310	C	1
			426.040	1 047 310–1 282 030	6-6	1.05 + 01	2.86-02	2.41-01	-0.765	C	LS
			426.603	1 047 990–1 282 400	4-4	1.99 + 00	5.43 - 03	3.05 - 02	-1.663	D+	LS
			426.821	1 048 380–1 282 670	2–2	2.49 + 00	6.79 - 03	1.91 - 02	-1.867	D	LS
			425.369	1 047 310-1 282 400	6-4	6.80 + 00	1.23 - 02	1.03 - 01	-1.132	C	LS
			426.112	1 047 990–1 282 670	4–2	1.25 + 01	1.70 - 02	9.54 - 02	-1.167	C	LS
			427.277	1 047 990–1 282 030	4–6	4.46+00	1.83 - 02	1.03 - 01	-1.135	C	LS
			427.314	1 048 380–1 282 400	2–4	6.19+00	3.39-02	9.54-02	-1.169	C	LS
89		$^4P-^4D^{\circ}$	417.84	1 047 715–1 287 040	12–20	1.93+01	8.41-02	1.39+00	0.004	C	1
			417.136	1 047 310–1 287 040	6-8			5.55-01			LS
			418.323	1 047 990–1 287 040	4-6	1.34+01	5.29 - 02	2.91-01	-0.674	C	LS
			419.006	1 048 380–1 287 040	2-4	7.96+00	4.19 - 02	1.16-01	-1.077	C	LS
			417 126	1 047 210 1 207 040	6-6	5.83±00	1.52_02	1.25 - 01	1.040	C	LS
			417.136	1 047 310–1 287 040	0-0	J.05 + 00	1.52-02	1.23-01	-1.040	C	LO
			417.136	1 047 990–1 287 040	4–4			1.48-01			LS

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

No.	Transition aray	Mult.	$\begin{array}{ccc} \lambda_{air} & \lambda_{vac} \ (\mathring{A}) \\ (\mathring{A}) & or \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	$f_{\mathrm{i}k}$	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			417.136 418.323	1 047 310–1 287 040 1 047 990–1 287 040	6–4 4–2			1.38-02 2.31-02			LS LS
90		$^4P-^4S^{\circ}$	416.36	<i>1 047 715</i> –1 287 890	12–4	2.05+01	1.78-02	2.93-01	-0.670	C	1
			[415.66]	1 047 310-1 287 890	6-4	1.03+01	1.78-02	1.46-01	-0.971	C	LS
			[416.84]	1 047 990–1 287 890	4-4	6.83 + 00	1.78 - 02	9.77-02	-1.148	C	LS
			[417.52]	1 048 380–1 287 890	2–4	3.39+00	1.77-02	4.87-02	-1.451	D+	LS
91		$^{2}D-^{2}F^{\circ}$	439.40	1 062 392–1 289 973	10–14	1.59+01	6.43-02	9.31-01	-0.192	C+	1
			[440.57]	1 062 620-1 289 600	6-8	1.57 + 01	6.11-02	5.32-01	-0.436	C+	LS
			[437.79]	1 062 050-1 290 470	4-6	1.50+01	6.46 - 02	3.72 - 01	-0.588	C+	LS
			[438.88]	1 062 620–1 290 470	6–6	1.06+00	3.07-03	2.66-02	-1.735	D	LS
92	$2s^22p^2(^3P)3d - 2s2p^3(^5S^{\circ})4d$	$^4P-^4D^{\circ}$	306.71	1 047 715–1 373 760	12–20	8.07-01	1.90-03	2.30-02	-1.642	E+	1
			306.326	1 047 310–1 373 760	6-8	8.10-01	1.52-03	9.20-03	-2.040	D	LS
			306.965	1 047 990–1 373 760	4-6			4.81 - 03			LS
			307.333	1 048 380–1 373 760	2–4			1.92 - 03			LS
			306.326	1 047 310–1 373 760	6–6			2.07-03			LS
			306.965	1 047 990–1 373 760	4–4			2.45-03			LS
			307.333 306.326	1 048 380–1 373 760 1 047 310–1 373 760	2–2 6–4			1.92-03 2.30-04			LS LS
			306.965	1 047 310–1 373 760	4-2			3.83-04			LS
93	$2s2p^3(^5S^{\circ})3s-2s^22p^2(^3P)3d$	$^4S^{\circ}-^4P$	$1~075~cm^{-1}$	1 046 640– <i>1 047 715</i>	4–12	1.55-06	6.07-04	7.47-01	-2.615	C+	2
			670 cm ⁻¹	1 046 640–1 047 310	4-6	3.32-07	1.67-04	3.27-01	-3.175	C+	2
			1 350 cm ⁻¹	1 046 640–1 047 990	4-4			2.72 - 01			2
			1 740 cm ⁻¹	1 046 640–1 048 380	4–2	7.90-06	1.96-04	1.48-01	-3.106	C	2
94	$2s2p^{3}(^{5}S^{\circ})3s-2s2p^{3}(^{5}S^{\circ})3p$	$^4S^{\circ}-^4P$	1 869	1 046 640– <i>1 100 150</i>	4–12	2.41+00	3.79-01	9.33+00	0.181	B+	2
			1 868.8	1 046 640-1 100 150	4-6	2.42+00	1.90-01	4.67 + 00	-0.119	$\mathrm{B} +$	2
			1 868.8	1 046 640-1 100 150	4-4	2.41+00	1.26-01	3.11+00	-0.298	$\mathrm{B} +$	2
			1 868.8	1 046 640–1 100 150	4–2	2.41 + 00	6.31-02	1.55 + 00	-0.598	В	2
95	$2s2p^3(^5S^{\circ})3s-2s^22p^2(^3P)4s$	$^4S^{\circ}-^4P$			4–12						1
			[666.2]	1 046 640–1 196 740	4–6	2.40+00	2.40-02	2.11-01	-1.018	C	LS
96	$2s2p^3(^5S^{\circ})3s-2s^22p^2(^3P)4d$	$^4S^{\circ}-^4P$	485.80	1 046 640– <i>1 252 485</i>	4-12	1.20+01	1.27-01	8.15-01	-0.294	C	1
			486.381	1 046 640-1 252 240	4-6	1.20+01	6.36-02	4.07-01	-0.594	C+	LS
			485.390	1 046 640–1 252 660	4-4	1.20+01	4.25 - 02	2.72 - 01	-0.770	C	LS
			484.896	1 046 640–1 252 870	4–2	1.21+01	2.13-02	1.36-01	-1.070	C	LS
97	$2s2p^3(^5S^{\circ})3s-2s^22p^2(^3P)5s$	$^4S^{\circ}-^4P$			4–12						1
			[367.61]	1 046 640-1 318 670	4-6	1.39+00	4.21-03	2.04-02	-1.774	D	LS
			[368.92]	1 046 640–1 317 700	4-4	1.37 + 00	2.80-03	1.36-02	-1.951	D	LS
98	$2s2p^3(^5S^{\circ})3s-2s2p^3(^5S^{\circ})4p$	$^4S^{\circ}-^4P$	339.78	1 046 640– <i>1 340 950</i>	4–12	1.45+01	7.52-02	3.36-01	-0.522	C	1
			[339.78]	1 046 640–1 340 950	4–6	1.45+01	3.76-02	1.68-01	-0.823	С	LS
			[339.78]	1 046 640–1 340 950	4-4			1.12-01			LS
			[339.78]	1 046 640–1 340 950	4–2			5.59-02			LS
99	$2s^22p^2(^1D)3d-$	$^{2}F-^{2}D^{\circ}$	1 484.3	1 083 469–1 150 840	14–10			3.59-01			1
	$2s2p^3(^3D^{\circ})3s$		1 401 40	1 003 340 1 150 040	0 6	2 12 01	5 25 02	2.05.01	_1 277	C	16
			1 481.48	1 083 340–1 150 840	8–6	2.13-01	3.23-03	2.05 - 01	-1.5//	C	LS

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

No.	Transition aray	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{vac} \ (\mathring{A})$ or $\sigma \ (cm^{-1})^a$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	$f_{\mathrm{i}k}$	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				1 488.10	1 083 640–1 150 840	6–4	2 20-01	4 88-03	1.43-01	-1 533	С	LS
				1 488.10	1 083 640–1 150 840	6–6			1.02-02			LS
100		$^{2}D-^{2}D^{\circ}$		1 561.0	1 086 780–1 150 840	10-10	8.09-02	2.95-03	1.52-01	-1.530	D+	1
				1 564.46	1 086 920–1 150 840	6–6	7 49 - 02	2.75-03	8.50-02	-1.783	C	LS
				1 555.94	1 086 570-1 150 840	4-4			5.47-02			LS
				1 564.46	1 086 920-1 150 840	6–4			6.09-03			LS
				1 555.94	1 086 570–1 150 840	4–6			6.09-03			LS
101		$^{2}P-^{2}D^{\circ}$		1 762.0	1 094 087–1 150 840	6–10	1.01-02	7.85-04	2.73-02	-2.327	D	1
				1 767.10	1 094 250–1 150 840	4–6	1.00-02	7.04-04	1.64-02	-2.550	D	LS
				1 751.93	1 093 760-1 150 840	2-4	8.57-03	7.89-04	9.10-03	-2.802	D	LS
				1 767.10	1 094 250–1 150 840	4-4	1.67-03	7.82-05	1.82-03	-3.505	E	LS
102	$2s^{2}2p^{2}(^{1}D)3d - 2s2p^{3}(^{3}P^{\circ})3s$	$^{2}D-^{2}P^{\circ}$		945.9	1 086 780–1 192 497	10–6	3.23-01	2.60-03	8.10-02	-1.585	D+	1
				946.43	1 086 920-1 192 580	6-4	2.90-01	2.60-03	4.86-02	-1.807	D+	LS
				945.54	1 086 570-1 192 330	4-2	3.24 - 01	2.17-03	2.70 - 02	-2.061	D	LS
				943.31	1 086 570–1 192 580	4–4	3.26-02	4.35-04	5.40-03	-2.759	E+	LS
103		$^{2}P-^{2}P^{\circ}$		1 016.2	1 094 087–1 192 497	6-6	1.76-01	2.73-03	5.47-02	-1.786	D	1
				1 016.98	1 094 250-1 192 580	4-4	1.46-01	2.27-03	3.04-02	-2.042	D+	LS
				1 014.51	1 093 760-1 192 330	2-2	1.18-01	1.82-03	1.22-02	-2.439	D	LS
				1 019.58	1 094 250-1 192 330	4-2	5.81-02	4.53-04	6.08-03	-2.742	E+	LS
				1 011.94	1 093 760–1 192 580	2-4	2.97-02	9.12-04	6.08-03	-2.739	E+	LS
104	$2s^22p^2(^1D)3d - 2s2p^3(^3D^{\circ})3d$	$^{2}D-^{2}F^{\circ}$		492.14	1 086 780–1 289 973	10–14	4.63-01	2.36-03	3.82-02	-1.627	D	1
				[493.39]	1 086 920-1 289 600	6-8	4.60-01	2.24-03	2.18-02	-1.872	D	LS
				[490.44]	1 086 570-1 290 470	4-6	4.36-01	2.36-03	1.52-02	-2.025	D	LS
				[491.28]	1 086 920–1 290 470	6-6	3.10-02	1.12-04	1.09-03	-3.173	E	LS
105	$2s^{2}2p^{2}(^{1}D)3d? - 2s2p^{3}(^{3}P^{\circ})3s$	2 S? $-^{2}$ P $^{\circ}$		[1 072]	1 099 180–1 192 497	2–6	5.02-02	2.59-03	1.83-02	-2.286	D	1
				1 070.66	1 099 180–1 192 580	2–4	5.03-02	1.73-03	1.22-02	-2.461	D	LS
				1 073.54	1 099 180–1 192 330	2–2			6.10-03			LS
106	$2s2p^{3}(^{5}S^{\circ})3p - 2s2p^{3}(^{3}D^{\circ})3s$	$^4P-^4D^{\circ}$	4 571	4 572	1 100 150–1 122 020	12–20	1.24-03	6.46-04	1.17-01	-2.111	D	1
			4 571.2	4 572.5	1 100 150–1 122 020	6–8	1 24-03	5 17-04	4.67-02	-2 508	D+	LS
			4 571.2	4 572.5	1 100 150 1 122 020	4–6			2.45-02			LS
			4 571.2	4 572.5	1 100 150-1 122 020	2–4			9.72-03			LS
			4 571.2	4 572.5	1 100 150-1 122 020	6–6			1.05-02			LS
			4 571.2	4 572.5	1 100 150-1 122 020	4-4			1.25-02			LS
			4 571.2	4 572.5	1 100 150-1 122 020	2–2			9.72-03			LS
			4 571.2	4 572.5	1 100 150-1 122 020	6-4			1.17-03			LS
			4 571.2	4 572.5	1 100 150–1 122 020	4–2			1.94-03			LS
107 2	$s2p^{3}(^{5}S^{\circ})3p-2s2p^{3}(^{3}P^{\circ})3s$	$^4P-^4P^{\circ}$		1 380.1	1 100 150–1 172 610	12-12	5.57-02	1.59-03	8.67-02	-1.719	D	1
				1 380.07	1 100 150–1 172 610	6–6	3.89-02	1.11-03	3.03-02	-2.177	D+	LS
				1 380.07	1 100 150 1 172 610	4–4			3.85-03			LS
				1 380.07	1 100 150 1 172 610	2–2			2.41-03			LS
				1 380.07	1 100 150-1 172 610	6-4			1.30-02			LS
				1 380.07	1 100 150-1 172 610	4–2			1.20-02			LS

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

No.	Transition aray	Mult.	$\lambda_{air} \lambda_{vac} (\mathring{A})$ $(\mathring{A}) or \sigma (cm^{-1})^a$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	$f_{\mathrm{i}k}$	S (a.u.)	$\log gf$	Acc.	Source
			1 380.07	1 100 150–1 172 610	4–6	1.67-02	7.17-04	1.30-02	-2.542	D	LS
			1 380.07	1 100 150-1 172 610	2-4	2.33 - 02	1.33 - 03	1.21 - 02	-2.575	D	LS
108	$2s2p^{3}(^{5}S^{\circ})3p - 2s2p^{3}(^{5}S^{\circ})3d$	$^{4}P-^{4}D^{\circ}$	1 328.9	1 100 150–1 175 400	12–20	9.12+00	4.03-01	2.11+01	0.684	B+	1
	• • •		1 328.90	1 100 150–1 175 400	6-8	9.12+00	3.22-01	8.45+00	0.286	B+	LS
			1 328.90	1 100 150-1 175 400	4-6	6.40+00	2.54 - 01	4.44+00	0.007	B +	LS
			1 328.90	1 100 150-1 175 400	2-4	3.80+00	2.01-01	1.76+00	-0.396	В	LS
			1 328.90	1 100 150-1 175 400	6-6	2.73+00	7.24 - 02	1.90+00	-0.362	В	LS
			1 328.90	1 100 150-1 175 400	4-4	4.87 + 00	1.29 - 01	2.26+00	-0.287	В	LS
			1 328.90	1 100 150-1 175 400	2-2	7.59 + 00	2.01-01	1.76+00	-0.396	В	LS
			1 328.90	1 100 150-1 175 400	6-4	4.56 - 01	8.05 - 03	2.11-01	-1.316	C	LS
			1 328.90	1 100 150–1 175 400	4–2	1.52+00	2.01-02	3.52-01	-1.095	C+	LS
109	$2s2p^{3}(^{5}S^{\circ})3p - 2s2p^{3}(^{3}D^{\circ})3d$	$^4P - ^4P^{\circ}$	549.12	1 100 150–1 282 260	12–12	2.22+00	1.01-02	2.18-01	-0.916	D+	1
			549.813	1 100 150-1 282 030	6-6	1.55 + 00	7.03-03	7.63-02	-1.375	D+	LS
			548.697	1 100 150-1 282 400	4-4	2.97-01	1.34-03	9.68-03	-2.271	D	LS
			547.885	1 100 150-1 282 670	2-2	3.73 - 01	1.68-03	6.06-03	-2.474	E+	LS
			548.697	1 100 150-1 282 400	6-4	1.00+00	3.02-03	3.27-02	-1.742	D+	LS
			547.885	1 100 150-1 282 670	4-2	1.87 + 00	4.20-03	3.03-02	-1.775	D+	LS
			549.813	1 100 150-1 282 030	4-6	6.65 - 01	4.52-03	3.27-02	-1.743	D+	LS
			548.697	1 100 150–1 282 400	2–4	9.29-01	8.39-03	3.03-02	-1.775	D+	LS
110		$^{4}P-^{4}D^{\circ}$	535.07	1 100 150–1 287 040	12-20	2.43-01	1.74-03	3.68-02	-1.680	E+	1
			535.074	1 100 150-1 287 040	6-8	2.43 - 01	1.39-03	1.47 - 02	-2.079	D	LS
			535.074	1 100 150-1 287 040	4-6	1.71 - 01	1.10 - 03	7.75 - 03	-2.357	E+	LS
			535.074	1 100 150-1 287 040	2-4	1.01 - 01	8.70 - 04	3.07 - 03	-2.759	E+	LS
			535.074	1 100 150-1 287 040	6-6	7.29 - 02	3.13 - 04	3.31 - 03	-2.726	E+	LS
			535.074	1 100 150-1 287 040	4-4	1.30 - 01	5.57 - 04	3.92 - 03	-2.652	E+	LS
			535.074	1 100 150-1 287 040	2-2	2.03 - 01	8.70 - 04	3.07 - 03	-2.759	E+	LS
			535.074	1 100 150-1 287 040	6-4	1.22 - 02	3.48 - 05	3.68-04	-3.680	E	LS
			535.074	1 100 150–1 287 040	4–2	4.05-02	8.70-05	6.13-04	-3.458	E	LS
111		$^4P-^4S^{\circ}$	532.65	1 100 150–1 287 890	12-4	8.75+00	1.24-02	2.61-01	-0.827	C	1
			[532.65]	1 100 150-1 287 890	6-4	4.37 + 00	1.24-02	1.30-01	-1.128	C	LS
			[532.65]	1 100 150-1 287 890	4-4	2.92 + 00	1.24-02	8.70-02	-1.305	C	LS
			[532.65]	1 100 150–1 287 890	2–4	1.46+00	1.24-02	4.35-02	-1.606	D+	LS
112	$2s2p^3(^5S^{\circ})3p-2s2p^3(^5S^{\circ})4s$	$^{4}P-^{4}S^{\circ}$	447.51	1 100 150–1 323 610	12-4	7.01+01	7.02-02	1.24+00	-0.074	C+	1
			[447.51]	1 100 150-1 323 610	6-4	3.51 + 01	7.02-02	6.21-01	-0.376	C+	LS
			[447.51]	1 100 150-1 323 610	4-4	2.34 + 01	7.02-02	4.14-01	-0.552	C+	LS
			[447.51]	1 100 150–1 323 610	2–4	1.17+01	7.02-02	2.07-01	-0.853	C	LS
113	$2s2p^3(^5S^{\circ})3p - 2s2p^3(^5S^{\circ})4d$	$^4P - ^4D^{\circ}$	365.48	1 100 150–1 373 760	12–20	5.81+01	1.94-01	2.80+00	0.367	C+	1
			365.484	1 100 150-1 373 760	6-8	5.80+01	1.55-01	1.12+00	-0.032	В	LS
			365.484	1 100 150-1 373 760	4–6		1.22-01				LS
			365.484	1 100 150–1 373 760	2–4		9.71-02				LS
			365.484	1 100 150-1 373 760	6-6		3.50-02				LS
			365.484	1 100 150-1 373 760	4–4		6.22-02				LS
			365.484	1 100 150-1 373 760	2-2	4.85 + 01	9.71-02	2.34-01	-0.712	C	LS
			365.484 365.484	1 100 150–1 373 760 1 100 150–1 373 760	2–2 6–4		9.71-02 3.88-03				LS LS

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

No.	Transition aray	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\begin{array}{c} \lambda_{vac} \ (\mathring{A}) \\ \text{or} \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	$f_{\mathrm{i}k}$	S (a.u.)	$\log gf$	Acc.	Source
114	$2s2p^{3}(^{3}D^{\circ})3s - 2s^{2}2p^{2}(^{3}P)4s$	$^4D^{\circ} - ^4P$				20–12						1
				[1 338.3]	1 122 020–1 196 740	8-6	1.42+00	2.86-02	1.01+00	-0.641	В	LS
				[1 338.3]	1 122 020–1 196 740	6–6			2.27-01			LS
				[1 338.3]	1 122 020–1 196 740	4–6	3.55-02	1.43-03	2.52-02	-2.243	D	LS
115		$^{2}D^{\circ}-^{2}P$				10-6						1
			2 055.7	2 056.3	1 150 840–1 199 470	6-4	6.46-01	2.73-02	1.11+00	-0.786	В	LS
			2 055.7	2 056.3	1 150 840–1 199 470	4–4	7.18 - 02	4.55-03	1.23-01	-1.740	C	LS
116	$2s2p^{3}(^{3}D^{\circ})3s - 2s2p^{3}(^{3}D^{\circ})3p$	$^{2}D^{\circ}-^{2}F$		1 375.2	1 150 840–1 223 554	10–14	6.64+00	2.64-01	1.19+01	0.422	B+	1
				[1 380.5]	1 150 840–1 223 280	6-8	6.56+00	2.50-01	6.82+00	0.176	$\mathrm{B} +$	LS
				[1 368.4]	1 150 840-1 223 920	4-6	6.29+00	2.65-01	4.78+00	0.025	$\mathrm{B} +$	LS
				[1 368.4]	1 150 840–1 223 920	6–6	4.49-01	1.26-02	3.41-01	-1.121	C+	LS
117	$2s2p^3(^3D^{\circ})3s - 2s^22p^2(^1D)4s$	$^{2}D^{\circ}-^{2}D$		1 178.6	1 150 840–1 235 690	10–10	1.16-01	2.41-03	9.36-02	-1.618	D+	1
				1 178.55	1 150 840–1 235 690	6–6	1.08-01	2.25-03	5.24-02	-1.870	D+	LS
				1 178.55	1 150 840-1 235 690	4-4	1.04-01	2.17-03	3.37-02	-2.061	D+	LS
				1 178.55	1 150 840-1 235 690	6-4	1.16-02	1.61 - 04	3.75-03	-3.015	E+	LS
118				1 178.55	1 150 840–1 235 690	4–6	7.75-03	2.42-04	3.76-03	-3.014	E+	LS
	$2s2p^3(^3D^{\circ})3s - 2s^22p^2(^3P)4d$	$^2D^{\circ} - ^2F$		972.7	1 150 840–1 253 643	10–14	3.46-01	6.87-03	2.20-01	-1.163	C	1
				[966.1]	1 150 840–1 254 350	6-8	3.53-01	6.59-03	1.26-01	-1.403	С	LS
				[981.7]	1 150 840–1 252 700	4–6			8.79-02			LS
				[981.7]	1 150 840–1 252 700	6-6	2.24-02	3.24-04	6.28-03	-2.711	E+	LS
119	$2s2p^3(^3D^{\circ})3s - 2s^22p^2(^1D)4d$	$^2D^{\circ}-^2F$		727.4	1 150 840–1 288 310	10–14	1.97+00	2.18-02	5.23-01	-0.662	C	1
				[727.4]	1 150 840–1 288 310	6-8	1.97+00	2.08-02	2.99-01	-0.904	С	LS
				[727.4]	1 150 840-1 288 310	4-6			2.09-01			LS
				[727.4]	1 150 840–1 288 310	6-6	1.31-01	1.04-03	1.49-02	-2.205	D	LS
120		$^{2}D^{\circ}-^{2}D$		713.5	1 150 840–1 290 990	10-10	2.30+00	1.76-02	4.13-01	-0.754	C	1
				713.52	1 150 840–1 290 990	6–6	2.15+00	1.64-02	2.31-01	-1.007	C	LS
				713.52	1 150 840–1 290 990	4-4			1.48-01			LS
				713.52	1 150 840-1 290 990	6-4			1.65-02			LS
				713.52	1 150 840–1 290 990	4-6			1.65-02			LS
121		$^2D^{\circ}-^2P$		697.8	1 150 840–1 294 150	10-6	5.26-01	2.30-03	5.29-02	-1.638	D	1
				[697.8]	1 150 840–1 294 150	6–4	4.73-01	2.30-03	3.17-02	-1.860	D+	LS
				[697.8]	1 150 840-1 294 150	4-2	5.26-01	1.92-03	1.76-02	-2.115	D	LS
				[697.8]	1 150 840–1 294 150	4-4	5.26-02	3.84-04	3.53-03	-2.814	E+	LS
122	$2s2p^3(^3D^{\circ})3s - 2s2p^3(^5S^{\circ})4p$	$^4D^{\circ} - ^4P$		456.77	1 122 020–1 340 950	20–12	2.73+00	5.12-03	1.54-01	-0.990	D	1
				[456.77]	1 122 020–1 340 950	8-6	2.18+00	5.12-03	6.16-02	-1.388	D+	LS
				[456.77]	1 122 020–1 340 950	6–4			3.24-02			LS
				[456.77]	1 122 020–1 340 950	4–2			1.28-02			LS
				[456.77]	1 122 020-1 340 950	6-6	4.92 - 01	1.54-03	1.39-02	-2.034	D	LS
				[456.77]	1 122 020-1 340 950	4-4	8.73 - 01	2.73 - 03	1.64-02	-1.962	D	LS

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

No.	Transition aray	λ _{ai} Mult. (Å	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	$f_{\mathrm{i}k}$	S (a.u.)	$\log gf$	Acc	Source
	uruy	111111. (71)									
			[456.77]	1 122 020–1 340 950	4–6			1.54-03			LS
			[456.77]	1 122 020–1 340 950	2–4	1.37-01	8.54-04	2.57-03	-2.768	E+	LS
123	$2s2p^{3}(^{3}D^{\circ})3s-$	$^{2}D^{\circ}-^{2}F$	431.15	1 150 840–1 382 780	10-14	4.45 - 01	1.74-03	2.46-02	-1.759	D	1
	$2s^22p^2(^1D)5d$										
			[431.15]	1 150 840–1 382 780	6–8	4 44-01	1.65-03	1.41-02	-2.004	D	LS
			[431.15]	1 150 840–1 382 780	4–6			9.88-03			LS
			[431.15]	1 150 840-1 382 780	6-6	2.97 - 02	8.27-05	7.04-04	-3.304	E	LS
124	$2s2p^{3}(^{3}D^{\circ})3s-$	$^{2}D^{\circ}-^{2}D$?	[428.4]	1 150 840–1 384 290	10–10	4.09 .01	1 27 02	1.93-02	1 962	Б⊥	1
124	$2s^2p^2(^1D)5d$?	D - D:	[420.4]	1 130 040–1 304 290	10–10	4.96-01	1.57-05	1.93-02	-1.603	ĿΤ	1
	_F (-)										
			428.357	1 150 840–1 384 290	6–6			1.08-02			LS
			428.357	1 150 840–1 384 290	4–4			6.94-03			LS
			428.357	1 150 840–1 384 290	6–4			7.73-04			LS
			428.357	1 150 840–1 384 290	4–6	3.32-02	1.37-04	7.73-04	-3.261	E	LS
125 2	$2s^22p^2(^1S)3d-2s2p^3(^3P^\circ)3s$	$^{2}D-^{2}P^{\circ}$	1 479.1	1 124 890–1 192 497	10-6	1.08-01	2.13-03	1.04-01	-1.672	D+	1
			1 477.32	1 124 890–1 192 580	6-4	9.76-02	2.13-03	6.22-02	-1.893	D+	LS
			1 482.80	1 124 890-1 192 330	4-2	1.07 - 01	1.77 - 03	3.46-02	-2.150	D+	LS
			1 477.32	1 124 890–1 192 580	4-4	1.08 - 02	3.55 - 04	6.91-03	-2.848	E+	LS
126	$2s^{2}2p^{2}(^{1}S)3d - 2s2p^{3}(^{3}D^{\circ})3d$	$^{2}D-^{2}F^{\circ}$	605.8	1 124 890–1 289 973	10–14	1.93-01	1.48-03	2.96-02	-1.830	D	1
			[607.1]	1 124 890–1 289 600	6–8	1 91 - 01	1 41-03	1.69-02	-2 073	D	LS
			[603.9]	1 124 890–1 290 470	4–6			1.18-02			LS
			[603.9]	1 124 890–1 290 470	6–6			8.48-04			LS
127 2	$2s2p^3(^3P^\circ)3s-2s^22p^2(^3P)4s$	$^{4}P^{\circ}-^{4}P$			12–12						1
		F4 1427	F4 4 4 4 7	1 170 (10 1 10 7 10		2.56 .02	6.50 02	5.20 01	1 402	<i>a</i> .	
		[4 143]	[4 144]	1 172 610–1 196 740	6–6			5.39-01			LS
		[4 143]	[4 144]	1 172 610–1 196 740	4–6	1.10-02	4.24-03	2.31-01	-1.//1	C	LS
128		$^{2}P^{\circ}-^{2}P$			6–6						1
		14 510	14 514	1 192 580-1 199 470	4-4	8.07-05	2.55-04	4.87-02	-2.991	D+	LS
		14 002	14 006	1 192 330-1 199 470	2-4	1.80 - 05	1.06-04	9.77-03	-3.674	D	LS
129	$2s2p^{3}(^{3}P^{\circ})3s - 2s^{2}2p^{2}(^{1}D)4s$	${}^{2}P^{\circ} - {}^{2}D$ 2 314	2 315	1 192 497–1 235 690	6–10	4.62-02	6.18-03	2.83-01	-1.431	C	1
		2 318.9	2 319.6	1 192 580–1 235 690	4–6	4 59 _ 02	5 55_03	1.70-01	_1 654	C	LS
		2 305.6		1 192 330–1 235 690	2-4			9.41-02			LS
		2 318.9		1 192 580–1 235 690	4-4			1.88-02			LS
130 2	$2s2p^3(^3P^{\circ})3s-2s^22p^2(^3P)4d$	$^{4}\text{P}^{\circ}$ – ^{4}D	2317.0	1 172 300 1 233 070	12–20	7.05 05	0.17 01	1.00 02	2.000	Б	1
150 2	252p (1)35-25 2p (1)4a	1 - D	[1 211 0]	1 172 (10 1 249 920		2.00 .02	1 12 02	1.04.02	2 240	D	
			[1 311.0]	1 172 610–1 248 830	4–6			1.94-02			LS
			[1 311.0]	1 172 610–1 248 830 1 172 610–1 248 830	2–4			7.68-03 8.29-03			LS
			[1 311.0] [1 311.0]	1 172 610–1 248 830	6–6 4–4			9.83-03			LS LS
			[1 300.6]	1 172 610–1 248 830	2–2			7.68-03			LS
			[1 311.0]	1 172 610–1 248 830	6–4			9.23-04			LS
			[1 300.6]	1 172 610–1 248 830	4–2			1.54-03			LS
131		$^4P^{\circ}-^4P$	1 252.0								
131		r – r		1 172 610–1 252 485	12–12			5.72+00			1
			1 255.81	1 172 610–1 252 240	6–6			2.00+00			LS
			1 249.22	1 172 610–1 252 660	4–4			2.55-01			LS
			1 245.95	1 172 610–1 252 870	2–2	8.34-01	1.94-02	1.59-01	-1.411	C	LS

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

No.	Transition aray	Mult.	$\begin{array}{ccc} \lambda_{air} & \lambda_{vac} \ (\mathring{A}) \\ (\mathring{A}) & or \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	$f_{\mathrm{i}k}$	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			1 249.22	1 172 610–1 252 660	6–4	2.23+00	3.48-02	8.59-01	-0.680	C+	LS
			1 245.95	1 172 610–1 252 870	4–2		4.84 - 02				LS
			1 255.81	1 172 610–1 252 240	4-6		5.19-02				LS
			1 249.22	1 172 610–1 252 660	2–4	2.06+00	9.66-02	7.95-01	-0.714	C+	LS
132		$^{2}P^{\circ}-^{2}D$			6–10						1
			[1 519.8]	1 192 580–1 258 380	4-6	1.84+00	9.56-02	1.91+00	-0.417	В	LS
133	$2s2p^{3}(^{3}P^{\circ})3s - 2s^{2}2p^{2}(^{1}D)4d$	$^{2}P^{\circ}-^{2}D$	1 015.3	1 192 497–1 290 990	6–10	6.38-01	1.64-02	3.29-01	-1.007	C	1
			1 016.16	1 192 580–1 290 990	4-6	6.37-01	1.48-02	1.98-01	-1.228	C	LS
			1 013.58	1 192 330–1 290 990	2-4	5.32 - 01	1.64 - 02	1.09 - 01	-1.484	C	LS
			1 016.16	1 192 580–1 290 990	4–4	1.06-01	1.64-03	2.19-02	-2.183	D	LS
134		$^{2}P^{\circ}-^{2}P$	983.7	1 192 497–1 294 150	6-6	6.79-01	9.85-03	1.91-01	-1.228	D+	1
			[984.5]	1 192 580–1 294 150	4-4	5.64-01	8.20-03	1.06-01	-1.484	С	LS
			[982.1]	1 192 330–1 294 150	2-2	4.55 - 01	6.58-03	4.25-02	-1.881	D+	LS
			[984.5]	1 192 580–1 294 150	4-2	2.26-01	1.64-03	2.13-02	-2.183	D	LS
			[982.1]	1 192 330–1 294 150	2–4	1.14-01	3.29-03	2.13-02	-2.182	D	LS
135		$^{2}P^{\circ}-^{2}S$	961.3	<i>1 192 497</i> –1 296 520	6–2	2.05+00	9.47-03	1.80-01	-1.245	C	1
			[962.1]	1 192 580–1 296 520	4-2	1.36+00	9.46-03	1.20-01	-1.422	С	LS
			[959.8]	1 192 330–1 296 520	2-2		9.48-03				LS
136	$2s2p^3(^3P^\circ)3s-2s^22p^2(^3P)5s$	$^{4}P^{\circ}-^{4}P$			12–12						1
			[684.6]	1 172 610–1 318 670	6–6	4.04-01	2.84-03	3.84-02	-1.769	D+	LS
			[689.2]	1 172 610-1 317 700	4-4	7.54 - 02	5.37-04	4.87-03	-2.668	E+	LS
			[689.2]	1 172 610-1 317 700	6-4	2.55 - 01	1.21-03	1.65-02	-2.139	D	LS
			[684.6]	1 172 610-1 318 670	4-6	1.73 - 01	1.82-03	1.64 - 02	-2.138	D	LS
			[689.2]	1 172 610-1 317 700	2-4	2.35 - 01	3.35-03	1.52 - 02	-2.174	D	LS
137	$2s2p^3(^3P^{\circ})3s-2s^22p^2(^1S)4d$	$^{2}P^{\circ}-^{2}D$	709.2	1 192 497–1 333 500	6–10	1.40+00	1.76-02	2.47-01	-0.976	C	1
			[709.6]	1 192 580–1 333 500	4-6	1.40+00	1.59-02	1.49-01	-1.197	C	LS
			[708.4]	1 192 330–1 333 500	2-4	1.17 + 00	1.76 - 02	8.21 - 02	-1.453	D+	LS
			[709.6]	1 192 580–1 333 500	4–4	2.33-01	1.76-03	1.64-02	-2.152	D	LS
138	$2s2p^3(^3P^{\circ})3s-2s2p^3(^5S^{\circ})4p$	$^{4}P^{\circ}-^{4}P$	594.0	1 172 610–1 340 950	12-12	6.55-01	3.47-03	8.14-02	-1.380	D	1
			[594.0]	1 172 610–1 340 950	6-6	4.59-01	2.43-03	2.85 - 02	-1.836	D	LS
			[594.0]	1 172 610–1 340 950	4-4	8.73 - 02	4.62 - 04	3.61 - 03	-2.733	E+	LS
			[594.0]	1 172 610–1 340 950	2–2	1.09 - 01	5.78 - 04	2.26 - 03	-2.937	E+	LS
			[594.0]	1 172 610–1 340 950	6-4	2.95 - 01	1.04 - 03	1.22 - 02	-2.205	D	LS
			[594.0]	1 172 610–1 340 950	4–2	5.44 - 01	1.44 - 03	1.13 - 02	-2.240	D	LS
			[594.0]	1 172 610–1 340 950	4–6	1.97 - 01	1.56-03	1.22 - 02	-2.205	D	LS
			[594.0]	1 172 610–1 340 950	2–4	2.73-01	2.89-03	1.13-02	-2.238	D	LS
139	$2s2p^{3}(^{5}S^{\circ})3d - 2s^{2}2p^{2}(^{3}P)4d$	$^{4}D^{\circ}-^{4}P$	1 297.3	1 175 400–1 252 485	20–12	2.83-02	4.28-04	3.66-02	-2.068	E+	1
			1 301.41	1 175 400–1 252 240	8-6	2.24-02	4.27-04	1.46-02	-2.466	D	LS
			1 294.33	1 175 400–1 252 660	6-4	1.79 - 02	3.00-04	7.67-03	-2.745	E+	LS
			1 290.82	1 175 400–1 252 870	4-2	1.43 - 02	1.79-04	3.04-03	-3.145	E+	LS
			1 301.41	1 175 400–1 252 240	6-6	5.04 - 03	1.28-04	3.29-03	-3.115	E+	LS
			1 294.33	1 175 400–1 252 660	4-4	9.12-03	2.29-04	3.90-03	-3.038	E+	LS
			1 290.82	1 175 400–1 252 870	2-2	1.43 - 02	3.58-04	3.04-03	-3.145	E+	LS
			1 301.41	1 175 400–1 252 240	4-6	5.59-04	2.13-05	3.65 - 04	-4.070	E	LS
			1 294.33	1 175 400–1 252 660	2-4	1.42-03	7.15 - 05	6.09-04	-3.845	E	LS

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

No.	Transition aray	Mult.	$\lambda_{air} \ (\mathring{A})$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
140	2s2p ³ (⁵ S°)3d- 2s2p ³ (⁵ S°)4p	$^4D^{\circ} - ^4P$		604.0	1 175 400–1 340 950	20–12	1.51+01	4.97-02	1.98+00	-0.003	C+	1
				[604.0]	1 175 400–1 340 950	8–6	1.21+00	4.97-02	7.91-01	-0.401	C+	LS
				[604.0]	1 175 400-1 340 950	6-4		3.48-02				LS
				[604.0]	1 175 400-1 340 950	4-2	7.57 + 00	2.07-02	1.65-01	-1.082	C	LS
				[604.0]	1 175 400-1 340 950	6-6	2.72+00	1.49 - 02	1.78 - 01	-1.049	C	LS
				[604.0]	1 175 400-1 340 950	4-4	4.84 + 00	2.65 - 02	2.11-01	-0.975	C	LS
				[604.0]	1 175 400-1 340 950	2–2	7.57 + 00	4.14 - 02	1.65 - 01	-1.082	C	LS
				[604.0]	1 175 400–1 340 950	4-6	3.03 - 01	2.49 - 03	1.98 - 02	-2.002	D	LS
				[604.0]	1 175 400–1 340 950	2–4	7.58-01	8.29-03	3.30-02	-1.780	D+	LS
141	$2s^22p^2(^3P)4s - 2s2p^3(^3D^{\circ})3d$	$^4P - ^4P^{\circ}$				12–12						1
				[1 172.5]	1 196 740-1 282 030	6–6	1.35-01	2.78-03	6.44-02	-1.778	D+	LS
				[1 167.4]	1 196 740–1 282 400	6-4		1.20-03				LS
42		$^{4}P-^{4}D^{\circ}$				12-20						1
				[1 107.4]	1 196 740–1 287 040	6–8	8 24-02	2.02-03	4 42-02	-1 916	D+	LS
				[1 107.4]	1 196 740–1 287 040	6–6		4.55-04				LS
				[1 107.4]	1 196 740–1 287 040	6–4		5.05-05				LS
143		$^{4}P-^{4}S^{\circ}$		[1 10///]	1 190 7 10 1 207 0 10	12–4	2 00	0.00	1110 00	0.017	-	1
.43		r - 3		[1 007 1]	1 106 740 1 207 000		1.24 .01	1 (1 02	2 40 .02	2.015	D.	
	2-2/2->	4- 49		[1 097.1]	1 196 740–1 287 890	6–4	1.34-01	1.61-03	3.49-02	-2.015	D+	LS
.44 2.	$s^2 2p^2 (^3P) 4s - 2s2p^3 (^5S^\circ) 4s$	$^{4}P-^{4}S^{\circ}$				12–4						1
				[788.2]	1 196 740–1 323 610	6–4	1.38+00	8.56-03	1.33-01	-1.289	С	LS
45	$2s2p^{3}(^{3}D^{\circ})3p - 2s2p^{3}(^{3}D^{\circ})3d$	$^{2}F-^{2}F^{\circ}$		1 505.6	1 223 554–1 289 973	14–14	3.21+00	1.09-01	7.58+00	0.184	В	1
	1 \ /			[1 507.8]	1 223 280-1 289 600	8-8	2.82+00	9.62-02	3.82+00	-0.114	B+	LS
				[1 502.6]	1 223 920-1 290 470	6-6	3.46+00	1.17-01	3.47+00	-0.154	B +	LS
				[1 488.3]	1 223 280-1 290 470	8-6	1.45 - 01	3.61-03	1.42-01	-1.539	C	LS
				[1 522.5]	1 223 920–1 289 600	6-8	1.01 - 01	4.70-03	1.41-01	-1.550	C	LS
46	$2s^22p^2(^1D)4s - 2s^2p^3(^3D^{\circ})3d$	$^{2}D-^{2}F^{\circ}$		1 842	1 235 690–1 289 973	10–14	2.92-01	2.08-02	1.26+00	-0.682	C+	1
				[1 855]	1 235 690-1 289 600	6-8	2.86 - 01	1.97 - 02	7.22 - 01	-0.927	C+	LS
				[1 826]	1 235 690-1 290 470	4-6	2.80 - 01	2.10-02	5.05 - 01	-1.076	C+	LS
				[1 826]	1 235 690–1 290 470	6–6	2.00-02	1.00-03	3.61-02	-2.222	D+	LS
147	$2s^22p^2(^3P)4d-2s2p^3(^3D^{\circ})3d$	$^4D - ^4P^{\circ}$				20–12						1
			[2 978]	[2 979]	1 248 830–1 282 400	6-4	2.63-02	2.33-03	1.37-01	-1.854	C	LS
			[2 954]	[2 955]	1 248 830–1 282 670	4-2	2.14 - 02	1.40 - 03	5.45 - 02	-2.252	D+	LS
			[3 011]	[3 012]	1 248 830-1 282 030	6-6	7.26 - 03	9.87 - 04	5.87 - 02	-2.228	D+	LS
			[2 978]	[2 979]	1 248 830–1 282 400	4-4	1.33 - 02	1.77 - 03	6.94 - 02	-2.150	D+	LS
			[3 014]	[3 015]	1 249 500–1 282 670	2–2	2.01 - 02	2.74 - 03	5.44 - 02	-2.261	D+	LS
			[3 011]	[3 012]	1 248 830–1 282 030	4-6	8.04 - 04	1.64 - 04	6.50 - 03	-3.183	E+	LS
			[3 039]	[3 040]	1 249 500–1 282 400	2–4	1.96-03	5.43-04	1.09-02	-2.964	D	LS
48		$^{4}D-^{4}D^{\circ}$				20-20						1
			[2 616]	[2 617]	1 248 830-1 287 040	6–6	9.74-03	1.00-03	5.17-02	-2.222	D+	LS
			[= 010]									
			[2 616]	[2 617]	1 248 830–1 287 040	4-4		7.00-04				LS
							6.82-03		2.41-02	-2.553	D	

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1 = Burke and Lennon, 1 = Burke and Froese Fischer, 2 = Burke and Froese Fischer, 3 = Burke and Froese Fischer, 4 = Burke and 4 = Burke a

	Transition	,	λ _{air}		$E_i - E_k$		A_{ki}	c	S			G
No.	aray	Mult.	(A)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	log gf	Acc.	Source
			[2 616]	[2 617]	1 248 830–1 287 040	4-2			1.51 - 02			LS
			[2 616]	[2 617]	1 248 830–1 287 040	6–8			1.72 - 02			LS
			[2 616]	[2 617]	1 248 830–1 287 040	4–6			2.11-02			LS
			[2 663]	[2 664]	1 249 500–1 287 040	2–4	4.04-03	8.59-04	1.51 - 02	-2.765	D	LS
149		$^4P - ^4P^{\circ}$	3 358	3 359	1 252 485–1 282 260	12–12	3.07-03	5.19-04	6.88-02	-2.206	D	1
			3 355.9	3 356.8	1 252 240-1 282 030	6-6	2.15-03	3.63-04	2.41-02	-2.662	D	LS
			3 361.5	3 362.5	1 252 660–1 282 400	4-4	4.08 - 04	6.91 - 05	3.06 - 03	-3.558	E+	LS
			3 354.7	3 355.7	1 252 870–1 282 670	2-2	5.12 - 04	8.65 - 05	1.91 - 03	-3.762	E	LS
			3 314.7	3 315.6	1 252 240–1 282 400	6-4	1.44 - 03	1.58 - 04	1.03 - 02	-3.023	D	LS
			3 331.3	3 332.2	1 252 660–1 282 670	4–2	2.62 - 03	2.18 - 04	9.57 - 03	-3.059	D	LS
			3 403.9	3 404.8	1 252 660–1 282 030	4-6	8.82 - 04	2.30 - 04	1.03 - 02	-3.036	D	LS
			3 385.4	3 386.4	1 252 870–1 282 400	2–4	1.25 - 03	4.29-04	9.57-03	-3.067	D	LS
150		$^{4}P-^{4}D$	2 893	2 894	1 252 485–1 287 040	12-20	3.98-02	8.32-03	9.51-01	-1.001	C	1
			2 872.7	2 873.6	1 252 240-1 287 040	6-8	4.06-02	6.70-03	3.80-01	-1.396	C+	LS
			2 907.8	2 908.7	1 252 660-1 287 040	4-6	2.74 - 02	5.21-03	2.00-01	-1.681	C	LS
			2 925.7	2 926.5	1 252 870-1 287 040	2-4	1.60 - 02	4.11-03	7.92-02	-2.085	D+	LS
			2 872.7	2 873.6	1 252 240-1 287 040	6-6	1.22 - 02	1.51-03	8.57-02	-2.043	C	LS
			2 907.8	2 908.7	1 252 660-1 287 040	4-4	2.09 - 02	2.65-03	1.02 - 01	-1.975	C	LS
			2 925.7	2 926.5	1 252 870-1 287 040	2-2	3.20 - 02	4.11 - 03	7.92-02	-2.085	D+	LS
			2 872.7	2 873.6	1 252 240-1 287 040	6-4	2.02 - 03	1.67-04	9.48-03	-2.999	D	LS
			2 907.8	2 908.7	1 252 660–1 287 040	4–2	6.53-03	4.14-04	1.59-02	-2.781	D	LS
151		$^{4}P-^{4}S^{\circ}$	2 824	2 824	1 252 485–1 287 890	12–4	3.21-02	1.28-03	1.43-01	-1.814	D+	1
			[2 804]	[2 805]	1 252 240–1 287 890	6-4	1.64-02	1.29-03	7.15-02	-2.111	D+	LS
			[2 838]	[2 838]	1 252 660-1 287 890	4-4	1.05 - 02	1.27-03	4.75-02	-2.294	D+	LS
			[2 855]	[2 856]	1 252 870–1 287 890	2-4	5.15-03	1.26-03	2.37-02	-2.599	D	LS
152		$^{2}D-^{2}F$	•			10–14						1
			[3 202]	[3 203]	1 258 380–1 289 600	6-8	2.66-02	5.45-03	3.45-01	-1.485	C+	LS
			[3 115]	[3 116]	1 258 380–1 290 470	6–6			1.72-02			LS
153 2s	$^{2}2p^{2}(^{3}P)4d-2s2p^{3}(^{5}S^{\circ})4s$	$^{4}P-^{4}S^{\circ}$		1 406.0	1 252 485–1 323 610	12-4	2.28+00	2.25-02	1.25+00	-0.569	C+	1
				[1 401.2]	1 252 240-1 323 610	6-4	1.15 + 00	2.26-02	6.25-01	-0.868	C+	LS
				[1 409.4]	1 252 660-1 323 610	4-4	7.55 - 01	2.25-02	4.18-01	-1.046	C+	LS
					1 252 870–1 323 610	2-4			2.08-01			LS
154	$2s^22p^2(^3P)4d-2s2p^3(^5S^{\circ})4d$	$^4P-^4D^{\circ}$	•	824.6	1 252 485–1 373 760	12-20	6.85-02	1.16-03	3.79-02	-1.856	E+	1
	232p (3)4a			822.91	1 252 240–1 373 760	6-8	6.89-02	9.33-04	1.52-02	-2.252	D	LS
				825.76	1 252 660-1 373 760	4-6			7.96-03			LS
				827.20	1 252 870–1 373 760	2-4			3.16-03			LS
				822.91	1 252 240–1 373 760	6–6			3.41-03			LS
				825.76	1 252 660–1 373 760	4-4			4.05-03			LS
				827.20	1 252 870–1 373 760	2–2			3.16-03			LS
				822.91	1 252 240-1 373 760	6-4			3.79-04			LS
				825.76	1 252 660–1 373 760	4-2			6.32-04			LS
155	$2s2p^{3}(^{3}D^{\circ})3d-$	$^{2}\text{F}^{\circ}$ $ ^{2}\text{D}$)	1 017 cm ⁻¹	1 289 973–1 290 990	14-10	3.96-07	4.07-05	1.84-01	-3.244	D+	1
	$2s^22p^2(^1D)4d$			[1 390]	1 289 600–1 290 990	8-6	9.54-07	5 55-05	1.05-01	_3 353	C	LS
				[520]	1 290 470–1 290 990	6–4			7.37 - 02			LS
				[520]	1 290 470–1 290 990	6–4 6–6			5.28-03			LS
	a a 3/3m°	4-° 4-		L- *3								
156	$2s2p^{3}(^{3}D^{\circ})3d - 2s^{2}2p^{2}(^{3}P)5s$	$^{4}P^{\circ} - ^{4}P$	•			12–12						1

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

No.	Transition aray	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\begin{array}{c} \lambda_{vac} \ (\mathring{A}) \\ or \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	$f_{\mathrm{i}k}$	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			[2 728]	[2 729]	1 282 030–1 318 670	6–6	1.54-02	1.72-03	9.27-02	-1.986	С	LS
			[2 832]	[2 833]	1 282 400-1 317 700	4-4	2.63 - 03	3.16-04	1.18-02	-2.898	D	LS
			[2 803]	[2 803]	1 282 030–1 317 700	6-4	9.15 - 03	7.19 - 04	3.98 - 02	-2.365	D+	LS
			[2 756]	[2 757]	1 282 400–1 318 670	4-6			3.99 - 02			LS
			[2 854]	[2 855]	1 282 670–1 317 700	2–4	8.02-03	1.96-03	3.68-02	-2.407	D+	LS
157		$^{4}D^{\circ}-^{4}P$				20-12						1
			[3 161]	[3 162]	1 287 040–1 318 670	8-6			4.66-02			LS
			[3 261]	[3 262]	1 287 040–1 317 700	6–4			2.45-02			LS
			[3 161]	[3 162]	1 287 040–1 318 670	6–6			1.05-02			LS
			[3 261]	[3 262]	1 287 040-1 317 700	4–4 4–6			1.25-02 1.17-03			LS
			[3 161] [3 261]	[3 162] [3 262]	1 287 040–1 318 670 1 287 040–1 317 700	2-4			1.17-03			LS LS
158		$^{4}\text{S}^{\circ} - ^{4}\text{P}$				4–12						1
			[3 248]	[3 249]	1 287 890–1 318 670	4–6	3 49 - 03	8 29-04	3.55-02	-2 479	D+	LS
			[3 354]	[3 355]	1 287 890–1 317 700	4–4			2.36-02			LS
159	$2s2p^{3}(^{3}D^{\circ})3d - 2s^{2}2p^{2}(^{1}S)4d$	$^2F^{\circ}-^2D$	2297	2297	1 289 973–1 333 500	14–10	5.25-03	2.97-04	3.14-02	-2.381	D	1
			[2 277]	[2 278]	1 289 600–1 333 500	8-6	5.12-03	2.99-04	1.79-02	-2.621	D	LS
			[2 323]	[2 324]	1 290 470-1 333 500	6-4	5.08 - 03	2.74 - 04	1.26 - 02	-2.784	D	LS
			[2 323]	[2 324]	1 290 470–1 333 500	6–6	2.42-04	1.96-05	9.00-04	-3.930	Е	LS
160	$2s2p^{3}(^{3}D^{\circ})3d - 2s2p^{3}(^{5}S^{\circ})4p$	$^4D^{\circ} - ^4P$		1 855	1 287 040–1 340 950	20–12	7.33-02	2.27-03	2.77-01	-1.343	D+	1
				[1 855]	1 287 040–1 340 950	8-6			1.11-01			LS
				[1 855]	1 287 040–1 340 950	6–4			5.83-02			LS
				[1 855]	1 287 040–1 340 950	4–2			2.31-02			LS
				[1 855]	1 287 040-1 340 950	6–6			2.49-02			LS
				[1 855] [1 855]	1 287 040–1 340 950 1 287 040–1 340 950	4–4 2–2			2.96-02 $2.31-02$			LS LS
				[1 855]	1 287 040–1 340 950	4-6			2.76-03			LS
				[1 855]	1 287 040–1 340 950	2–4			4.62-03			LS
161		$^{4}\text{S}^{\circ}$ $ ^{4}\text{P}$		1 885	1 287 890–1 340 950	4–12	1.23-01	1.96-02	4.86-01	-1.106	С	1
				[1 885]	1 287 890–1 340 950	4–6	1.23-01	9.79-03	2.43-01	-1.407	C	LS
				[1 885]	1 287 890–1 340 950	4-4			1.62-01			LS
				[1 885]	1 287 890–1 340 950	4–2			8.09-02			LS
162	$2s2p^3(^3D^{\circ})3d - 2s^22p^2(^3P)5d$	$^{2}F^{\circ}-^{2}F$		1 768.7	1 289 973–1 346 510	14–14	1.05-02	4.91-04	4.00-02	-2.163	D	1
				[1 734.3]	1 289 600–1 347 260	8-8	9.80-03	4.42-04	2.02-02	-2.451	D	LS
				[1 817]	1 290 470-1 345 510	6-6	1.03 - 02	5.10 - 04	1.83 - 02	-2.514	D	LS
				[1 789]	1 289 600–1 345 510	8-6	4.42 - 04	1.59 - 05	7.49 - 04	-3.896	E	LS
				[1 760.9]	1 290 470–1 347 260	6–8	3.47-04	2.15-05	7.48 - 04	-3.889	E	LS
163	$2s2p^3(^3D^{\circ})3d - 2s^22p^2(^1D)5d$	$^{2}F^{\circ}-^{2}F$		1 077.5	1 289 973–1 382 780	14–14	2.02-02	3.52-04	1.75-02	-2.307	E+	1
				[1 073.2]	1 289 600-1 382 780	8-8	1.81-02	3.12-04	8.82-03	-2.603	D	LS
				[1 083.3]	1 290 470-1 382 780	6-6			8.00-03			LS
				[1 073.2]	1 289 600-1 382 780	8-6	8.88 - 04	1.15-05	3.25-04	-4.036	E	LS
				[1 083.3]	1 290 470–1 382 780	6-8	6.52-04	1.53-05	3.27-04	-4.037	E	LS
164	$2s^22p^2(^1D)4d-$ $2s^22p^3(^3D^\circ)3d$	$^{2}F-^{2}F^{\circ}$		1 663 cm ⁻¹	1 288 310–1 289 973	14–14	2.49-06	1.35-04	3.76-01	-2.724	C	1

Table 60. Transition probabilities of allowed lines for Mg VI (reference for this table are as follows: 1=Burke and Lennon, 11 2=Tachiev and Froese Fischer, 95 3=Tachiev and Froese Fischer, 95 4=Merkelis *et al.* 65)—Continued

No.	Transition aray	Mult.	λ _{air} (Å)	$\lambda_{\text{vac}} (\mathring{A})$ or $\sigma (\text{cm}^{-1})^a$	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	$f_{{ m i}k}$	S (a.u.)	$\log gf$	Acc.	Source
				[1 290]	1 288 310–1 289 600	8–8	1.03-06	9.29-05	1 90-01	-3 129	C	LS
				[2 160]	1 288 310-1 290 470	6–6		1.88-04				LS
				[2 160]	1 288 310-1 290 470	8-6		5.76-06				LS
				[1 290]	1 288 310–1 289 600	6–8		4.59-06				LS
165	$2s^22p^2(^3\text{P})5s-2s2p^3(^5\text{S}^\circ)4s$	$^{4}P-^{4}S^{\circ}$				12-4						1
				[4 940]	1 318 670–1 323 610	6–4	1.52-03	6.23-03	2.49+00	-1.427	В	LS
			[16 916]	[16 920]	1 317 700–1 323 610	4-4	1.74-03	7.46-03	1.66+00	-1.525	В	LS
166	$2s2p^3(^5S^{\circ})4s-2s2p^3(^5S^{\circ})4p$	$^{4}\text{S}^{\circ}$ $ ^{4}\text{P}$	5 770	5 767	1 323 610–1 340 950	4–12	3.67-01	5.48-01	4.17+01	0.341	B+	1
			[5 765]	[5 767]	1 323 610–1 340 950	4-6	3.66-01	2.74-01	2.08+01	0.040	$\mathrm{B} +$	LS
			[5 765]	[5 767]	1 323 610-1 340 950	4-4	3.67-01	1.83 - 01	1.39+01	-0.135	B +	LS
			[5 765]	[5 767]	1 323 610–1 340 950	4–2	3.67 - 01	9.15-02	6.95+00	-0.437	$\mathrm{B} +$	LS
167	$2s2p^{3}(^{5}S^{\circ})4p - 2s2p^{3}(^{5}S^{\circ})4d$	$^{4}P-^{4}D^{\circ}$	3 047	3 048	1 340 950–1 373 760	12–20	3.03+00	7.04-01	8.47+01	0.927	B+	1
	1 (/		[3 047]	[3 048]	1 340 950-1 373 760	6-8	3.03+00	5.63-01	3.39+01	0.529	B+	LS
			[3 047]	[3 048]	1 340 950-1373 760	4-6	2.12+00	4.43-01	1.78 + 01	0.248	B+	LS
			[3 047]	[3 048]	1 340 950-1 373 760	2-4	1.26+00	3.52-01	7.06+00	-0.152	B+	LS
			[3 047]	[3 048]	1 340 950-1 373 760	6-6	9.12-01	1.27-01	7.65+00	-0.118	B +	LS
			[3 047]	[3 048]	1 340 950-1 373 760	4-4	1.62+00	2.25-01	9.03+00	-0.046	B+	LS
			[3 047]	[3 048]	1 340 950-1 373 760	2-2	2.53+00	3.52-01	7.06+00	-0.152	$\mathrm{B} +$	LS
			[3 047]	[3 048]	1 340 950-1 373 760	6-4	1.52-01	1.41-02	8.49-01	-1.073	C+	LS
			[3 047]	[3 048]	1 340 950-1 373 760	4–2	5.06-01	3.52-02	1.41 + 00	-0.851	В	LS

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

11.6.3. Forbidden Transitions for Mg VI

The results of Tachiev and Froese Fischer^{95,99} are the product of extensive MCHF calculations with Breit-Pauli corrections to order α^2 , with energy corrections. The second-order MBPT results of Merkelis *et al.*⁶³ are also cited.

The transitions were divided into two groups having upper-level energies below and above 700 000 cm⁻¹. To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) of each of the lines for which a transition rate is quoted by two or more references, ^{63,95,99} as discussed in the general introduction. Merkelis *et al.* ⁶³ only include results for transitions from lower-lying levels.

To estimate the accuracy of the forbidden lines from allowed lines, we isoelectronically averaged the logarithmic quality factors (see Sec. 4.1 of the Introduction) observed for lines from the lower-lying levels of N-like Na, Mg, Al, and Si and applied the result to forbidden lines of Mg VI, as described in the introduction. The listed accuracies for these higher-lying transitions are thus less well established than for those from lower levels. In this spectrum, the forbidden transitions between different configurations generally are stronger for E2 than for M1 lines. We note that this type of transitions has only been computed by a single source, ^{96,99} and that their estimated accuracies are therefore relatively uncertain. The same also holds for the M2 transitions.

11.6.4. References for Forbidden Transitions for Mg VI

⁶³G. Merkelis, I. Martinson, R. Kisielius, and M. J. Vilkas,

Phys. Scr. 59, 122 (1999).

⁸⁹G. Tachiev and C. Froese Fischer, Astron. Astrophys. **385**, 716 (2002).

⁹⁵G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on Sept 3, 2003).

⁹⁹G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, energy adjusted, downloaded on Dec. 10, 2003). See Tachiev and Froese Fischer (Ref. 89).

TABLE 61. Wavelength finding list for forbidden lines for Mg VI

Wavelength (vac) (Å)	Mult. No.
109.854	22
110.082	22
111.186	28
111.552	21
111.746	21
111.864	21
113.190	26
113.192	26
116.967	24
116.969	24
116.971	27
116.986	27
117.226	24
117.228	24

Table 61. Wavelength finding list for forbidden lines for Mg VI—Continued

TABLE 61. Wavelength finding list for forbidden lines for Mg VI—Continued

g v1—Continueu		wig vi—Continued	
Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
			
118.894	23	514.859	10
118.897	23	514.903	10
119.114	23	519.232	10
119.116	23	519.278	10
119.249	23	563.22	32
119.251	23	564.20	32
123.074	25	565.98	32
123.090	25	569.46	32
123.309	25	572.28	32
123.326	25	600.88	14
123.470	25	603.63	14
152.795	18	604.03	14
153.406	18	609.65	14
166.912	19	610.06	14
166.917	19	656.87	31
		660.62	31
167.482	38	1 065.59	30
167.494	38	1 066.06	30
167.642	19	1 084.49	30
167.646	19	1 084.99	30
175.269	20	1 094.77	30
175.302	20	1 171.76	35
176.073	20	1 190.074	2
176.106	20	1 191.611	2
234.118	9	1 198.48	35
235.189	9	1 199.08	35
248.866	8	1 665.86	34
268.977	13	1 805.94	1
268.989	13	1 806.5	1
270.392	13		
270.404	13	Wavelength	Mult.
288.629	12	(air) (Å)	No.
288.643	12	3 486.7	4
291.455	17	3 488.72	4
292.575	7	3 400.72	7
292.611	7	3 499.9	4
293.023	17	3 501.97	4
293.116	17	3 949.4	36
314.670	16	4 278.2	36
349.117	11		
349.137	11	Wavenumber	Mult.
349.168	11	(cm ⁻¹)	No
349.189	11	1 945	37
387.788	15	1 890	40
387.851	15	1 636	29
387.951	15	1 550	39
388.014	15	950	39
399.281	6	866	29
400.667	6	108.4	5
403.310	6	108.4 42	33
512.573	10		33
512.618	10	17	S

Table 62. Transition probabilities of forbidden lines for Mg VI (references for this table are as follows: 1=Tachiev and Froese Fischer, 99 2=Tachiev and Froese Fischer, 99 and 3=Merkelis et~al.

No.	Transition array	Mult. No.	$\lambda_{air} \ (\mathring{A})$	$\lambda_{\mathrm{vac}} (\mathring{\mathrm{A}})$ or $\sigma (\mathrm{cm}^{-1})^{\mathrm{a}}$	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	Type	A_{ki} (s ⁻¹)	S (a.u.)	Acc.	Source
1	$2p^3-2p^3$	$^{4}\text{S}^{\circ} - ^{2}\text{D}^{\circ}$									
1	zp-zp	3 – D		1 806.5	0.0-55 356	4-6	M1	2.91-03	3.82-06	D+	1,3
				1 806.5	0.0–55 356	4–6	E2	2.28-03	2.35-04		1,3
				1 805.94	0.0–55 372.8	4–4	M1	1.10-01	9.57-05	C	1,3
				1 805.94	0.0–55 372.8	4–4	E2	1.47 - 03	1.01 - 04	C	1,3
2		$^{4}\text{S}^{\circ} - ^{2}\text{P}^{\circ}$									
				1 190.074	0.0-84 028.4	4-4	M1	1.21+01	3.02-03	В	1,3
				1 190.074	0.0-84 028.4	4-4	E2	2.59-05	2.21-07	E+	1,3
				1 191.611	0.0-83 920.0	4-2	M1	4.91 + 00	6.16-04	C+	1,3
				1 191.611	0.0-83 920.0	4-2	E2	1.99-04	8.55-07	D+	1,3
		2 0 2 0									
3		$^{2}D^{\circ}-^{2}D^{\circ}$		1							
				17 cm ⁻¹	55 356–55 372.8	6–4	M1	8.68-08	2.72+00	C+	1,3
				17 cm ⁻¹	55 356–55 372.8	6–4	E2	1.09 - 19	2.91-03	D+	1,3
4		$^{2}\text{D}^{\circ}-^{2}\text{P}^{\circ}$									
			3 499.9	3 500.9	55 356-83 920.0	6–2	E2	1.58-01	1.48-01	B+	1,3
			3 486.7	3 487.7	55 356-84 028.4	6–4	M1	1.89+00	1.19-02	В	1,3
			3 486.7	3 487.7	55 356-84 028.4	6-4	E2	2.79-01	5.15-01	B+	1,3
			3 501.97	3 502.97	55 372.8-83 920.0	4-2	M1	2.08+00	6.62-03	В	1,3
			3 501.97	3 502.97	55 372.8-83 920.0	4-2	E2	2.36-01	2.22 - 01	B+	1,3
			3 488.72	3 489.72	55 372.8-84 028.4	4-4	M1	3.21 + 00	2.02 - 02	В	1,3
			3 488.72	3 489.72	55 372.8-84 028.4	4-4	E2	1.17 - 01	2.16-01	B+	1,3
		2 0 2 0									
5		$^{2}\text{P}^{\circ}-^{2}\text{P}^{\circ}$									
				108.4 cm ⁻¹	83 920.0–84 028.4	2–4	M1	1.04 - 05	1.21+00	В	1,3
				108.4 cm ⁻¹	83 920.0–84 028.4	2–4	E2	5.57 - 17	1.33 - 04	E+	1,3
6	$2s^22p^3-2s2p^4$	$^{4}\text{S}^{\circ}-^{4}\text{P}$									
0	_5 _p _5_p			403.310	0.0-247 948	4-6	M2	1.58+00	6.77+00	B+	2
				400.667	0.0–249 584	4-4	M2	1.16+00	3.21+00	В	2
				399.281	0.0–250 450	4–2	M2	3.58-01	4.88-01	В	2
					****	. –				_	_
7		$^{4}\text{S}^{\circ} - ^{2}\text{D}$									
				292.611	0.0–341 751	4-6	M2	1.79 - 04	1.54 - 04	D	2
				292.575	0.0–341 793	4–4	M2	5.55 - 03	3.19-03	D+	2
8		$^{4}\text{S}^{\circ}$ $-^{2}\text{S}$									
o		3 – 3		248.866	0.0-401 822	4–2	M2	1.49-01	1.91-02	C	2
				240.000	0.0-401 822	4-2	1112	1.49-01	1.91-02	C	2
9		$^{4}\text{S}^{\circ}-^{2}\text{P}$									
				235.189	0.0-425 190	4-4	M2	1.84 + 01	3.55+00	В	2
				234.118	0.0-427 135	4-2	M2	3.60+01	3.39+00	В	2
0		$^{2}\text{D}^{\circ}$ $ ^{4}\text{P}$									
.0		-D - P		510 570	55 256 250 450	()	1.40	1.05.01	4.07.01	ъ	2
				512.573	55 356–250 450	6–2	M2	1.05-01	4.97-01		2
				514.859	55 356–249 584	6–4	M2	2.82-01	2.74+00	В	2
				512.618 519.232	55 372.8–250 450 55 356–247 948	4–2	M2	7.99-01	3.79+00	В	2
						6–6	M2	2.63-01	3.99+00	В	2 2
				514.903	55 372.8–249 584	4-4	M2	4.27-01	4.15+00	В	
				519.278	55 372.8–247 948	4–6	M2	1.01-01	1.54+00	D	2
11		$^{2}D^{\circ}-^{2}D$									
				349.168	55 356-341 751	6-6	M2	4.88 + 00	1.02+01	B+	2
				349.137	55 372.8-341 793	4-4	M2	5.85-01	8.15-01	В	2
				349.117	55 356-341 793	6-4	M2	3.38+00	4.71 + 00	B+	2
				0 171111	00 000 0 11 170			2.20 1 00	, 1 . 00		
				349.189	55 372.8–341 751	4–6	M2	2.52+00	5.26+00		2

TABLE 62. Transition probabilities of forbidden lines for Mg VI (references for this table are as follows: 1=Tachiev and Froese Fischer, 99 2=Tachiev and Froese Fischer, 99 and 3=Merkelis et~al.

No.	Transition array	Mult. No.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{\mathrm{vac}} \ (\mathring{A})$ or $\sigma \ (\mathrm{cm}^{-1})^{\mathrm{a}}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	A_{ki} (s^{-1})	<i>S</i> (a.u.)	Acc.	Source
				288.629	55 356–401 822	6–2	M2	6.50-02	1.75-02	С	2
				288.643	55 372.8-401 822	4-2	M2	2.01 - 02	5.40-03	D+	2
		25° 25									
13		$^{2}D^{\circ}-^{2}P$		269.077	55 256 427 125	6.0	140	4.64.00	0.77 01	D	2
				268.977	55 356–427 135	6–2	M2	4.64+00	8.77-01	В	2
				270.392 268.989	55 356–425 190 55 372.8–427 135	6–4 4–2	M2 M2	1.35+00 $2.29-01$	5.23-01 4.32-02	B C	2 2
				270.404	55 372.8–427 133	4-4	M2	4.02-01	1.56-01		2
				270.404	33 372.0-423 170	4-4	1112	4.02-01	1.50-01	Cı	2
14		$^{2}P^{\circ}-^{4}P$									
				604.03	84 028.4–249 584	4-4	M2	7.67 - 03	1.66-01	C+	2
				600.88	84 028.4–250 450	4–2	M2	8.15 - 02	8.57 - 01	В	2
				610.06	84 028.4–247 948	4–6	M2	2.18 - 01	7.40+00	B+	2
				603.63	83 920.0–249 584	2–4	M2	1.88-01	4.04+00	В	2
				609.65	83 920.0–247 948	2–6	M2	6.48-02	2.20+00	В	2
15		$^{2}\text{P}^{\circ}-^{2}\text{D}$									
				387.851	83 920.0-341 751	2-6	M2	1.42+00	5.03+00	B+	2
				388.014	84 028.4-341 751	4-6	M2	9.72-01	3.44+00	В	2
				387.788	83 920.0-341 793	2-4	M2	1.00-01	2.36-01	C+	2
				387.951	84 028.4-341 793	4-4	M2	3.17 - 01	7.47 - 01	В	2
16		$^{2}\text{P}^{\circ}-^{2}\text{S}$									
16		-PS		214 (70	94 029 4 401 922	4.2	140	0.40 + 00	2.02 . 00	D	2
				314.670	84 028.4–401 822	4–2	M2	9.49+00	3.93+00	В	2
17		$^{2}\mathbf{P}^{\circ}-^{2}\mathbf{P}$									
				293.116	84 028.4-425 190	4-4	M2	1.53 + 00	8.86 - 01	В	2
				291.455	84 028.4-427 135	4-2	M2	2.37 + 00	6.70 - 01	В	2
				293.023	83 920.0–425 190	2-4	M2	7.25 - 01	4.20-01	C+	2
10	$2s^22p^3-2p^5$	$^{4}\text{S}^{\circ} - ^{2}\text{P}^{\circ}$									
18	$2s^{2}2p^{2}-2p^{2}$	S - P		153.406	0.0-651 867	4-4	M1	2.02+00	1.08-06	D	3
				153.406	0.0–651 867	4-4	E2	1.16+01	3.52-06	D	3
				152.795	0.0–654 473	4-4	M1	7.68-01	2.03-07	E+	3
				152.795	0.0–654 473	4-2	E2	1.69+01		D D	3
				132.773	0.0 034 473	7 2	122	1.07101	2.31 00	Ъ	3
19		$^{2}D^{\circ}-^{2}P^{\circ}$									
				166.912	55 356-654 473	6–2	E2	3.97 + 04	9.18 - 03	C+	3
				167.642	55 356–651 867	6–4	M1	8.37 - 01	5.85 - 07	D	3
				167.642	55 356-651 867	6–4	E2	6.83 + 04	3.23 - 02	В	3
				166.917	55 372.8–654 473	4–2	M1	7.68 - 01	2.65 - 07	E+	3
				166.917	55 372.8-654 473	4–2	E2	5.34 + 04	1.24 - 02	C+	3
				167.646	55 372.8–651 867	4–4	M1	1.49+00	1.04-06	D	3
				167.646	55 372.8–651 867	4–4	E2	3.22+04	1.52-02	C+	3
20		$^{2}\text{P}^{\circ}-^{2}\text{P}^{\circ}$									
				176.106	84 028.4-651 867	4-4	M1	3.06-03	2.48-09	Е	3
				176.106	84 028.4-651 867	4-4	E2	1.00+04	6.05 - 03	C+	3
				175.269	83 920.0-654 473	2-2	M1	2.91 - 01	1.16-07	E+	3
				175.269	83 920.0-654 473	2-2	E2	7.31 - 07	2.16-13	E	3
				175.302	84 028.4-654 473	4-2	M1	1.57 + 00	6.27 - 07	D	3
				175.302	84 028.4-654 473	4-2	E2	3.03+04	8.96-03	C+	3
				176.073	83 920.0-651 867	2-4	M1	6.84 - 01	5.54 - 07	D	3
				176.073	83 920.0-651 867	2-4	E2	1.24+04	7.49 - 03	C+	3
21	2-3 2-2(3p)2	4c° 4p									
21	$2p^3 - 2p^2(^3P)3s$	$^{4}\text{S}^{\circ}-^{4}\text{P}$		111 550	0.0.006.440	1.6	140	1.00 - 02	7.40 01	C	2
				111.552	0.0–896 440	4–6	M2	1.08+02	7.48-01		2
				111.746	0.0–894 890	4-4	M2	9.03+01	4.22-01	D+	2
				111.864	0.0–893 940	4–2	M2	3.13+01	7.37 - 02	E+	2

Table 62. Transition probabilities of forbidden lines for Mg VI (references for this table are as follows: 1=Tachiev and Froese Fischer, 99 2=Tachiev and Froese Fischer, 99 and 3=Merkelis et~al.

No.	Transition	Mult. No.	λ _{air} (Å)	$\lambda_{\rm vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	a a	Tuna	A_{ki} (s ⁻¹)	S (a.u.)	Acc.	Source
	array		(A)	or σ (cm -)	(cm ⁻)	$g_i - g_k$	Туре	(S -)	(a.u.)	Acc.	Source
22		$^{4}\text{S}^{\circ}-^{2}\text{P}$		100.054	0.0.010.200		1.10	7.02.01	2.02.01	Б.	2
				109.854	0.0–910 300	4–4	M2	7.03+01	3.02-01	D+	2
				110.082	0.0–908 410	4–2	M2	1.51 + 02	3.28-01	D+	2
23		$^{2}D^{\circ}-^{4}P$									
				119.249	55 356-893 940	6–2	M2	1.78 + 01	5.75 - 02	E+	2
				119.114	55 356-894 890	6–4	M2	5.52 + 01	3.55 - 01	D+	2
				119.251	55 372.8-893 940	4–2	M2	1.68 + 02	5.44 - 01	C	2
				118.894	55 356-896 440	6-6	M2	6.14+01	5.87 - 01	C	2
				119.116	55 372.8-894 890	4-4	M2	7.90+01	5.08 - 01	D+	2
				118.897	55 372.8-896 440	4–6	M2	8.78 + 00	8.39-02	E+	2
24		$^{2}\text{D}^{\circ}-^{2}\text{P}$									
				117.226	55 356-908 410	6–2	M2	3.59+01	1.07-01	D	2
				116.967	55 356-910 300	6–4	M2	1.24+01	7.29-02	E+	2
				117.228	55 372.8-908 410	4-2	M2	1.79 + 00	5.31-03	Е	2
				116.969	55 372.8-910 300	4-4	M2	4.01 + 00	2.35-02		2
25		$^{2}P^{\circ}-^{4}P$									
25		²P − ⁴P		123.326	84 028.4–894 890	4 4	МЭ	2 11 + 00	2.38-02	Б	2
				123.470	84 028.4–893 940	4-4	M2 M2	3.11+00 $7.42+00$	2.86-02	E E	2 2
				123.470	84 028.4–896 440	4–2			5.58-01	C C	
				123.309	83 920.0–894 890	4–6	M2 M2	4.91+01 $3.54+01$	2.70-01	D+	2
				123.074	83 920.0–894 890	2–4 2–6	M2	1.43+01	1.62-01		2 2
				123.074	63 920.0-690 440	2–0	IVIZ	1.45+01	1.02-01	ט	2
26	$2p^3 - 2p^2(^1D)3s$	$^{2}D^{\circ}-^{2}D$									
				113.190	55 356–938 830	6–6	M2	1.54 + 02	1.15+00	C	2
				113.192	55 372.8–938 830	4-4	M2	1.36+01	6.80 - 02	E+	2
				113.190	55 356–938 830	6–4	M2	9.95 + 01	4.96 - 01	D+	2
				113.192	55 372.8–938 830	4–6	M2	6.42 + 01	4.80 - 01	D+	2
27		$^{2}P^{\circ}-^{2}D$									
				116.971	83 920.0-938 830	2-6	M2	2.26+01	1.99-01	D	2
				116.986	84 028.4-938 830	4-6	M2	4.13+01	3.64-01	D+	2
				116.971	83 920.0–938 830	2–4	M2	4.88-01	2.87-03	Е	2
				116.986	84 028.4–938 830	4-4	M2	6.17+00	3.63-02	E+	2
	2 2 2 1 2 2	2- 0 2-									
28	$2p^3 - 2p^2(^1S)3s$	$^{2}P^{\circ}-^{2}S$		F444 403	04.000 4.000 400		3.50	2 20 02	7.2 0 04		
20	2 2 4 2 2 4	4p. 4p		[111.19]	84 028.4–983 420	4–2	M2	3.20+02	7.29-01	С	2
29	$2s2p^4 - 2s2p^4$	$^{4}P-^{4}P$		1.626 -1	247.040.240.504		3.61	1.06.01	2.6000	ъ.	2
				1 636 cm ⁻¹	247 948–249 584	6–4	M1	1.06-01	3.60+00		2
				866 cm ⁻¹	249 584–250 450	4–2	M1	2.92-02	3.33+00	В+	2
30		$^{4}P-^{2}D$									
				1 084.99	249 584-341 751	4-6	M1	8.87 - 01	2.52 - 04	C	2
				1 094.77	250 450-341 793	2-4	M1	5.79 - 01	1.13 - 04	C	2
				1 066.06	247 948-341 751	6-6	M1	5.34+00	1.44 - 03	C	2
				1 084.49	249 584-341 793	4-4	M1	2.33+00	4.40 - 04	C	2
				1 065.59	247 948-341 793	6-4	M1	4.72 - 01	8.46 - 05	D+	2
21		$^{4}P - ^{2}S$									
31		PS		656.87	240 584 401 922	1.2	\√1	2 03 + 01	6.16-04	C	2
				660.62	249 584–401 822 250 450–401 822	4–2 2–2	M1 M1	2.93+01 $5.44+00$	1.16-04		2 2
				000.02	230 4 30 -4 01 <u>8</u> 22	2-2	IVI I	J. 44 + 00	1.10-04	C	۷
32		$^4P-^2P$									
				569.46	249 584-425 190	4-4	M1	1.21 + 00	3.32 - 05	D+	2
				565.98	250 450-427 135	2–2	M1	2.72+00	3.65 - 05	D+	2
				564.20	247 948-425 190	6-4	M1	2.13+00	5.66-05	D+	2
				301.20	217 710 123 170	٠.	1111	2.13 100	0.00		_

Table 62. Transition probabilities of forbidden lines for Mg VI (references for this table are as follows: 1=Tachiev and Froese Fischer, 99 2=Tachiev and Froese Fischer, 96 and 3=Merkelis et al. 63)—Continued

No.	Transition array	Mult. No.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	Туре	$A_{ki} $ (s ⁻¹)	<i>S</i> (a.u.)	Acc.	Source
				572.28	250 450–425 190	2–4	M1	7.02-01	1.95-05	D+	2
33		$^{2}D-^{2}D$									
		2 2		42 cm^{-1}	341 751–341 793	6–4	M1	1.20-06	2.40+00	B+	2
34		$^{2}D-^{2}S$									
				1 665.86	341 793–401 822	4–2	M1	1.55 - 03	5.33-07	D	2
35		$^{2}D-^{2}P$									
				1 198.48	341 751–425 190	6-4	M1	1.70+00	4.33 - 04	C	2
				1 171.76	341 793–427 135	4-2	M1	2.03+00	2.42 - 04	C	2
				1 199.08	341 793–425 190	4–4	M1	3.05+00	7.79-04	C	2
36		$^{2}S-^{2}P$									
			4 278.2	4 279.4	401 822-425 190	2-4	M1	3.60 - 01	4.19 - 03	C+	2
			3 949.4	3 950.5	401 822–427 135	2–2	M1	1.83+00	8.38-03	C+	2
37		${}^{2}P - {}^{2}P$									
				1 945 cm ⁻¹	425 190–427 135	4–2	M1	1.32-01	1.33+00	B+	2
38	$2s2p^4 - 2s^22p^2(^1D)3s$	$^{2}D-^{2}D$									
				167.482	341 751–938 830	6-6	M1	2.96+00	3.09-06	E	2
				167.482	341 751-938 830	6-6	E2	1.81 + 04	1.28 - 02	D	2
				167.494	341 793–938 830	4-4	M1	5.89 - 01	4.10 - 07	E	2
				167.494	341 793–938 830	4-4	E2	1.59 + 04	7.47 - 03	E+	2
				167.482	341 751–938 830	6-4	M1	1.28 - 01	8.93 - 08	E	2
				167.482	341 751–938 830	6-4	E2	6.75 + 03	3.18 - 03	E+	2
				167.494	341 793–938 830	4-6	M1	9.96 - 02	1.04 - 07	E	2
				167.494	341 793–938 830	4–6	E2	4.49 + 03	3.17-03	E+	2
39	$2p^2(^3P)3s - 2p^2(^3P)3s$	${}^{4}P - {}^{4}P$									
				1 550 cm ⁻¹	894 890-896 440	4-6	M1	6.01 - 02	3.59+00	$\mathrm{B}+$	2
				950 cm ⁻¹	893 940–894 890	2–4	M1	1.92 - 02	3.33+00	B+	2
40		${}^{2}P - {}^{2}P$									
				1 890 cm ⁻¹	908 410–910 300	2–4	M1	6.06-02	1.33+00	В	2

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

11.7. Mg VII

Carbon isoelectronic sequence Ground state: $1s^22s^22p^{23}P_0$

Ionization energy: 225.02 eV=1 814 900 cm⁻¹

11.7.1. Allowed Transitions for Mg VII

Only OP (Ref. 55) results were available for energy levels above the 2p3d. Wherever available we have used the data of Tachiev and Froese Fischer, ⁹¹ which are the product of extensive MCHF calculations with Breit-Pauli corrections to order α^2 . Their calculations only extend to transitions from energy levels up to 2p3d. Aggarwal³ used the CIV3 code. Fawcett²¹ applied the Hartree-Fock relativistic version of the COWAN code with Slater parameter optimization. As part of the Iron Project, Mendoza *et al.* ⁶² used the SUPERSTRUCTURE code with CI, relativistic effects, and semiempirical energy corrections.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with

transition rates published in two or more references, 3,21,55,62,95 as described in the general introduction. For this purpose the spin-allowed (non-OP) and intercombination data were treated separately and each of these was in turn divided into two upper-level energy groups below and above 1 000 000 cm⁻¹. Estimated accuracies were substantially better for the lower energy groups. OP lines constituted a fifth group and have been used only when more accurate sources were not available, because spin-orbit effects are often significant for this spectrum.

A NIST compilation of far-UV lines of Mg VII was published recently. The estimated accuracies are different in some cases because a different method of evaluation was used.

11.7.2. References for Allowed Transitions for Mg VII

M. Aggarwal, Astrophys. J., Suppl. Ser. 118, 589 (1998).
 B. C. Fawcett, At. Data Nucl. Data Tables 37, 367 (1987).
 Luo and A. K. Pradhan, J. Phys. B 23, 3377 (1989)

- ⁵⁵D. Luo and A. K. Pradhan, http://legacy.gsfc.nasa.gov/ topbase, downloaded on July 28, 1995 (Opacity Project). See Luo and Pradhan (Ref. 54).
- ⁶²C. Mendoza, C. J. Zeippen, and P. J. Storey, Astron. Astrophys., Suppl. Ser. **135**, 159 (1999).
- ⁷⁸L. I. Podobedova, D. E. Kelleher, J. Reader, and W. L. Wiese, J. Phys. Chem. Ref. Data **33**, 495 (2004).
- ⁸⁸G. Tachiev and C. Froese Fischer, Can. J. Phys. **79**, 955 (2001).
- ⁹¹G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, *ab initio*, downloaded on Mar. 20, 2002). See Tachiev and Froese Fischer (Ref. 88).

TABLE 63. Wavelength finding list for allowed lines for Mg VII

Wavelength	Mult.
(vac) (Å)	No.
62.166	70
64.122	33
66.788	71
67.453	68
67.470	68
67.497	68
68.100	31
68.144	31
68.184	31
68.352	69
69.615	32
75.975	30
76.392	29
78.339	28
78.407	28
78.519	28
79.133	27
79.168	27
79.246 80.951	27 26
81.024	26
81.143	26
82.940	56
82.969	56
83.015	56
83.511	20
83.560	20
83.588	20
83.637	20
83.715	20
83.764	20
83.910	19
83.959	19
83.988	19
84.025	19
84.051	64
84.059	64
84.087	19
84.092 84.100	64 64
84.105	64
84.117	19
84.643	63
84.650	63
84.655	63
85.335	24
85.407	23
86.032	66
86.035	66
87.131	65
87.175	65
87.722	22
87.889	21
88.680	25

TABLE 63. Wavelength finding list for allowed lines for Mg VII—Continued

TABLE 63. Wavelength finding list for allowed lines for Mg VII—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
89.406	59	106.522	52
89.415	59	106.523	52
89.439	59	106.708	52
89.448	59	106.709	52
89.453	59	106.714	52
89.471	59	106.808	52
89.476	59	111.984	47
90.706	58	111.997	47
90.806	58	112.005	47
90.815	58	112.110	47
90.883	58	112.118	47
90.891	58	112.269	47
90.897	58	117.517	48
91.447	57	117.518	48
91.486	57	117.641	48
91.492	57	117.642	48
91.566	57	117.648	48
91.575	57	117.807	48
91.580	57	130.938	49
92.256	67	131.092	49
92.899	61	131.299	49
92.934	61	196.628	72
92.935	61	197.435	72
92.959	61	197.596	72
92.960	61	198.393	100
92.963	61	198.410	72
94.043	50	198.721	72
94.174	50	198.753	72
95.027	53	206.292	73
95.036	53	215.485	110
95.088	60	232.661	109
95.136	60	234.580	34
95.137	60	235.729	34
95.141	60	241.733	94
95.232	60	241.879	94
95.233	60	242.078	94
95.258	16	242.324	94
95.383	16	242.395	94
95.423	16	242.842	94
95.484	16	251.792	6
95.556	16	252.496	6
95.650	16	253.660	6
98.031	17	260.727	39
98.982	54	272.747	99
101.956	51	276.154	5
101.967	51	277.001	5
101.974	51	278.402	5
102.137	51	280.737	11
102.144	51	283.050	4
102.235	51	284.514	4
102.472	18	288.027	84
103.688	62	288.775	84
103.745	62	290.192	83
103.859	62	290.217	83

TABLE 63. Wavelength finding list for allowed lines for Mg VII—Continued

Table 63. Wavelength finding list for allowed lines for Mg VII—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
291.183	36	434.917	2
291.271	36	435.066	90
291.328	36	435.635	90
293.436	108	435.958	117
293.539	108	436.738	117
294.092	108	437.618	123
294.516	108	441.443	93
295.177	108	442.772	91
311.363	10	443.538	125
319.027	9	443.912	91
320.266	35	445.295	91
320.513	15	449.357	89
321.093	35	450.207	89
321.162	35	450.696	41
323.140	35	451.998	89
323.249	35	520.627	7
323.319	35	520.809	7
331.804	38	521.091	7
331.811	38	526.338	40
337.470	43	527.026	13
361.058	14	532.155	40
363.773	3	546.009	42
365.177	3	548.619	42
365.234	3	554.942	42
365.243	3	558.263	45
367.674	3	580.99	113
367.684	3	605.07	75
369.868	37	608.20	75
371.063	37	611.13	75
371.073	37	614.33	75
371.132	37	614.40	75
373.945	37	620.58	75
373.955	37	622.43	122
382.721	46	633.75	107
388.334	98	636.09	107
389.499	98	638.81	107
390.823	98	641.19	107
404.629	116	654.62	82
406.157	116	659.80	82
408.180	116	663.75	82
409.383	77	667.47	128
415.783	92	675.17	44
416.997	92	676.27	12
417.693	92	679.16	44
424.556	88	688.88	44
426.803	76	713.17	81
427.431	8	714.95	81
427.444	8	719.58	81
429.140	2	733.57	124
431.189	2	734.97	124
431.313	2	739.10	124
433.971	90	739.70	124
434.273	90	743.88	124
434.594 434.720	2 2	854.75 865.35	1 127

TABLE 63. Wavelength finding list for allowed lines for Mg VII—Continued

TABLE 63. Wavelength finding list for allowed lines for Mg VII—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
868.24	1	1 551.11	97
885.90	129	1 591.60	97
891.90	129	1 781.9	118
896.30	80	1 810.0	118
900.98	129	1 894.7	96
906.04	80	1 908.8	96
913.49	80	1 927.9	112
1 069.63	87	1 955.4	96
1 096.01	102	1 998.0	105
1 102.41	102		
1 115.45	102	Wavelength	Mult.
1 131.86	114	(air) (Å)	No.
1 155.67	104		
1 161.17	104	2 018.7	105
1 165.09	104	2 062.9	105
1 172.61	104	2 065.9	119
1 178.27	104	2 090.9	119
1 231.98	115	2 103.7	119
1 291.32	74	2 129.7	119
1 293.16	74	2 236.9	111
1 306.51	74	2 867.0	120
1 327.32	74	3 668.7	121
1 334.22	74	3 783.9	126
1 336.18	106	3 953.0	126
1 343.54	106	4 075.5	126
1 348.80	106	4 139.6	95
1 350.44	74	4 294.3	95
1 356.67	79	4 560.8	85
1 371.55	79	4 575.4	130
1 379.12	79	4 619.8	95
1 392.56	79	4 649.9	85
1 396.45	79	4 848.3	85
1 410.24	79	4 905.4	101
1 443.21	103	4 929.6	85
1 443.83	103	5 033.8	85
1 462.84	103	5 150.5	85
1 469.72	103	5 225.9	101
1 470.37	78	5 909	86
1 487.43	78	6 164	86
1 487.87	78	6 543	86
1 490.09	103	6 857	86
1 496.78	78	7 050	86
1 507.61	78	7 292	86
1 517.22	78	8 056	131

TABLE 64. Transition probabilities of allowed lines for Mg VII (references for this table are as follows: 1 = Luo and Pradhan, 55 2 = Tachiev and Froese Fischer, 91 3 = Aggarwal, 3 4 = Fawcett, 21 and 5 = Mendoza et al. 62)

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc	Source
1	$2s^22p^2-2s2p^3$	$^{3}P-^{5}S^{\circ}$										
				[868.2]	2 924-118 100	5–5	3.38 - 04	3.82-06	5.46-05	-4.719	C+	2,3,5
				[854.8]	1 107-118 100	3-5	1.38 - 04	2.52 - 06	2.13 - 05	-5.121	C	2,3,5

Table 64. Transition probabilities of allowed lines for Mg VII (references for this table are as follows: 1 = Luo and Pradhan, 55 = Carther and Froese Fischer, 91 = Carther 3 = Aggarwal, 4 = Fawcett, 4

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc	Source
2		$^{3}P-^{3}D^{\circ}$		433.03	1 993–232 922	9–15	1.69+01	7.93-02	1.02+00	-0.146	A	2,3
				434.917	2 924-232 853	5–7	1.67+01	6.61-02	4.73-01	-0.481	Α	2,3
				431.313	1 107–232 957	3–5			2.69-01			2,3
				429.140	0–233 024	1–3			1.20-01			2,3
				434.720	2 924–232 957	5–5			7.04-02			2,3
				431.189	1 107–233 024	3–3			7.98 - 02			2,3
				434.594	2 924–233 024	5–3			4.21-03			2,3
3		$^{3}P-^{3}P^{\circ}$		366.42	1 993–274 906	9_9	4.53+01	9.11-02	9.89-01	-0.086	A	2,3
				367.674	2 924–274 904	5–5	3.48+01	7.06-02	4.27-01	-0.452	A	2,3
				365.243	1 107-274 897	3–3	1.27 + 01	2.54 - 02	9.18 - 02	-1.118	A	2,3
				367.684	2 924-274 897	5-3	1.80+01	2.19-02	1.32 - 01	-0.961	A	2,3
				365.177	1 107-274 947	3-1	4.54 + 01	3.03 - 02	1.09 - 01	-1.041	B+	2
				365.234	1 107-274 904	3-5	1.02+01	3.40-02	1.23-01	-0.991	Α	2,3
				363.773	0–274 897	1–3			1.06-01			2,3
4		$^{3}P-^{1}D^{\circ}$										
				283.050	1 107-354 401	3-5	7.07 - 03	1.42 - 05	3.96-05	-4.371	D	2,3
				284.514	2 924–354 401	5–5	1.34-01	1.62-04	7.60-04	-3.092	C	2,3
5		$^{3}P-^{3}S^{\circ}$		277.68	1 993–362 117	9–3	2.91+02	1.12-01	9.24-01	0.003	A	2,3
				278.402	2 924-362 117	5–3	1.63+02	1.13-01	5.20-01	-0.248	Α	2,3
				277.001	1 107–362 117	3–3			3.04-01			2,3
				276.154	0–362 117	1–3			1.00-01			2,3
6		$^{3}P-^{1}P^{\circ}$										
				252.496	1 107-397 153	3-3	1.89 - 01	1.81 - 04	4.51 - 04	-3.265	C	2,3
				253.660	2 924-397 153	5–3	1.02-02	5.88-06	2.45-05	-4.532	D	2,3
				251.792	0–397 153	1–3			3.46-06			2,3
7		$^{1}D-^{3}D^{\circ}$										
				520.809	40 948-232 957	5-5	2.40 - 03	9.75-06	8.35 - 05	-4.312	D+	2,3
				520.627	40 948-233 024	5-3	1.54 - 03	3.76-06	3.22 - 05	-4.726	D	2,3
				521.091	40 948–232 853	5–7	1.20-02	6.81-05	5.84-04	-3.468	C	2,3
8		$^{1}D-^{3}P^{\circ}$										
				427.444	40 948-274 897	5-3	1.44 - 02	2.37 - 05	1.67 - 04	-3.926	+	2,3
				427.431	40 948–274 904	5–5	1.89-03	5.16-06	3.63-05	-4.588	D	2,3
9		$^{1}D-^{1}D^{\circ}$		319.027	40 948-354 401	5–5	1.36+02	2.07-01	1.09+00	0.015	A	2,3
10		$^{1}D-^{3}S^{\circ}$										
10		D- 3		311.363	40 948-362 117	5–3	1.53-02	1.33-05	6.83-05	-4.177	D+	2,3
11		$^{1}D-^{1}P^{\circ}$		280.737	40 948–397 153	5–3	1.82+02	1.29-01	5.97-01	-0.190	Α	2,3
12		$^{1}\mathrm{S}-^{3}\mathrm{D}^{\circ}$										
12		3- D		676.27	85 153–233 024	1–3	8.70-04	1.79-05	3.98-05	-4.747	D	2,3
13		$^{1}S-^{3}P^{\circ}$										
				527.026	85 153–274 897	1–3	4.75 - 03	5.94-05	1.03-04	-4.226	D+	2,3
14		$^{1}S-^{3}S^{\circ}$										
				361.058	85 153–362 117	1–3	1.40-02	8.22-05	9.77-05	-4.085	D+	2,3
15		$^{1}\mathrm{S}-^{1}\mathrm{P}^{\circ}$		320.513	85 153–397 153	1–3	4.39+01	2.03-01	2.14-01	-0.693	A	2,3
16	$2p^2-2p3s$	$^{3}P-^{3}P^{\circ}$		95.45	1 993–1 049 696	9_9	5.15+02	7.04-02	1.99-01	-0.198	$\mathrm{B} +$	2,3
				95.423	2 924-1 050 890	5–5	3.88+02	5.29-02	8.32-02	-0.578	$\mathrm{B} +$	2,3

TABLE 64. Transition probabilities of allowed lines for Mg VII (references for this table are as follows: 1=Luo and Pradhan, 55 2=Tachiev and Froese Fischer, 91 3=Aggarwal, 34=Fawcett, 21 and 5=Mendoza et al. 62)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$A_{ki} \\ (10^8 \text{ s}^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc	Source
				95.484	1 107-1 048 400	3–3	1.27+02	1.73-02	1.63-02	-1.285	B+	2,3
				95.650	2 924-1 048 400	5–3	2.14+02	1.77 - 02	2.78 - 02	-1.053	B +	2,3
				95.556	1 107-1 047 610	3-1	5.13+02	2.34 - 02	2.21 - 02	-1.154	B +	2,3
				95.258	1 107-1 050 890	3-5	1.30+02	2.94 - 02	2.77 - 02	-1.055	B +	2,3
				95.383	0-1 048 400	1–3	1.71 + 02	6.98-02	2.19-02	-1.156	B+	2,3
17		$^{1}D-^{1}P^{\circ}$		98.031	40 948-1 061 030	5–3	6.13+02	5.30-02	8.55-02	-0.577	B+	2,3
18		$^{1}S-^{1}P^{\circ}$		102.472	85 153–1 061 030	1–3	1.84+02	8.69-02	2.93-02	-1.061	B+	2,3
19	$2p^2-2p3d$	$^{3}P - ^{3}D^{\circ}$		84.00	1 993–1 192 497	9–15	4.40+03	7.76-01	1.93+00	0.844	В	2,3
				84.025	2 924-1 193 050	5–7		6.61 - 01		0.519	B+	2,3
				83.959	1 107–1 192 170	3–5	3.91 + 03	6.89 - 01	5.72 - 01	0.315	В	2,3
				83.910	0–1 191 750	1–3			2.59 - 01			2,3
				84.087	2 924-1 192 170	5–5			5.75 - 02			2,3
				83.988	1 107–1 191 750	3–3	1.44+03	1.53 - 01	1.27 - 01	-0.338	C+	2,3
				84.117	2 924-1 191 750	5–3	2.64+01	1.68-03	2.33-03	-2.076	D	2,3
20		$^{3}P-^{3}P^{\circ}$		83.67	1 993–1 197 106	9_9	2.65+03	2.78-01	6.89-01	0.398	C+	2,3
				83.764	2 924-1 196 750	5–5	2.62+03	2.76-01	3.81-01	0.140	В	2,3
				83.588	1 107–1 197 450	3–3			9.27-02			2,3
				83.715	2 924–1 197 450	5–3			1.01-01			2,3
				83.560	1 107–1 197 850	3–1			7.36-02			2,3
				83.637	1 107–1 197 650	3–5			8.03-03			2,3
				83.511	0–1 197 450	1–3			3.32 - 02			2,3
21		$^{1}D-^{3}F^{\circ}$		65.511	0-1 197 430	1-3	3.63+02	1.21-01	3.32-02	-0.917	C	2,3
21		D-F		87.889	40 948-1 178 750	5–5	5.88+02	6.81-02	9.85-02	-0.468	D+	2
22		$^{1}D-^{1}D^{\circ}$		87.722	40 948-1 180 910	5–5	1.07+03	1.23-01	1.78-01	-0.211	C+	2
23		$^{1}D-^{1}F^{\circ}$		85.407	40 948-1 211 810	5–7	5.26+03	8.05-01	1.13+00	0.605	B+	2,3
24		$^{1}D-^{1}P^{\circ}$		85.335	40 948-1 212 800	5–3	1.55+02	1.01-02	1.42-02	-1.297	D+	2,3
25		$^{1}S-^{1}P^{\circ}$		88.680	85 153–1 212 800	1–3	3.16+03	1.12+00	3.26-01	0.049	В	2,3
26	$2s^22p^2 - 2s2p^2(^4P)3p$	$^{3}P-^{3}S^{\circ}$?		[81.1]	1 993–1 235 310	9–3	1.37+3	4.51-02	1.08-01	-0.392	D+	4
				81.143	2 924-1 235 310	5–3	7.33+02	4.34-02	5.80-02	-0.664	C	4
				81.024	1 107–1 235 310	3–3			3.73-02			4
				80.951	0–1 235 310	1–3			1.31-02			4
27		${}^{3}P - {}^{3}D^{\circ}$?				9–15						
				[79.17]	2 924-1 266 060	5–7	9.73 + 02	1.28-01	1.67-01	-0.194	C+	4
				79.133	1 107-1 264 810	3-5			9.48-02			4
				79.246	2 924–1 264 810	5–5			2.43-02			
28		${}^{3}P - {}^{3}P^{\circ}$?				9_9						
				78.519	2 924-1 276 500	5–5	8.01+02	7.40-02	9.56-02	-0.432	C	4
				78.407	1 107-1 276 500	3–3			1.81-02			4
				78.519	2 924-1 276 500	5–3			3.31-02			
				78.407	1 107–1 276 500	3–5			2.53-02			
				78.339	0–1 276 500	1–3			2.06-02			
29	$2s^{2}2p^{2}-2s2p^{2}(^{2}D)3p$	$^{1}D-^{1}F^{\circ}$		76.392	40 948–1 349 990	5–7	1.26+03	1.54-01	1.93-01	-0.114	C+	4
30	- r (=) ~ p	$^{1}D-^{1}D^{\circ}$		75.975	40 948–1 357 170	5–5	1.21+03	1.04-01	1.31-01	-0.284	C	4

Table 64. Transition probabilities of allowed lines for Mg VII (references for this table are as follows: 1 = Luo and Pradhan, 55 = Carther and Froese Fischer, 91 = Carther 3 = Aggarwal, 4 = Fawcett, 4

No.	Transition array	Mult.	λ _{air} (Å)	$\lambda_{ m vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc	Source
31	$2p^2-2p4d$	$^{3}P-^{3}D^{\circ}$				9–15						
				[68.14]	2 924-1 470 410	5–7	1.51+03	1.47-01	1.65-01	-0.134	D	LS
				[68.10]	1 107-1 469 540	3–5			8.81-02			LS
				[68.18]	2 924-1 469 540	5–5	3.76+02	2.62-02	2.94-02	-0.883	E+	LS
32		$^{1}D-^{1}F^{\circ}$		[69.61]	40 948-1 477 420	5–7	1.91+03	1.94-01	2.22-01	-0.013	D+	1
33	$2p^2-2p5d$	$^{1}D-^{1}F^{\circ}$		[64.12]	40 948-1 600 470	5–7	1.00+03	8.66-02	9.14-02	-0.364	D	1
34	$2s2p^3 - 2p^4$	$^{5}\text{S}^{\circ}$ – ^{3}P										
				[235.73]	118 100-542 316	5–5	1.43 - 02	1.19 - 05	4.61 - 05	-4.225	D	2
				[234.58]	118 100–544 393	5–3	6.23-03	3.08-06	1.19-05	-4.812	E+	2
35		$^{3}\text{D}^{\circ}$ $ ^{3}\text{P}$		322.15	232 922–543 336	15–9	1.15+02	1.07-01	1.70+00	0.205	A	2,3
				323.140	232 853–542 316	7–5	9.53+01	1.07-01	7.93-01	-0.126	A	2,3
				321.093	232 957-544 393	5-3	8.36+01	7.75 - 02	4.10 - 01	-0.412	A	2,3
				320.266	233 024-545 264	3-1	1.12+02	5.77 - 02	1.82 - 01	-0.762	A	2,3
				323.249	232 957-542 316	5-5	1.89+01	2.96 - 02	1.57 - 01	-0.830	A	2,3
				321.162	233 024-544 393	3–3	2.99+01	4.62 - 02	1.47 - 01	-0.858	A	2,3
				323.319	233 024–542 316	3–5	1.36+00	3.56-03	1.14-02	-1.971	B+	2,3
36		$^{3}D^{\circ}-^{1}D$										
				291.271	232 957–576 280	5–5			2.32 - 04			2
				291.183	232 853–576 280	7–5			1.19-03			2
				291.328	233 024–576 280	3–5	8.89-04	1.88-06	5.42-06	-5.249	E+	2
37		$^{3}P^{\circ}-^{3}P$		372.54	274 906–543 336	9–9	2.69+01	5.61-02	6.19-01	-0.297	A	2,3
				373.955	274 904-542 316	5–5	1.88+01	3.94-02	2.43 - 01	-0.706	A	2,3
				371.063	274 897–544 393	3–3	5.69+00	1.17 - 02	4.30 - 02	-1.455	B+	2,3
				371.073	274 904–544 393	5–3	1.34+01	1.66 - 02	1.01 - 01	-1.081	A	2,3
				369.868	274 897–545 264	3-1	2.92+01	2.00-02	7.29 - 02	-1.222	A	2,3
				373.945	274 897–542 316	3–5	7.01 + 00	2.45 - 02	9.04 - 02	-1.134	A	2,3
				371.132	274 947–544 393	1–3	9.05+00	5.60-02	6.85-02	-1.252	B+	2
38		$^{3}P^{\circ}-^{1}D$										
				331.804	274 897-576 280	3–5	1.58-02	4.35-05	1.42-04	-3.884	D	2
				331.811	274 904–576 280	5–5	1.08-03	1.78-06	9.70-06	-5.051	E+	
39		$^{3}\text{P}^{\circ}-^{1}\text{S}$										
				260.727	274 897–658 440	3–1	5.00-02	1.70-05	4.37-05	-4.292	D	2
40		$^{1}\text{D}^{\circ}$ $ ^{3}\text{P}$										
				526.338	354 401-544 393	5-3	1.43 - 03	3.56-06	3.08 - 05	-4.750	E+	2
				532.155	354 401–542 316	5–5	4.34-02	1.84-04	1.61-03	-3.036	C	2
41		$^{1}D^{\circ}-^{1}D$		450.696	354 401–576 280	5–5	6.98+01	2.12-01	1.58+00	0.025	A	2,3
42		$^{3}\text{S}^{\circ}$ – ^{3}P		551.82	362 117–543 336	3–9	1.66+01	2.27-01	1.24+00	-0.167	A	2,3
				554.942	362 117–542 316	3–5	1.61+01	1.24-01	6.81-01	-0.429	A	2,3
				548.619	362 117-544 393	3–3	1.70+01	7.68-02	4.16-01	-0.638	A	2,3
				546.009	362 117–545 264	3–1			1.40-01			2,3
43		$^{3}\text{S}^{\circ}$ – ^{1}S										
				337.470	362 117–658 440	3–1	2.95-01	1.68-04	5.60-04	-3.298	D+	2
44		$^{1}P^{\circ}-^{3}P$										
				(70.16	207 152 544 202	2.2	1 42 00	0.00 05	((2 04	2.520	ъ.	2
				679.16	397 153–544 393	3–3	1.43 - 02	9.89-05	6.63 - 04	-3.528	D^+	2

TABLE 64. Transition probabilities of allowed lines for Mg VII (references for this table are as follows: 1=Luo and Pradhan,⁵⁵ 2=Tachiev and Froese Fischer, ⁹¹ 3=Aggarwal, ³ 4=Fawcett, ²¹ and 5=Mendoza *et al.*⁶²)—Continued

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc	Source
				688.88	397 153–542 316	3–5	3.84-03	4.56-05	3.10-04	-3.864	D+	2
45		$^{1}P^{\circ}-^{1}D$		558.263	397 153–576 280	3–5	7.49+00	5.83-02	3.21-01	-0.757	A	2,3
46		$^{1}P^{\circ}-^{1}S$		382.721	397 153–658 440	3–1	1.81+02	1.33-01	5.02-01	-0.399	Α	2,3
47	$2s2p^3 - 2s^22p3p$	$^{3}D^{\circ}-^{3}P$		112.06	232 922–1 125 307	15–9	6.65+01	7.51-03	4.16-02	-0.948	В	2,3
				111.984	232 853–1 125 840	7–5	6.05+01	8.13-03	2.10-02	-1.245	C+	2,3
				112.110	232 957-1 124 940	5–3	4.56+01	5.15 - 03	9.51 - 03	-1.589	B +	2,3
				[112.27]	233 024-1 123 740	3-1	6.35 + 01	4.00 - 03	4.44 - 03	-1.921	B +	2,3
				111.997	232 957-1 125 840	5-5	9.36+00	1.76 - 03	3.24 - 03	-2.056	B +	2,3
				112.118	233 024-1 124 940	3-3	1.53 + 01	2.89 - 03	3.20 - 03	-2.062	B +	2,3
				112.005	233 024-1 125 840	3–5	6.19-01	1.94-04	2.15-04	-3.235	C+	2,3
48		$^{3}P^{\circ}-^{3}P$		117.59	274 906–1 125 307	9_9	6.05+00	1.25-03	4.37-03	-1.949	C+	2,3
				117.518	274 904-1 125 840	5–5			1.68-03			2,3
				117.641	274 897-1 124 940	3–3	3.31+00	6.87 - 04	7.98 - 04	-2.686	В	2,3
				117.642	274 904-1 124 940	5–3	1.90 - 01	2.37 - 05	4.58 - 05	-3.926	D	2,3
				[117.81]	274 897-1 123 740	3-1	4.52 + 00	3.14 - 04	3.65 - 04	-3.026	В	2,3
				117.517	274 897-1 125 840	3–5	1.72+00	5.94 - 04	6.89 - 04	-2.749	В	2,3
				117.648	274 947–1 124 940	1–3	3.28+00	2.04-03	7.90-04	-2.690	C+	2
49		$^{3}\text{S}^{\circ}$ – ^{3}P		131.03	362 117– <i>1 125 307</i>	3–9	5.82-01	4.50-04	5.82-04	-2.870	D+	2,3
				130.938	362 117-1 125 840	3–5	6.10-01	2.61-04	3.38-04	-3.106	D+	2,3
				131.092	362 117-1 124 940	3-3	5.46 - 01	1.41 - 04	1.82 - 04	-3.374	D+	2,3
				[131.30]	362 117–1 123 740	3–1	5.54-01	4.77-05	6.19-05	-3.844	D+	2,3
50	$2s2p^3 - 2s2p^2(^4P)3s$	$^{5}\text{S}^{\circ}$ – ^{5}P				5–15						
				94.043	118 100-1 181 440	5–7	3.59 + 02	6.66-02	1.03-01	-0.478	C	4
				94.174	118 100–1 179 960	5–5			7.32-02			4
51		$^{3}D^{\circ}-^{3}P$		102.05	232 922–1 212 844	15–9	3.40+02	3.19-02	1.61-01	-0.320	D+	4
				101.956	232 853-1 213 670	7–5	2.90+02	3.23-02	7.59-02	-0.646	C	4
				102.137	232 957-1 212 030	5-3	2.71 + 02	2.54-02	4.27-02	-0.896	D+	4
				[102.24]	233 024-1 211 160	3-1	3.57 + 02	1.87-02	1.88-02	-1.251	D+	4
				101.967	232 957-1 213 670	5–5	3.98+01	6.20-03	1.04-02	-1.509	D	4
				102.144	233 024-1 212 030	3-3			1.21-02			4
				101.974	233 024-1 213 670	3–5	2.57+00	6.67-04	6.71-04	-2.699	E	4
52		$^{3}P^{\circ}-^{3}P$		106.62	274 906–1 212 844	9_9	2.74+02	4.67-02	1.47-01	-0.376	D+	4
				106.523	274 904-1 213 670	5–5	2.12+02	3.60-02	6.31-02	-0.745	C	4
				106.708	274 897-1 212 030	3-3	7.03+01	1.20 - 02	1.26 - 02	-1.444	D	4
				106.709	274 904-1 212 030	5-3	1.03 + 02	1.06 - 02	1.86 - 02	-1.276	D+	4
				[106.81]	274 897-1 211 160	3-1	2.57 + 02	1.47 - 02	1.55 - 02	-1.356	D	4
				106.522	274 897-1 213 670	3-5	7.05 + 01	2.00 - 02	2.10-02	-1.222	D+	4
				106.714	274 947-1 212 030	1–3	9.18+01	4.70-02	1.65 - 02	-1.328	D+	4
53	$2s2p^3 - 2s2p^2(^2D)3s$	$^{3}D^{\circ}-^{3}D$				15–15						
				[95.03]	232 853-1 285 190	7–7	4.74±02	6.41-02	1.40-01	-0.348	C	4
				[95.04]	232 957–1 285 190	5–7			2.10-02			
54		$^{3}P^{\circ}-^{3}D$				9–15						
				[98.98]	274 904–1 285 190	5–7	2.08+02	4.27-02	6.96-02	-0.671	D	LS
		10° 10										
55		$^{1}\text{D}^{\circ} - ^{1}\text{D}$		[105.16]	354 401–1 305 300	5–5	3.58+02	5.94-02	1.03-01	-0.527	C	4

Table 64. Transition probabilities of allowed lines for Mg VII (references for this table are as follows: 1 = Luo and Pradhan, 55 = Carther and Froese Fischer, 91 = Carther 3 = Aggarwal, 4 = Fawcett, 4

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \; {\rm s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc	Source
56	$2s2p^3 - 2s2p^2(^4P)3d$	$^{5}\text{S}^{\circ}$ – ^{5}P		82.98	118 100–1 323 141	5–15	4.92+03	1.52+00	2.08+00	0.881	В	4
				83.015	118 100- <i>1 322 700</i>	5–7	4.89+03	7.08 - 01	9.67-01	0.549	В	4
				82.969	118 100-1 323 370	5-5	4.92+03	5.08-01	6.94-01	0.405	В	4
				82.940	118 100-1 323 790	5–3	4.98+03	3.08 - 01	4.20-01	0.188	В	4
57		$^{3}D^{\circ}-^{3}P$		91.53	232 922–1 325 490	15–9	2.41+02	1.81-02	8.20-02	-0.566	D+	4
				91.566	232 853-1 324 960	7–5	1.86+02	1.67-02	3.53-02	-0.932	D+	4
				91.486	232 957-1 326 020	5–3	1.35 + 02	1.02 - 02	1.54 - 02	-1.292	D	4
				[91.45]	233 024-1 326 550	3-1	1.99 + 02	8.33 - 03	7.53 - 03	-1.602	D	4
				91.575	232 957-1 324 960	5–5	6.84 + 01	8.60 - 03	1.30 - 02	-1.367	D	4
				91.492	233 024-1 326 020	3–3	8.23 + 01	1.03 - 02	9.34 - 03	-1.510	D	4
				91.580	233 024–1 324 960	3–5	7.95+00	1.67 - 03	1.51 - 03	-2.300	E+	4
58		$^{3}D^{\circ}-^{3}F$		90.79	232 922–1 334 401	15–21	2.14+03	3.71-01	1.66+00	0.745	В	4
				90.706	232 853-1 335 320	7–9	2.15+03	3.41-01	7.14-01	0.378	В	4
				90.815	232 957-1 334 100	5–7	1.93+03	3.34 - 01	4.99 - 01	0.223	В	4
				[90.90]	233 024-1 333 170	3–5	1.81 + 03	3.73 - 01	3.35 - 01	0.049	C+	4
				90.806	232 853–1 334 100	7–7	2.13+02	2.63 - 02	5.50 - 02	-0.735	C	4
				[90.89]	232 957-1 333 170	5–5			5.78 - 02			4
				[90.88]	232 853–1 333 170	7–5	6.46+00	5.71 - 04	1.20-03	-2.398	E+	4
59		$^{3}D^{\circ}-^{3}D$		89.43	232 922–1 351 063	15–15	9.24+02	1.11-01	4.89-01	0.221	C	4
				89.406	232 853-1 351 340	7–7	8.55 + 02	1.02 - 01	2.11-01	-0.146	C+	4
				89.448	232 957-1 350 930	5-5	5.85 + 02	7.02 - 02	1.03 - 01	-0.455	C	4
				89.476	233 024-1 350 640	3–3	6.14+02	7.37 - 02	6.51 - 02	-0.655	C	4
				89.439	232 853-1 350 930	7–5	1.62+02	1.39-02	2.86-02	-1.012	D+	4
				89.471	232 957-1 350 640	5-3	2.31 + 02	1.66-02	2.44-02	-1.081	D+	4
				89.415	232 957-1 351 340	5–7	1.25+02	2.10-02	3.09-02	-0.979	D+	4
				89.453	233 024-1 350 930	3–5	1.47 + 02	2.93-02	2.59 - 02	-1.056	D+	4
60		$^{3}P^{\circ}-^{3}P$		95.19	274 906–1 325 490	9_9	1.32+03	1.80-01	5.06-01	0.210	C	4
				95.233	274 904-1 324 960	5–5	9.24+02	1.26-01	1.97-01	-0.201	C+	4
				95.136	274 897-1 326 020	3-3	2.95+02	4.00 - 02	3.76 - 02	-0.921	D+	4
				95.137	274 904-1 326 020	5-3	5.65+02	4.60 - 02	7.20 - 02	-0.638	C	4
				[95.09]	274 897-1 326 550	3-1	1.36+03	6.13 - 02	5.76-02	-0.735	C	4
				95.232	274 897-1 324 960	3-5	3.80+02	8.60-02	8.09 - 02	-0.588	C	4
				95.141	274 947-1 326 020	1–3	4.81 + 02	1.96-01	6.14 - 02	-0.708	C	4
61		$^{3}P^{\circ}-^{3}D$		92.92	274 906–1 351 063	9–15	1.92+03	4.15-01	1.14+00	0.572	C+	4
				92.899	274 904-1 351 340	5–7	1.89+03	3.42-01	5.23-01	0.233	В	4
				92.934	274 897-1 350 930	3-5	1.36+03	2.94 - 01	2.70 - 01	-0.055	C+	4
				92.963	274 947-1 350 640	1-3	1.02+03	3.98 - 01	1.22 - 01	-0.400	C	4
				92.935	274 904-1 350 930	5-5	5.76+02	7.46 - 02	1.14 - 01	-0.428	C	4
				92.959	274 897-1 350 640	3–3	8.72 + 02	1.13 - 01	1.04 - 01	-0.470	C	4
				92.960	274 904–1 350 640	5–3	7.46+01	5.80-03	8.87 - 03	-1.538	D	4
62		$^{3}\text{S}^{\circ}$ – ^{3}P		103.80	362 117 <i>–1 325 490</i>	3–9	3.34+02	1.62-01	1.66-01	-0.313	C	4
				103.859	362 117–1 324 960	3–5	3.25+02	8.77-02	8.99-02	-0.580	C	4
				103.745	362 117-1 326 020	3-3	3.43+02	5.53 - 02	5.67-02	-0.780	C	4
				[103.69]	362 117–1 326 550	3–1	3.54+02	1.90-02	1.95-02	-1.244	D+	4
63	$2s2p^3 - 2s2p^2(^2D)3d$	$^{3}D^{\circ} - ^{3}F$?		[84.65]	232 922–1 414 290	15–21	4.37+03	6.57-01	2.75+00	0.994	В	4
				84.643	232 853-1 414 290	7–9	4.38+03	6.04-01	1.18+00	0.626	В	4
				84.650	232 957–1 414 290	5–7		5.74-01		0.458		4

TABLE 64. Transition probabilities of allowed lines for Mg VII (references for this table are as follows: 1=Luo and Pradhan,⁵⁵ 2=Tachiev and Froese Fischer, ⁹¹ 3=Aggarwal, ³ 4=Fawcett, ²¹ and 5=Mendoza *et al.*⁶²)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc	Source
				84.655	233 024-1 414 290	3–5	3.61+03	6.47-01	5.41-01	0.288	В	4
				84.643	232 853-1 414 290	7–7	5.43 + 02	5.83 - 02	1.14 - 01	-0.389	C	4
				84.650	232 957-1 414 290	5-5	7.26+02	7.80 - 02	1.09-01	-0.409	C	4
				84.643	232 853-1 414 290	7–5	2.42+01	1.86-03	3.62-03	-1.885	E+	4
64		$^{3}D^{\circ}-^{3}D$				15–15						
				[84.05]	232 853-1 422 600	7–7	1.98+03	2.10-01	4.07-01	0.167	C+	4
				[84.10]	232 957-1 422 020	5-5	1.61 + 03	1.71 - 01	2.36 - 01	-0.068	C+	4
				[84.09]	232 853-1 422 020	7–5	3.60+02	2.73 - 02	5.29 - 02	-0.719	C	4
				[84.06]	232 957-1 422 600	5–7	2.47 + 02	3.66 - 02	5.06-02	-0.738	C	4
				[84.11]	233 024-1 422 020	3–5	3.47 + 02	6.13 - 02	5.09 - 02	-0.735	C	4
65		$^{3}P^{\circ}-^{3}D$				9–15						
				[87.13]	274 904-1 422 600	5–7	1.52+03	2.42-01	3.47-01	0.083	C+	4
				[87.17]	274 897-1 422 020	3-5	1.13+03	2.14-01	1.84 - 01	-0.192	C+	4
				[87.17]	274 904–1 422 020	5–5	3.02+02	3.44 - 02	4.94-02	-0.764	C	4
66		$^{3}P^{\circ}-^{3}S$		86.03	274 906–1 437 260	9–3	2.18+03	8.06-02	2.05-01	-0.139	C	4
				[86.03]	274 904-1 437 260	5–3	1.29+03	8.60-02	1.22-01	-0.367	C	4
				[86.03]	274 897-1 437 260	3–3			6.37-02			4
				[86.03]	274 947-1 437 260	1-3	2.10+02	7.00-02	1.98-02	-1.155	D+	4
67		${}^{1}D^{\circ} - {}^{1}F?$		[92.26]	354 401 <i>–1 438 340</i>	5–7	1.48+03	2.64-01	4.01-01	0.121	C+	4
68	$2s2p^3 - 2s2p^2(^4P)4d$	$^{5}\text{S}^{\circ}$ – ^{5}P		67.48	118 100– <i>1 600 039</i>	5–15	1.76+03	3.60-01	4.00-01	0.255	D	1
				67.497	118 100–1 599 650	5–7	1.76±03	1 68-01	1.87-01	-0.076	D	LS
				67.470	118 100–1 600 240	5–5			1.33-01			LS
				67.453	118 100–1 600 610	5–3			8.01-02			LS
69	$2s2p^3 - 2s2p^2(^2D)4d$	$^{3}D^{\circ}-^{3}F$				15–21						1
				[68.35]	232 853–1 695 870	7–9	8.57+02	7.72-02	1.22-01	-0.267	D	LS
70	$2s2p^3 - 2s2p^2(^4P)5d$	$^{5}S^{\circ}-^{5}P$				5–15						1
				62.166	118 100–1 726 700	5–7	8.99+02	7.29-02	7.46-02	-0.438	D	LS
71		$^{3}D^{\circ}-^{3}F$				15–21						1
				[66.79]	232 853–1 730 130	7–9	8.07+02	6.94-02	1.07-01	-0.314	D	LS
72	$2p^4 - 2s^2 2p3s$	$^{3}P-^{3}P^{\circ}$		197.49	543 336–1 049 696	9–9	6.38-03	3.73-06	2.18-05	-4.474	C	2,3
				196.628	542 316-1 050 890	5–5	5.05 - 03	2.93-06	9.47-06	-4.834	C	2,3
				198.410	544 393-1 048 400	3–3	1.52 - 03	8.95 - 07	1.75 - 06	-5.571	C	2,3
				197.596	542 316-1 048 400	5–3	2.63 - 03	9.24 - 07	3.00-06	-5.335	C	2,3
				198.721	544 393-1 047 610	3-1	6.03 - 03	1.19-06	2.33 - 06	-5.447	C	2,3
				197.435	544 393-1 050 890	3-5	1.66 - 03	1.62 - 06	3.15-06	-5.313	C	2,3
				198.753	545 264-1 048 400	1–3	1.82-03	3.22-06	2.11-06	-5.492	D+	2
73		$^{1}D-^{1}P^{\circ}$		206.292	576 280–1 061 030	5–3	2.34-03	8.96-07	3.04-06	-5.349	C	2,3
74	2p3s-2p3p	$^{3}P^{\circ}-^{3}P$		1 322.6	1 049 696–1 125 307	9–9	5.82+00	1.53-01	5.98+00	0.139	B+	2,3
				1 334.22	1 050 890–1 125 840	5–5	4.48+00	1.20-01	2.62+00	-0.222	A	2,3
				1 306.51	1 048 400-1 124 940	3–3	1.09+00	2.78 - 02	3.59-01	-1.079	B +	2,3
				1 350.44	1 050 890-1 124 940	5-3	3.11+00	5.09-02	1.13 + 00	-0.594	$\mathrm{B} +$	2,3
				[1 327.3]	1 048 400-1 123 740	3-1	5.75±00	5.06-02	6.63-01	_0.810	R+	2,3
				[1 327.3]	1 040 400-1 123 740	5-1	5.75 1 00	5.00-02	0.05 01	-0.01)	ъ,	-,-

Table 64. Transition probabilities of allowed lines for Mg VII (references for this table are as follows: 1 = Luo and Pradhan, 55 = Carther and Froese Fischer, 91 = Carther 3 = Aggarwal, 4 = Fawcett, 4

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc	Source
				1 293.16	1 047 610–1 124 940	1–3	1.53+00	1.15-01	4.90-01	-0.939	B+	2,3
75	$2s^22p3s - 2s2p^2(^4P)3s$	$^{3}P^{\circ}-^{3}P$		612.9	1 049 696–1 212 844	9_9	4.18+00	2.35-02	4.27-01	-0.675	D	1
				614.33	1 050 890-1 213 670	5–5	3.11+00	1.76-02	1.78-01	-1.056	D	LS
				611.13	1 048 400-1 212 030	3-3	1.06+00	5.91-03	3.57-02	-1.751	E+	LS
				620.58	1 050 890-1 212 030	5-3	1.68+00	5.82-03	5.95-02	-1.536	E+	LS
				[614.4]	1 048 400-1 211 160	3-1	4.15+00	7.83-03	4.75 - 02	-1.629	E+	LS
				605.07	1 048 400-1 213 670	3-5	1.09 + 00	9.94-03	5.94-02	-1.525	E+	LS
				608.20	1 047 610–1 212 030	1–3	1.42+00	2.37-02	4.75-02	-1.625	E+	LS
76	$2s^22p3s-2s2p^2(^2D)3s$	$^{3}P^{\circ}-^{3}D$				9–15						1
				[426.80]	1 050 890–1 285 190	5–7	2.42+01	9.26-02	6.51-01	-0.334	C	LS
77		$^{1}\text{P}^{\circ} - ^{1}\text{D}$		[409.38]	1 061 030–1 305 300	3–5	8.57+00	3.59-02	1.45-01	-0.968	D	1
78	2p3p-2p3d	$^{3}P-^{3}D^{\circ}$		1 488.3	1 125 307–1 192 497	9–15	2.60+00	1.44-01	6.35+00	0.113	B+	2,3
				1 487.87	1 125 840-1 193 050	5–7	2.73+00	1.27-01	3.10+00	-0.197	Α	2,3
				1 487.43	1 124 940-1 192 170	3-5			1.69+00			2,3
				[1 470.4]	1 123 740-1 191 750	1-3			8.71-01			2,3
				1 507.61	1 125 840-1 192 170	5–5	3.05-01	1.04-02	2.58-01	-1.284	В	2,3
				1 496.78	1 124 940-1 191 750	3–3			4.18-01			2,3
				1 517.22	1 125 840–1 191 750	5–3			1.25-02			2,3
79		$^{3}P-^{3}P^{\circ}$		1 392.8	1 125 307–1 197 106	9_9	1.90+00	5.54-02	2.28+00	-0.302	В	2,3
				1 410.24	1 125 840-1 196 750	5–5	1.60+00	4.78-02	1.11+00	-0.622	B+	2,3
				1 379.12	1 124 940-1 197 450	3–3			4.68-01			2,3
				1 396.45	1 125 840-1 197 450	5-3			3.04-01			2,3
				1 371.55	1 124 940-1 197 850	3-1	2.42 + 00	2.28-02	3.09-01	-1.165	В	2,3
				1 392.56	1 124 940-1 196 750	3-5			9.35-03			2,3
				[1 356.7]	1 123 740–1 197 450	1–3			8.49-02			2,3
80	$2s^22p3p-2s2p^2(^4P)3p$	$^{3}P-^{3}S^{\circ}$?		[909]	1 125 307–1 235 310	9–3	1.41+00	5.83-03	1.57-01	-1.280	E+	1
				913.49	1 125 840–1 235 310	5–3	7.73-01	5.80-03	8.72-02	-1.538	D	LS
				906.04	1 124 940-1 235 310	3-3	4.75-01	5.85-03	5.23-02	-1.756	E+	LS
				[896.3]	1 123 740–1 235 310	1–3	1.64-01	5.91-03	1.74-02	-2.228	E+	LS
81		$^{3}P-^{3}D^{\circ}$?				9–15						1
				[713.2]	1 125 840-1 266 060	5–7	4.82+00	5.15-02	6.05-01	-0.589	С	LS
				714.95	1 124 940-1 264 810	3-5	3.59+00	4.59-02	3.24-01	-0.861	D+	LS
				719.58	1 125 840–1 264 810	5–5			1.08-01			LS
82		$^{3}P-^{3}P^{\circ}$?				9_9						1
				663.75	1 125 840–1 276 500	5–5			2.58-01			
				659.80	1 124 940–1 276 500	3–3	1.21+00	7.92 - 03	5.16 - 02	-1.624	E+	LS
				663.75	1 125 840–1 276 500	5–3	1.99+00	7.88 - 03	8.61 - 02	-1.405	D	LS
				659.80	1 124 940–1 276 500	3–5	1.21+00	1.32 - 02	8.60-02	-1.402	D	LS
				[654.6]	1 123 740–1 276 500	1–3	1.66+00	3.19-02	6.87-02	-1.496	D	LS
83	2p3p-2p4d	$^{3}P-^{3}D^{\circ}$				9–15						1
				[290.22]	1 125 840-1 470 410	5–7	1.01 + 02	1.78 - 01	8.50-01	-0.051	C	LS
				[290.19]	1 124 940-1 469 540	3-5	7.56+01	1.59-01	4.56-01	-0.321	D+	LS
				[290.95]	1 125 840–1 469 540	5–5	2.50+01	3.17-02	1.52-01	-0.800	D	LS
84		$^{3}P-^{3}P^{\circ}$				9–9						1

TABLE 64. Transition probabilities of allowed lines for Mg VII (references for this table are as follows: 1=Luo and Pradhan, 55 2=Tachiev and Froese Fischer, 91 3=Aggarwal, 34=Fawcett, 21 and 5=Mendoza et al. 62)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc	Source
				[288.77]	1 125 840–1 472 130	5–5		5.00-02				
				[288.03]	1 124 940–1 472 130	3–5	1.35+01	2.79-02	7.94-02	-1.077	D	LS
85	$2s^22p3d-2s2p^2(^4P)3s$	$^{3}D^{\circ}-^{3}P$	4913	4915	1 192 497–1 212 844	15–9	1.45 - 02	3.16-03	7.66-01	-1.324	D	1
			4 848.3	4 849.7	1 193 050–1 213 670	7–5	1.27-02	3.20-03	3.58-01	-1.650	D+	LS
			5 033.8	5 035.2	1 192 170–1 212 030	5-3	1.01-02	2.31 - 03	1.91 - 01	-1.937	D	LS
			[5 151]	[5 152]	1 191 750–1 211 160	3-1	1.26 - 02	1.67 - 03	8.50 - 02	-2.300	D	LS
			4 649.9	4 651.2	1 192 170–1 213 670	5–5	2.57 - 03	8.33 - 04	6.38 - 02	-2.380	D	LS
			4 929.6	4 931.0	1 191 750–1 212 030	3–3		1.31 - 03				LS
			4 560.8	4 562.0	1 191 750–1 213 670	3–5	1.82-04	9.44-05	4.25-03	-3.548	Е	LS
86		$^{3}P^{\circ}-^{3}P$	6350	6354	1 197 106–1 212 844	9–9	2.07-03	1.25-03	2.36-01	-1.949	E+	1
			5 909	5 910	1 196 750–1 213 670	5–5		1.01 - 03				LS
			6 857	6 859	1 197 450–1 212 030	3–3	4.11 - 04	2.90-04	1.96 - 02	-3.060	E+	LS
			6 543	6 545	1 196 750–1 212 030	5–3		3.04 - 04				LS
			[7 292]	[7 294]	1 197 450–1 211 160	3-1		3.63 - 04				
			6 164	6 165	1 197 450–1 213 670	3–5		5.37 - 04				
			7 050	7 052	1 197 850–1 212 030	1–3	5.05 - 04	1.13-03	2.62-02	-2.947	E+	LS
87	$2s^22p3d-2s2p^2(^2D)3s$	$^{1}F^{\circ}-^{1}D$		[1 069.6]	1 211 810–1 305 300	7–5	4.20-01	5.14-03	1.27-01	-1.444	D	1
88	$2s^22p3d-2s2p^2(^2D)3d$	$^3F^{\circ}-^3F$?				21–21						1
				424.556	1 178 750-1 414 290	5-5	9.84+00	2.66-02	1.86-01	-0.876	D	LS
				424.556	1 178 750–1 414 290	5–7	8.78-01	3.32-03	2.32-02	-1.780	E+	LS
89		$^{3}D^{\circ} - ^{3}F?$		[450.9]	1 192 497–1 414 290	15–21	2.09+00	8.93-03	1.99-01	-0.873	E+	1
				451.998	1 193 050-1 414 290	7–9	2.08+00	8.18-03	8.52-02	-1.242	D	LS
				450.207	1 192 170-1 414 290	5–7	1.87 + 00	7.95 - 03	5.89-02	-1.401	E+	LS
				449.357	1 191 750–1 414 290	3-5	1.78+00	8.96 - 03	3.98 - 02	-1.571	E+	LS
				451.998	1 193 050–1 414 290	7–7	2.31 - 01	7.09 - 04	7.39 - 03	-2.304	E	LS
				450.207	1 192 170–1 414 290	5–5	3.28 - 01	9.97 - 04	7.39 - 03	-2.302	E	LS
				451.998	1 193 050–1 414 290	7–5	9.14-03	2.00-05	2.08-04	-3.854	E	LS
90		$^{3}D^{\circ}-^{3}D$				15–15						1
				[435.63]	1 193 050-1 422 600	7–7	1.46+01	4.14-02	4.16-01	-0.538	D+	LS
				[435.07]	1 192 170-1 422 020	5-5	1.15+01	3.25 - 02	2.33 - 01	-0.789	D+	LS
				[436.74]	1 193 050-1 422 020	7–5	2.54+00	5.18 - 03	5.21 - 02	-1.441	E+	LS
				[433.97]	1 192 170-1 422 600	5–7	1.85+00	7.30 - 03	5.21 - 02	-1.438	E+	LS
				[434.27]	1 191 750–1 422 020	3–5	2.48+00	1.17-02	5.02-02	-1.455	E+	LS
91		$^{3}P^{\circ}-^{3}D$				9–15						1
				[442.77]	1 196 750-1 422 600	5–7	2.75+00	1.13-02	8.24-02	-1.248	D	LS
				[445.30]	1 197 450-1 422 020	3-5	2.02+00	1.00 - 02	4.40 - 02	-1.523	E+	LS
				[443.91]	1 196 750–1 422 020	5–5	6.80-01	2.01 - 03	1.47 - 02	-1.998	E+	LS
92		$^{3}P^{\circ}-^{3}S$		416.40	<i>1 197 106</i> –1 437 260	9–3	5.18+01	4.48-02	5.53-01	-0.394	D	1
				[415.78]	1 196 750–1 437 260	5–3	2.89+01	4.49-02	3.07-01	-0.649	D+	LS
				[417.00]	1 197 450-1 437 260	3-3	1.72+01	4.48-02	1.85-01	-0.872	D	LS
				[417.69]	1 197 850–1 437 260	1–3		4.47-02				
93		${}^{1}F^{\circ} - {}^{1}F?$		[441.44]	1 211 810– <i>1 438 340</i>	7–7	4.66+00	1.36-02	1.38-01	-1.021	D	1
94	$2s^22p3d-2s2p^2(^4P)4d$	$^{3}D^{\circ}-^{3}F$		241.89	1 192 497–1 605 903	15–21	9.81+01	1.21-01	1.44+00	0.259	D+	1
				[241.73]	1 193 050–1 606 730	7–9	9.85+01	1.11-01	6.18-01	-0.110	C	LS
				[241.88]	1 192 170–1 605 600	5–7		1.07-01				

Table 64. Transition probabilities of allowed lines for Mg VII (references for this table are as follows: 1 = Luo and Pradhan, 55 = Carther and Froese Fischer, 91 = Carther 3 = Aggarwal, 4 = Fawcett, 4

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc	Source
				[242.08]	1 191 750–1 604 840	3–5			2.87-01			LS
				[242.40]	1 193 050–1 605 600	7–7			5.35-02			LS
				[242.32]	1 192 170–1 604 840	5–5			5.34-02			
				[242.84]	1 193 050–1 604 840	7–5	4.20-01	2.09-04	1.51-03	-2.725	E	LS
95	$2s2p^2(^4P)3s - 2s2p^2(^4P)3p$	$^{3}P-^{3}S^{\circ}$?	[4450]	[4451]	1 212 844–1 235 310	9–3	1.42-01	1.41-02	1.86+00	-0.897	С	1
			4 619.8	4 621.1	1 213 670–1 235 310	5–3	7.08-02	1.36-02	1.03+00	-1.167	C	LS
			4 294.3	4 295.5	1 212 030–1 235 310	3–3	5.28 - 02	1.46 - 02	6.19-01	-1.359	C	LS
			[4 140]	[4 141]	1 211 160–1 235 310	1–3	1.96-02	1.51 - 02	2.06-01	-1.821	D	LS
96		$^{3}P-^{3}D^{\circ}$?				9–15						1
				[1 909]	1 213 670-1 266 060	5–7	1.90+00	1.45 - 01	4.56+00	-0.140	C+	LS
				1 894.7	1 212 030-1 264 810	3–5			2.43+00			LS
				1 955.4	1 213 670–1 264 810	5–5	4.40-01	2.52-02	8.11-01	-0.900	С	LS
97		$^{3}P-^{3}P^{\circ}$?				9–9						1
				1 591.60	1 213 670–1 276 500	5–5			2.57+00			LS
				1 551.11	1 212 030–1 276 500	3–3			5.15-01			LS
				1 591.60	1 213 670–1 276 500	5–3			8.57-01			LS
				1 551.11 [1 530.5]	1 212 030–1 276 500 1 211 160–1 276 500	3–5 1–3			8.58-01 6.85-01			LS LS
98	$2s2p^2(^4P)3s-2s^22p4d$	$^{3}P-^{3}D^{\circ}$		[1 550.5]	1211100 1270 300	9–15	1.27100	1.50 01	0.05 01	0.000	C	1
90	232p (1)33-23 2p4a	1 - D				9-13						1
				[389.50]	1 213 670–1 470 410	5–7			2.01-01			LS
				[388.33] [390.82]	1 212 030–1 469 540 1 213 670–1 469 540	3–5 5–5			1.07-01 $3.58-02$			LS LS
99	$2s2p^{2}(^{4}P)3s - 2s2p^{2}(^{4}P)4p$	$^{3}P-^{3}D^{\circ}$		[390.82]	1 213 0/0-1 409 340	9–15	2.43+00	3.30-03	3.36-02	-1.550	L	1
				[272.75]	1 213 670–1 580 310	5–7	5.19+01	8.10-02	3.64-01	-0.393	D+	LS
100	2s2p ² (⁴ P)3s- 2s2p ² (⁴ P)5p	$^{3}P-^{3}D^{\circ}$				9–15						1
				[198.39]	1 213 670–1 717 720	5–7	3.49+01	2.88-02	9.41-02	-0.842	D	LS
101	2s2p ² (⁴ P)3p- 2s2p ² (² D)3s	$^{3}D^{\circ}?-^{3}D$				15–15						1
			[5 226]	[5 227]	1 266 060-1 285 190	7–7	2.37-03	9.70-04	1.17-01	-2.168	D	LS
			[4 905]	[4 907]	1 264 810-1 285 190	5–7	3.58-04	1.81 - 04	1.46-02	-3.043	E+	LS
102	2s2p ² (⁴ P)3p- 2s2p ² (⁴ P)3d	$^{3}\text{S}^{\circ}?-^{3}\text{P}$		[1 109]	1 235 310–1 325 490	3–9	5.56+00	3.08-01	3.37+00	-0.034	C	1
				1 115.45	1 235 310–1 324 960	3–5	5.47+00	1.70-01	1.87+00	-0.292	C	LS
				1 102.41	1 235 310-1 326 020	3–3	5.65+00	1.03 - 01	1.12+00	-0.510	C	LS
				[1 096.0]	1 235 310–1 326 550	3–1	5.76+00	3.46-02	3.75-01	-0.984	D+	LS
103		$^{3}D^{\circ}? - ^{3}F$				15–21						1
				[1 443.8]	1 266 060-1 335 320	7–9	5.10+00	2.05-01	6.82+00	0.157	В	LS
				1 443.21	1 264 810-1 334 100	5–7	4.55+00	1.99-01	4.73 + 00	-0.002	C+	LS
				[1 469.7]	1 266 060-1 334 100	7–7			5.93-01			
				[1 462.8]	1 264 810–1 333 170	5–5			5.92-01			
				[1 490.1]	1 266 060–1 333 170	7–5	2.05-02	4.87-04	1.67-02	-2.467	E+	LS
104		$^{3}D^{\circ}? - ^{3}D$				15–15						1

TABLE 64. Transition probabilities of allowed lines for Mg VII (references for this table are as follows: 1 = Luo and Pradhan, 55 2 = Tachiev and Froese Fischer, 91 3 = Aggarwal, 3 4 = Fawcett, 21 and 5 = Mendoza et al. 62)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc	Source
				[1 172.6]	1 266 060-1 351 340	7–7	2.34+00	4.82-02	1.30+00	-0.472	C	LS
				1 161.17	1 264 810-1 350 930	5–5	1.88+00	3.81 - 02	7.28 - 01	-0.720	C	LS
				[1 178.3]	1 266 060–1 350 930	7–5			1.63 - 01			LS
				1 165.09	1 264 810–1 350 640	5–3			1.57 - 01			LS
				1 155.67	1 264 810–1 351 340	5–7	3.06-01	8.58-03	1.63-01	-1.368	D	LS
105		$^{3}P^{\circ}? - ^{3}P$				9–9						1
			2 062.9	2 063.6	1 276 500–1 324 960	5–5			1.29+00			LS
			2 018.7	2 019.4	1 276 500–1 326 020	3–3			2.57-01			
			2 018.7	2 019.4	1 276 500–1 326 020	5–3			4.29-01			
			2.062.0	[1 998]	1 276 500–1 326 550	3–1			3.43-01			
		2- % - 2-	2 062.9	2 063.6	1 276 500–1 324 960	3–5	1.98-01	2.11-02	4.30-01	-1.199	D+	
106		$^{3}P^{\circ}?-^{3}D$				9–15						1
				1 336.18	1 276 500–1 351 340	5–7			4.35+00			
				1 343.54	1 276 500–1 350 930	3–5			2.34+00			LS
				1 343.54	1 276 500–1 350 930	5–5			7.78-01			LS
				1 348.80	1 276 500–1 350 640	3–3			7.78-01			LS
107	$2s2p^2(^4P)3p-$	$^{3}D^{\circ}? - ^{3}D$		1 348.80	1 276 500–1 350 640	5–3 15–15	1.43-01	2.34-03	5.20-02	-1.932	E+	LS 1
	$2s2p^2(^2D)3d$											
				[638.8]	1 266 060-1 422 600	7–7	1.31+00	8.03 - 03	1.18-01	-1.250	D	LS
				[636.1]	1 264 810–1 422 020	5–5	1.04+00	6.31 - 03	6.61 - 02	-1.501	D	LS
				[641.2]	1 266 060-1 422 020	7–5	2.27 - 01	1.00 - 03	1.48 - 02	-2.155	E+	LS
				[633.8]	1 264 810–1 422 600	5–7	1.68-01	1.42-03	1.48-02	-2.149	E+	LS
108	$2s2p^2(^4P)3p - 2s2p^2(^4P)4d$	$^{3}D^{\circ}? - ^{3}F$			15–21							1
				[293.54]	1 266 060–1 606 730	7–9	4.90+01	8.13-02	5.50-01	-0.245	D+	LS
				[293.44]	1 264 810-1 605 600	5-7	4.35+01	7.87 - 02	3.80 - 01	-0.405	D+	LS
				[294.52]	1 266 060-1 605 600	7–7	5.41+00	7.03 - 03	4.77 - 02	-1.308	E+	LS
				[294.09]	1 264 810–1 604 840	5–5	7.60+00	9.85 - 03	4.77 - 02	-1.308	E+	
				[295.18]	1 266 060–1 604 840	7–5	2.12-01	1.98-04	1.35-03	-2.858	E	LS
109	$2s2p^2(^4P)3p - 2s2p^2(^2D)4d$	$^{3}D^{\circ}? - ^{3}F$				15–21						1
				[232.66]	1 266 060–1 695 870	7–9	1.15+01	1.20-02	6.43-02	-1.076	D	LS
110	2s2p ² (⁴ P)3p- 2s2p ² (⁴ P)5d	3 D $^{\circ}$? $-^{3}$ F				15–21						1
				[215.49]	1 266 060–1 730 130	7–9	7.34+01	6.57-02	3.26-01	-0.337	D+	LS
111	2s2p ² (² D)3s- 2s2p ² (² D)3p	$^{1}D-^{1}F^{\circ}$	[2 237]	[2 238]	1 305 300–1 349 990	5–7	1.23+00	1.29-01	4.75+00	-0.190	C+	1
112		$^{1}D-^{1}D^{\circ}$		[1 928]	1 305 300–1 357 170	5–5	1.77+00	9.87-02	3.13+00	-0.307	C+	1
113	$2s2p^2(^2D)3s-2s^22p4d$	$^{1}D-^{1}F^{\circ}$		[581.0]	1 305 300–1 477 420	5–7	1.91+00	1.35-02	1.29-01	-1.171	D	1
114	$2s2p^2(^2D)3p - 2s2p^2(^2D)3d$	${}^{1}F^{\circ} - {}^{1}F?$		[1 131.9]	1 349 990–1 438 340	7–7	2.75+00	5.29-02	1.38+00	-0.431	С	1
115		${}^{1}D^{\circ} - {}^{1}F?$		[1 232.0]	1 357 170– <i>1 438 340</i>	5–7	4.99+00	1.59-01	3.22+00	-0.100	C+	1
116	2s2p ² (⁴ P)3d- 2s2p ² (⁴ P)4p	$^{3}F-^{3}D^{\circ}$				1–15						1

Table 64. Transition probabilities of allowed lines for Mg VII (references for this table are as follows: 1 = Luo and Pradhan, 55 = Carther and Froese Fischer, 91 = Carther 3 = Aggarwal, 4 = Fawcett, 4

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc	Source
				[408.18]	1 335 320–1 580 310	9–7	2.69+01	5.22-02	6.31-01	-0.328	С	LS
				[406.16]	1 334 100-1 580 310	7–7	2.36+00	5.84 - 03	5.47 - 02	-1.388	E +	LS
				[404.63]	1 333 170–1 580 310	5–7	6.75 - 02	2.32-04	1.55 - 03	-2.936	E	LS
117		$^{3}D-^{3}D^{\circ}$				15–15						1
				[436.74]	1 351 340-1 580 310	7–7	3.74+00	1.07-02	1.08 - 01	-1.126	D	LS
				[435.96]	1 350 930–1 580 310	5–7	4.71 - 01	1.88 - 03	1.35 - 02	-2.027	E	LS
118	$2s2p^2(^2D)3d-2s^22p4d$	$^3F? - ^3D^{\circ}$				21–15						1
				[1 782]	1 414 290–1 470 410	9–7		1.25 - 03				LS
				[1 810]	1 414 290–1 469 540	7–5		1.10-03				LS
				[1 782]	1 414 290–1 470 410	7–7		1.40 - 04				LS
				[1 810]	1 414 290–1 469 540	5–5		1.92-04				LS
				[1 782]	1 414 290–1 470 410	5–7	8.27-05	5.51-06	1.62-04	-4.560	Е	LS
119		$^{3}D-^{3}D^{\circ}$				15–15						1
			[2 091]	[2 092]	1 422 600–1 470 410	7–7	6.95 - 02	4.56 - 03	2.20-01	-1.496	D+	LS
			[2 104]	[2 104]	1 422 020–1 469 540	5–5		3.55 - 03				LS
			[2 130]	[2 130]	1 422 600–1 469 540	7–5		5.62-04				
		2 2 0	[2 066]	[2 067]	1 422 020–1 470 410	5–7	9.05-03	8.11-04	2.76-02	-2.392	E+	
120		$^{3}S - ^{3}P^{\circ}$				3–9						1
		1 1- 0	[2 867]	[2 868]	1 437 260–1 472 130	3–5		1.37-01				
121		¹ F?- ¹ D°	[3 669]	[3 670]	<i>1 438 340</i> –1 465 590	7–5	1.46-02	2.11-03	1.78-01	-1.831	D	1
122	$2s2p^2(^2D)3d-2s^22p5d$	$^{3}S-^{3}P^{\circ}$				3–9						1
				[622.4]	1437 260–1 597 920	3–5	4.69+00	4.54-02	2.79-01	-0.866	D+	LS
123	$2s2p^2(^2D)3d-2s^22p6d$	$^{3}S - ^{3}P^{\circ}$		437.62	1 437 260– <i>1 665 770</i>	3–9	4.43+00	3.81-02	1.65-01	-0.942	D	1
				[437.62]	1 437 260–1 665 770	3–5	4.43+00	2.12 - 02	9.16 - 02	-1.197	D	LS
				[437.62]	1 437 260–1 665 770	3–3	4.42+00	1.27 - 02	5.49 - 02	-1.419	E+	LS
				[437.62]	1 437 260–1 665 770	3–1	4.44+00	4.25-03	1.84-02	-1.894	E+	LS
124	$2s^22p4d-2s2p^2(^4P)4d$	$^{3}D^{\circ}-^{3}F$				15–21						1
				[733.6]	1 470 410-1 606 730	7–9	3.60+01	3.73-01	6.31 + 00	0.417	В	LS
				[735.0]	1 469 540-1 605 600	5-7	3.18+01	3.60 - 01	4.36+00	0.255	C+	LS
				[739.7]	1 470 410–1 605 600	7–7	3.91+00	3.21 - 02	5.47 - 01	-0.648	D+	LS
				[739.1]	1 469 540–1 604 840	5–5	5.49+00	4.50 - 02	5.47 - 01	-0.648	D+	LS
				[743.9]	1 470 410–1 604 840	7–5	1.52-01	9.00-04	1.54-02	-2.201	E+	LS
125	$2s^22p4d-2s2p^2(^2D)4d$	$^{3}D^{\circ}-^{3}F$				15–21						1
				[443.54]	1 470 410–1 695 870	7–9	7.70+00	2.92-02	2.98-01	-0.690	D+	LS
126	$2s2p^2(^4P)4p - 2s2p^2(^4P)4d$	$^{3}D^{\circ}-^{3}F$				15–21						1
			[3 784]	[3 785.0]	1 580 310-1 606 730	7–9	3.47-01	9.58-02	8.36+00	-0.174	В	LS
			[3 953]	[3 954.1]	1 580 310-1 605 600	7–7		7.95-03				LS
			[4 076]	[4 076.6]	1 580 310–1 604 840	7–5		2.17-04				LS
127	$2s2p^2(^4P)4p - 2s2p^2(^2D)4d$	$^{3}D^{\circ}-^{3}F$				15–21						1
				[865.4]	1 580 310–1 695 870	7–9	4.38-01	6.32-03	1.26-01	-1.354	D	LS

Table 64. Transition probabilities of allowed lines for Mg VII (references for this table are as follows: 1 = Luo and Pradhan, 55 = Carther and Froese Fischer, 91 = Carther 3 = Aggarwal, 4 = Fawcett, 4 = Fawcett, and 5 = Mendoza et al. 62 = Carther —Continued

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc	Source
128	2s2p ² (⁴ P)4p- 2s2p ² (⁴ P)5d	$^{3}D^{\circ}-^{3}F$				15–21						1
				[667.5]	1 580 310–1 730 130	7–9	2.27+01	1.95-01	3.00+00	0.135	C+	LS
129	2s2p ² (⁴ P)4d- 2s2p ² (⁴ P)5p	$^{3}F-^{3}D^{\circ}$				21–15						1
				[901.0]	1 606 730–1 717 720	9–7	3.62+00	3.43-02	9.16-01	-0.510	C	LS
				[891.9]	1 605 600-1 717 720	7–7	3.24-01	3.86-03	7.93 - 02	-1.568	D	LS
				[885.9]	1 604 840–1 717 720	5–7	9.35-03	1.54 - 04	2.25 - 03	-3.114	E	LS
130	$2s2p^2(^2D)4d - 2s2p^2(^4P)5p$	$^{3}F-^{3}D^{\circ}$				21–15						1
			[4 575]	[4 577]	1 695 870–1 717 720	9–7	2.04-02	4.98-03	6.75-01	-1.349	C	LS
131	$2s2p^2(^4P)5p - 2s2p^2(^4P)5d$	$^{3}\text{D}^{\circ} - ^{3}\text{F}$				15–21						1
			[8056]	[8058]	1 717 720–1 730 130	7–9	3.52-01	4.41-01	8.19+01	0.490	B+	LS

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

11.7.3. Forbidden Transitions for Mg VII

The results of Tachiev and Froese Fischer⁹¹ are the product of extensive MCHF calculations with Breit-Pauli corrections to order α^2 . Vilkas *et al.*¹¹⁸ used a second-order MBPT theory with Breit-Pauli relativistic corrections. As part of the Iron Project, Galavis *et al.*⁴⁰ used the SUPERSTRUCTURE code with configuration interaction, relativistic effects, and semi-empirical energy corrections.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) of each of the lines for which a transition rate is quoted by two or more references, ^{40,91,118} as discussed in the general introduction.

11.7.4. References for Forbidden Transitions for Mg VII

- ⁴⁰M. E. Galavis, C. Mendoza, and C. Zeippen, Astron. Astrophys., Suppl. Ser. **123**, 159 (1997).
- ⁸⁸G. Tachiev and C. Froese Fischer, Can. J. Phys. **79**, 955 (2001).
- ⁹¹G. Tachiev and C. Froese Fischer, http://www.vuse. vanderbilt.edu/~cff/mchf_collection/ (MCHF, *ab initio*, downloaded on Mar. 20, 2002). See Tachiev and Froese Fischer (Ref. 88).
- M. J. Vilkas, I. Martinson, G. Merkelis, G. Gaigalas, and R. Kisielius, Phys. Scr. 54, 281 (1996).

TABLE 65. Wavelength finding list for forbidden lines for Mg VII

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
152.130	23	282.166	8	431.507	6	818.29	39
152.552	23	283.050	8	434.594	6	822.72	33
161.945	25	284.514	8	434.720	6	823.42	33
173.527	22	311.363	15	434.917	6	823.88	33
173.861	22	319.027	14	520.627	12	846.74	5
183.691	21	363.763	7	520.809	12	854.75	5
183.770	21	365.234	7	521.091	12	868.24	5
184.386	21	365.243	7	527.006	19	870.14	27
184.394	21	367.616	7	608.64	35	870.65	27
184.683	21	367.674	7	609.03	35	871.44	27
184.772	21	367.684	7	609.28	35	1 146.53	38
198.288	24	371.405	20	637.56	28	1 146.62	38
198.631	24	409.808	30	637.74	28	1 147.18	38
217.751	26	423.189	29	637.77	28	1 189.82	3
218.740	26	427.352	13	676.57	18	1 216.12	3
252.496	10	427.431	13	773.61	34	1 257.80	37
253.660	10	427.444	13	774.23	34	1 257.91	37
277.001	9	429.264	6	774.64	34	1 258.59	37

TABLE 65. Wavelength finding list for forbidden lines for Mg VII—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
278.402	9	431.189	6	817.96	39	1 296.14	11
280.737	16	431.313	6	818.00	39		
Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.
2 261.5	4	2 383.2	32	2 387.4	32	2 853.4	41
2 377.3	32	2 383.6	32	2 441.4	2	3 034.3	17
2 377.7	32	2 384.6	32	2 509.2	2	12 957	40
2 380.8	32	2 387.0	32	2 629.1	2		
Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.
2 924	1	1 107	1	104	31	50	36
1 817	1	171	31	67	31	43	36

Table 66. Transition probabilities of forbidden lines for Mg VII (references for this table are as table follows: 1=Tachiev and Froese Fischer, 91 2=Vilkis *et al.*, 118 and 3=Galavis *et al.* 40)

No.	array	Mult.	λ _{air} (Å)	$\lambda_{\text{vac}} (\mathring{A})$ or $\sigma (\text{cm}^{-1})^{\text{a}}$	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	Type	A_{ki} (s^{-1})	S (a.u.)	Acc.	Source
			(71)	or o (cm)	(cm)	5i 5k	Турс	(3)	(a.u.)	7100.	
1	$2p^2 - 2p^2$	$^{3}P-^{3}P$									
				1 817 cm ⁻¹	1 107–2 924	3–5	M1	7.95 - 02	2.46+00	A	1,2,3
				1 817 cm ⁻¹	1 107–2 924	3–5	E2	4.54 - 08	1.02 - 01	B+	1,2
				1 107 cm ⁻¹	0–1 107	1–3	M1	2.43 - 02	2.00+00	A	1,2,3
				2 924 cm ⁻¹	0–2 924	1–5	E2	2.24 - 07	4.67 - 02	B+	1,2,3
2		${}^{3}P - {}^{1}D$									
			2 441.4	2 442.1	0-40 948	1-5	E2	1.25 - 04	4.85 - 05	C+	1,2,3
			2 509.2	2 510.0	1 107-40 948	3–5	M1	1.20+00	3.52-03	В	1,2,3
			2 509.2	2 510.0	1 107-40 948	3–5	E2	3.34-04	1.49-04	C+	1,2
			2 629.1	2 629.9	2 924-40 948	5–5	M1	3.13+00	1.05-02	B+	1,2,3
			2 629.1	2 629.9	2 924-40948	5–5	E2	1.93-03	1.08-03	В	1,2
3		$^{3}P - ^{1}S$									
3		P- 3		1 216.12	2 924-85 153	5–1	E2	3.85-02	9.15-05	$C \perp$	1,2,3
				1 189.82	1 107–85 153	3–1	M1	3.62+01	2.26-03		1,2,3
				1 109.02	1 107-65 155	5-1	1011	3.02 + 01	2.20-03	Б	1,2,3
4		$^{1}D-^{1}S$									
			2 261.5	2 262.2	40 948-85 153	5-1	E2	3.95+00	2.09 - 01	B+	1,2,3
5	$2s^22p^2-2s2p^3$	$^{3}P-^{5}S^{\circ}$									
3	2s 2p - 2s2p	1 – 5		[868.2]	2 924-118 100	5–5	M2	2.90-02	4.80+00	B+	1
				[854.8]	1 107–118 100	3–5	M2	4.11-02	6.29+00	B+	1
				[846.7]	0–118 100	1–5	M2	1.94-02	2.83+00	В	1
				[0.017]	0 110 100	1.0	1112	1.7. 02	2.00 . 00	_	•
6		$^{3}P-^{3}D^{\circ}$									
				431.507	1 107–232 853	3–7	M2	4.47 - 01	3.14+00	В	1
				429.264	0-232 957	1–5	M2	4.75 - 01	2.32+00	В	1
				434.917	2 924–232 853	5–7	M2	1.04+00	7.63+00	B+	1
				431.313	1 107–232 957	3–5	M2	4.86 - 01	2.44+00	В	1
				434.720	2 924–232 957	5–5	M2	3.25 - 03	1.69 - 02	C	1
				431.189	1 107–233 024	3–3	M2	2.00-01	6.00 - 01	В	1
				434.594	2 924–233 024	5–3	M2	1.15 - 01	3.58 - 01	В	1
7		${}^{3}P - {}^{3}P^{\circ}$									
•				367.674	2 924-274 904	5–5	M2	1.55 + 00	3.50+00	В	1
				365.243	1 107–274 897	3–3	M2	9.69-01	1.27+00	В	1
				367.616	2 924–274 947	5–1	M2	1.01+00	4.55-01	В	1
									31	_	-

TABLE 66. Transition probabilities of forbidden lines for Mg VII (references for this table are as table follows: 1=Tachiev and Froese Fischer, 91 2=Vilkis et al., 91 118 and 91118 and 91118 1

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	$A_{ki} \atop (s^{-1})$	<i>S</i> (a.u.)	Acc.	Source
				367.684	2 924–274 897	5–3	M2	1.40-02	1.89-02	C+	1
				365.234	1 107–274 904	3–5	M2	3.42 - 03	7.45 - 03	C	1
				363.763	0–274 904	1–5	M2	2.07 - 01	4.42-01	В	1
8		$^{3}P-^{1}D^{\circ}$									
				282.166	0-354 401	1-5	M2	2.35+00	1.41+00	В	1
				283.050	1 107-354 401	3–5	M2	5.35+00	3.26+00	В	1
				284.514	2 924-354 401	5–5	M2	4.19+00	2.62+00	В	1
9		$^{3}P-^{3}S^{\circ}$									
				278.402	2 924-362 117	5–3	M2	4.46+00	1.50+00	В	1
				277.001	1 107–362 117	3–3	M2	1.94+00	6.35-01	В	1
10		${}^{3}P - {}^{1}P^{\circ}$									
10		г- г		252.496	1 107–397 153	3–3	M2	2.75 + 00	5.67-01	В	1
				253.660	2 924–397 153	5–3	M2	9.49+00	2.00+00		1
		1 5 0		233.000	2,21 3,7 133	3 3	1412	2.12.100	2.00100		•
11		$^{1}D-^{5}S^{\circ}$		F1 20 C 17	40.040.110.100		1.10	105.06	4.07.02		
				[1 296.1]	40 948–118 100	5–5	M2	4.05-06	4.97-03	C	1
12		$^{1}D-^{3}D^{\circ}$									
				520.809	40 948-232 957	5–5	M2	5.51 - 01	7.08+00	B+	1
				520.627	40 948-233 024	5–3	M2	2.40 - 01	1.85 + 00	В	1
				521.091	40 948-232 853	5–7	M2	6.15 - 01	1.11+01	B+	1
13		$^{1}D-^{3}P^{\circ}$									
				427.352	40 948-274 947	5-1	M2	8.02-01	7.67-01	В	1
				427.444	40 948-274 897	5-3	M2	6.71 - 01	1.93 + 00	В	1
				427.431	40 948-274 904	5-5	M2	3.91 - 01	1.87 + 00	В	1
14		$^{1}D-^{1}D^{\circ}$									
14		D- D		319.027	40 948-354 401	5–5	M2	7.44-02	8.24-02	C+	1
		1 2 0						,,,,,			
15		$^{1}D-^{3}S^{\circ}$		211 262	40.049.262.117	<i>5</i> 2	142	7.10 02	4.10 02	C	1
				311.363	40 948–362 117	5–3	M2	7.10-03	4.18-03	C	1
16		${}^{1}D - {}^{1}P^{\circ}$									
				280.737	40 948–397 153	5–3	M2	1.12 - 02	3.92-03	C	1
17		$^{1}S-^{5}S^{\circ}$									
			[3 034]	[3 035]	85 153-118 100	1-5	M2	6.47-09	5.58-04	C	1
10		$^{1}S-^{3}D^{\circ}$									
18		-2D		676.57	85 153–232 957	1–5	M2	6.62-05	3.15-03	C	1
				070.57	03 133 232 737	1 3	1412	0.02 03	3.13 03	C	
19		$^{1}S-^{3}P^{\circ}$									
				527.006	85 153–274 904	1–5	M2	4.85 - 01	6.62+00	B+	1
20		$^{1}S-^{1}D^{\circ}$									
				371.405	85 153-354 401	1-5	M2	1.44 - 02	3.40 - 02	C+	1
21	$2s^22p^2-2p^4$	${}^{3}P - {}^{3}P$									
<u>~1</u>	20 2p -2p	1 — Г		184.386	2 924-545 264	5–1	E2	3.67+04	6.99-03	В	2
				184.683	2 924-544 393	5–3	M1	2.13+00	1.49-06		2
				184.683	2 924–544 393	5–3	E2	2.73+04	1.57-02		2
				183.770	1 107–545 264	3–1	M1	1.45+00	3.34-07		2
				184.772	1 107–542 316	3–5	M1	1.43+00	1.67-06		2
				184.772	1 107 542 316	3–5	E2	1.64+04	1.57 - 02		2
				183.691	0-544 393	1–3	M1	4.15-01	2.86-07		2
				184.394	0-542 316	1–5	E2	7.34+03	6.99-03		2
		2 1			0 0.2010				2.77 03	_	_
22		${}^{3}P - {}^{1}D$									

Table 66. Transition probabilities of forbidden lines for Mg VII (references for this table are as table follows: 1=Tachiev and Froese Fischer, 91 2=Vilkis *et al.*, 118 and 3=Galavis *et al.* 40)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{ m vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Туре	$A_{ki} \\ (s^{-1})$	<i>S</i> (a.u.)	Acc.	Source
				173.527	0–576 280	1–5	E2	6.89-01	4.84-07	D+	2
				173.861	1 107-576 280	3-5	M1	6.46 - 01	6.29 - 07	D+	2
				173.861	1 107–576 280	3–5	E2	3.27+01	2.32 - 05	C	2
23		$^{3}P - ^{1}S$									
23		1 – 5		152.552	2 924-658 440	5–1	E2	1.83+01	1.35-06	D+	2
				152.130	1 107-658 440	3-1	M1	3.42-01	4.46-08	D	2
24		$^{1}D - ^{3}P$									
				198.288	40 948-545 264	5-1	E2	4.81 + 00	1.32-06	D+	2
				198.631	40 948-544 393	5–3	M1	1.18+00	1.03 - 06	D+	2
				198.631	40 948-544 393	5–3	E2	2.98+01	2.47 - 05	C	2
25		$^{1}D-^{1}S$									
		2 5		161.945	40 948-658 440	5-1	E2	6.36+04	6.33-03	В	2
		1 - 3 -									
26		$^{1}S-^{3}P$		210.740	05 152 542 216	1.5	F2	4.10 .00	0.21 00	D.	2
				218.740	85 153–542 316	1–5	E2	4.12-02	9.21-08	D+	2
				217.751	85 153–544 393	1–3	M1	5.73-01	6.58-07	D+	2
27	$2s2p^3 - 2s2p^3$	$^{5}\text{S}^{\circ}$ – $^{3}\text{D}^{\circ}$									
				[871.4]	118 100-232 853	5–7	M1	8.21 - 03	1.41 - 06	D+	1
				[871.4]	118 100-232 853	5–7	E2	2.18 - 02	6.84 - 05	C	1
				[870.6]	118 100-232 957	5–5	M1	1.27 - 01	1.56 - 05	C	1
				[870.6]	118 100-232 957	5–5	E2	1.92 - 02	4.29 - 05	C	1
				[870.1]	118 100-233 024	5–3	M1	4.35 - 02	3.19-06	C	1
				[870.1]	118 100–233 024	5–3	E2	8.23 - 03	1.10 - 05	C	1
28		$^{5}\text{S}^{\circ}$ – $^{3}\text{P}^{\circ}$									
20		5 1		[637.7]	118 100-274 904	5–5	M1	2.51+01	1.21-03	C+	1
				[637.7]	118 100–274 904	5–5	E2	1.82-04	8.56-08	D	1
				[637.8]	118 100–274 897	5–3	M1	1.40+01	4.04-04	C+	1
				[637.8]	118 100-274 897	5–3	E2	3.56-05	1.01-08	D	1
				[637.6]	118 100-274 947	5-1	E2	1.21-06	1.14-10	E+	1
20		$^{5}\text{S}^{\circ} - ^{1}\text{D}^{\circ}$									
29		3 - D		[422 10]	118 100–354 401	5 5	М1	1.39-03	1.95-08	D	1
				[423.19] [423.19]	118 100–354 401	5–5 5–5	M1 E2	8.77-07	5.32-11		1
				[423.19]	118 100–334 401	3–3	122	6.77-07	5.52-11	E i	1
30		$^{5}\text{S}^{\circ}$ $ ^{3}\text{S}^{\circ}$									
				[409.81]	118 100–362 117	5–3	M1	9.28 - 03	7.11 - 08	D	1
				[409.81]	118 100–362 117	5–3	E2	1.15 - 05	3.55 - 10	E+	1
31		$^{3}D^{\circ} - ^{3}D^{\circ}$									
				171 cm ⁻¹	232 853-233 024	7–3	E2	1.62 - 15	2.97-04	C+	1
				104 cm^{-1}	232 853-232 957	7–5	M1	2.83 - 05	4.66+00	A	1
				104 cm^{-1}	232 853-232 957	7–5	E2	3.53 - 16		C+	1
				67 cm ⁻¹	232 957-233 024	5-3	M1	1.22 - 05	4.50+00	A	1
				67 cm ⁻¹	232 957-233 024	5–3	E2	3.06 - 19	6.08 - 06	C	1
32		$^{3}D^{\circ}-^{3}P^{\circ}$									
34		D - L	2 377.7	2 378.5	232 853–274 897	7–3	E2	1.12+00	2.29-01	B+	1
			2 380.8	2 381.5	232 957–274 947	5–1	E2	2.38+00	1.63-01	B+	1
			2 377.3	2 378.1	232 853–274 904	7–5	M1	3.20+00	7.97-03	В	1
			2 377.3	2 378.1	232 853–274 904	7–5	E2	1.34+00	4.56-01	B+	1
			2 383.6	2 384.4	232 957–274 897	5–3	M1	2.08-06	3.14-09	D	1
			2 383.6	2 384.4	232 957–274 897	5–3	E2	1.96-01	4.04-02	В	1
			2 384.6	2 385.3	233 024–274 947	3–1	M1	3.78+00	1.90-03	C+	1
			2 383.2	2 384.0	232 957–274 904	5–5	M1	2.26+00	5.68-03	В	1
			2 383.2	2 384.0	232 957-274 904	5–5	E2	8.27-01	2.84-01		1

TABLE 66. Transition probabilities of forbidden lines for Mg VII (references for this table are as table follows: 1=Tachiev and Froese Fischer, 91 2=Vilkis et al., 118 and 3=Galavis et al., 100—Continued

	Transition	3.6.1.	λ_{air}	λ_{vac} (Å)	$E_i - E_k$		T.	A_{ki}	S		
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	(cm ⁻¹)	$g_i - g_k$	Туре	(s ⁻¹)	(a.u.)	Acc.	Source
			2 387.4	2 388.2	233 024–274 897	3–3	M1	3.76+00	5.70 - 03	В	1
			2 387.4	2 388.2	233 024–274 897	3–3	E2	1.05 + 00	2.19 - 01	B+	1
			2 387.0	2 387.8	233 024–274 904	3–5	M1	6.00 - 01	1.52 - 03	C+	1
			2 387.0	2 387.8	233 024–274 904	3–5	E2	2.13-01	7.38 - 02	B+	1
33		$^{3}D^{\circ}-^{1}D^{\circ}$									
				823.42	232 957-354 401	5-5	M1	2.05 - 02	2.12-06	D+	1
				823.42	232 957-354 401	5-5	E2	5.12 - 02	8.65 - 05	C	1
				822.72	232 853-354 401	7–5	M1	1.70 - 02	1.75 - 06	D+	1
				822.72	232 853-354 401	7–5	E2	9.07 - 02	1.53 - 04	C+	1
				823.88	233 024-354 401	3-5	M1	1.80 - 03	1.86 - 07	D+	1
				823.88	233 024-354 401	3-5	E2	4.63 - 03	7.84 - 06	C	1
34		$^{3}D^{\circ}-^{3}S^{\circ}$									
J-T		D – 3		773.61	232 853–362 117	7–3	E2	1.14+00	8.49-04	C+	1
				774.23	232 957-362 117	5–3	M1	1.05-01	5.41-06	C	1
				774.23	232 957–362 117	5–3	E2	1.43+00	1.07-03	C+	1
				774.64	233 024–362 117	3–3	M1	5.93-02	3.07-06	C	1
				774.64	233 024–362 117	3–3	E2	1.16+00	8.68-04		1
		2-0 1-0		,,,,,,,	200 02 . 002 11,		22	1.10.00	0.00		•
35		$^{3}D^{\circ}-^{1}P^{\circ}$		600.64	222.052.207.152	7.2	FA	1.21 .02	2.72 06	C	1
				608.64	232 853–397 153	7–3	E2	1.21-02	2.72-06		1
				609.03	232 957–397 153	5–3	M1	2.23+01	5.60-04		1
				609.03	232 957–397 153	5–3	E2	7.53-03	1.69-06	D+	1
				609.28	233 024–397 153	3–3	M1	7.41 + 00	1.86-04	C+	1
				609.28	233 024–397 153	3–3	E2	3.31-03	7.44-07	D+	1
36		$^{3}\text{P}^{\circ} - ^{3}\text{P}^{\circ}$									
				43 cm^{-1}	274 904-274 947	5-1	E2	8.56 - 18	5.20 - 04	C+	1
				50 cm ⁻¹	274 897–274 947	3–1	M1	6.74 - 06	2.00+00	B+	1
37		$^{3}P^{\circ}-^{1}D^{\circ}$									
				1 258.59	274 947-354 401	1-5	E2	1.24-05	1.75 - 07	D+	1
				1 257.80	274 897-354 401	3-5	M1	2.15+00	7.94 - 04	C+	1
				1 257.80	274 897-354 401	3-5	E2	1.86-05	2.61 - 07	D+	1
				1 257.91	274 904-354 401	5–5	M1	6.44 + 00	2.38-03	C+	1
				1 257.91	274 904-354 401	5–5	E2	2.74-04	3.85-06		1
38		$^{3}P^{\circ}-^{3}S^{\circ}$									
36		1 – 3		1 146.62	274 904–362 117	5–3	M1	2.59+00	4.34-04	C+	1
				1 146.62	274 904–362 117	5–3	E2	1.25-04	6.66-07		1
				1 146.53	274 897–362 117	3–3	M1	1.56+00	2.61-04	C+	1
				1 146.53	274 897–362 117	3–3	E2	4.80-05	2.55-07		1
				1 147.18	274 947–362 117	1–3	M1	2.08+00	3.50-04		1
20		$^{3}P^{\circ}-^{1}P^{\circ}$									
39		P - P		817.96	274 897–397 153	3–3	M1	2.31-02	1.41-06	D+	1
				817.96	274 897–397 153	3–3	E2	2.82-02	2.77-05		1
				818.00	274 904–397 153	5–3	M1	6.22 - 02	3.79-06		1
				818.00	274 904–397 153	5–3	E2	9.12-02	8.94-05	C	1
				818.29	274 947–397 153	3–3 1–3	M1	1.22-02	7.42-07		1
		,		010.27	217 771 -371 133	1-5	1711	1.22-02	7.42-07	וע	1
40		$^{1}\text{D}^{\circ} - ^{3}\text{S}^{\circ}$					-			_	
			12 957	12 960	354 401–362 117	5–3	M1	5.74-07	1.39-07		1
			12 957	12 960	354 401–362 117	5–3	E2	1.07-06	1.05 - 03	C+	1
41		$^{3}\text{S}^{\circ}-^{1}\text{P}^{\circ}$									
			2 853.4	2 854.2	362 117–397 153	3–3	M1	5.04+00	1.30-02	В	1
			2 853.4	2 854.2	362 117-397 153	3-3	E2	2.66 - 06	1.35 - 06	D+	1

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

11.8. Mg vIII

Boron isoelectronic sequence Ground state: $1s^22s^22p^2P_{1/2}^0$

Ionization energy: 265.96 eV=2 145 100 cm⁻¹

11.8.1. Allowed Transitions for Mg VIII

In general, different sources for computed transition rates for this boronlike spectrum agree well. For stronger lines, this is the case for lines of the OP, ²⁴ even from higher-lying levels. Most of the compiled data below have been taken from this source. Wherever possible, we used the high-quality data from the other references, which were available primarily for transitions from lower-lying levels. Tachiev and Froese Fischer ⁹² performed extensive MCHF calculations with Breit-Pauli corrections to order α^2 . Merkelis *et al.* ⁶⁴ used a second-order MBPT theory with Breit-Pauli relativistic corrections. As part of the Iron Project, Galavis *et al.* ⁴¹ used the SUPERSTRUCTURE code with configuration interaction, relativistic effects, and semiempirical energy corrections. Only OP (Ref. 24) results were available for energy levels above the 2s2p3s.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in two or more references, ^{24,41,64,92} as described in the general introduction. For this purpose the spin-allowed (non-OP) and intercombination data were treated separately and each of these was in turn divided into two upper-level energy groups below and above 700 000 cm⁻¹. OP lines constituted a fifth group; we decreased the accuracies predicted from the good agreement with Tachiev and Froese Fischer⁹² for lines from higher-lying levels, because such agreement was not observed in other isoelectronic spectra. To estimate the accuracy of lines from

higher-lying levels, we isoelectronically averaged the logarithmic quality factors (see Sec. 4.1 of the Introduction) observed for lines from the lower-lying levels of B-like ions of Na, Mg, Al, and Si and scaled them for lines from high-lying levels. The listed accuracies for these higher-lying transitions are thus less well established than for those from lower levels.

A NIST compilation of far-UV lines of Mg VIII was published recently.⁷⁸ The estimated accuracies are different in some cases because a different method of evaluation was used.

11.8.2. References for Allowed Transitions for Mg VIII

- ²³J. A. Fernley, A. Hibbert, A. E. Kingston, and M. J. Seaton, J. Phys. B **32**, 5507 (1999).
- ²⁴J. A. Fernley, A. Hibbert, A. E. Kingston, and M. J. Seaton, http://legacy.gsfc.nasa.gov/topbase, downloaded on July 28, 1995 (Opacity Project). See Fernley *et al.* (Ref. 23).
- ⁴¹M. E. Galavis, C. Mendoza, and C. J. Zeippen, Astron. Astrophys., Suppl. Ser. 131, 499 (1998).
- ⁶⁴G. Merkelis, J. J. Vilkas, G. Gaigalas, and R. Kisielius, Phys. Scr.**51**, 233 (1995).
- ⁷⁸L. I. Podobedova, D. E. Kelleher, J. Reader, and W. L. Wiese, J. Phys. Chem. Ref. Data **33**, 495 (2004).
- ⁸⁷G. Tachiev and C. Froese Fischer, J. Phys B **33**, 2419 (2000).
- ⁹²G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on Mar. 28, 2002). See Tachiev and Froese Fischer (Ref. 87).

TABLE 67. Wavelength finding list for allowed lines for Mg VIII

TABLE 67. Wavelength finding list for allowed lines for Mg VIII—Continued

		- Mg vIII—Continued		
Wavelength	Mult. No.	Wayslanath	***	
(vac) (Å)	NO.	Wavelength (vac) (Å)	Mult. No.	
71.006	24	(vac) (11)	110.	
51.386	21	(4.515	11	
51.473	21	64.517	11	
52.395	70	64.630	11	
52.628	71	64.654	11	
53.437	68	64.702	10	
53.484	67	64.761	56	
53.485	68	64.809	56	
53.512	67	64.880	56	
53.532	67	65.734	55	
53.812	20	65.807	55	
53.905	20	65.836	63	
53.908	20	65.923	63	
54.853	19	66.069	54	
54.886	19	68.450	9	
54.953	19	68.550	57	
	18	68.578	57	
55.122			57	
55.136	72	68.580		
55.197	72	68.606	9	
55.222	18	69.415	8	
56.358	69	69.467	8	
56.402	69	69.575	8	
56.403	69	70.952	7	
56.987	17	71.004	7	
57.024	17	71.119	7	
57.094	17	71.171	7	
57.132	17	72.548	50	
57.590	65	72.550	50	
57.591	65	72.678	49	
57.736	64	72.680	49	
57.737	64	72.697	49	
57.783	16	72.699	49	
	60	73.249	48	
58.498		73.251	48	
58.537	60			
58.556	60	73.800	38	
58.595	60	73.826	38	
58.614	60	73.862	38	
58.667	59	73.889	38	
58.672	59	73.928	38	
58.824	15	73.980	38	
59.038	14	74.020	38	
59.153	14	74.274	37	
60.321	58	74.318	37	
60.382	58	74.337	37	
60.607	66	74.366	37	
60.681	66	74.411	37	
60.684	13	74.430	37	
60.806	13	74.858	6	
61.891	62	74.981	96	
61.963	62	74.986	96	
61.964	62	74.992	96	
		74.992		
62.291	61		6	
62.292	61	75.044	6	
64.243	12	76.197	51	
			0.5	
64.380	12	76.714	85	
	12 11	76.714 76.740 76.788	85 85	

TABLE	67.	Wavelength	finding	list	for	allowed	lines	for	TABLE	67.	Wavele
Mg VIII	—Cor	ntinued							Mg VI	I—Co	ntinued

elength finding list for allowed lines for Mg VIII—Continued

W 1 1	N 10	W. J. J			
Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.		
(vac) (A)	INO.	(vac) (A)	NO.		
76.898	95	85.248	83		
77.018	95	85.254	83		
77.029	95	85.598	47		
77.402	53	85.745	47		
77.523	53	86.235	43		
77.548	94	86.358	43		
77.560	94	86.384	43		
77.572	52	86.844	34		
77.577	91	86.847	34		
77.581	91	87.021	34		
77.650	91	89.755	84		
77.671	52	89.771	84		
77.692	52	92.125	35		
77.737	90	92.182	80		
78.006	41	92.188	80		
78.075	41	92.236	80		
78.077	41	92.322	35		
78.446	40	93.893	36		
78.572	40	94.070	36		
78.574	40	94.097	36		
78.855	89	94.275	36		
78.859	89	97.475	81		
79.701	45	97.493	81		
79.703	45	97.529	81		
80.230	39	97.547	81		
80.232	39	102.345	77		
80.253	39	102.353	77		
80.255	39	102.578	77		
80.806	87	102.586	77		
80.811	87	105.971	76		
80.889	86	105.979	76		
81.292	93	106.095	76		
81.304	93	106.808	79		
81.368	93	106.830	79		
81.380	93	108.934	78		
81.731	33	109.175	78		
81.790	33	109.198	78		
81.844	33	114.905	74		
81.867	33	114.915	74		
81.943	33	114.927	74		
81.979	33	114.937	74		
82.238	42	123.273	75		
82.317	42	123.276	75		
82.598	5	123.302	75		
82.709	92	138.112	149		
82.823	5	138.309	149		
83.644	44	145.765	73		
83.726	44	145.805	73		
83.785	44	149.116	109		
83.866	44	149.388	109		
84.126	46	149.425	109		
84.858	88	159.124	108		
84.919	82	159.167	108		
85.064	82	171.359	208		
85.153	82	171.694	209		

Table 67. Wavelength finding list for allowed lines for Table 67. Wavelength finding list for allowed lines for Mg VIII—Continued

Mg VIII—Continued

Wavelength	Mult.	Wavelength	Mult.		
(vac) (Å)	No.	(vac) (Å)	No.		
454.062	200	270.250	400		
171.863	209	270.358	122		
177.101	148	271.843	247		
177.113	126	272.874	247		
177.362	148	273.403	120		
177.800	148	273.733	120		
177.841	126	274.258	120 120 120		
178.469	146	274.589			
178.798	146	275.202			
190.953	147	276.121	120		
191.766	147	276.740	120		
195.316	107	281.666	106		
195.967	107	282.008	106		
196.032	107	282.143	106		
202.581	248	285.600	121		
209.701	125	286.878	240		
210.677	125	288.251	177		
210.722	125	288.542	177		
217.822	193	289.586	182 182		
218.436	207	289.670			
		290.099			
219.101	207		177		
222.178	215	290.394	177		
226.449	124	290.647	182		
226.501	124	295.604	192		
227.640	124	295.674	241		
230.968	183	295.989	241		
231.096	123	297.548	192		
231.589	183	297.683	23		
232.337	123	297.770	176		
232.954	143	298.080	176		
233.514	143	298.696	23		
238.186	205	298.762	23		
238.834	206	300.203	23		
239.160	206	300.269	23		
240.703	204	303.122	246		
246.585	145	307.210	245		
246.798	145	307.324	272		
247.942	145	311.796	4		
250.013	100	312.237	178		
250.928	282	313.754	4		
251.870	144	314.218	291		
253.196	24	314.248	178		
253.286	144	314.406	178		
253.317	24	315.039	4		
253.929	24	317.039	4		
254.051	24	319.673	261		
255.017	24	320.123	119		
263.103	181	320.349	180		
263.172	181	321.099	261		
263.345	181	322.508	119		
263.414	181	322.633	180		
264.005	283	323.238	292		
264.809	283	323.845	180		
267.852	122	325.563	292		
268.680	122	329.413	98		
269.520	122	329.630	271		

TABLE	67.	Wavelength	finding	list	for	allowed	lines	for	Table	67.	Wavelength	finding	list	for	allowed	lines	for
Mg VIII	—Con	tinued							Mg VIII	—Cor	ntinued						

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
330.677	98	406.653	214
331.148	271	408.013	173
332.149	179	413.753	175
333.433	179	415.127	162
334.258	202	415.731	175
335.253	3	415.749	175
336.361	202	415.887	162
339.006	3	416.458	162
341.802	27	417.293	162
341.841	27	417.746	175
342.062	27	417.868	162
346.272	201	418.989	116
347.645	203	419.305	162
348.335	203	420.504	116
352.460	22	422.529	116
353.882	22	422.565	116
355.999	22	422.690	116
361.729			
	171	424.737	116
361.952	99	425.913	278
362.188	171	426.167	116
363.240	171	428.185	26
363.822	260	428.245	26
363.888	105	428.319	26
364.113	105	428.379	26
364.830	298	429.148	165
364.964	298	429.682	165
365.711	170	430.465	2
367.175	104	430.496	165
367.404	104	430.589	165
367.661	104	430.645	165
367.891	104	431.406	165
369.727	259	432.003	165
374.981	269	434.028	277
375.333	118	436.672	2
378.616	118	436.735	2
382.234	103	436.853	172
382.482	103	439.020	233
	270		172
383.112		440.800	
388.591	117	441.386	29
391.298	169	441.755	29
391.834	169	443.321	233
392.111	117	444.563	164
399.090	238	445.256	164
399.249	238	447.788	163
399.664	238	452.899	174
399.824	238	459.960	235
400.240	142	460.723	235
402.852	142	461.766	280
403.372	214	462.299	190
403.633	239	464.684	235
403.796	239	465.008	281
403.828	142	465.463	235
404.629	173	466.005	237
404.973	191	467.508	281
TUT.//J	214	470.854	237

TABLE	67.	Wavelength	finding	list	for	allowed	lines	for
Mg VIII	I—Cor	ntinued						

Table 67. Wavelength finding list for allowed lines for Mg VIII—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
471.320	279	656.51	258
477.943	244	658.67	187
482.253	244	667.74	141
483.419	189	674.63	297
484.684	234	679.82	31
485.154	32	680.55	297
485.531	234	681.01	297
485.600	32	682.22	230
489.913	32	684.88	264
490.367	32	685.92	230
491.400	236	686.62	289
494.315	137	689.20	31
	137	689.55	31
496.845 500.927	213	690.89	266
501.303	136		264
		693.77 693.87	
502.892	243	693.87 604.83	232
502.993	136 136	694.83 697.20	229 289
503.905		697.20	
504.312	167	699.45	232
505.996	213	699.94	266
507.563	166	700.13	102
509.580	167	700.97	102
512.899	166	701.85	102
525.818	168	702.69	102
536.596	302	703.19	200
548.817	290	706.16	200
551.298	290	707.96	288
551.462	25	719.22	288
551.563	25	733.03	226
555.556	290	737.30	263
570.97	115	741.84	256
577.80	97	741.95	161
578.60	115	744.27	265
585.62	97	745.16	256
588.03	140	747.38	159
591.33	114	748.39	161
593.33	114	754.20	256
595.38	257	759.01	159
595.73	257	763.18	1
595.81	140	769.88	1
596.66	139	772.75	1
597.51	257	782.91	1
597.94	139	789.96	1
599.52	114	793.34	228
601.58	114	795.61	228
604.67	139	803.02	160
605.73	113	810.04	268
605.99	139	811.49	231
621.47	188	813.74	268
623.25	158	815.39	268
624.61	158	818.33	268
637.47	138	819.13	268
646.62	227	824.06	267
647.17	287	825.01	267
648.55	258	830.56	267

TABLE	67.	Wavelength	finding	list	for	allowed	lines	for	TABLE	67.	Wavelength	finding	list	for	allowed	lines	for
Mo VIII	—Cor	tinued							Mo VIII	—Cor	ntinued						

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
867.09	28	1 436.37	186
870.02	156	1 443.21	127
872.52	156	1 450.54	127
876.27	273	1 552.80	249
878.81	156	1 553.28	130
885.43	156	1 557.39	130
888.02	156	1 572.57	249
890.87	273	1 584.53	211
895.18	156	1 586.80	185
922.34	295	1 608.75	130
930.15	157	1 616.03	184
936.50	157	1 617.60	196
943.57	296	1 621.53	255
944.38	128	1 636.39	233
944.47	296	1 637.47	255
947.78	157	1 647.99	198
953.65	128	1 650.44	301
954.38	157	1 663.62	198
954.84	128	1 684.64	195
956.66	222	1 689.19	301
958.86	157	1 690.33	111
964.32	128	1 692.91	111
965.72	157	1 694.92	195
970.31	157	1 728.31	197
1 037.88	220	1 734.61	197
1 042.86	275	1 745.51	197
1 047.89	224	1 759.01	111
1 051.86	224	1 815.5	210
1 053.86	30	1 849.1	199
1 063.60	275	1 874.4	132
1 066.10	223	1 913.1	242
1 076.58	30	1 916.1	132
1 079.80	225	1 935.4	242
1 162.12	212	1 755.4	272
1 169.45	274	Wavelength	Mult.
	212	(air) (Å)	No.
1 178.97			
1 190.48	276	2 055.7	194
1 202.50	221	2 087.0	101
1 207.00	276	2 094.5	101
1 207.44	212	2 156.4	134
1 258.49	112	2 136.4 2 192.8	101
1 272.26	133		
1 289.16	133	2 264.8	134
1 296.18	112	2 279.3	152
1 357.77	131	2 298.7	155
1 371.18	262	2 301.3	254
1 379.50	131	2 317.9	250
1 384.66	151	2 333.6	254
1 386.58	262	2 341.8	250
1 391.40	151	2 361.7	155
1 395.67	151	2 387.0	250
1 418.24	150	2 391.0	152
1 423.08	131	2 420.0	216
1 425.31	150	2 625.3	129
			129

Table 67. Wavelength finding list for allowed lines for Mg VIII—Continued

TABLE 67. Wavelength finding list for allowed lines for Mg VIII—Continued

Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.
2 668.7	154	4 785.6	286
2 686.7	219	4 811.0	293
2 710.0	154	4 834.2	293
2 754.0	154	5 480.9	299
2 787.8	129	6 852	285
2 796.4	153	7 798	253
2 797.9	154	8 075	285
2 815.3	129	8 148	294
3 231.1	217	8 181	253
3 269.2	217	8 215	294
3 555.2	218	8 656	252
3 576.8	110	9 130	252
3 713.7	110	9 613	294
3 836.2	135		
3 899.1	110	Wavenumber	Mult.
4 062.2	110	(cm ⁻¹)	No.
4 259.6	284	3 370	251
4 327.8	286	2 770	251
4 392.4	286		20.1
4 417.7	300		

Table 68. Transition probabilities of allowed lines for Mg VIII (references for this table are as follows: 1=Fernley et~al., 24 2=Tachiev and Froese Fischer, 92 3=Merkelis et~al., 64 and 4=Galavis et~al. 41)

No.	Transition array	Mult.	λ _{air} (Å)	$\lambda_{\rm vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
1	$2s^22p - 2s2p^2$	$^{2}P^{\circ}-^{4}P$										
	F F			[782.9]	3 302-131 030	4-4	1.74-04	1.60-06	1.65-05	-5.194	D+	2,3
				[769.9]	0-129 890	2–2	8.10 - 04	7.20-06	3.65 - 05	-4.842	D+	2,3
				[790.0]	3 302-129 890	4-2	6.74 - 04	3.15 - 06	3.28 - 05	-4.900	D+	2,3
				[772.8]	3 302-132 710	4-6	6.26 - 04	8.40-06	8.55 - 05	-4.474	C	2,3
				[763.2]	0-131 030	2–4	1.89 - 05	3.30-07	1.66-06	-6.180	D	2,3
2		$^{2}P^{\circ}-^{2}D$		434.62	2 201–232 287	6–10	1.60+01	7.54-02	6.47-01	-0.344	A	2,3,4
				436.735	3 302–232 274	4–6	1.57+01	6.74-02	3.87-01	-0.569	A	2,3,4
				430.465	0-232 307	2-4	1.41 + 01	7.82 - 02	2.22 - 01	-0.806	A	2,3,4
				436.672	3 302–232 307	4–4	2.30+00	6.56-03	3.77 - 02	-1.581	B+	2,3,4
3		$^{2}P^{\circ}-^{2}S$		337.75	2 201–298 282	6–2	7.23+01	4.12-02	2.75-01	-0.607	A	2,3,4
				339.006	3 302–298 282	4–2	4.01+01	3.46-02	1.54-01	-0.859	A	2,3,4
				335.253	0–298 282	2–2	3.24+01	5.46-02	1.21 - 01	-0.962	A	2,3,4
4		$^{2}P^{\circ}-^{2}P$		314.61	2 201–320 056	6–6	1.38+02	2.05-01	1.27+00	0.090	A	2,3,4
				315.039	3 302-320 723	4-4	1.15 + 02	1.72 - 01	7.13 - 01	-0.162	A	2,3,4
				313.754	0-318 721	2-2	8.32 + 01	1.23 - 01	2.54 - 01	-0.609	A	2,3,4
				317.039	3 302-318 721	4-2	5.38 + 01	4.06 - 02	1.69 - 01	-0.789	A	2,3,4
				311.796	0-320 723	2-4	2.27 + 01	6.62-02	1.36-01	-0.878	A	2,3,4
5	2p-3s	$^{2}P^{\circ}-^{2}S$		82.75	<i>2 201</i> –1 210 690	6–2	7.68+02	2.63-02	4.30-02	-0.802	B+	2
				82.823	3 302-1 210 690	4-2	5.13+02	2.64-02	2.88-02	-0.976	B+	2
				82.598	0-1 210 690	2–2	2.55+02	2.61-02	1.42 - 02	-1.282	В	2
6	2p-3d	$^{2}P^{\circ}-^{2}D$		74.98	<i>2 201</i> –1 335 962	6–10	4.29+03	6.02-01	8.92-01	0.558	B+	2

Table 68. Transition probabilities of allowed lines for Mg VIII (references for this table are as follows: $1 = \text{Fernley } et \ al.$, $^{24} \ 2 = \text{Tachiev and Froese Fischer}$, $^{92} \ 3 = \text{Merkelis } et \ al.$, $^{64} \ \text{and } 4 = \text{Galavis } et \ al.$ $^{41})$ —Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				75.034	3 302–1 336 030	4–6	4.28+03	5.42-01	5.35-01	0.336	A	2
				74.858	0-1 335 860	2-4	3.59 + 03	6.03 - 01	2.97 - 01	0.081	B+	2
				75.044	3 302-1 335 860	4-4	7.14+02	6.03-02	5.96-02	-0.618	B+	2
7	$2s^22p$ $-2s2p(^3P^\circ)3p$	$^{2}P^{\circ}-^{2}P$		71.08	2 201–1 409 057	6–6	1.59+03	1.20-01	1.69-01	-0.143	С	1
				71.119	3 302-1 409 400	4–4	1.32+03	1.00-01	9.37-02	-0.398	C+	LS
				71.004	0–1 408 370	2–2	1.07+03	8.05-02	3.76-02	-0.793		LS
				71.171	3 302–1 408 370	4-2	5.29+02	2.01-02	1.88-02	-1.095	C	LS
				70.952	0–1 409 400	2–4	2.67 + 02	4.03-02	1.88-02	-1.094		LS
8		$^{2}\text{P}^{\circ}-^{2}\text{D}$		69.46	2 201–1441 942	6–10	1.71+03	2.06-01	2.82-01	0.092		1
o		1 - D										
				69.467	3 302–1 442 830	4–6	1.70+03	1.85-01	1.69-01	-0.131		LS
				69.415	0–1440 610	2–4	1.43 + 03	2.06 - 01	9.42 - 02	-0.385	C+	LS
				69.575	3 302–1440 610	4–4	2.82 + 02	2.05-02	1.88 - 02	-1.086	С	LS
9		$^{2}P^{\circ}-^{2}S$		68.55	<i>2 201</i> –1 460 910	6–2	1.70+03	3.99-02	5.41 - 02	-0.621	C	1
				68.606	3 302-1 460 910	4-2	1.13+03	3.99-02	3.60-02	-0.797	C	LS
				68.450	0–1 460 910	2–2	5.69+02	4.00-02	1.80-02	-1.097		LS
10	2-22-	$^{2}\text{P}^{\circ}-^{2}\text{D}$		00.150	0 1 100 / 10		3.07 1 02	1.00 02	1.00 02	1.077	C	
10	$ 2s^22p -2s2p(^1P^\circ)3p $	-P - D				6–10						1
				64.702	3 302–1 548 850	4–6	1.78 + 02	1.68 - 02	1.43-02	-1.173	D+	LS
11		$^{2}P^{\circ}-^{2}P$		64.59	2 201–1 550 370	6–6	5.63+02	3.52-02	4.49-02	-0.675	D+	1
				64.630	3 302-1 550 560	4-4	4.68 + 02	2.93 - 02	2.49 - 02	-0.931	C	LS
				64.517	0-1 549 990	2-2	3.77 + 02	2.35 - 02	9.98 - 03	-1.328	D+	LS
				64.654	3 302-1 549 990	4-2	1.87 + 02	5.87 - 03	5.00 - 03	-1.629	D	LS
				64.493	0-1 550 560	2-4	9.46+01	1.18 - 02	5.01 - 03	-1.627	D	LS
12		$^{2}P^{\circ}-^{2}S$		64.33	2 201–1 556 590	6–2	4.78+02	9.88-03	1.26-02	-1.227	D+	1
				(4.290	2 202 1 556 500	4.2	2 10 . 02	0.07.02	0.27 02	1 404	D.	1.0
				64.380 64.243	3 302–1 556 590 0–1 556 590	4–2 2–2	3.18+02 1.60+02	9.87-03 9.89-03	8.37-03 4.18-03	-1.404 -1.704	D+	LS LS
		2 % 2										
13	2p-4s	$^{2}\text{P}^{\circ}-^{2}\text{S}$		60.77	<i>2 201</i> –1 647 880	6–2	1.64+02	3.02-03	3.62-03	-1.742	D	1
				60.806	3 302-1 647 880	4-2	1.09 + 02	3.02 - 03	2.42 - 03	-1.918	D	LS
				60.684	0–1 647 880	2–2	5.47 + 01	3.02 - 03	1.21 - 03	-2.219	D	LS
14	2p-4d	$^{2}P^{\circ}-^{2}D$		59.11	2 201–1 693 830	6-10	1.43+03	1.25-01	1.45-01	-0.125	C	1
				59.153	3 302–1 693 830	4–6	1.42+03	1.12-01	8.72-02	-0.349	C+	LS
				59.038	0–1 693 830	2–4	1.20+03	1.25-01	4.86-02	-0.602		LS
				59.058	3 302–1 693 830	4-4	2.36+02	1.24-02	9.66-03	-0.002		LS
15	$2s^22p$ $-2p^2(^3P)3d$	$^{2}P^{\circ}-^{2}D$		0,1100	7 70 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6–10	2.50 . 02	1,21 02	7.00 00	11000	2 .	1
	2 p (1)50			[58.82]	3 302–1 703 280	4–6	1.41+02	1.10-02	8.52-03	-1.357	D+	LS
16	$2s^22p$ $-2p^2(^1D)3d$	$^{2}P^{\circ}-^{2}D$		[50.02]	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6–10	1111102	1110 02	0.02	11007	2 .	1
				[57.78]	3 302–1 733 900	4-6	6.70+01	5.03-03	3.83-03	-1.696	D	LS
17		$^{2}P^{\circ}-^{2}P$		57.07	2 201–1 754 407	6-6	9.98+01	4.87-03	5.50-03	-1.534	D	1
				[57.00]	2 202 1 754 700	A A	0.21 / 01	106 02	2.05.02	1 700	D	1.0
				[57.09]	3 302–1 754 790	4–4	8.31+01	4.06-03	3.05-03	-1.789		LS
				[57.02]	0–1 753 640	2–2	6.67+01	3.25-03	1.22-03	-2.187	ט	LS

TABLE 68. Transition probabilities of allowed lines for Mg VIII (references for this table are as follows: 1=Fernley et~al., 24 2=Tachiev and Froese Fischer, 92 3=Merkelis et~al., 64 and 4=Galavis et~al. 41)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$\begin{array}{c} \mathbf{E}_i - \mathbf{E}_k \\ (\mathbf{cm}^{-1}) \end{array}$	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				[57.13] [56.99]	3 302–1 753 640 0–1 754 790	4–2 2–4	3.32+01 1.67+01	8.12-04 1.63-03	6.11-04 6.12-04	-2.488 -2.487	E+ E+	LS LS
18	$ 2s^22p -2s2p(^3P^\circ)4p $	$^{2}P^{\circ}-^{2}P$				6–6						1
				[55.22]	3 302–1 814 170	4-4	5.93+02	2.71-02	1.97-02	-0.965	С	LS
				[55.12]	0–1 814 170	2–4	1.20+02	1.09-02	3.96-03	-1.662	D	LS
19		$^{2}P^{\circ}-^{2}D$		54.88	2 201–1 824 376	6–10	6.87+02	5.17-02	5.60-02	-0.508	C	1
				[54.89]	3 302-1 825 260	4-6	6.86+02	4.65-02	3.36-02	-0.730	C	LS
				[54.85]	0-1 823 050	2-4	5.73 + 02	5.17 - 02	1.87 - 02	-0.985	C	LS
				[54.95]	3 302–1 823 050	4–4	1.14+02	5.16-03	3.73-03	-1.685	D	LS
20	2p-5d	$^{2}P^{\circ}-^{2}D$		53.87	2 201–1 858 380	6–10	6.45 + 02	4.68-02	4.98-02	-0.552	C	1
				53.905	3 302-1 858 420	4-6	6.44+02	4.21 - 02	2.99 - 02	-0.774	C	LS
				53.812	0-1 858 320	2-4	5.39 + 02	4.68 - 02	1.66 - 02	-1.029	D+	LS
				53.908	3 302–1 858 320	4–4	1.07 + 02	4.67-03	3.32-03	-1.729	D	LS
21	2p-6d	$^{2}P^{\circ}-^{2}D$		51.44	2 201–1 946 060	6–10	2.44+02	1.61-02	1.64-02	-1.015	D+	1
				51.473	3 302-1 946 060	4-6	2.43 + 02	1.45 - 02	9.83 - 03	-1.237	D+	LS
				51.386	0-1 946 060	2-4	2.03+02	1.61 - 02	5.45 - 03	-1.492	D+	LS
				51.473	3 302–1 946 060	4–4	4.05+01	1.61-03	1.09-03	-2.191	E+	LS
22	$2s2p^2 - 2p^3$	$^{4}P-^{4}S^{\circ}$		354.70	<i>131 680</i> –413 610	12–4	1.26+02	7.91-02	1.11+00	-0.023	A	2,3,4
				355.999	132 710-413 610	6-4	6.23+01	7.89 - 02	5.55 - 01	-0.325	A	2,3,4
				353.882	131 030-413 610	4-4	4.23 + 01	7.93 - 02	3.70 - 01	-0.499	A	2,3,4
				352.460	129 890–413 610	2–4	2.14+01	7.96-02	1.85-01	-0.798	A	2,3,4
23		$^{4}P-^{2}D^{\circ}$										
				[298.76]	131 030–465 745	4–6	5.93 - 04	1.19-06	4.68 - 06	-5.322		2,3
				[297.68]	129 890–465 818	2–4	2.67-04	7.08-07	1.39-06	-5.849	D	2,3
				[300.27]	132 710–465 745	6–6	2.44-02	3.29-05	1.95-04	-3.705	C	2,3
				[298.70] [300.20]	131 030–465 818 132 710–465 818	4–4 6–4	8.41-03 $1.08-03$	1.13-05 9.70-07	4.43-05 5.75-06	-4.345 -5.235	D+	2,3 2,3
				[300.20]	132 / 10 403 010	0 4	1.00 03	2.70 07	3.73 00	3.233	D	2,3
24		$^{4}P-^{2}P^{\circ}$		F=== 0=3								
				[253.93]	131 030–524 841	4–4	1.60-02	1.54-05	5.16-05	-4.210		2,3
				[253.32] [255.02]	129 890–524 652 132 710–524 841	2–2 6–4	6.32-03 $5.91-03$	6.08-06 $3.84-06$	1.01-05 $1.93-05$	-4.915 -4.638		2,3 2,3
				[254.05]	131 030–524 652	4–2	1.35-03	6.53-07	2.18-06	-5.583	D+ D	2,3
				[253.20]	129 890–524 841	2–4	3.08-04	5.92-07	9.87-07	-5.927		2,3
25		$^{2}D-^{4}S^{\circ}$										
23		D- 3		[551.46]	232 274-413 610	6-4	6.42-05	1.95-07	2.13-06	-5.932	D	2,3
				[551.56]	232 307–413 610	4–4	1.21-05	5.52-08	4.01-07	-6.656		2,3
26		$^{2}D-^{2}D^{\circ}$		428.29	232 287–465 774	10-10	3.41+01	9.38-02	1.32+00	-0.028	A	2,3,4
				428.319	232 274–465 745	6-6	3.18+01	8.75-02	7.40-01	-0.280	A	2,3,4
				428.245	232 307–465 818	4-4	2.95+01	8.11-02	4.57-01	-0.489	A	2,3,4
				428.185	232 274-465 818	6-4	4.24+00	7.77 - 03	6.57-02	-1.331	$\mathrm{B}+$	2,3,4
				428.379	232 307–465 745	4–6	2.56+00	1.06-02	5.96-02	-1.373	B+	2,3,4
27		$^{2}D-^{2}P^{\circ}$		341.89	232 287–524 778	10-6	5.79+01	6.09-02	6.85-01	-0.215	A	2,3,4
				341.802	232 274-524 841	6-4	5.06+01	5.91-02	3.99-01	-0.450	A	2,3,4
				342.062	232 307–524 652	4–2	5.92 + 01	5.19-02	2.34-01	-0.683	A	2,3,4

Table 68. Transition probabilities of allowed lines for Mg VIII (references for this table are as follows: $1 = \text{Fernley } et \ al.$, $^{24} \ 2 = \text{Tachiev and Froese Fischer}$, $^{92} \ 3 = \text{Merkelis } et \ al.$, $^{64} \ \text{and } 4 = \text{Galavis } et \ al.$ $^{41})$ —Continued

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				341.841	232 307–524 841	4-4	6.62+00	1.16-02	5.22-02	-1.333	$\mathrm{B}+$	2,3,4
28		$^2S-^4S^{\circ}$										
20		5 5		[867.1]	298 282-413 610	2-4	2.52-05	5.67-07	3.24-06	-5.945	D	2,3
29		$^{2}S-^{2}P^{\circ}$		441.51	298 282–524 778	2-6	1.01+01	8.84-02	2.57-01	-0.753	A	2,3,4
				441.386	298 282–524 841	2–4	1.15+01	6.72-02	1.95-01	-0.872	A	2,3,4
				441.755	298 282–524 652	2-4	7.22+00	2.11-02	6.15-02	-0.872 -1.375	B+	2,3,4
		2- 4-9										_,-,-,-
30		$^{2}P-^{4}S^{\circ}$		[1 076.6]	320 723-413 610	4 4	7.28-04	1.27-05	1.79-04	-4.294	С	2.2
				[1 076.6]	318 721–413 610	4–4 2–4	2.08-04	6.92-06	4.80-05	-4.294 -4.859	D+	2,3 2,3
						2 4					D	
31		$^{2}P-^{2}D^{\circ}$		686.3	320 056–465 774	6–10	7.65+00	9.00-02	1.22+00	-0.268	B+	2,3,4
				689.55	320 723–465 745	4–6	7.51+00	8.03-02	7.29-01	-0.493	B+	2,3,4
				679.82	318 721–465 818	2–4	6.81+00	9.44-02	4.23-01	-0.724	B+	2,3,4
				689.20	320 723–465 818	4–4	1.07+00	7.65-03	6.94-02	-1.514	B+	2,3,4
32		$^{2}P-^{2}P^{\circ}$		488.47	320 056–524 778	6–6	3.36+01	1.20-01	1.16+00	-0.143	A	2,3,4
				489.913	320 723–524 841	4-4	2.87 + 01	1.03 - 01	6.67 - 01	-0.385	A	2,3,4
				485.600	318 721–524 652	2–2	2.49+01	8.80-02	2.81-01	-0.754	A	2,3,4
				490.367	320 723–524 652	4–2	1.05+01	1.90-02	1.23-01	-1.119	A	2,3,4
33	$2s2p^{2}$	⁴ P_ ⁴ P°		485.154 81.86	318 721–524 841 131 680–1 353 350	2–4 12–12	3.85+00 9.24+02	2.72-02 9.28-02	8.68-02 3.00-01	-1.264 0.047	B+ B+	2,3,4
33	$-2s2p(^{3}P^{\circ})3s$	1-1		01.00	131 000–1 333 330	12-12	9.24+02	9.20-02	3.00-01	0.047	Б	2
				81.844	132 710–1 354 550	6-6	6.50+02	6.53-02	1.06-01	-0.407	$\mathrm{B}+$	2
				81.867	131 030–1 352 530	4-4	1.23+02	1.23 - 02	1.33 - 02	-1.308	В	2
				81.867	129 890–1 351 390	2–2	1.53 + 02	1.53 - 02	8.27 - 03	-1.514	В	2
				81.979	132 710–1 352 530	6–4	4.14+02	2.78-02	4.50-02	-0.778	B+	2
				81.943 81.731	131 030–1 351 390 131 030–1 354 550	4–2 4–6	7.62+02 $2.79+02$	3.84-02 $4.20-02$	4.14-02 4.52-02	-0.814 -0.775	B+ B+	2 2
				81.790	129 890–1 352 530	2–4	3.84+02	7.70-02	4.15-02	-0.812	B+	2
34		$^{2}D-^{2}P^{\circ}$		86.90	232 287–1 382 990	10–6	4.99+02	3.39-02	9.69-02	-0.470		1
				96 944	222 274 1 282 760	6.4	4.50 - 02	2 20 .02	5.92 .02	0.602	C	1.0
				86.844 87.021	232 274–1 383 760 232 307–1 381 450	6–4 4–2	4.50+02 $4.97+02$	3.39-02 $2.82-02$	5.82-02 3.23-02	-0.692 -0.948	C C	LS LS
				86.847	232 307–1 381 450	4-4	4.99+01	5.64-03	6.45 - 03	-1.647	D+	LS
35		$^{2}S-^{2}P^{\circ}$		92.19	298 282–1 382 990	2-6	1.56+02	5.97-02	3.62-02	-0.923	С	1
				92.125	298 282–1 383 760	2–4	1.56+02	3.98-02	2.41-02	-1.099	С	LS
				92.322	298 282–1 381 450	2–2	1.56+02	1.99 - 02	1.21 - 02	-1.400	D+	LS
36		$^{2}P-^{2}P^{\circ}$		94.08	320 056–1 382 990	6-6	4.31+01	5.73-03	1.06-02	-1.464	D	1
				94.070	320 723-1 383 760	4-4	3.60+01	4.77-03	5.91-03	-1.719	D+	LS
				94.097	318 721–1 381 450	2-2	2.88+01	3.82 - 03	2.37 - 03	-2.117	D	LS
				94.275	320 723–1 381 450	4–2	1.43+01	9.53 - 04	1.18 - 03		D	LS
				93.893	318 721–1 383 760	2–4	7.23+00	1.91-03	1.18-03	-2.418	D	LS
37	$2s2p^2$ $-2s2p(^3P^{\circ})3d$	$^4P-^4D^{\circ}$?				12–20						1
				74.366	132 710–1 477 410	6–8	6.58+03	7.27-01	1.07+00	0.640	R⊥	LS
				74.300	131 030–1 477 410	6–8 4–6	4.61+03	5.73-01	5.61-01	0.360	в+ В	LS
				74.274	129 890–1 476 260	2–4	2.75+03	4.55-01	2.23-01	-0.041	C+	LS
				74.411	132 710-1 476 590	6-6	1.98+03	1.64-01	2.41-01	-0.007		LS

TABLE 68. Transition probabilities of allowed lines for Mg VIII (references for this table are as follows: 1=Fernley et~al., 24 2=Tachiev and Froese Fischer, 92 3=Merkelis et~al., 64 and 4=Galavis et~al. 41)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$\begin{array}{c} \mathrm{E}_{i}\mathrm{-E}_{k} \\ \mathrm{(cm^{-1})} \end{array}$	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				74.337	131 030–1 476 260	4–4	3.51+03	2.91-01	2.85-01	0.066	D	1.0
				74.337	132 710–1 476 260	6-4	3.29+02	1.82-02	2.68-01	-0.962	B C	LS LS
						0 4						Lo
38		$^{4}P-^{4}P^{\circ}$		73.94	131 680–1 484 137	12–12	3.53+03	2.89-01	8.45-01	0.540	C+	1
				74.020	132 710-1 483 690	6-6	2.46+03	2.02-01	2.95-01	0.084	В	LS
				73.889	131 030-1 484 420	4-4	4.72 + 02	3.86 - 02	3.76 - 02	-0.811	C	LS
				73.800	129 890-1 484 910	2-2	5.92 + 02	4.83 - 02	2.35 - 02	-1.015	C	LS
				73.980	132 710-1 484 420	6-4	1.59 + 03	8.68 - 02	1.27 - 01	-0.283	C+	LS
				73.862	131 030–1 484 910	4–2	2.96+03	1.21 - 01	1.18 - 01	-0.315	C+	LS
				73.928	131 030–1 483 690	4–6	1.06+03	1.30 - 01	1.27 - 01	-0.284	C+	LS
				73.826	129 890–1 484 420	2–4	1.48 + 03	2.42 - 01	1.18 - 01	-0.315	C+	LS
89		$^2D-^2D^{\circ}$		80.24	232 287–1 478 550	10-10	1.77+03	1.71 - 01	4.52-01	0.233	C+	1
				80.230	232 274-1 478 690	6–6	1.66+03	1.60-01	2.54-01	-0.018	В	LS
				80.255	232 307-1 478 340	4-4	1.59 + 03	1.54 - 01	1.63 - 01	-0.210	C+	LS
				80.253	232 274-1 478 340	6-4	1.77 + 02	1.14 - 02	1.81 - 02	-1.165	C	LS
				80.232	232 307-1 478 690	4–6	1.18+02	1.71 - 02	1.81 - 02	-1.165	C	LS
0		$^{2}D-^{2}F^{\circ}$		78.50	232 287–1 506 161	10–14	4.25+03	5.50-01	1.42+00	0.740	В	1
				78.446	232 274-1 507 040	6-8	4.26+03	5.24-01	8.12-01	0.497	В	LS
				78.574	232 307-1 504 990	4–6	3.96+03	5.50-01	5.69-01	0.342	В	LS
				78.572	232 274-1 504 990	6-6	2.83 + 02	2.62-02	4.07 - 02	-0.804		LS
1		$^{2}D-^{2}P^{\circ}$		78.05	232 287–1 513 487	10-6	5.68+01	3.11-03	8.00-03	-1.507	D	1
				[78.08]	232 274–1 513 100	6–4	5.10+01	3.11-03	4.80-03	-1.729	D	LS
				[78.01]	232 307–1 514 260	4–2	5.70+01	2.60-03	2.67-03	-1.983	D	LS
				[78.08]	232 307 -1 514 200	4-4	5.68+00	5.19-04	5.34-04	-2.683	E+	LS
2		$^{2}S-^{2}P^{\circ}$		82.29	298 282–1 513 487	2–6	2.44+03	7.43-01	4.03-01	0.172	C+	1
				[82.32]	298 282–1 513 100	2–4	2.44+03	4.95-01	2.68-01	-0.004	В	LS
				[82.24]	298 282–1 513 100	2-4	2.44+03 $2.45+03$	2.48-01	1.34-01	-0.305	C+	LS
					270 202-1 314 200	2-2	2.43+03					Lo
3		$^{2}P-^{2}D^{\circ}$		86.32	320 056–1 478 550	6–10	5.32+02	9.90-02	1.69-01	-0.226	С	1
				86.358	320 723-1 478 690	4-6	5.31 + 02	8.91-02	1.01 - 01	-0.448	C+	LS
				86.235	318 721-1 478 340	2-4	4.44 + 02	9.91 - 02	5.63-02	-0.703	C	LS
				86.384	320 723-1 478 340	4–4	8.85 + 01	9.90-03	1.13-02	-1.402	D+	LS
4		$^{2}P-^{2}P^{\circ}$		83.79	320 056–1 513 487	6-6	3.86+02	4.06-02	6.72-02	-0.613	C	1
				[83.87]	320 723-1 513 100	4-4	3.21+02	3.38-02	3.73-02	-0.869	С	LS
				[83.64]	318 721-1 514 260	2-2	2.58 + 02	2.71 - 02	1.49 - 02	-1.266	D+	LS
				[83.78]	320 723-1 514 260	4-2	1.29 + 02	6.77 - 03	7.47 - 03	-1.567	D+	LS
				[83.73]	318 721–1 513 100	2-4	6.42 + 01	1.35 - 02	7.44 - 03	-1.569	D+	LS
5	$2s2p^2$ $-2s2p(^1P^\circ)3s$	$^{2}D-^{2}P^{\circ}$		79.70	232 287–1 486 970	10-6	4.34+02	2.48-02	6.51-02	-0.606	C	1
	-			79.701	232 274–1 486 970	6–4	3.91+02	2.48-02	3.90-02	-0.827	C	LS
				79.703	232 307–1 486 970	4–2	4.35+02	2.07-02	2.17-02	-1.082		LS
				79.703	232 307–1 486 970	4-4	4.34+01	4.13-03	4.33-03	-1.782		LS
16		$^{2}S-^{2}P^{\circ}$		84.13	298 282–1 486 970	2-6	3.41+02	1.09-01	6.02-02	-0.662	С	1
				84.126	298 282–1 486 970	2–4	3.41+02	7.24-02	4.01-02	-0.839	C	LS
				84.126 84.126	298 282–1 486 970 298 282–1 486 970	2-4	3.41+02 $3.41+02$	3.62-02	4.01 - 02 $2.01 - 02$	-0.839 -1.140		LS
		2 2 -										
7		$^{2}P-^{2}P^{\circ}$		85.70	320 056–1 486 970	6–6	6.11+02	6.72-02	1.14-01	-0.394	C	1

Table 68. Transition probabilities of allowed lines for Mg VIII (references for this table are as follows: $1 = \text{Fernley } et \ al.$, $^{24} \ 2 = \text{Tachiev and Froese Fischer}$, $^{92} \ 3 = \text{Merkelis } et \ al.$, $^{64} \ \text{and } 4 = \text{Galavis } et \ al.$ $^{41})$ —Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$\begin{array}{c} \mathbf{E}_i - \mathbf{E}_k \\ (cm^{-1}) \end{array}$	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				85.745	320 723–1 486 970	4-4	5.08+02	5.60-02	6.32-02	-0.650	С	LS
				85.598	318 721–1 486 970	2-2	4.09 + 02	4.49 - 02	2.53 - 02	-1.047	C	LS
				85.745	320 723-1 486 970	4-2	2.03+02	1.12 - 02	1.26 - 02	-1.349	D+	LS
				85.598	318 721–1 486 970	2–4	1.02 + 02	2.24-02	1.26-02	-1.349	D+	LS
48	$2s2p^2$ $-2s2p(^1P^{\circ})3d$	$^{2}D-^{2}F^{\circ}$		73.25	232 287–1 597 480	10–14	3.16+03	3.56-01	8.58-01	0.551	В	1
				[73.25]	232 274–1 597 480	6-8	3.16+03	3.39-01	4.90-01	0.308	В	LS
				[73.25]	232 307-1 597 480	4-6	2.95 + 03	3.56-01	3.43 - 01	0.154	В	LS
				[73.25]	232 274-1 597 480	6-6	2.11+02	1.70 - 02	2.46-02	-0.991	C	LS
49		$^2D-^2D^{\circ}$		72.69	232 287–1 608 066	10-10	5.46+02	4.33-02	1.04-01	-0.364	C	1
				72.678	232 274–1 608 210	6-6	5.10+02	4.04-02	5.80-02	-0.615	С	LS
				72.699	232 307-1 607 850	4-4	4.91 + 02	3.89 - 02	3.72 - 02			LS
				72.697	232 274-1 607 850	6-4	5.45 + 01	2.88 - 03	4.14-03	-1.762	D	LS
				72.680	232 307-1 608 210	4–6	3.64+01	4.32-03	4.13-03	-1.762	D	LS
50		$^{2}D-^{2}P^{\circ}$		72.55	232 287–1 610 670	10-6	7.81+01	3.70-03	8.83-03	-1.432	D	1
				72.548	232 274-1 610 670	6–4	7.03+01	3.70-03	5.30-03	-1.654	D+	LS
				72.550	232 307-1 610 670	4-2	7.81 + 01	3.08 - 03	2.94 - 03	-1.909	D	LS
				72.550	232 307-1 610 670	4-4	7.81 + 00	6.16-04	5.89-04	-2.608	E+	LS
51		$^{2}S-^{2}P^{\circ}$		76.20	298 282–1 610 670	2-6	1.28+03	3.35-01	1.68-01	-0.174	C+	1
				76.197	298 282-1 610 670	2-4	1.28+03	2.23-01	1.12-01	-0.351	C+	LS
				76.197	298 282–1 610 670	2–2	1.29+03	1.12-01	5.62-02	-0.650	C	LS
52		$^{2}P-^{2}D^{\circ}$		77.64	320 056–1 608 066	6–10	4.60+03	6.93-01	1.06+00	0.619	В	1
				77.671	320 723–1 608 210	4–6	4.59+03	6.23-01	6.37-01	0.397	В	LS
				77.572	318 721-1 607 850	2-4	3.85 + 03	6.94-01	3.54-01	0.142	В	LS
				77.692	320 723–1 607 850	4–4	7.66+02	6.93-02	7.09 - 02			LS
53		$^{2}P-^{2}P^{\circ}$		77.48	320 056–1 610 670	6-6	2.29+03	2.06-01	3.15-01	0.092	C+	1
				77.523	320 723-1 610 670	4-4	1.91+03	1.72-01	1.76-01	-0.162	C+	LS
				77.402	318 721-1 610 670	2-2	1.53 + 03	1.37-01	6.98 - 02	-0.562		LS
				77.523	320 723-1 610 670	4-2	7.61 + 02	3.43-02	3.50 - 02	-0.863		LS
				77.402	318 721–1 610 670	2-4	3.82 + 02	6.87-02	3.50-02	-0.862		LS
54	$2s2p^2$ $-2p^2(^3P)3p$	$^{4}P - ^{4}D^{\circ}$				12–20						1
				66.069	132 710–1 646 280	6-8	5.41+02	4.72-02	6.16-02	-0.548	C	LS
55		$^{4}P-^{4}P^{\circ}$?				12–12						1
				65.807	132 710-1 652 310	6-6	5.38 + 02	3.49-02	4.54-02	-0.679	C	LS
				65.734	131 030–1 652 310	4–6	2.32+02	2.25-02	1.95-02	-1.046		LS
56		$^4P-^4S^{\circ}$?		[64.84]	131 680–1 674 020	12–4	9.66+02	2.03-02	5.20-02	-0.613	C	1
				64.880	132 710-1 674 020	6-4	4.83+02	2.03-02	2.60-02	-0.914	С	LS
				64.809	131 030–1 674 020	4–4	3.22+02	2.03-02	1.73-02	-1.090		LS
				64.761	129 890–1 674 020	2–4	1.61+02	2.03-02	8.66-03	-1.391		LS
57	$2s2p^2 - 2p^2(^{1}D)3p$	$^{2}D-^{2}F^{\circ}$		68.56	232 287–1 690 803	10–14	4.93+02	4.86-02	1.10-01	-0.313		1
				[60 55]	222 274 1 601 060	6 0	4.02 ± 02	1.62 .02	6 27 .02	0.556	C	10
				[68.55]	232 274–1 691 060	6–8	4.93+02	4.63-02	6.27-02	-0.556		LS
				[68.58]	232 307–1 690 460	4–6	4.60+02	4.86-02	4.39-02	-0.711	C	LS

TABLE 68. Transition probabilities of allowed lines for Mg VIII (references for this table are as follows: 1=Fernley et~al., 24 2=Tachiev and Froese Fischer, 92 3=Merkelis et~al., 64 and 4=Galavis et~al. 41)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$\begin{array}{c} \mathbf{E}_i - \mathbf{E}_k \\ (cm^{-1}) \end{array}$	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				[68.58]	232 274–1 690 460	6–6	3.29+01	2.32-03	3.14-03	-1.856	D	LS
58	$2s2p^2$ $-2s2p(^3P^\circ)4s$	$^4P-^4P^{\circ}$?				12–12						1
				60.382	132 710–1 788 830	6-6	1.55+02	8.46-03	1.01-02	-1.294	D+	LS
				60.321	131 030–1 788 830	4–6	6.65 + 01	5.44-03	4.32-03	-1.662	D	LS
59	$ 2s2p^2 $ $ -2s2p(^3P^\circ)4d $	$^{4}P-^{4}D^{\circ}$				12–20						1
				58.667	132 710–1 837 250	6-8	2.25+03	1.55-01	1.80-01	-0.032	C+	LS
				58.614	131 030–1 837 110	4–6	1.58+03	1.22-01	9.42-02	-0.312		LS
				58.672	132 710–1 837 110	6–6	6.74+02	3.48-02	4.03-02	-0.680	C	LS
60		$^{4}P-^{4}P^{\circ}$				12–12						1
				58.614	132 710–1 838 790	6-6	8.54 + 02	4.40 - 02	5.09 - 02	-0.578	C	LS
				58.537	131 030–1 839 350	4–4	1.63+02	8.38-03	6.46-03	-1.475	D+	LS
				58.595	132 710–1 839 350	6–4	5.48+02	1.88-02	2.18-02	-0.948	C	LS
				58.556 58.498	131 030–1 838 790 129 890–1 839 350	4–6 2–4	3.67+02 $5.11+02$	2.83-02 $5.24-02$	2.18-02 $2.02-02$	-0.946 -0.980	C C	LS LS
61		$^{2}D-^{2}D^{\circ}$		62.29	232 287–1 837 640	10–10	5.05+02	2.94-02	6.02-02		С	1
01		D- D										
				62.291	232 274–1 837 640	6–6	4.71+02	2.74-02	3.37-02	-0.784		LS
				62.292 62.291	232 307–1 837 640 232 274–1 837 640	4–4	4.54+02 $5.05+01$	2.64-02 1.96-03	2.17-02 2.41-03	-0.976	D	LS
				62.291	232 307–1 837 640	6–4 4–6	3.03+01 $3.37+01$	2.94-03	2.41-03	-1.930 -1.930	D D	LS LS
62		$^{2}D-^{2}F^{\circ}$		61.92	232 287–1 847 219	10–14	1.88+03	1.51-01	3.08-01	0.179	C+	1
				[61.89]	232 274-1 848 020	6-8	1.88+03	1.44-01	1.76-01	-0.063	C+	LS
				[61.96]	232 307-1 846 150	4-6	1.75 + 03	1.51 - 01	1.23 - 01	-0.219	C+	LS
				[61.96]	232 274–1 846 150	6-6	1.25 + 02	7.20-03	8.81 - 03	-1.365	D+	LS
53		$^{2}P-^{2}D^{\circ}$		65.89	320 056–1 837 640	6-10	3.91 + 02	4.25-02	5.53-02	-0.593	C	1
				65.923	320 723-1 837 640	4–6	3.91+02	3.82-02	3.32-02	-0.816	C	LS
				65.836	318 721-1 837 640	2-4	3.27 + 02	4.25 - 02	1.84 - 02	-1.071	C	LS
				65.923	320 723–1 837 640	4–4	6.52 + 01	4.25 - 03	3.69-03	-1.770	D	LS
64	$ 2s2p^2 -2s2p(^1P^\circ)4d $	$^{2}D-^{2}F^{\circ}$		57.74	232 287–1 964 300	10–14	7.27+02	5.09-02	9.67-02	-0.293	C	1
				[57.74]	232 274-1 964 300	6-8	7.26+02	4.84-02	5.52-02	-0.537	С	LS
				[57.74]	232 307-1 964 300	4-6	6.79 + 02	5.09 - 02	3.87 - 02	-0.691	C	LS
				[57.74]	232 274-1 964 300	6-6	4.84 + 01	2.42-03	2.76-03	-1.838	D	LS
65		$^2D-^2D^{\circ}$		57.59	232 287–1 968 690	10-10	2.52+02	1.25-02	2.38-02	-0.903	D+	1
				[57.59]	232 274–1 968 690	6-6	2.35 + 02	1.17-02	1.33-02	-1.154	D+	LS
				[57.59]	232 307-1 968 690	4-4	2.27 + 02	1.13 - 02	8.57 - 03	-1.345	D+	LS
				[57.59]	232 274-1 968 690	6-4	2.52+01	8.36 - 04	9.51 - 04	-2.300	E+	LS
				[57.59]	232 307–1 968 690	4–6	1.68+01	1.25-03	9.48-04	-2.301	E+	LS
66		$^{2}P-^{2}D^{\circ}$		60.66	320 056–1 968 690	6–10	1.45+03	1.33-01	1.60-01	-0.098	C	1
				[60.68]	320 723–1 968 690	4-6	1.45+03	1.20-01	9.59-02	-0.319	C+	LS
				[60.61]	318 721-1 968 690	2–4	1.21+03	1.33-01	5.31-02	-0.575	C	LS
				[00.01]	310 721 1 700 070	2 -	1.21 1 05	1.55 01	3.31 02	0.575	_	

Table 68. Transition probabilities of allowed lines for Mg VIII (references for this table are as follows: 1=Fernley *et al.*, ²⁴ 2=Tachiev and Froese Fischer, ⁹² 3=Merkelis *et al.*, ⁶⁴ and 4=Galavis *et al.*, ⁴¹)—Continued

No.	Transition array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
67	$ 2s2p^{2} -2s2p(^{3}P^{\circ})5d $	$^{4}P-^{4}D^{\circ}$				12–20						1
				53.512	132 710–2 001 450	6-8	1.13+03	6.47-02	6.84-02	-0.411	С	LS
				53.484	131 030-2 000 750	4–6	7.93 + 02	5.10-02	3.59-02	-0.690	C	LS
				53.532	132 710–2 000 750	6-6	3.38+02	1.45 - 02	1.53 - 02	-1.060	D+	LS
68		$^4P-^4P^{\circ}$				12-12						1
				53.485	132 710–2 002 380	6-6	4.20+02	1.80-02	1.90-02	-0.967	С	LS
				53.437	131 030–2 002 380	4-6	1.81 + 02	1.16-02	8.16-03	-1.333	D+	LS
69		$^{2}D-^{2}F^{\circ}$		56.38	232 287–2 006 054	10–14	9.30+02	6.20-02	1.15-01	-0.208	C	1
				[56.36]	232 274–2 006 650	6-8	9.31+02	5.91-02	6.58-02	-0.450	C	LS
				[56.40]	232 307-2 005 260	4-6	8.67 + 02	6.20-02	4.61 - 02	-0.606	C	LS
				[56.40]	232 274–2 005 260	6-6	6.19+01	2.95 - 03	3.29-03	-1.752	D	LS
70	$2s2p^2 - 2p^2(^3P)4p$	$^{4}P-^{4}D^{\circ}$				12–20						1
				52.395	132 710–2 041 290	6-8	3.13+02	1.72-02	1.78-02	-0.986	C	LS

11.8.3. Forbidden Transitions for Mg VIII

The results of Tachiev and Froese Fischer 92 are the product of extensive MCHF calculations with Breit-Pauli corrections to order α^2 . As part of the Iron Project, Galavis *et al.* ⁴¹ used the SUPERSTRUCTURE code with configuration interaction, relativistic effects, and semiempirical energy corrections. Verhey *et al.* ¹¹⁶ used a Multiconfiguration Dirac-Fock extended average level approach.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) of each of the lines for which a transition rate is given by two or more references, ^{41,92,116} as discussed in the Introduction.

11.8.4. References for Forbidden Transitions for Mg VIII

⁴¹M. E. Galavis, C. Mendoza, and C. Zeippen, Astron. Astrophys., Suppl. Ser. 131, 499 (1998).

⁸⁷G. Tachiev and C. Froese Fischer, J. Phys. B **33**, 2419 (2000).

⁹²G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ downloaded on Mar. 28, 2002). See Tachiev and Froese Fischer (P. of 87)

¹¹⁶T. P. Verhey, B. P. Das, and W. F. Perger, J. Phys. B **20**, 3639 (1987).

TABLE 69. Wavelength finding list for forbidden lines for Mg VIII

Wavelength (vac) (Å)	Mult. No.						
214.710	3	603.97	6	789.96	2	1 697.59	11
529.574	7	753.52	2	976.72	5		
537.603	7	772.75	2	1 156.78	9		
593.85	6	782.91	2	1 514.97	8		
Wavelength (air) (Å)	Mult. No.						
4 891.2	10						
Wavenumber (cm ⁻¹)	Mult. No.						
3 302	1	2 820	4	1 680	4	1 140	4

TABLE 70. Transition probabilities of forbidden lines for Mg VIII (references for this table are as follows: 1 = Tachiev and Froese Fischer, $92 = \text{Galavis } et \ al.$, $41 = \text{Galavis } et \ al.$, $41 = \text{Galavis } et \ al.$

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	$\lambda_{\rm vac}~({\rm \AA})$ or $\sigma~({\rm cm}^{-1})^{\rm a}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Type	A_{ki} (s ⁻¹)	<i>S</i> (a.u.)	Acc.	Source
1	2p-2p	$^{2}\text{P}^{\circ}-^{2}\text{P}^{\circ}$									
	• •			3 302 cm ⁻¹ 3 302 cm ⁻¹	0-3 302 0-3 302	2–4 2–4	M1 E2	3.23-01 8.64-07	1.33+00 7.86-02	$\begin{array}{c} A \\ B + \end{array}$	1,2,3 1
2	$2s^22p-2s2p^2$	$^{2}P^{\circ}-^{4}P$									
				[782.9]	3 302-131 030	4-4	M2	4.40 - 03	3.47 - 01	В	1
				[790.0]	3 302-129 890	4-2	M2	2.12 - 02	8.73 - 01	B+	1
				[772.8]	3 302-132 710	4-6	M2	9.97 - 02	1.11 + 01	A	1
				[753.5]	0-132 710	2-6	M2	3.46 - 02	3.38+00	B+	1
3	$2s^22p-2p^3$	$^{2}\text{P}^{\circ}-^{2}\text{D}^{\circ}$									
	1 1			214.710	0-465 745	2-6	E2	3.02+03	7.37-03	В	2
4	$2s2p^2 - 2s2p^2$	${}^{4}P - {}^{4}P$									
	" I " I			1 680 cm ⁻¹	131 030-132 710	4-6	M1	7.62 - 02	3.57 + 00	Α	1,2
				1 680 cm ⁻¹	131 030–132 710	4-6	E2	3.01-08	1.21-01		1
				1 140 cm ⁻¹	129 890-131 030	2-4	M1	3.33 - 02	3.34+00	Α	1,2
				1 140 cm ⁻¹	129 890–131 030	2-4	E2	5.16-10	9.56-03	В	1
				$2~820~{\rm cm}^{-1}$	129 890–132 710	2-6	E2	2.86-07	8.58-02	B+	1,2
5		$^{4}P-^{2}D$									
				[976.7]	129 890-232 274	2-6	E2	1.31-03	6.24-06	D	2
6		$^{4}P-^{2}S$									
				[604.0]	132 710-298 282	6–2	E2	5.54-02	7.95-06	D	2
				[593.9]	129 890–298 282	2–2	M1	1.12+01	1.73-04		2
7		$^{4}P - ^{2}P$									
				[529.57]	129 890-318 721	2-2	M1	3.32+00	3.65 - 05	C	2
				[537.60]	132 710–318 721	6–2	E2	7.36-03	5.91-07	E+	2
8		$^{2}D-^{2}S$									
		_ ~		1 514.97	232 274–298 282	6–2	E2	1.56+01	2.23-01	B+	2
9		$^{2}D-^{2}P$									
		2 .		1 156.78	232 274-318 721	6–2	E2	1.61-01	5.95-04	C+	2
10		${}^{2}S - {}^{2}P$									
10		5 1	4 891.2	4 892.6	298 282–318 721	2–2	M1	2.42+00	2.10-02	$\mathrm{B}+$	2
11	$2p^3 - 2p^3$	$^{2}\text{D}^{\circ}-^{2}\text{P}^{\circ}$									
11	2p - 2p	D - 1		1 697.59	465 745–524 652	6–2	E2	4.26+00	1.07-01	B+	2

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

11.9. Mg IX

Beryllium isoelectronic sequence

Ground state: $1s^22s^2$

Ionization energy: 328.06 eV=2 646 000 cm⁻¹

11.9.1. Allowed Transitions for Mg IX

In general, different sources for computed transition rates for this berylliumlike spectrum agree well down to line strengths of about 10^{-3} . This includes the results of the OP, 112 from which most of the compiled data below have been taken. Tachiev and Froese Fischer 92 performed extensive MCHF calculations with Breit-Pauli corrections to order α^2 . Curtis *et al.* 19 used beam-foil lifetime measurements and branching ratio determinations to arrive at transition probabilities. Safronova *et al.* 80,82 used relativistic second-order MBPT calculations. Only OP results were available for energy levels above the 2p3d.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) for each of the lines with transition rates published in two or more references, 19,29,30,46,79,80,82,92,109,112 as described in the introduction. For this purpose the spin-allowed (non-OP) and intercombination data were treated separately and each of these was in turn divided into two upper-level energy groups below and above $1\,770\,000\,\mathrm{cm}^{-1}$. OP lines constituted a fifth group. The $2s2p\,^1P_1^{\ 0}$ level is highly mixed, and therefore transitions from it were assigned lower accuracies.

A NIST compilation of far-UV lines of Mg IX was published recently.⁷⁸ The estimated accuracies are different in some cases because a different method of evaluation was used.

11.9.2. References for Allowed Transitions for Mg IX

- ¹⁹L. J. Curtis, S. T. Maniak, R. W. Ghrist, R. E. Irving, D. G. Ellis, M. Henderson, M. H. Kacher, E. Träbert, J. Granzow, P. Bengtsson, and L. Engström, Phys. Rev. A 51, 4575 (1995).
- ²⁹J. Fleming, N. Vaeck, A. Hibbert, K. L. Bell, and M. R. Godefroid, Phys. Scr. **53**, 446 (1996).
- ³⁰S. Fritzsche and I. P. Grant, Phys. Scr. **50**, 473 (1994).
- ⁴⁶W. R. Johnson and K.-N. Huang, Phys. Rev. Lett. **48**, 315 (1982).
- ⁷⁸L. I. Podobedova, D. E. Kelleher, J. Reader, and W. L. Wiese, J. Phys. Chem. Ref. Data 33, 495 (2004).
- ⁷⁹Y. V. Ralchenko and L. A. Vainshtein, Phys. Rev. A **52**, 2449 (1995).
- ⁸⁰U. I. Safronova, A. Derevianko, M. S. Safronova, and W. R. Johnson, J. Phys. B 32, 3527 (1999). A complete data listing was made available by private communication.
- ⁸²U. I. Safronova, W. R. Johnson, M. S. Safronova, and A. Derevianko, Phys. Scr. **59**, 286 (1999). A complete data listing was made available by private communication.
- ⁸⁶G. Tachiev and C. Froese Fischer, J. Phys. B **32**, 5805 (1999).
- ⁹²G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on Mar. 28, 2002). See Tachiev and Froese Fischer (Ref. 86).
- ¹⁰⁹E. Träbert, P. H. Heckmann, B. Raith, and U. Sander, Phys. Scr. **22**, 363 (1980).
- ¹¹¹J. A. Tully, M. J. Seaton, and K. A. Berrington, J. Phys. B 23, 3811 (1990).
- ¹¹²J. A. Tully, M. J. Seaton, and K. A. Berrington, http://legacy.gsfc.nasa.gov/topbase, downloaded on July 28, 1995 (Opacity Project). See Tully *et al.* (Ref. 111).

Table 71. Wavelength finding list for allowed lines for Mg IX $\,$

TABLE 71. Wavelength finding list for allowed lines for Mg IX—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
46.657	26	69.374	35
46.711	26	69.411	35
47.947	24	69.437	35
48.024	47	69.467	35
48.340	6	69.515	35
48.794	48	69.542	35
49.586	27	69.616	40
50.777	25	69.950	39
51.561	22	70.300	34
51.591	22	70.407	34
51.654	22	70.866	38
51.656	22	70.916	38
53.075	43	71.842	12
53.112	43	71.900	12
53.127	43	72.027	12
53.173	43	72.226	37
53.188	43	72.312	15
53.222	42	74.253	31
54.011	45	74.328	31
54.302	5	74.373	31
54.463	44	74.400	31
55.060	23	74.461	31
56.861	46	74.520	41
57.371	4	74.742	32
61.037	18	77.737	13
61.043	18	80.424	33
61.085	18	81.450	28
61.128	18	81.537	28
61.177	18	81.681	28
61.354	17	84.140	29
61.397	17	91.410	30
61.490	17	124.395	60
61.921	16	136.482	78
61.924	16	136.977	78
61.926	16	138.353	53
61.964	16	142.144	79
62.020	16	143.854	98
62.059	16	143.930	59
62.751	3	144.373	98
65.609	21	148.892	99
67.090	14	151.823	100
67.135	14	163.436	109
67.141	14	183.372	77
67.239	14	190.803	75
67.246	14	191.773	75
67.252	14	193.862	74
67.350	20	195.848	52
67.395	20	196.005	90
67.731	19	200.787	76
68.949	36	202.224	92
68.986	36	202.310	58
69.011	36	202.437	92
69.058	36	202.634	92
69.114	36	202.803	89
69.162	36	202.848	92

TABLE 71. Wavelength finding list for allowed lines for Mg IX—Continued

TABLE 71. Wavelength finding list for allowed lines for Mg IX—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
203.343	91	542.947	63
203.882	92	543.331	63
204.382	91	543.774	63
208.511	93	549.089	144
208.738	93	555.216	65
212.188	95	562.78	62
212.422	95	563.25	62
212.775	95	565.55	62
213.011	95	565.96	62
213.557	94	566.44	62
217.061	97	567.28	62
224.548	96	567.70	62
233.628	105	580.05	111
233.924	105	586.79	117
234.472	105	588.24	115
237.040	104	590.04	115
237.603	104	590.32	115
241.249	106	594.25	114
241.488	67	594.53	114
246.069	107	599.88	146
250.300	108	601.87	147
289.981	73	603.57	143
304.127	113	647.17	56
328.645	119	652.23	116
368.071	2	661.86	128
377.601	102	685.68	135
377.715	102	688.14	135
379.133	102	706.06	1
379.551	8	718.49	136
379.881	102	740.41	64
383.129	8	749.55	10
405.959	103	857.49	142
438.700	11	963.48	145
439.176	7	1 024.14	9
441.199	7	1 047.43	9
443.404	7	1 061.92	9
443.973	7	1 070.21	81
445.981	7	1 130.45	61
448.294	7	1 412.03	150
450.674	129	1 454.76	70
455.166	112	1 458.79	70
462.385	130	1 482.80	70
468.494	131	1 513.09	70
494.389	57	1 543.45	70
510.986	137	1 580.78	152
514.139	138	1 632.39	83
515.517	138	1 635.32	49
518.188	118	1 639.88	55
526.371	139	1 646.36	83
531.237	140	1 660.03	69
534.817	66	1 673.64	83
538.532	63	1 673.92	83
540.044	63	1 691.19	69
540.424	63	1 702.13	83
540.657	51	1 753.16	151

TABLE 71. Wavelength finding list for allowed lines for Mg IX—Continued

TABLE 71. Wavelength finding list for allowed lines for Mg IX—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.
1 770.54	69	2 814.5	50
1 777.78	83	2 818.5	132
1 838.9	149	2 837.7	86
1 892.9	72	2 860.4	132
1 908.8	82	3 142.8	133
1 928.6	82	3 324.6	134
1 945.9	82	3 427.2	85
1 966.6	82	3 462.8	85
Wavelength	Mult.	3 491.8	85
(air) (Å)	No.	3 587.1	85
(all) (A)	140.	3 657.9	85
		5 069.6	121
2 003.8	82	5 204.2	110
2 044.8	82	5 398.1	120
2 156.8	84	5 802	126
2 181.3	84	6 454	125
2 188.0	88	6 838	123
2 205.4	68	7 040	155
2 210.7	68	7 090	123
2 218.1	68	7 750	122
2 229.5	84	11 817	156
2 260.7	68	12 528	154
2 348.4	68	13 034	153
2 404.8	68	13 312	141
2 407.7	80	16 047	101
2 512.4	127	18 792	148
2 575.2	87	19 680	71
2 628.0	86		
2 660.9	54	Wavenumber	Mult.
2 664.5	86	(cm ⁻¹)	No.
2 670.1	54	2 240	157
2 736.7	86	130	124

Table 72. Transitions probabilities of allowed lines for Mg IX (reference for this table are as follows: $1=\text{Tully } et \ al.$, $^{112} \ 2=\text{Tachiev}$ and Froese Fischer, $^{92} \ 3=\text{Curtis } et \ al.$, $^{19} \ 4=\text{Safronova } et \ al.$, $^{80} \ 5=\text{Safronova } et \ al.$, $^{82} \ 6=\text{Träbert } et \ al.$, $^{109} \ 7=\text{Fritzsche}$ and $^{30} \ 8=\text{Johnson}$ and $^{46} \ 9=\text{Ralchenko}$ and Vainshtein, $^{79} \ and \ 10=\text{Fleming } et \ al.$

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
1	$2s^2 - 2s2p$	$^{1}S-^{3}P^{\circ}$										
				706.06	0-141 631	1-3	9.04-04	2.03-05	4.71 - 05	-4.693	D	2,5,9,10
2		$^{1}S-^{1}P^{\circ}$		368.071	0–271 687	1–3	5.15+01	3.14-01	3.80-01	-0.503	A	2,5,6,8
3	$2s^2-2s3p$	$^{1}S-^{1}P^{\circ}$		62.751	0–1 593 600	1–3	2.95+03	5.22-01	1.08-01	-0.282	A	2,3,4,7
4	$2s^2-2p3s$	$^{1}S-^{1}P^{\circ}$		57.371	0–1 743 040	1–3	1.31+02	1.94-02	3.66-03	-1.712	C	4
5	$2s^2-2p3d$	$^{1}S-^{1}P^{\circ}$		54.302	0–1 841 560	1–3	2.41+02	3.20-02	5.72-03	-1.495	C	4
6	$2s^2 - 2s4p$	$^{1}S-^{1}P^{\circ}$		48.340	0–2 068 680	1–3	1.36+03	1.43-01	2.28-02	-0.845	D	1
7	$2s2p-2p^2$	$^{3}P^{\circ}-^{3}P$		443.76	142 872–368 220	9_9	4.03+01	1.19-01	1.56+00	0.030	A	2,5
				443.973	144 091–369 330	5–5	3.01+01	8.90-02	6.51-01	-0.352	A+	2,5
				443.404	141 631–367 159	3–3	1.01+01	2.98 - 02	1.30 - 01	-1.049	A	2,5
				448.294	144 091–367 159	5–3	1.63+01	2.94 - 02	2.17 - 01	-0.833	A	2,5

Table 72. Transitions probabilities of allowed lines for Mg IX (reference for this table are as follows: 1=Tully *et al.*, ¹¹² 2=Tachiev and Froese Fischer, ⁹² 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ 5=Safronova *et al.*, ⁸² 6=Träbert *et al.*, ¹⁰⁹ 7=Fritzsche and Grant, ³⁰ 8=Johnson and Huang, ⁴⁶ 9=Ralchenko and Vainshtein, ⁷⁹ and 10=Fleming *et al.* ²⁹)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	$\lambda_{\rm vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				445.981	141 631–365 856	3–1	3.97+01	3.94-02	1.74-01	-0.927	Α	2,5
				439.176	141 631-369 330	3-5	1.04+01	5.01-02	2.18-01	-0.823	A	2,5
				441.199	140 504-367 159	1-3	1.37 + 01	1.20-01	1.74 - 01	-0.921	A	2,5
8		$^{3}P^{\circ}-^{1}D$										
				379.551	141 631–405 100	3–5	5.38-03	1.94-05	7.25-05	-4 235	D	2,5
				383.129	144 091–405 100	5–5			1.23 - 03			2,5
9		$^{1}P^{\circ}-^{3}P$,-
				1 047.43	271 687–367 159	3–3	1 18-04	1 94-06	2.01-05	_5 235	F+	2,5
				1 061.92	271 687–365 856	3–1			8.00-05			2,5
				1 024.14	271 687 -369 330	3–5			1.10-03			2,5
10		$^{1}P^{\circ}-^{1}D$		749.55	271 687–405 100	3–5			8.20-01			2,5
11		$^{1}P^{\circ}-^{1}S$		438.700	271 687–499 633	3–1			3.16-01			2,5
	2-2 2-2-	$^{3}P^{\circ}-^{3}S$										
12	2s2p-2s3s	3P -3S		71.96	142 872–1 532 450	9–3			7.39-02			2,4
				72.027	144 091–1 532 450	5–3			4.12-02			2,4
				71.900	141 631–1 532 450	3–3			2.46-02			2,4
				71.842	140 504–1 532 450	1–3	1.48+02	3.45-02	8.15-03	-1.462	A	2,4
13		$^{1}\text{P}^{\circ}-^{1}\text{S}$		77.737	271 687–1 558 080	3–1	4.40+02	1.33-02	1.02-02	-1.399	B+	2,4
14	2s2p-2s3d	$^{3}P^{\circ}-^{3}D$		67.19	142 872–1 631 214	9–15	6.23+03	7.03-01	1.40+00	0.801	A	2,4
				67.239	144 091-1 631 320	5–7	6.22+03	5.90-01	6.53-01	0.470	A+	2,4
				67.135	141 631-1 631 170	3-5	4.68 + 03	5.27 - 01	3.50 - 01	0.199	A	2,4
				67.090	140 504-1 631 040	1-3	3.48+03	7.04 - 01	1.55 - 01	-0.152	A	2,4
				67.246	144 091–1 631 170	5–5			1.17 - 01			2,4
				67.141	141 631–1 631 040	3–3			1.17 - 01			2,4
				67.252	144 091–1 631 040	5–3	1.73 + 02	7.04-03	7.80-03	-1.453	A	2,4
15		$^{1}P^{\circ}-^{1}D$		72.312	271 687–1 654 580	3–5	4.00+03	5.22-01	3.73-01	0.195	A	2,4
16	2s2p-2p3p	$^{3}P^{\circ}-^{3}D$		61.94	142 872–1 757 437	9–15	8.01+02	7.67-02	1.41-01	-0.161	C+	4
				61.924	144 091-1 758 970	5–7	8.11+02	6.53-02	6.65-02	-0.486	В	4
				[61.93]	141 631-1 756 470	3-5	6.32 + 02	6.05 - 02	3.70 - 02	-0.741	C+	4
				[61.92]	140 504-1 755 470	1-3	4.63 + 02	7.98 - 02	1.63 - 02	-1.098	C+	4
				[62.02]	144 091-1 756 470	5–5	1.72+02	9.90 - 03	1.01 - 02	-1.305	C	4
				[61.96]	141 631–1 755 470	3–3	2.90+02	1.67 - 02	1.02 - 02	-1.300	C	4
				[62.06]	144 091–1 755 470	5–3	1.89+01	6.55-04	6.70-04	-2.485	D+	4
17		$^{3}P^{\circ}-^{3}S$		61.44	142 872–1 770 380	9–3	1.39+03	2.61-02	4.76-02	-0.629	C+	4
				61.490	144 091–1 770 380	5–3			2.04-02			4
				61.397	141 631–1 770 380	3–3			1.95-02			4
				61.354	140 504–1 770 380	1–3	2.22+02	3.76-02	7.60-03	-1.425	С	4
18		$^{3}P^{\circ}-^{3}P$				9–9						4
				61.128	144 091–1 779 990	5–5	1.15+03	6.44-02	6.48 - 02	-0.492	В	4
				61.085	141 631–1 778 690	3–3	2.83+02	1.59-02	9.56-03	-1.321	C	4
				61.177	144 091–1 778 690	5-3	8.10+02	2.73 - 02	2.75 - 02	-0.865	C+	4
				61.037	141 631–1 779 990	3–5			1.89 - 02			4
				61.043	140 504–1 778 690	1–3	3.98+02	6.66-02	1.34-02	-1.177	C+	4
19		$^{1}P^{\circ}-^{1}P$		67.731	271 687–1 748 120	3–3	1.70+03	1.17-01	7.82-02	-0.455	В	4

TABLE 72. Transitions probabilities of allowed lines for Mg IX (reference for this table are as follows: 1=Tully *et al.*, ¹¹² 2=Tachiev and Froese Fischer, ⁹² 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ 5=Safronova *et al.*, ⁸² 6=Träbert *et al.*, ¹⁰⁹ 7=Fritzsche and Grant, ³⁰ 8=Johnson and Huang, ⁴⁶ 9=Ralchenko and Vainshtein, ⁷⁹ and 10=Fleming *et al.* ²⁹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
20		$^{1}P^{\circ}-^{3}D$										
20		ı D										
				[67.35]	271 687–1 756 470	3–5			6.73-05			4
				[67.39]	271 687–1 755 470	3–3	5.60+01	3.81-03	2.54-03	-1.942	D	4
21		$^{1}P^{\circ}-^{1}D$		65.609	271 687–1 795 870	3–5	2.41+03	2.59-01	1.68-01	-0.110	В	4
22	2s2p-2s4d	$^{3}P^{\circ}-^{3}D$		51.62	142 872–2 080 007	9–15	1.99+03	1.32-01	2.03-01	0.075	D	1
				51.654	144 091–2 080 050	5–7	1.98+03	1.11-01	9.44-02	-0.256	D+	LS
				51.591	141 631–2 079 970	3–5	1.49+03	9.94 - 02	5.06 - 02	-0.525	D	LS
				51.561	140 504–2 079 970	1–3			2.26-02			LS
				51.656	144 091–2 079 970	5–5	4.97 + 02	1.99-02	1.69 - 02	-1.002	D	LS
				51.591	141 631–2 079 970	3–3	8.30+02	3.31 - 02	1.69 - 02	-1.003	D	LS
				51.656	144 091–2 079 970	5–3	5.50+01	1.32-03	1.12-03	-2.180	E	LS
23		$^{1}P^{\circ}-^{1}D$		55.060	271 687–2 087 890	3–5	1.53+03	1.16-01	6.31-02	-0.458	D+	1
24	2s2p-2p4p	$^{3}P^{\circ}-^{3}D$				9–15						1
				47.947	144 091–2 229 730	5–7	5.82+02	2.81-02	2.22-02	-0.852	D	LS
25		$^{1}P^{\circ}-^{1}D$		50.777	271 687–2 241 080	3–5	8.30+02	5.35-02	2.68-02	-0.795	D	1
26	2s2p-2s5d	$^{3}P^{\circ}-^{3}D$				9–15						1
				46.711	144 091-2 284 920	5–7	8.71+02	3.99-02	3.07-02	-0.700	D	LS
				46.657	141 631-2 284 920	3–5			1.64-02			LS
				46.711	144 091–2 284 920	5–5			5.47-03			LS
27		$^{1}P^{\circ}-^{1}D$		49.586	271 687–2 288 380	3–5	7.83+02	4.81-02	2.36-02	-0.841	D	1
28	$2p^2-2s3p$	$^{3}P-^{1}P^{\circ}$										
				81.537	367 159–1 593 600	3–3	7.59-02	7.57-06	6.09-06	-4.644	E+	2,4
				81.681	369 330–1 593 600	5–3			6.99-05			2,4
				81.450	365 856-1 593 600	1–3			3.39-06			2,4
29		$^{1}D-^{1}P^{\circ}$		84.140	405 100–1 593 600	5–3	1.70+02	1.08-02	1.50-02	-1.268	C+	2,4
30		$^{1}S-^{1}P^{\circ}$		91.410	499 633–1 593 600	1–3	5.38+00	2.02-03	6.08-04	-2.695	C	2,4
31	$2p^2 - 2p3s$	$^{3}P-^{3}P^{\circ}$		74.38	368 220–1 712 599	9–9	1.05+03	8.67-02	1.91-01	-0.108	A	4
				74.373	369 330–1 713 900	5–5	7.85+02	6.51-02	7.97-02	-0.487	Α	4
				74.400	367 159–1 711 250	3–3			1.56-02			4
				74.520	369 330–1 711 250	5–3			2.65-02			4
				74.461	367 159–1 710 140	3–1			2.10-02			4
				74.253	367 159-1 713 900	3–5			2.70-02			4
				74.328	365 856–1 711 250	1–3			2.12-02			4
32		$^{1}D-^{1}P^{\circ}$		74.742	405 100–1 743 040	5–3	7.77+02	3.91-02	4.81-02	-0.709	C+	4
33		$^{1}S-^{1}P^{\circ}$		80.424	499 633–1 743 040	1–3			2.33-02			
34	$2p^2 - 2p3d$	$^{3}P-^{1}D^{\circ}$						02	02			
J - T	2p - 2psa	1 – D										
				70.300	367 159–1 789 640	3–5	1.70+01	2.10-03	1.46 - 03	-2.201	D	4
				70.407	369 330–1 789 640	5–5	4.28+00	3.18 - 04	3.68 - 04	-2.799	E+	4
35		$^{3}P-^{3}D^{\circ}$		69.44	368 220–1 808 219	9–15	7.59+03	9.15-01	1.88+00	0.916	$\mathrm{B}+$	4
				69.467	369 330-1 808 860	5–7	7.64+03	7.74-01	8.85-01	0.588	B+	4
				69.411	367 159–1 807 860	3–5		7.76-01		0.367		
				U).711	307 137-1 007 000	5–5	0.75703	7.70-01	J.J2-01	0.307	יע	7

Table 72. Transitions probabilities of allowed lines for Mg IX (reference for this table are as follows: 1=Tully *et al.*, ¹¹² 2=Tachiev and Froese Fischer, ⁹² 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ 5=Safronova *et al.*, ⁸² 6=Träbert *et al.*, ¹⁰⁹ 7=Fritzsche and Grant, ³⁰ 8=Johnson and Huang, ⁴⁶ 9=Ralchenko and Vainshtein, ⁷⁹ and 10=Fleming *et al.* ²⁹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\begin{array}{c} \lambda_{vac} \ (\mathring{A}) \\ or \ \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				69.374	365 856–1 807 320	1–3	4.80+03	1.04+00	2.37-01	0.017	В	4
				69.515	369 330-1 807 860	5–5	1.07 + 03	7.74 - 02	8.85 - 02	-0.412	В	4
				69.437	367 159-1 807 320	3–3	2.72+03	1.96 - 01	1.35 - 01	-0.231	В	4
				69.542	369 330–1 807 320	5–3	8.79+01	3.82-03	4.38 - 03	-1.719	C	4
36		$^{3}P-^{3}P^{\circ}$		69.08	368 220–1 815 718	9_9	4.11+03	2.94-01	6.02-01	0.423	В	4
				69.162	369 330-1 815 220	5–5	3.85+03	2.76-01	3.14-01	0.140	$\mathrm{B} +$	4
				69.011	367 159–1 816 210	3–3	1.49+03	1.07 - 01	7.26 - 02	-0.493	В	4
				69.114	369 330–1 816 210	5–3			8.82 - 02			4
				68.986	367 159–1 816 730	3–1			6.56-02			4
				69.058	367 159–1 815 220	3–5			2.26-02			4
				68.949	365 856–1 816 210	1–3	7.96+02	1.70-01	3.87-02	-0.770	C+	4
37		$^{1}D-^{1}D^{\circ}$		72.226	405 100–1 789 640	5–5	2.11+03	1.65-01	1.97-01	-0.084	В	4
38		$^{1}D-^{3}P^{\circ}$										
				70.866	405 100-1 816 210	5-3	1.15+00	5.19-05	6.05-05	-3.586	E	4
				70.916	405 100–1 815 220	5–5	1.82+01	1.38-03	1.61-03	-2.161	D	4
39		$^{1}D-^{1}F^{\circ}$		69.950	405 100–1 834 690	5–7	9.03+03	9.28-01	1.07 + 00	0.667	B+	4
40		$^{1}D-^{1}P^{\circ}$		69.616	405 100–1 841 560	5–3	2.82+02	1.23-02	1.41-02	-1.211	C+	4
41		$^{1}S-^{1}P^{\circ}$		74.520	499 633–1 841 560	1–3	4.97+03	1.24+00	3.05-01	0.093	B+	4
42	$2p^2-2p4d$	$^{3}P-^{3}D^{\circ}$				9–15						1
				53.222	369 330–2 248 250	5–7	2.67+03	1.59-01	1.39-01	-0.100	D+	LS
43		$^{3}P-^{3}P^{\circ}$				9_9						1
				53.188	369 330–2 249 450	5–5	1.04+03	4.41-02	3.86-02	-0.657	D	LS
				53.112	367 159-2 249 970	3–3	3.48+02	1.47 - 02	7.71-03	-1.356	E+	LS
				53.173	369 330-2 249 970	5–3	5.78 + 02	1.47 - 02	1.29 - 02	-1.134	E+	LS
				53.127	367 159–2 249 450	3–5	3.47 + 02	2.45 - 02	1.29 - 02	-1.134	E+	LS
				53.075	365 856–2 249 970	1–3	4.65 + 02	5.89 - 02	1.03 - 02	-1.230	E+	LS
44		$^{1}D-^{1}D^{\circ}$		54.463	405 100–2 241 210	5–5	8.88+02	3.95-02	3.54-02	-0.704	D	1
45		$^{1}D-^{1}F^{\circ}$		54.011	405 100–2 256 570	5–7	3.28+03	2.01-01	1.79-01	0.002	C	1
46		$^{1}S-^{1}P^{\circ}$		56.861	499 633–2 258 310	1–3	1.53+03	2.22-01	4.16-02	-0.654	D	1
47	$2p^2-2p5d$	$^{3}P-^{3}D^{\circ}$				9–15						1
				48.024	369 330–2 451 620	5–7	1.27+03	6.13-02	4.85-02	-0.514	D	LS
48		$^{1}D-^{1}F^{\circ}$		48.794	405 100–2 454 530	5–7	1.58+03	7.90-02	6.35-02	-0.403	D+	1
49	2s3s-2s3p	$^{3}S-^{1}P^{\circ}$										
				1 635.32	1 532 450–1 593 600	3–3	3.97-02	1.59-03	2.57-02	-2.321	C+	2
50		$^{1}S-^{1}P^{\circ}$	2 814.5	2 815.3	1 558 080–1 593 600	1–3	3.53-01	1.26-01	1.17+00	-0.900	A	2
51	2s3s-2p3s	$^{1}S-^{1}P^{\circ}$		540.657	1 558 080–1 743 040	1–3	2.33+01	3.06-01	5.45-01	-0.514	С	1
52	2s3s-2s4p	$^{1}S-^{1}P^{\circ}$		195.848	1 558 080–2 068 680	1–3	1.72+02	2.97-01	1.91-01	-0.527	С	1
53	2s3s-2s5p	$^{1}S-^{1}P^{\circ}$		138.353	1 558 080–2 280 870	1–3			3.17-02			1
	Î	$^{1}P^{\circ}-^{3}D$		150.555	2 2 2 3 3 3 3 4 2 2 3 3 4 3 7 3	1 3	5.57 FUI	5.75 -02	5.17 -02	1.150	ט	
54	2s3p-2s3d	P - D										

TABLE 72. Transitions probabilities of allowed lines for Mg IX (reference for this table are as follows: 1=Tully *et al.*, ¹¹² 2=Tachiev and Froese Fischer, ⁹² 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ 5=Safronova *et al.*, ⁸² 6=Träbert *et al.*, ¹⁰⁹ 7=Fritzsche and Grant, ³⁰ 8=Johnson and Huang, ⁴⁶ 9=Ralchenko and Vainshtein, ⁷⁹ and 10=Fleming *et al.* ²⁹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			2 660.9 2 670.1	2 661.7 2 670.9	1 593 600–1 631 170 1 593 600–1 631 040	3–5 3–3			2.70-02 8.10-03			2 2
55		$^{1}P^{\circ}-^{1}D$		1 639.88	1 593 600–1 654 580	3–5	1.88+00	1.26-01	2.04+00	-0.423	A	2
56	2s3p-2p3p	$^{1}P^{\circ}-^{1}P$		647.17	1 593 600–1 748 120	3–3	1.57+01	9.87-02	6.31-01	-0.529	C+	1
57		$^{1}P^{\circ}-^{1}D$		494.389	1 593 600–1 795 870	3–5	1.93+00	1.18-02	5.76-02	-1.451	D+	1
58	2s3p-2s4d	$^{1}P^{\circ}-^{1}D$		202.310	1 593 600–2 087 890	3–5	4.05+02	4.14-01	8.27-01	0.094	C+	1
59	2s3p-2s5d	$^{1}P^{\circ}-^{1}D$		143.930	1 593 600–2 288 380	3–5	2.18+02	1.13-01	1.61-01	-0.470	C	1
60	2s3p-2s6d	$^{1}P^{\circ}-^{1}D$		124.395	1 593 600–2 397 490	3–5	1.29+02	4.97-02	6.11-02	-0.827	D+	1
61	2s3d-2p3s	$^{1}D-^{1}P^{\circ}$		1 130.45	1 654 580–1 743 040	5–3	3.53-01	4.06-03	7.55-02	-1.693	D+	1
62	2s3d-2p3d	$^{3}D - ^{3}D^{\circ}$		565.0	1 631 214–1 808 219	1 58–15	1.20+01	5.73-02	1.60+00	-0.066	C	1
				563.25	1 631 320–1 808 860	7–7			6.62-01			LS
				565.96	1 631 170–1 807 860	5–5	8.29 + 00	3.98 - 02	3.71 - 01	-0.701	C	LS
				567.28	1 631 040–1 807 320	3–3	8.85 + 00	4.27 - 02	2.39 - 01	-0.892	C	LS
				566.44	1 631 320-1 807 860	7–5	1.85+00	6.36 - 03	8.30 - 02	-1.351	D+	LS
				567.70	1 631 170-1 807 320	5-3	2.95+00	8.54-03	7.98 - 02	-1.370	D+	LS
				562.78	1 631 170-1 808 860	5–7	1.35+00	8.96-03	8.30-02	-1.349	D+	LS
				565.55	1 631 040–1 807 860	3–5			7.99-02			LS
63		$^{3}D-^{3}P^{\circ}$		541.99	1 631 214–1 815 718	15–9	1.37+01	3.63-02	9.71-01	-0.264	C	1
				543.774	1 631 320–1 815 220	7–5	1.14+01	3.61-02	4.52-01	-0.597	C	LS
				540.424	1 631 170-1 816 210	5–3	1.04+01	2.73 - 02	2.43 - 01	-0.865	C	LS
				538.532	1 631 040-1 816 730	3-1	1.40+01	2.03 - 02	1.08 - 01	-1.215	D+	LS
				543.331	1 631 170-1 815 220	5-5	2.04+00	9.04-03	8.08 - 02	-1.345	D+	LS
				540.044	1 631 040-1 816 210	3–3			8.11-02			LS
				542.947	1 631 040–1 815 220	3–5			5.42-03			LS
64		$^{1}D-^{1}D^{\circ}$		740.41	1 654 580–1 789 640	5–5	4.78+00	3.93-02	4.79-01	-0.707	C	1
65		${}^{1}D - {}^{1}F^{\circ}$		555.216	1 654 580–1 834 690	5–7	2.43+00	1.57-02	1.43-01	-1.105	D+	1
66		${}^{1}D - {}^{1}P^{\circ}$		534.817	1 654 580–1 841 560	5–3	1.47+01	3.78-02	3.33-01	-0.724	С	1
67	2s3d-2s4p	${}^{1}D - {}^{1}P^{\circ}$		241.488	1 654 580–2 068 680	5–3	4.42+01	2.32-02	9.22-02	-0.936	D+	1
68	2p3s-2p3p	$^{3}P^{\circ}-^{3}D$	2 230	2 230	1 712 599–1 757 437	9–15	1.04+00	1.29-01	8.53+00	0.065	В	1
			2 218.1	2 218.8	1 713 900–1 758 970	5–7	1.05+00	1.09-01	3.98+00	-0.264	В	LS
			[2 211]	[2 211]	1 711 250-1 756 470	3-5	7.99 - 01	9.76 - 02	2.13+00	-0.533	В	LS
			[2 205]	[2 206]	1 710 140-1 755 470	1-3			9.51-01			LS
					1 713 900–1 756 470							
			[2 348]	[2 349]		5–5			7.11-01			LS
			[2 261]	[2 261]	1 711 250–1 755 470	3–3			7.10-01			LS
			[2 405]	[2 406]	1 713 900–1 755 470	5–3	2.31-02	1.20-03	4.75-02	-2.222	D	LS
69		$^{3}P^{\circ}-^{3}S$		1 730.7	<i>1 712 599</i> –1 770 380	9–3	2.19+00	3.27-02	1.68+00	-0.531	C+	1
				1 770.54	1 713 900-1 770 380	5-3	1.13+00	3.20 - 02	9.33-01	-0.796	C+	LS
				1 691.19	1 711 250–1 770 380	3–3			5.60-01			LS
				1 660.03	1 710 140–1 770 380	1–3			1.86-01			LS
70		$^{3}P^{\circ}-^{3}P$				9_9						1
				1.512.00	1.712.000 1.770.000		2.70	0.55 0-	2.20 00	0.22:	D	T. C.
				1 513.09	1 713 900–1 779 990	5–5			2.38+00			LS
				1 482.80	1 711 250–1 778 690	3–3	9.86-01	3.25 - 02	4.76 - 01	-1.011	C	LS

Table 72. Transitions probabilities of allowed lines for Mg IX (reference for this table are as follows: 1=Tully *et al.*, ¹¹² 2=Tachiev and Froese Fischer, ⁹² 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ 5=Safronova *et al.*, ⁸² 6=Träbert *et al.*, ¹⁰⁹ 7=Fritzsche and Grant, ³⁰ 8=Johnson and Huang, ⁴⁶ 9=Ralchenko and Vainshtein, ⁷⁹ and 10=Fleming *et al.* ²⁹)—Continued

	array	Mult.	λ _{air} (Å)	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$A_{ki} \\ (10^8 \text{ s}^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				1 543.45	1 713 900–1 778 690	5–3	1.46+00	3.12-02	7.93-01	-0.807	C+	LS
				1 454.76	1 711 250–1 779 990	3–5			7.93 - 01			LS
				1 458.79	1 710 140–1 778 690	1–3	1.38+00	1.32-01	6.34-01	-0.879	C+	LS
71		$^{1}P^{\circ}-^{1}P$	19 680	19 685	1 743 040–1 748 120	3–3	1.11-03	6.47-03	1.26+00	-1.712	C+	1
72		$^{1}P^{\circ}-^{1}D$		1 892.9	1 743 040–1 795 870	3–5	2.11+00	1.89-01	3.53+00	-0.246	В	1
73	2p3s-2s4d	$^{1}P^{\circ}-^{1}D$		289.981	1 743 040–2 087 890	3–5	2.85+01	5.98-02	1.71-01	-0.746	C	1
74	2p3s-2p4p	$^{3}P^{\circ}-^{3}D$				9–15						1
				193.862	1 713 900–2 229 730	5–7	1.85+02	1.46-01	4.66-01	-0.137	C	LS
75		$^{3}P^{\circ}-^{3}P$				9_9						1
				191.773	1 713 900–2 235 350	5–5	1 23+02	6.80-02	2.15-01	-0.469	C	LS
				190.803	1 711 250–2 235 350	3–5			7.14-02			LS
76		$^{1}P^{\circ}-^{1}D$		200.787	1 743 040–2 241 080	3–5	1.55+02	1.56-01	3.09-01	-0.330	C	1
77	2p3s-2s5d	$^{1}P^{\circ}-^{1}D$		183.372	1 743 040–2 288 380	3–5	1.46+01	1.23-02	2.23-02	-1.433	D	1
78	2 <i>p</i> 3 <i>s</i> -2 <i>p</i> 5 <i>p</i>	$^{3}P^{\circ}-^{3}P$				9_9						1
				136.977	1 713 900–2 443 950	5 5	7 22 : 01	2.06 .02	4.64-02	0.097	D	LS
				136.482	1 713 900–2 443 950	5–5 3–5			1.55 - 02			LS
79		$^{1}P^{\circ}-^{1}D$		142.144	1 743 040–2 446 550	3–5	8.93+01	4.51-02	6.33-02	-0.869	D+	1
80	2p3p-2p3d	$^{1}P-^{1}D^{\circ}$	2 407.7	2 408.5	1 748 120–1 789 640	3–5	5.17-01	7.50-02	1.78+00	-0.648	В	1
81		$^{1}P-^{1}P^{\circ}$		1 070.21	1 748 120–1 841 560	3–3	4.28+00	7.35-02	7.77-01	-0.657	C+	1
82		$^{3}D-^{3}D^{\circ}$		1 969	1 757 437–1 808 219	15–15	2.67-01	1.55-02	1.51+00	-0.634	C	1
			2 003.8	2 004.4	1 758 970–1 808 860	7–7	2.24-01	1.35-02	6.24-01	-1.025	C+	LS
				[1 946]	1 756 470–1 807 860	5–5	1.92 - 01	1.09 - 02	3.49 - 01	-1.264	C	LS
				[1 929]	1 755 470–1 807 320	3–3	2.13 - 01	1.19 - 02	2.27 - 01	-1.447	C	LS
			2 044.8	2 045.4	1 758 970–1 807 860	7–5	3.71 - 02	1.66 - 03	7.82 - 02	-1.935	D+	LS
				[1 967]	1 756 470–1 807 320	5–3			7.54 - 02			LS
				[1 909]	1 756 470–1 808 860	5–7			7.85 - 02			LS
				[1 909]	1 755 470–1 807 860	3–5	4.39-02	4.00-03	7.54-02	-1.921	D+	LS
83		$^{3}D-^{3}P^{\circ}$		1 715.8	1 757 437–1 815 718	15–9	3.77-01	9.98-03	8.46-01	-0.825	C	1
				1 777.78	1 758 970–1 815 220	7–5	2.85 - 01	9.63-03	3.95-01	-1.171	C	LS
				[1 673.9]	1 756 470-1 816 210	5–3	3.04 - 01	7.67 - 03	2.11-01	-1.416	C	LS
				[1 632.4]	1 755 470-1 816 730	3-1	4.38 - 01	5.83 - 03	9.40 - 02	-1.757	D+	LS
				[1 702.1]	1 756 470-1 815 220	5-5	5.80 - 02	2.52 - 03	7.06 - 02	-1.900	D+	LS
				[1 646.4]	1 755 470-1 816 210	3–3	1.07 - 01	4.33 - 03	7.04 - 02	-1.886	D+	LS
				[1 673.6]	1 755 470–1 815 220	3–5	4.06-03	2.84 - 04	4.69-03	-3.070	E+	LS
84		$^{3}S - ^{3}P^{\circ}$	2 205	2 206	1 770 380–1 815 718	3–9	6.90-01	1.51-01	3.29+00	-0.344	C+	1
			2 229.5	2 230.2	1 770 380–1 815 220	3–5	6.68-01	8.30-02	1.83+00	-0.604	В	LS
			2 181.3	2 182.0	1 770 380-1 816 210	3-3	7.13-01	5.09-02	1.10+00	-0.816	C+	LS
			2 156.8	2 157.5	1 770 380–1 816 730	3–1	7.39-01	1.72-02	3.67-01	-1.287	C	LS
85		$^{3}P-^{3}D^{\circ}$				9–15						1
			3 462.8	3 463.8	1 779 990–1 808 860	5–7	1.79-01	4.50-02	2.57+00	-0.648	В	LS
			3 427.2	3 428.2	1 778 690–1 807 860	3–5			1.37+00			LS

TABLE 72. Transitions probabilities of allowed lines for Mg IX (reference for this table are as follows: 1=Tully *et al.*, ¹¹² 2=Tachiev and Froese Fischer, ⁹² 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ 5=Safronova *et al.*, ⁸² 6=Träbert *et al.*, ¹⁰⁹ 7=Fritzsche and Grant, ³⁰ 8=Johnson and Huang, ⁴⁶ 9=Ralchenko and Vainshtein, ⁷⁹ and 10=Fleming *et al.* ²⁹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
			3 587.1	3 588.1	1 779 990–1 807 860	5–5	4.03-02	7.77-03	4.59-01	-1.411	С	LS
			3 491.8	3 492.8	1 778 690–1 807 320	3–3	7.27 - 02	1.33 - 02	4.59 - 01	-1.399	C	LS
			3 657.9	3 659.0	1 779 990–1 807 320	5–3	4.22-03	5.08 - 04	3.06-02	-2.595	D	LS
86		$^{3}P-^{3}P^{\circ}$				9–9						1
			2 837.7	2 838.5	1 779 990–1 815 220	5–5	1.00-01	1.21-02	5.65-01	-1.218	C+	LS
			2 664.5	2 665.2	1 778 690-1 816 210	3–3	4.03 - 02	4.29 - 03	1.13 - 01	-1.890	D+	LS
			2 760.1	2 760.9	1 779 990–1 816 210	5–3	6.04 - 02	4.14 - 03	1.88 - 01	-1.684	C	LS
			2 628.0	2 628.8	1 778 690-1 816 730	3-1	1.68 - 01	5.80 - 03	1.51 - 01	-1.759	D+	LS
			2 736.7	2 737.5	1 778 690–1 815 220	3–5	3.72 - 02	6.97 - 03	1.88 - 01	-1.680	C	LS
87		$^{1}D-^{1}F^{\circ}$	2 575.2	2 576.0	1 795 870–1 834 690	5–7	6.49-01	9.04-02	3.83+00	-0.345	В	1
88		$^{1}D-^{1}P^{\circ}$	2 188.0	2 188.7	1 795 870–1 841 560	5–3	4.80-02	2.07-03	7.46-02	-1.985	D+	1
89	2p3p-2p4d	$^{1}P-^{1}D^{\circ}$		202.803	1 748 120–2 241 210	3–5	3.65+02	3.75-01	7.51-01	0.051	C+	1
90		$^{1}P-^{1}P^{\circ}$		196.005	1 748 120–2 258 310	3–3	1.61+02	9.29-02	1.80-01	-0.555	C	1
91		$^3D - ^3D^{\circ}$				15–15						1
				204.382	1 758 970–2 248 250	7–7	9.93+01	6.22-02	2.93-01	-0.361	C	LS
				[203.34]	1 756 470–2 248 250	5–7	1.27+01	1.10-02	3.68 - 02	-1.260	D	LS
92		$^{3}D-^{3}P^{\circ}$				15–9						1
				203.882	1 758 970–2 249 450	7–5	1.17+01	5.22-03	2.45-02	-1.437	D	LS
				[202.63]	1 756 470-2 249 970	5–3	1.07 + 01	3.94-03	1.31-02	-1.706	Ε±	LS
				[202.85]	1 756 470–2 249 450	5–5			4.37-03			LS
				[202.22]	1 755 470–2 249 970	3–3			4.37-03			LS
				[202.44]	1 755 470–2 249 450	3–5	1.43-01	1.46-04	2.92-04	-3.359	E	LS
93		$^{3}S - ^{3}P^{\circ}$				3–9						1
				2 08.738	1 770 380–2 249 450	3–5	2.42+02	2.64-01	5.44-01	-0.101	C	LS
				2 08.511	1 770 380–2 249 970	3–3	2.44+02	1.59-01	3.27-01	-0.321	C	LS
94		$^{3}P-^{3}D^{\circ}$				9–15						1
				213.557	1 779 990–2 248 250	5–7	3.47+02	3.32-01	1.17+00	0.220	C+	LS
95		$^{3}P-^{3}P^{\circ}$				9_9						1
				213.011	1 779 990–2 249 450	5–5	1 29+02	8 77 - 02	3.08-01	-0.358	С	LS
				212.188	1 778 690–2 249 970	3–3			6.16-02			LS
				212.775	1 779 990–2 249 970	5–3			1.03-01			LS
				212.422	1 778 690–2 249 450	3–5			1.03 - 01			LS
96		$^{1}D-^{1}D^{\circ}$		2 24.548	1 795 870–2 241 210	5–5	1.26+02	9.52-02	3.52-01	-0.322	C	1
97		$^{1}D-^{1}F^{\circ}$		217.061	1 795 870–2 256 570	5–7	4.09+02	4.04-01	1.44+00	0.305	В	1
98	2p3p-2p5d	$^{3}D-^{3}D^{\circ}$				15–15						1
				144.373	1 758 970–2 451 620	7–7	5.47±01	1.71_02	5.69-02	_0.022	DΤ	LS
				[143.85]	1 756 470–2 451 620	5–7			7.13-03			LS
		2 2 -		[110.00]	00 .70 £ 751 0£0		5.55 7 00	2.01 03	5 05	1.022	~ .	
99		$^{3}P-^{3}D^{\circ}$				9–15						1
				148.892	1 779 990–2 451 620	5–7	1.74+02	8.11-02	1.99-01	-0.392	C	LS
100		$^{1}D-^{1}F^{\circ}$		1 581.823	1 795 870–2 454 530	5–7	2.04+02	9.87-02	2.47-01	-0.307	C	1

Table 72. Transitions probabilities of allowed lines for Mg IX (reference for this table are as follows: 1=Tully *et al.*, ¹¹² 2=Tachiev and Froese Fischer, ⁹² 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ 5=Safronova *et al.*, ⁸² 6=Träbert *et al.*, ¹⁰⁹ 7=Fritzsche and Grant, ³⁰ 8=Johnson and Huang, ⁴⁶ 9=Ralchenko and Vainshtein, ⁷⁹ and 10=Fleming *et al.* ²⁹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
101	2p3d-2p3p	$^{1}D^{\circ}-^{1}D$	16 047	16 051	1789 640–1 795 870	5–5	4.74-04	1.83-03	4.84-01	-2.039	С	1
102	2p3d-2s4d	$^{3}P^{\circ}-^{3}D$		378.37	1815 718–2 080 007	9–15	2.86+00	1.02-02	1.15-01	-1.037	D	1
				377.601	1 815 220–2 080 050	5–7	2.88+00	8.62-03	5.36-02	-1.366	D	LS
				379.133	1 816 210-2 079 970	3-5	2.13+00	7.66-03	2.87-02	-1.639	D	LS
				379.881	1 816 730–2 079 970	1-3	1.57+00	1.02 - 02	1.28 - 02	-1.991	E+	LS
				377.715	1 815 220–2 079 970	5–5	7.20-01	1.54 - 03	9.57 - 03	-2.114	E+	LS
				379.133	1 816 210–2 079 970	3–3	1.18+00	2.55 - 03	9.55 - 03	-2.116	E+	LS
				377.715	1 815 220–2 079 970	5–3	8.03-02	1.03-04	6.40-04	-3.288	E	LS
103		$^{1}P^{\circ}-^{1}D$		405.959	1 841 560–2 087 890	3–5	3.04+00	1.25-02	5.01-02	-1.426	D	1
104	2p3d-2p4p	$^{3}D^{\circ}-^{3}D$				15–15						1
				237.603	1 808 860-2 229 730	7–7	5.26+00	4.45-03	2.44-02	-1.507	D	LS
				237.040	1 807 860–2 229 730	5–7	6.64-01	7.83-04	3.06-03	-2.407	E	LS
105		$^{3}\text{D}^{\circ}$ $ ^{3}\text{P}$				15–9						1
				234.472	1 808 860–2 235 350	7–5	2.34+01	1.38-02	7.46-02	-1.015	D+	LS
				233.924	1 807 860-2 235 350	5–5	4.22+00	3.46-03	1.33-02	-1.762	E+	LS
				233.628	1 807 320–2 235 350	3–5	2.82-01	3.85-04	8.88-04	-2.937	E	LS
106		$^{3}P^{\circ}-^{3}D$				9–15						1
				241.249	1 815 220–2 229 730	5–7	1.19+01	1.45-02	5.76-02	-1.140	D+	LS
107		${}^{1}F^{\circ} - {}^{1}D$		246.069	1 834 690–2 241 080	7–5	3.50+01	2.27-02	1.29-01	-0.799	D+	1
108		$^{1}P^{\circ}-^{1}D$		250.300	1 841 560–2 241 080	3–5	1.29+01	2.02-02	4.99-02	-1.218	D	1
109	2p3d-2p5p	${}^{1}F^{\circ} - {}^{1}D$		163.436	1 834 690–2 446 550	7–5	1.52+01	4.35-03	1.64-02	-1.516	D	1
110	2s4p-2s4d	$^{1}P^{\circ}-^{1}D$	5 204.2	5 205.6	2 068 680–2 087 890	3–5	2.92-01	1.98-01	1.02+01	-0.226	B+	1
111	2s4p-2p4p	$^{1}P^{\circ}-^{1}D$		580.05	2 068 680–2 241 080	3–5	3.81+00	3.20-02	1.83-01	-1.018	C	1
112	2s4p-2s5d	$^{1}P^{\circ}-^{1}D$		455.166	2 068 680–2 288 380	3–5	8.23+01	4.26-01	1.92+00	0.107	В	1
113	2s4p-2s6d	$^{1}P^{\circ}-^{1}D$		304.127	2 068 680–2 397 490	3–5	5.32+01	1.23-01	3.69-01	-0.433	C	1
114	2s4d-2p4d	$^{3}D - ^{3}D^{\circ}$				15–15						1
				594.53	2 080 050-2 248 250	7–7	8.15+00	4.32-02	5.92-01	-0.519	C+	LS
				594.25	2 079 970–2 248 250	5–7	1.02+00	7.59-03	7.42-02	-1.421	D+	LS
115		$^{3}D - ^{3}P^{\circ}$				15–9						1
				590.32	2 080 050–2 249 450	7–5	1.24+01	4.61 - 02	6.27 - 01	-0.491	C+	LS
				588.24	2 079 970–2 249 970	5–3	1.11+01	3.47 - 02	3.36-01	-0.761	C	LS
				590.04	2 079 970–2 249 450	5–5	2.20+00	1.15 - 02	1.12 - 01	-1.240	D+	LS
				588.24	2 079 970–2 249 970	3–3			1.12 - 01			LS
				590.04	2 079 970–2 249 450	3–5	1.47-01	1.28-03	7.46-03	-2.416	E+	LS
116		$^{1}D-^{1}D^{\circ}$		652.23	2 087 890–2 241 210	5–5	6.91+00	4.41-02	4.73-01	-0.657	С	1
117		$^{1}D-^{1}P^{\circ}$		586.79	2 087 890–2 258 310	5–3	1.69+01	5.24-02	5.06-01	-0.582	C	1
118	2s4d-2s5p	$^{1}D-^{1}P^{\circ}$		518.188	2 087 890–2 280 870	5–3	1.40+01	3.37-02	2.87-01	-0.773	C	1
119	2s4d-2s6p	$^{1}D-^{1}P^{\circ}$		328.645	2 087 890–2 392 170	5–3	1.02+01	9.90-03	5.36-02	-1.305	D	1
120	2p4p-2p4d	$^3D - ^3D^{\circ}$				15–15						1

TABLE 72. Transitions probabilities of allowed lines for Mg IX (reference for this table are as follows: 1=Tully *et al.*, ¹¹² 2=Tachiev and Froese Fischer, ⁹² 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ 5=Safronova *et al.*, ⁸² 6=Träbert *et al.*, ¹⁰⁹ 7=Fritzsche and Grant, ³⁰ 8=Johnson and Huang, ⁴⁶ 9=Ralchenko and Vainshtein, ⁷⁹ and 10=Fleming *et al.* ²⁹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \; {\rm s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
			5 398.1	5 399.6	2 229 730–2 248 250	7–7	5.72-02	2.50-02	3.11+00	-0.757	В	LS
121		$^3D-^3P^{\circ}$				15–9						1
			5 069.6	5 071.0	2 229 730–2 249 450	7–5	2.93-02	8.06-03	9.42-01	-1.249	C+	LS
122		$^{3}P-^{3}D^{\circ}$				9–15						1
			7 750	7 752	2 235 350–2 248 250	5–7	6.87-02	8.67-02	1.11+01	-0.363	B+	LS
123		$^{3}P-^{3}P^{\circ}$				9_9						1
			7 090 6 838	7 092 6 840	2 235 350–2 249 450 2 235 350–2 249 970	5–5 5–3			2.45+00 8.15-01			LS LS
124		$^{1}D-^{1}D^{\circ}$		130 cm ⁻¹	2 241 080–2 241 210	5–5	1.87-08	1.66-04	2.10+00	-3.081	В	1
125		$^{1}D-^{1}F^{\circ}$	6 454	6 456	2 241 080–2 256 570	5–7	1.58-01	1.38-01	1.47+01	-0.161	B+	1
126		${}^{1}D - {}^{1}P^{\circ}$	5 802	5 804	2 241 080–2 258 310	5–3	8.12-03	2.46-03	2.35-01	-1.910	C	1
127	2p4p-2s5p	$^{1}D-^{1}P^{\circ}$	2 512.4	2 513.2	2 241 080–2 280 870	5–3	6.13-02	3.48-03	1.44-01	-1.759	D+	1
128	2p4p-2s6p	$^{1}D-^{1}P^{\circ}$		661.86	2 241 080–2 392 170	5–3	1.58+00	6.22-03	6.78-02	-1.507	D+	1
129	2p4p-2p5d	$^3D - ^3D^{\circ}$				15–15						1
130		$^{3}P-^{3}D^{\circ}$		450.674	2 229 730–2 451 620	7–7 9–15	1.83+01	5.58-02	5.80-01	-0.408	C+	LS 1
				462.385	2 235 350–2 451 620	5–7	7.04+01	3.16-01	2.41+00	0.199	В	LS
131		$^{1}D-^{1}F^{\circ}$		468.494	2 241 080–2 454 530	5–7	8.23+01	3.79-01	2.92+00	0.278	В	1
132	2p4d-2s5d	$^{3}P^{\circ}-^{3}D$				9–15						1
			2 818.5	2 819.3	2 249 450–2 284 920	5–7			8.03-01			LS
			2 860.4 2 818.5	2 861.2 2 819.3	2 249 970–2 284 920 2 249 450–2 284 920	3–5 5–5			4.30-01 1.43-01			LS LS
133		${}^{1}F^{\circ} - {}^{1}D$	3 142.8	3 143.7	2 256 570–2 288 380	7–5	1.04-01	1.10-02	7.97-01	-1.114	C+	1
134		$^{1}P^{\circ}-^{1}D$	3 324.6	3 325.6	2 258 310–2 288 380	3–5	1.27-01	3.50-02	1.15+00	-0.979	C+	1
135	2p4d-2s6d	$^{3}P^{\circ}-^{3}D$				9–15						1
				685.68	2 249 450–2 395 290	5–7	4.43-01	4.37-03	4.93-02	-1.661	D	LS
				688.14 685.68	2 249 970–2 395 290 2 249 450–2 395 290	3–5 5–5			2.64-02 8.80-03			LS LS
136		$^{1}P^{\circ}-^{1}D$		718.49	2 258 310–2 397 490	3–5			2.97-02			1
137	2p4d-2p5p	$^{3}\text{D}^{\circ}-^{3}\text{P}$, 10.1.	2 250 510 2 537 130	15–9	5.2. 01		2.57 02	1.502	2	1
10,	2p .u	2 1		510.986	2 248 250–2 443 950	7–5	1.16+01	3.23-02	3.80-01	-0.646	C	LS
138		$^{3}P^{\circ}-^{3}P$				9_9						1
				514.139 515.517	2 249 450–2 443 950 2 249 970–2 443 950	5–5 3–5			9.99-02 3.33-02			LS LS
139		${}^{1}F^{\circ}-{}^{1}D$		526.371	2 256 570–2 446 550	7–5			5.65-01			1
140		$^{1}P^{\circ}-^{1}D$		531.237	2 258 310–2 446 550	3–5			1.66-01			1
141	2s5p-2s5d	$^{1}P^{\circ}-^{1}D$	13 312	13 316	2 280 870–2 288 380	3–5			2.72+01			1
	255p 255u		10 012	10 010		5 5	02	, 01	,01	5.207		•

Table 72. Transitions probabilities of allowed lines for Mg IX (reference for this table are as follows: 1=Tully *et al.*, ¹¹² 2=Tachiev and Froese Fischer, ⁹² 3=Curtis *et al.*, ¹⁹ 4=Safronova *et al.*, ⁸⁰ 5=Safronova *et al.*, ⁸² 6=Träbert *et al.*, ¹⁰⁹ 7=Fritzsche and Grant, ³⁰ 8=Johnson and Huang, ⁴⁶ 9=Ralchenko and Vainshtein, ⁷⁹ and 10=Fleming *et al.* ²⁹)—Continued

	Transition		λ_{air}	λ _{vac} (Å)	E_i – E_{ν}		A_{ki}		S			
No.	array	Mult.	(Å)	or σ (cm ⁻¹) ^a	$(cm^{-1})^{\kappa}$	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	$\log gf$	Acc.	Source
142	2s5p-2s6d	$^{1}\text{P}^{\circ} - ^{1}\text{D}$		857.49	2 280 870–2 397 490	3–5	2.49+01	4.58-01	3.88+00	0.138	В	1
143	2s5p-2p5p	$^{1}P^{\circ}-^{1}D$		603.57	2 280 870–2 446 550	3–5	1.70+00	1.55-02	9.24-02	-1.333	D+	1
144	2s5p-2s7d	$^{1}P^{\circ}-^{1}D$		549.089	2 280 870–2 462 990	3–5	1.62+01	1.22-01	6.62-01	-0.437	D+	1
145	2s5d-2s6p	$^{1}D-^{1}P^{\circ}$		963.48	2 288 380–2 392 170	5–3	1.09+01	9.14-02	1.45+00	-0.340	В	1
146	2s5d-2p5d	$^3D - ^3D^{\circ}$				15–15						1
				599.88 599.88	2 284 920–2 451 620 2 284 920–2 451 620	7–7 5–7			5.82-01 7.30-02			LS LS
147		$^{1}D-^{1}F^{\circ}$		601.87	2 288 380–2 454 530	5–7	2.17+00	1.65-02	1.63-01	-1.084	C	1
148	2s6p-2s6d	$^{1}P^{\circ}-^{1}D$	18 792	18 797	2 392 170–2 397 490	3–5	3.82-02	3.37-01	6.26+01	0.005	A	1
149	2s6p-2p5p	$^{1}P^{\circ}-^{1}D$		1 838.9	2 392 170–2 446 550	3–5	8.32-02	7.03-03	1.28-01	-1.676	D+	1
150	2s6p-2s7d	$^{1}P^{\circ}-^{1}D$		1 412.03	2 392 170–2 462 990	3–5	8.55+00	4.26-01	5.94+00	0.107	В	1
151	2s6d-2p5d	$^{1}D-^{1}F^{\circ}$		1 753.16	2 397 490–2 454 530	5–7	1.11+00	7.13-02	2.06+00	-0.448	В	1
152	2s6d-2s7p	$^{1}D-^{1}P^{\circ}$		1 580.78	2 397 490–2 460 750	5–3	4.33+00	9.74-02	2.53+00	-0.312	С	1
153	2p5p-2p5d	$^{3}P-^{3}D^{\circ}$				9–15						1
			13 034	13 038	2 443 950–2 451 620	5–7	3.95-02	1.41-01	3.03+01	-0.152	A	LS
154		$^{1}D-^{1}F^{\circ}$	12 528	12 531	2 446 550–2 454 530	5–7	5.61-02	1.85 - 01	3.82+01	-0.034	A	1
155	2p5p-2s7p	$^{1}D-^{1}P^{\circ}$	7 040	7 042	2 446 550–2 460 750	5–3	3.07-03	1.37-03	1.59-01	-2.164	D	1
156	2p5d-2s7d	$^{1}F^{\circ}-^{1}D$	11 817	11 820	2 454 530–2 462 990	7–5	1.14-02	1.71-02	4.66+00	-0.922	C+	1
157	2s7p-2s7d	$^{1}P^{\circ}-^{1}D$		2 240 cm ⁻¹	2 460 750–2 462 990	3–5	5.14-03	2.56-01	1.13+02	-0.115	B+	1

11.9.3. Forbidden Transitions for Mg IX

Tachiev and Froese Fischer 92 performed extensive MCHF calculations with Breit-Pauli corrections to order α^2 for the 2s2p upper levels. Kingston and Hibbert 51 used the CIV3 code to perform configuration interaction calculations with large basis sets in the Breit-Pauli approximation. Excellent agreement was found for the cases where both transitions were available.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) of each of the lines for which a transition rate is quoted by both of the references cited below, as discussed in the general introduction.

11.9.4. References for Forbidden Transitions for Mg IX

A. E. Kingston and A. Hibbert, J. Phys. B **34**, 81 (2001).
 G. Tachiev and C. Froese Fischer, J. Phys. B **32**, 5805 (1999).

92G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio downloaded on Mar. 28, 2002). See Tachiev and Froese Fischer (Ref. 86).

TABLE 73. Wavelength finding list for forbidden lines for Mg IX

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
246.853	3	383.129	7	448.294	6	768.90	5
270.761	2	437.013	6	694.01	1	783.72	5
272.362	2	439.176	6	749.55	10	1 024.14	9
281.261	8	443.404	6	754.87	13	1 047.43	9
377.935	7	443.973	6	762.29	5	1 057.83	14
379.551	7	445.981	6	767.44	13		

TABLE 73. Wavelength finding list for forbidden lines for Mg IX—Continued

Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.	Wavelength (air) (Å)	Mult. No.
2 547.4	12	2 634.9	12	2 794.8	12
Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.	Wavenumber (cm ⁻¹)	Mult. No.
3 587	4	2 460	4	1 303	11
3 474	11	2 171	11	1 127	4

Table 74. Transition probabilities of forbidden lines for Mg IX (reference for this table are as follows: 1=Tachiev and Froese Fischer 92 and 2=Kingston and Hibbert 51)

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{ m vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Type	A_{ki} (s ⁻¹)	S (a.u.)	Acc.	Source
1	$2s^2-2s2p$	$^{1}S-^{3}P^{\circ}$									
				694.01	0-144 091	1-5	M2	1.25 - 01	6.73+00	A+	1,2
2	$2s^2 - 2p^2$	${}^{1}S - {}^{3}P$									
				270.761	0–369 330	1–5	E2	6.28+00	4.08 - 05	D+	2
				272.362	0–367 159	1–3	M1	4.04+00	9.08-06	D	2
3		${}^{1}S - {}^{1}D$									
				246.853	0-405 100	1-5	E2	3.93 + 03	1.61-02	B+	2
4	2s2p-2s2p	$^{3}\text{P}^{\circ} - ^{3}\text{P}^{\circ}$									
				$2460~{\rm cm}^{-1}$	141 631-144 091	3–5	M1	2.01 - 01	2.51+00	A+	1,2
				$2460~{\rm cm}^{-1}$	141 631-144 091	3-5	E2	1.85 - 07	9.17 - 02	A	1,2
				1 127 cm ⁻¹	140 504-141 631	1-3	M1	2.57 - 02	2.00+00	A+	1,2
				3 587 cm ⁻¹	140 504-144 091	1-5	E2	5.40 - 07	4.06 - 02	A	1,2
5		$^{3}P^{\circ}-^{1}P^{\circ}$									
3		1 1		768.90	141 631–271 687	3–3	M1	5.52+00	2.79-04	C+	1,2
				768.90	141 631–271 687	3–3	E2	5.58-02	4.01-05	C	1,2
				783.72	144 091–271 687	5–3	M1	8.70+00	4.66-04	C+	1,2
				783.72	144 091–271 687	5–3	E2	2.40-02	1.90-05	C	1,2
				762.29	140 504-271 687	1-3	M1	7.56+00	3.73-04	C+	1,2
	2 2 2 2	3-0 3-									
6	$2s2p-2p^2$	$^{3}\text{P}^{\circ}-^{3}\text{P}$		1.12.072	144 001 260 220		1.10	0.60.01	5.61.00		2
				443.973	144 091–369 330	5–5	M2	9.69-01	5.61+00	A	2
				443.404	141 631–367 159	3–3	M2	7.99-01	2.76+00	A	2
				448.294	144 091–367 159	5–3	M2	2.26-04	8.23-04	D+	2
				445.981 439.176	141 631–365 856 141 631–369 330	3–1 3–5	M2 M2	7.13-01 1.89-03	8.44-01 1.04-02	A C+	2 2
				437.013	140 504–369 330	3–3 1–5	M2	1.89-03	1.04 - 02 $1.05 + 00$	A	2
				437.013	140 304-309 330	1–3	1112	1.97-01	1.05+00	А	۷
7		$^{3}P^{\circ}-^{1}D$									
				377.935	140 504-405 100	1-5	M2	7.35 - 01	1.90+00	A	2
				379.551	141 631-405 100	3-5	M2	1.73+00	4.57 + 00	A	2
				383.129	144 091–405 100	5–5	M2	1.45+00	4.01 + 00	A	2
8		$^{3}P^{\circ}-^{1}S$									
O		1 – 3		281.261	144 091-499 633	5–1	M2	5.64+00	6.66-01	Δ	2
9		$^{1}P^{\circ}-^{3}P$		201.201	111 071 177 033	5 1	1112	5.01100	0.00 01	11	-
				1 047.43	271 687–367 159	3–3	M2	5.63-03	1.43+00	A	2
				1 024.14	271 687–369 330	3–5	M2	1.17-02	4.42+00	A	2
		1_0 1_									
10		$^{1}P^{\circ}-^{1}D$		740.55	251 605 105 100	2 -	3.50	0.20 0:	7.45 0-	ъ	2
11	2,2 2,2	$^{3}P - ^{3}P$		749.55	271 687–405 100	3–5	M2	9.39-04	7.45 - 02	В	2
11	$2p^2-2p^2$	-PP		2 171 cm ⁻¹	267 150 260 220	2 5	N /11	1 29 01	2.50 + 00	A 1	2
					367 159–369 330 367 150 360 330	3–5	M1 E2	1.38-01	2.50+00	A+ B+	2 2
				2 171 cm ⁻¹	367 159–369 330	3–5	E2	9.28-08	8.59-02	D±	2

Table 74. Transition probabilities of forbidden lines for Mg IX (reference for this table are as follows: 1=Tachiev and Froese Fischer⁹² and 2=Kingston and Hibbert⁵¹)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	$\lambda_{ m vac}$ (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	Type	A_{ki} (s^{-1})	S (a.u.)	Acc.	Source
				1 303 cm ⁻¹	365 856–367 159	1–3	M1	4.07-02	2.05+00	A+	2
				$3474~{\rm cm}^{-1}$	365 856–369 330	1-5	E2	4.40 - 07	3.88 - 02	B+	2
12		$^{3}P - ^{1}D$									
			2 547.4	2 548.2	365 856-405 100	1-5	E2	9.62-07	4.61 - 07	E+	2
			2 634.9	2 635.7	367 159-405 100	3-5	M1	1.76+00	5.97-03	В	2
			2 634.9	2 635.7	367 159-405 100	3-5	E2	3.74 - 04	2.12 - 04	C	2
			2 794.8	2 795.6	369 330-405 100	5-5	M1	4.42+00	1.79 - 02	B+	2
			2 794.8	2 795.6	369 330–405 100	5–5	E2	1.94 - 03	1.48 - 03	C+	2
13		$^{3}P - ^{1}S$									
				767.44	369 330-499 633	5-1	E2	7.16-01	1.70 - 04	C	2
				754.87	367 159–499 633	3–1	M1	7.93 + 01	1.26-03	C+	2
14		$^{1}D-^{1}S$									
				1 057.83	405 100–499 633	5-1	E2	1.21 + 02	1.43-01	A	2

11.10. Mg x

Lithium isoelectronic sequence Ground state: $1s^22s$ $^2S_{1/2}$

Ionization energy: 367.497 eV=2 964 060 cm⁻¹

11.10.1. Allowed Transitions for Mg X

In general, different sources for computed transition rates for this Li-like spectrum agree very well, including the results of the OP.⁷⁵ Most of the compiled data below have been taken from this source. The high-quality data (based on extensive comparisons) from the other references were available primarily for transitions involving lower-lying levels. Tachiev and Froese Fischer¹⁰² performed extensive MCHF calculations with Breit-Pauli corrections to order α^2 . In this same source, these authors also computed multiconfiguration Dirac-Hartree-Fock calculations. Comparisons between the Hartree-Fock and Dirac-Fock calculations indicate that the perturbative treatment of relativistic effects is still valid at this level of ionization, at least for this spectrum. Yan et al. 127 used a relativistic fully correlated Hylleraas-type variational method; these state-of-the-art calculations provide uniquely high accuracy. Zhang et al. 129 performed relativistic distorted-wave calculations.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) of each of the lines for which a transition rate is quoted by two or more references, 75,102,127,129 as discussed in the general introduction.

A NIST compilation of far-UV lines of Mg X was published recently. The estimated accuracies are different in some cases because a different method of evaluation was used.

11.10.2. References for Allowed Transitions for Mg X

⁷⁵G. Peach, H. E. Saraph, and M. J. Seaton, J. Phys. B 21,

3669 (1988). http://legacy.gsfc.nasa.gov/topbase, downloaded on July 28, 1995 (Opacity Project).

⁷⁸L. I. Podobedova, D. E. Kelleher, J. Reader, and W. L. Wiese, J. Phys. Chem. Ref. Data 33, 495 (2004).

¹⁰²G. Tachiev and C. Froese Fischer, http:// www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on July 22, 2004).

¹²⁷Z.-C. Yan, M. Tambasco, and G. W. F. Drake, Phys. Rev. A 57, 1652 (1998).

¹²⁹H. L. Zhang, D. H. Sampson, and C. J. Fontes, At. Data Nucl. Data Tables 44, 31 (1990).

TABLE 75. Wavelength finding list for allowed lines for Mg X

Wavelength	Mult.
(vac) (Å)	No.
35.366	8
35.827	7
36.518	6
37.644	5
38.766	16
38.826	16
39.668	4
40.019	15
40.083	15
42.294	14
42.362	14
42.366	14
42.525	13
42.597	13
44.050	3
47.229	12
47.310	12
47.317	12
47.788	11
47.879	11

TABLE 75. Wavelength finding list for allowed lines for Mg X—Continued

TABLE 75. Wavelength finding list for allowed lines for Mg X—Continued

Wavelength	Mult.	Wavelength	Mult.
(vac) (Å)	No.	(vac) (Å)	No.
57.876	2	263.769	49
57.920	2	263.992	49
63.152	10	316.456	57
63.295	10	329.815	64
63.311	10	330.033	64
65.673	9	357.654	56
65.845	9	372.717	38
87.344	23	374.813	63
90.212	23 22	374.813 375.094	63
	36		45
92.242		393.005	
92.276	36	393.314	45
94.724	21	410.644	48
95.447	35	411.184	48
95.483	35	414.164	44
98.709	30	440.917	55
98.837	30	457.247	60
100.513	34	467.290	62
100.552	34	467.727	62
102.690	20	592.42	69
107.264	29	609.79	1
107.415	29	624.94	1
109.529	33	690.13	54
109.576	33	725.16	59
119.303	19	755.29	68
125.332	28	757.00	61
125.507	28	758.15	61
125.538	28	1 136.36	72
127.376	27	1 203.37	66
127.588	27	1 256.28	67
128.634	32	1 938.0	71
128.698	32	XX 1 d	3.6.16
170.227	18	Wavelength (air) (Å)	Mult. No.
173.913	42	(all) (A)	NO.
181.534	26		
181.745	52	2 215.1	17
181.851	52	2 281.4	17
181.861	26	5 696	37
181.967	26	5 888	24
185.667	41	6 225	24
189.879	31	6 380	24
190.020	31	10 750	53
190.085	25	13 241	43
190.560	25	13 827	43
194.621	51	Wavenumber	Mult.
194.742	51	wavenumber (cm ⁻¹)	Muit. No.
205.846	40	(CIII)	INO.
213.015	47	3 700	58
216.910	50	3 500	58
217.061	50	2 300	65
247.586	39	1 200	70
257.301	46		

Table 76. Transition probabilities of allowed lines for Mg X (references for this table are as follows: $1 = \text{Peach } et \ al.$, $^{75} \ 2 = \text{Tachiev}$ and Froese Fischer, $^{102} \ 3 = \text{Yan } et \ al.$, $^{127} \ 4 = \text{Zhang } et \ al.$

No.	Transition array	Mult.	$egin{array}{lll} \lambda_{air} & \lambda_{vac} \ (\mathring{A}) \ (\mathring{A}) & ext{or } \sigma \ (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
1	2s-2p	$^{2}S-^{2}P^{\circ}$	614.8	0–162 665	2–6	7.32+00	1.24-01	5.04-01	-0.606	AA	3
			609.79	0-163 990	2-4	7.51 + 00	8.38-02	3.36-01	-0.776	AA	3
			624.94	0–160 015	2–2			1.67-01			
2	2s-3p	$^2S-^2P^{\circ}$	57.89	0–1 727 393	2-6	2.16+03	3.26-01	1.24-01	-0.186	A+	2,4
			57.876	0-1 727 830	2-4	2.16+03	2.16-01	8.25-02	-0.365	A+	2,4
			57.920	0–1 726 520	2–2	2.17+03	1.09-01	4.16-02	-0.662	A+	2,4
3	2s-4p	$^2S-^2P^{\circ}$	44.05	0–2 270 150	2–6	9.90+02	8.64-02	2.51-02	-0.762	B+	4
			44.050	0-2 270 150	2-4	9.88+02	5.75-02	1.67-02	-0.939	$\mathrm{B} +$	4
			44.050	0–2 270 150	2–2	9.93+02	2.89-02	8.38-03	-1.238	B+	4
4	2s-5p	2 S $-^2$ P $^{\circ}$	39.67	0–2 520 900	2-6	5.16+02	3.65-02	9.53-03	-1.137	B+	4
			39.668	0-2 520 900	2-4	5.15+02	2.43-02	6.35-03	-1.313	B+	4
			39.668	0-2 520 900	2-2	5.17+02	1.22-02	3.19-03	-1.613	В	4
5	2s-6p	$^{2}S-^{2}P^{\circ}$	37.64	0–2 656 500	2-6	2.97+02	1.89-02	4.68-03	-1.423	B+	1
			37.644	0–2 656 500	2.4	2.07 . 02	1 26 02	2 12 02	1.500	D I	1.0
			37.644	0-2 656 500	2–4 2–2			3.12-03 1.56-03			LS LS
6	2s-7p	$^{2}S-^{2}P^{\circ}$	36.52	0–2 738 400	2–6			2.70-03			1
	•		26.510	0. 2.720.400	2.4	1.07.00	7.40.02	1 00 02	1.025	C .	T C
			36.518 36.518	0–2 738 400 0–2 738 400	2–4 2–2			1.80-03 8.99-04			LS LS
7	2s-8p	$^{2}S-^{2}P^{\circ}$	35.83	0–2 791 200	2-6			1.71-03			1
	1				2.4						T. C.
			35.827 35.827	0–2 791 200 0–2 791 200	2–4 2–2			1.14-03 5.71-04			LS LS
8	2s-9p	$^{2}S-^{2}P^{\circ}$	35.37	0–2 827 600	2-6			1.15-03			1
	. · · · · · · · · · · · · · · · · · · ·										
			35.366	0–2 827 600	2–4			7.71-04			LS
			35.366	0–2 827 600	2–2	8.80+01	1.65-03	3.84-04	-2.481	C	LS
9	2p-3s	$^{2}P^{\circ}-^{2}S$	65.79	<i>162 665</i> –1 682 700	6–2	1.02+03	2.21-02	2.87-02	-0.877	A	2,4
			65.845	163 990–1 682 700	4–2			1.92-02			2,4
			65.673	160 015–1 682 700	2–2	3.39+02	2.19-02	9.49-03	-1.359	A	2,4
10	2p-3d	$^{2}P^{\circ}-^{2}D$	63.25	162 665–1 743 734	6–10	6.56+03	6.55-01	8.19-01	0.594	A	2,4
			63.295	163 990–1 743 890	4-6	6.55+03	5.90-01	4.92-01	0.373	A	2,4
			63.152	160 015-1 743 500	2-4	5.48+03	6.55 - 01	2.72-01	0.117	A	2,4
			63.311	163 990–1 743 500	4–4	1.09+03	6.56-02	5.47-02	-0.581	A	2,4
11	2p-4s	$^{2}P^{\circ}-^{2}S$	47.85	<i>162 665</i> –2 252 600	6–2	4.01+02	4.59-03	4.33-03	-1.560	B+	2,4
			47.879	163 990–2 252 600	4-2	2.67+02	4.59-03	2.89-03	-1.736	B +	2,4
			47.788	160 015–2 252 600	2–2	1.34+02	4.58-03	1.44-03	-2.038	B+	2,4
12	2p-4d	$^{2}P^{\circ}-^{2}D$	47.28	162 665–2 277 572	6–10	2.21+03	1.24-01	1.16-01	-0.128	A	4
			47.310	163 990–2 277 700	4-6	2.21+03	1.11-01	6.94-02	-0.353	A	4
			47.229	160 015–2 277 380	2-4	1.85+03	1.24-01	3.84-02	-0.606	A	4
			47.317	163 990–2 277 380	4–4	3.66+02	1.23-02	7.66-03	-1.308	B+	4
13	2p-5s	$^{2}P^{\circ}-^{2}S$	42.57	<i>162 665</i> –2 511 600	6–2	1.95+02	1.77-03	1.49-03	-1.974	В	4
			42.597	163 990–2 511 600	4–2	1.32+02	1.80-03	1.01-03	-2.143	В	4

TABLE 76. Transition probabilities of allowed lines for Mg X (references for this table are as follows: $1 = \text{Peach } et \ al.$, $^{75} \ 2 = \text{Tachiev}$ and Froese Fischer, $^{102} \ 3 = \text{Yan } et \ al.$, $^{127} \ 4 = \text{Zhang } et \ al.$ $^{129})$ —Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				42.525	160 015–2 511 600	2–2	6.27+01	1.70-03	4.76-04	-2.469	В	4
14	2p-5d	$^{2}P^{\circ}-^{2}D$		42.34	162 665–2 524 520	6-10	1.03+03	4.62-02	3.86-02	-0.557	B+	4
				42.362	163 990–2 524 600	4-6	1.03+03	4.16-02	2.32-02	-0.779	B+	4
				42.294	160 015–2 524 400	2–4			1.29-02			4
				42.366	163 990–2 524 400	4-4	1.71 + 02	4.60-03	2.57-03	-1.735	B+	4
15	2p-6d	$^{2}P^{\circ}-^{2}D$		40.06	162 665–2 658 800	6-10	5.54+02	2.22-02	1.76-02	-0.875	B+	1
				40.083	163 990–2 658 800	4-6	5.54+02	2.00-02	1.06-02	-1.097	B+	LS
				40.019	160 015-2 658 800	2-4	4.62 + 02	2.22-02	5.85-03	-1.353	B+	LS
				40.083	163 990–2 658 800	4-4			1.17-03			LS
16	2p-7d	$^{2}P^{\circ}-^{2}D$		38.81	162 665–2 739 600	6–10	3.37+02	1.27-02	9.72-03	-1.118	В	1
				38.826	163 990–2 739 600	4–6	3.36+02	1.14-02	5.83-03	-1.341	В	LS
				38.766	160 015-2 739 600	2-4			3.24-03			LS
				38.826	163 990–2 739 600	4-4			6.49-04			LS
17	3s-3p	$^{2}S-^{2}P^{\circ}$	2 237	2 237	1 682 700– <i>1 727 393</i>	2-6	9.39-01	2.11-01	3.11+00	-0.375	A	2
			2 215.1	2 215 9	1 (92 700 1 727 920	2 4	0.67 01	1 42 01	2.00 . 00	0.547		2
			2 281.4	2 215.8 2 282.1	1 682 700–1 727 830 1 682 700–1 726 520	2–4 2–2			2.08+00 $1.04+00$			2 2
18	3s-4p	$^{2}S-^{2}P^{\circ}$		170.23	1 682 700–2 270 150	2–6	2.69+02	3.50-01	3.92-01	-0.155	A	1
	•			170 227	1 (92 700 2 270 150	2.4	2 (0 , 02	2.22 01	2.61 .01	0.222		1.0
				170.227	1 682 700–2 270 150	2–4			2.61-01			LS
				170.227	1 682 700–2 270 150	2–2	2.69+02	1.17-01	1.31-01	-0.631	А	LS
19	3s-5p	$^{2}\mathrm{S}-^{2}\mathrm{P}^{\circ}$		119.30	1 682 700–2 <i>520 900</i>	2–6	1.52+02	9.72-02	7.64-02	-0.711	A	1
				119.303	1 682 700–2 520 900	2-4			5.09 - 02			LS
				119.303	1 682 700–2 520 900	2–2	1.52+02	3.24-02	2.55-02	-1.188	B+	LS
20	3 <i>s</i> -6 <i>p</i>	$^{2}S-^{2}P^{\circ}$		102.69	1 682 700–2 <i>656 500</i>	2-6	9.02+01	4.28-02	2.89-02	-1.068	B+	1
				102.690	1 682 700–2 656 500	2-4	9.01+01	2.85-02	1.93-02	-1.244	B+	LS
				102.690	1 682 700–2 656 500	2–2	9.05+01	1.43 - 02	9.67-03	-1.544	B+	LS
21	3s-7p	2 S $-^2$ P $^{\circ}$		94.72	1 682 700–2 738 400	2-6	5.76+01	2.32-02	1.45-02	-1.333	В	1
				94.724	1 682 700–2 738 400	2-4	5.76+01	1.55-02	9.67-03	-1.509	В	LS
				94.724	1 682 700–2 738 400	2-2	5.76+01	7.75-03	4.83-03	-1.810	В	LS
22	3s-8p	$^{2}S-^{2}P^{\circ}$		90.21	1 682 700–2 791 200	2-6	3.87+01	1.42-02	8.42-03	-1.547	В	1
				90.212	1 682 700–2 791 200	2–4	3 87 ± 01	0.45_03	5.61-03	_1.724	R	LS
				90.212	1 682 700–2 791 200	2-4			2.80-03			LS
23	3s-9p	$^{2}S-^{2}P^{\circ}$		87.34	1 682 700–2 827 600	2–6			5.38-03			1
				87.344	1 682 700–2 827 600	2–4			3.59-03			LS
				87.344	1 682 700–2 827 600	2–2	2./3+01	3.12-03	1.79-03	-2.205	C	LS
24	3p-3d	$^{2}P^{\circ}-^{2}D$	6 120	6 120	1 727 393–1 743 734	6–10	3.59-02	3.37-02	4.08+00	-0.694	A	2
			6 225	6 227	1 727 830–1 743 890	4-6	3.43 - 02	2.99-02	2.45 + 00	-0.922	A	2
			5 888	5 889	1 726 520–1 743 500	2-4	3.38 - 02	3.51 - 02	1.36+00	-1.154	A	2
			6 380	6 382	1 727 830–1 743 500	4–4	5.31-03	3.24 - 03	2.72-01	-1.887	A	2
25	3p-4s	$^{2}\text{P}^{\circ}$ – ^{2}S		190.40	<i>1 727 393</i> –2 252 600	6–2	2.83+02	5.13-02	1.93-01	-0.512	A	2
				190.560	1 727 830–2 252 600	4–2	1.88+02	5.12-02	1.29-01	-0.689	Α	2
				190.085	1 726 520–2 252 600	2–2			6.42-02			2
				1,0.000	20 020 2 202 000		,, i oi	3.13 02	52 02	0.707		-

TABLE 76. Transition probabilities of allowed lines for Mg X (references for this table are as follows: $1 = \text{Peach } et \ al.$, $^{75} \ 2 = \text{Tachiev}$ and Froese Fischer, $^{102} \ 3 = \text{Yan } et \ al.$, $^{127} \ 4 = \text{Zhang } et \ al.$ $^{129})$ —Continued

26			(Å)	or σ (cm ⁻¹) ^a	(cm^{-1})	$g_i - g_k$	(10^8 s^{-1})	f_{ik}	(a.u.)	$\log gf$	Acc.	Source
	3p-4d	$^{2}P^{\circ}-^{2}D$		181.76	1 727 393–2 277 572	6–10	6.97+02	5.76-01	2.07+00	0.539	A	1
				181.861	1 727 830-2 277 700	4-6	6.96+02	5.18-01	1.24+00	0.316	Α	LS
				181.534	1 726 520-2 2 77 380	2-4	5.83 + 02	5.76-01	6.88-01	0.061	Α	LS
				181.967	1 727 830–2 277 380	4-4			1.38-01			LS
27	3p-5s	$^{2}P^{\circ}-^{2}S$		127.52	<i>1 727 393</i> –2 511 600	6–2	1.32+02	1.07-02	2.70-02	-1.192	B+	1
				127.588	1 727 830–2 511 600	4–2	8.77+01	1.07-02	1.80-02	-1.369	B+	LS
				127.376	1 726 520–2 511 600	2–2	4.44+01	1.08 - 02	9.06-03	-1.666	B+	LS
28	3p-5d	$^{2}P^{\circ}-^{2}D$		125.45	1 727 393–2 524 520	6-10	3.45+02	1.36-01	3.36-01	-0.088	A	1
				125.507	1 727 830–2 524 600	4-6	3.44+02	1.22-01	2.02-01	-0.312	A	LS
				125.332	1 726 520-2 524 400	2-4	2.89 + 02	1.36 - 01	1.12 - 01	-0.565	A	LS
				125.538	1 727 830–2 524 400	4–4	5.76+01	1.36-02	2.25-02	-1.264	B+	LS
29	3 <i>p</i> – 6 <i>d</i>	$^{2}P^{\circ}-^{2}D$		107.36	1 727 393–2 658 800	6–10	1.93+02	5.56-02	1.18-01	-0.477	A	1
				107.415	1 727 830–2 658 800	4-6	1.93+02	5.00-02	7.07 - 02	-0.699	A	LS
				107.264	1 726 520-2 658 800	2-4	1.61 + 02	5.56 - 02	3.93 - 02	-0.954	A	LS
				107.415	1 727 830–2 658 800	4–4	3.21+01	5.55 - 03	7.85 - 03	-1.654	B+	LS
30	3p-7d	$^{2}P^{\circ}-^{2}D$		98.79	1 727 393–2 739 600	6–10	1.19+02	2.90-02	5.66-02	-0.759	В	1
				98.837	1 727 830–2 739 600	4-6	1.19+02	2.61-02	3.40-02	-0.981	$\mathrm{B} +$	LS
				98.709	1 726 520-2 739 600	2-4	9.93 + 01	2.90 - 02	1.88 - 02	-1.237	В	LS
				98.837	1 727 830–2 739 600	4-4	1.98+01	2.90-03	3.77 - 03	-1.936	В	LS
31	3d-4p	$^{2}D-^{2}P^{\circ}$		189.96	1 743 734–2 270 150	10-6	4.25+01	1.38-02	8.63-02	-0.860	A	1
				190.020	1 743 890–2 270 150	6-4	3.82+01	1.38-02	5.18-02	-1.082	A	LS
				189.879	1 743 500-2 270 150	4-2	4.26+01	1.15 - 02	2.88 - 02	-1.337	A	LS
				189.879	1 743 500–2 270 150	4–4	4.26+00	2.30-03	5.75 - 03	-2.036	B+	LS
32	3 <i>d</i> -5 <i>p</i>	$^{2}D-^{2}P^{\circ}$		128.67	1 743 734–2 520 900	10-6	1.83+01	2.72-03	1.15-02	-1.565	B+	1
				128.698	1 743 890–2 520 900	6-4	1.64+01	2.72-03	6.91-03	-1.787	B+	LS
				128.634	1 743 500-2 520 900	4-2	1.83 + 01	2.27-03	3.85 - 03	-2.042	B +	LS
				128.634	1 743 500–2 520 900	4-4	1.83+00	4.53 - 04	7.67 - 04	-2.742	В	LS
33	3 <i>d</i> -6 <i>p</i>	$^{2}D-^{2}P^{\circ}$		109.56	1 743 734–2 656 500	10-6	9.54+00	1.03-03	3.71-03	-1.987	B+	1
				109.576	1 743 890–2 656 500	6-4	8.58+00	1.03-03	2.23-03	-2.209	B+	LS
				109.529	1 743 500-2 656 500	4-2	9.54 + 00	8.58 - 04	1.24 - 03	-2.464	В	LS
				109.529	1 743 500–2 656 500	4–4	9.56-01	1.72 - 04	2.48 - 04	-3.162	В	LS
34	3 <i>d</i> -7 <i>p</i>	$^{2}D-^{2}P^{\circ}$		100.54	1 743 734–2 738 400	10-6	5.66+00	5.15-04	1.70-03	-2.288	C+	1
				100.552	1 743 890–2 738 400	6-4	5.10+00	5.15-04	1.02-03	-2.510	C+	LS
				100.513	1 743 500-2 738 400	4-2	5.66+00	4.29 - 04	5.68 - 04	-2.765	C+	LS
				100.513	1 743 500–2 738 400	4-4	5.66-01	8.58-05	1.14-04	-3.464	C	LS
35	3 <i>d</i> -8 <i>p</i>	$^{2}D-^{2}P^{\circ}$		95.47	1 743 734–2 791 200	10-6	3.65+00	2.99-04	9.39-04	-2.524	C	1
				95.483	1 743 890–2 791 200	6-4	3.28+00	2.99-04	5.64-04	-2.746	C+	LS
				95.447	1 743 500–2 791 200	4-2	3.65+00	2.49 - 04	3.13 - 04	-3.002	C	LS
				95.447	1 743 500–2 791 200	4-4			6.26-05			LS
36	3 <i>d</i> -9 <i>p</i>	$^{2}D-^{2}P^{\circ}$		92.26	1 743 734–2 827 600	10-6	2.49+00	1.91-04	5.80-04	-2.719	D+	1
				92.276	1 743 890–2 827 600	6-4	2.24+00	1.91-04	3.48-04	-2.941	C	LS
				92.242	1 743 500-2 827 600	4-2	2.49+00	1.59-04	1.93-04	-3.197	D+	LS
				92.242	1 743 500-2 827 600	4-4	2.40_01	2 19 05	3.86-05	2.006	D	LS

TABLE 76. Transition probabilities of allowed lines for Mg X (references for this table are as follows: $1 = \text{Peach } et \ al.$, $^{75} \ 2 = \text{Tachiev}$ and Froese Fischer, $^{102} \ 3 = \text{Yan } et \ al.$, $^{127} \ 4 = \text{Zhang } et \ al.$ $^{129})$ —Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
37	4s-4p	$^{2}S-^{2}P^{\circ}$	5 700	5 698	2 252 600–2 270 150	2-6	1.91-01	2.79-01	1.05+01	-0.253	A+	1
			5 696	5 698	2 252 600–2 270 150	2-4	1.91-01	1.86-01	6.98+00	-0.429	A+	LS
			5 696	5 698	2 252 600–2 270 150	2–2	1.91-01	9.31-02	3.49+00	-0.730	A+	LS
38	4s-5p	$^{2}S-^{2}P^{\circ}$		372.72	2 252 600–2 520 900	2-6	6.15+01	3.84-01	9.42-01	-0.115	A	1
				372.717	2 252 600–2 520 900	2-4	6.15+01	2.56-01	6.28-01	-0.291	A	LS
				372.717	2 252 600–2 520 900	2–2	6.15+01	1.28 - 01	3.14-01	-0.592	A	LS
39	4s - 6p	$^{2}S-^{2}P^{\circ}$		247.59	2 252 600–2 656 500	2–6	3.94+01	1.09-01	1.77-01	-0.662	A	1
				247.586	2 252 600–2 656 500	2-4	3.94+01	7.24-02	1.18-01	-0.839	A	LS
				247.586	2 252 600–2 656 500	2–2	3.94+01	3.62-02	5.90-02	-1.140	A	LS
40	4s-7p	$^{2}S-^{2}P^{\circ}$		205.85	2 252 600–2 738 400	2–6	2.56+01	4.87-02	6.60-02	-1.011	B+	1
				205.846	2 252 600–2 738 400	2-4	2.56+01	3.25 - 02	4.40-02	-1.187	$\mathrm{B}+$	LS
				205.846	2 252 600–2 738 400	2–2	2.55+01	1.62-02	2.20-02	-1.489	В	LS
41	4s - 8p	$^{2}S-^{2}P^{\circ}$		185.67	2 252 600–2 791 200	2-6	1.73+01	2.69-02	3.28-02	-1.269	В	1
				185.667	2 252 600–2 791 200	2-4	1.73+01	1.79-02	2.19-02	-1.446	В	LS
				185.667	2 252 600–2 791 200	2–2	1.73+01	8.96-03	1.10-02	-1.747	В	LS
42	4s - 9p	$^{2}S-^{2}P^{\circ}$		173.91	2 252 600–2 827 600	2-6	1.22+01	1.67-02	1.91-02	-1.476	C+	1
				173.913	2 252 600–2 827 600	2-4	1.22+01	1.11-02	1.27-02	-1.654	C+	LS
				173.913	2 252 600–2 827 600	2-2	1.23+01	5.56-03	6.37 - 03	-1.954	C+	LS
43	4p-4d	$^{2}P^{\circ}-^{2}D$	13 470	13 473	2 270 150–2 277 572	6–10	1.39-02	6.45-02	1.73+01	-0.412	A+	1
			13 241	13 245	2 270 150–2 277 700	4-6	1.51-02	5.96-02	1.04+01	-0.623	A+	LS
			13 827	13 831	2 270 150–2 277 380	2-4			5.78 + 00			LS
			13 827	13 831	2 270 150–2 277 380	4–4	2.21-03	6.35-03	1.16+00	-1.595	A	LS
44	4p - 5s	$^{2}P^{\circ}-^{2}S$		414.16	<i>2 270 150</i> –2 511 600	6–2	9.44+01	8.09-02	6.62-01	-0.314	A	1
				414.164	2 270 150–2 511 600	4–2	6.29+01	8.09-02	4.41 - 01	-0.490	A	LS
				414.164	2 270 150–2 511 600	2–2	3.15+01	8.09-02	2.21-01	-0.791	A	LS
45	4p - 5d	$^{2}P^{\circ}-^{2}D$		393.13	2 270 150–2 524 520	6–10	1.45+02	5.60-01	4.35+00	0.526	A	1
				393.005	2 270 150–2 524 600	4-6	1.45 + 02	5.04-01	2.61+00	0.304	A+	LS
				393.314	2 270 150–2 524 400	2-4			1.45 + 00			LS
				393.314	2 270 150–2 524 400	4–4	2.41+01	5.60-02	2.90-01	-0.650	A	LS
46	4p - 6d	$^{2}P^{\circ}-^{2}D$		257.30	2 270 150–2 658 800	6–10	8.59+01	1.42-01	7.22-01	-0.070	A	1
				257.301	2 270 150–2 658 800	4-6			4.34-01			LS
				257.301	2 270 150–2 658 800	2–4			2.41-01			LS
				257.301	2 270 150–2 658 800	4–4	1.43+01	1.42-02	4.81-02	-1.246	A	LS
47	4p - 7d	$^{2}P^{\circ}-^{2}D$		213.02	2 270 150–2 739 600	6–10	5.37+01	6.09-02	2.56-01	-0.437	B+	1
				213.015	2 270 150–2 739 600	4–6			1.54-01			LS
				213.015	2 270 150–2 739 600	2–4			8.54-02			LS
		_		213.015	2 270 150–2 739 600	4–4	8.95+00	0.09-03	1.71-02	-1.013	В	LS
48	4d-5p	$^{2}D-^{2}P^{\circ}$		410.97	2 277 572–2 520 900	10–6	2.25+01	3.41-02	4.62-01	-0.467	A	1
				411.184	2 277 700–2 520 900	6–4			2.77-01			LS
				410.644	2 277 380–2 520 900	4–2			1.54-01			LS
				410.644	2 277 380–2 520 900	4–4	2.25+00	5.69-03	3.08 - 02	-1.643	A	LS

TABLE 76. Transition probabilities of allowed lines for Mg X (references for this table are as follows: 1=Peach *et al.*, ⁷⁵ 2=Tachiev and Froese Fischer, ¹⁰² 3=Yan *et al.*, ¹²⁷ 4=Zhang *et al.* ¹²⁹)—Continued

	array	Mult.	(Å)	$\lambda_{\rm vac} ({\rm \AA})$ or $\sigma ({\rm cm}^{-1})^{\rm a}$	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	log gf	Acc.	Source
49	4 <i>d</i> -6 <i>p</i>	$^{2}D-^{2}P^{\circ}$		263.90	2 277 572–2 656 500	10-6	1.12+01	7.01-03	6.09-02	-1.154	B+	1
				263.992	2 277 700–2 656 500	6-4	1.00+01	7.00 - 03	3.65 - 02	-1.377	A	LS
				263.769	2 277 380–2 656 500	4–2	1.12+01	5.84 - 03	2.03-02	-1.632	B+	LS
				263.769	2 277 380–2 656 500	4–4	1.12+00	1.17-03	4.06-03	-2.330	B+	LS
50	4 <i>d</i> -7 <i>p</i>	$^{2}D-^{2}P^{\circ}$		217.00	2 277 572–2 738 400	10-6	6.40+00	2.71-03	1.94-02	-1.567	В	1
				217.061	2 277 700–2 738 400	6-4	5.75+00	2.71 - 03	1.16-02	-1.789	В	LS
				216.910	2 277 380–2 738 400	4–2			6.46 - 03			LS
				216.910	2 277 380–2 738 400	4–4	6.41 - 01	4.52-04	1.29-03	-2.743	C+	LS
51	4 <i>d</i> -8 <i>p</i>	$^{2}D-^{2}P^{\circ}$		194.69	2 277 572–2 791 200	10-6	4.05+00	1.38-03	8.85-03	-1.860	В	1
				194.742	2 277 700–2 791 200	6–4			5.31 - 03			LS
				194.621	2 277 380–2 791 200	4–2			2.95 - 03			LS
				194.621	2 277 380–2 791 200	4–4	4.05 - 01	2.30-04	5.89-04	-3.036	C+	LS
52	4 <i>d</i> -9 <i>p</i>	$^{2}D-^{2}P^{\circ}$		181.81	2 277 572–2 827 600	10-6	2.72+00	8.09-04	4.84-03	-2.092	C	1
				181.851	2 277 700–2 827 600	6-4	2.45+00	8.09-04	2.91-03	-2.314	C	LS
				181.745	2 277 380–2 827 600	4-2	2.72+00	6.74 - 04	1.61 - 03	-2.569	C	LS
				181.745	2 277 380–2 827 600	4–4	2.73-01	1.35 - 04	3.23 - 04	-3.268	C	LS
53	5 <i>s</i> -5 <i>p</i>	$^{2}S-^{2}P^{\circ}$	10 750	10 753	2 511 600–2 520 900	2-6	7.15-02	3.72-01	2.63+01	-0.128	A+	1
			10 750	10 753	2 511 600–2 520 900	2-4	7.15-02	2.48-01	1.76+01	-0.305	A+	LS
			10 750	10 753	2 511 600–2 520 900	2–2	7.15 - 02	1.24-01	8.78+00	-0.606	A+	LS
54	5 <i>s</i> -6 <i>p</i>	$^{2}S-^{2}P^{\circ}$		690.1	2 511 600–2 656 500	2-6	1.98+01	4.24-01	1.93+00	-0.072	A	1
				690.13	2 511 600–2 656 500	2–4	1.98+01	2.83-01	1.29+00	-0.247	A	LS
				690.13	2 511 600–2 656 500	2–2	1.97+01	1.41-01	6.41-01	-0.550	A	LS
55	5 <i>s</i> -7 <i>p</i>	$^{2}S-^{2}P^{\circ}$		440.92	2 511 600–2 738 400	2-6	1.38+01	1.20-01	3.49-01	-0.620	B+	1
				440.917	2 511 600–2 738 400	2-4	1.38+01	8.02-02	2.33-01	-0.795	$\mathrm{B} +$	LS
				440.917	2 511 600–2 738 400	2–2	1.38+01	4.01-02	1.16-01	-1.096	$\mathrm{B} +$	LS
56	5 <i>s</i> -8 <i>p</i>	$^2S - ^2P^{\circ}$		357.65	2 511 600–2 791 200	2-6	9.40+00	5.41-02	1.27-01	-0.966	B+	1
				357.654	2 511 600-2 791 200	2-4	9.41+00	3.61-02	8.50-02	-1.141	B+	LS
				357.654	2 511 600–2 791 200	2–2	9.39+00	1.80-02	4.24-02	-1.444	$\mathrm{B} + $	LS
57	5 <i>s</i> -9 <i>p</i>	$^{2}S-^{2}P^{\circ}$		316.46	2 511 600–2 827 600	2-6	6.71+00	3.02-02	6.29-02	-1.219	В	1
				316.456	2 511 600–2 827 600	2–4	6.69±00	2.01_02	4.19-02	_1 306	R	LS
				316.456	2 511 600–2 827 600	2–2			2.10-02			LS
58	5 <i>p</i> – 5 <i>d</i>	$^{2}P^{\circ}-^{2}D$		3 620 cm ⁻¹	2 520 900–2 524 520	6–10	4.49-03	8.65-02	4.75+01	-0.285	A+	1
				3 700 cm ⁻¹	2 520 900–2 524 600	4–6	4.87-03	8.00-02	2.85+01	-0.495	A+	LS
				3 500 cm ⁻¹	2 520 900–2 524 400	2-4			1.58+01			LS
				3 500 cm ⁻¹	2 520 900–2 524 400	4-4			3.16+00			
59	5 <i>p</i> -6 <i>d</i>	$^{2}P^{\circ}-^{2}D$		725.2	2 520 900–2 658 800	6–10	4.31+01	5.67-01	8.12+00	0.532	A+	1
				725.16	2 520 900–2 658 800	4-6	4.31+01	5.10-01	4.87+00	0.310	A+	LS
				725.16	2 520 900-2 658 800	2-4	3.60+01	5.67-01	2.71 + 00	0.055	A+	LS
				725.16	2 520 900–2 658 800	4-4			5.41-01			LS
60	5 <i>p</i> -7 <i>d</i>	$^{2}P^{\circ}-^{2}D$		457.25	2 520 900–2 739 600	6–10	2.85+01	1.49-01	1.35+00	-0.049	A	1
				457.247	2 520 900–2 739 600	4–6	2.85+01	1.34-01	8.07-01	-0.271	A	LS
						-						

TABLE 76. Transition probabilities of allowed lines for Mg X (references for this table are as follows: $1 = \text{Peach } et \ al.$, $^{75} \ 2 = \text{Tachiev}$ and Froese Fischer, $^{102} \ 3 = \text{Yan } et \ al.$, $^{127} \ 4 = \text{Zhang } et \ al.$ $^{129})$ —Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
				457.247	2 520 900–2 739 600	4-4	4.75+00	1.49-02	8.97-02	-1.225	B+	LS
61	5 <i>d</i> -6 <i>p</i>	$^{2}D-^{2}P^{\circ}$		757.7	2 524 520–2 656 500	10-6	1.12+01	5.80-02	1.45+00	-0.237	A	1
				758.15	2 524 600–2 656 500	6-4	1.01+01	5.80-02	8.69-01	-0.458	A	LS
				757.00	2 524 400–2 656 500	4-2	1.13+00	4.84 - 02	4.82 - 01	-0.713	A	LS
				757.00	2 524 400–2 656 500	4–4	1.13+00	9.69-03	9.66-02	-1.412	A	LS
62	5 <i>d</i> -7 <i>p</i>	$^{2}D-^{2}P^{\circ}$		467.55	2 524 520–2 738 400	10-6	6.21+00	1.22-02	1.88-01	-0.914	B+	1
				467.727	2 524 600–2 738 400	6-4	5.58+00	1.22-02	1.13-01	-1.135	$\mathrm{B}+$	LS
				467.290	2 524 400-2 738 400	4-2	6.23+00	1.02 - 02	6.28 - 02	-1.389	$\mathrm{B} +$	LS
				467.290	2 524 400–2 738 400	4–4	6.20-01	2.03-03	1.25 - 02	-2.090	В	LS
63	5 <i>d</i> -8 <i>p</i>	$^{2}D-^{2}P^{\circ}$		374.98	2 524 520–2 791 200	10-6	3.79+00	4.79-03	5.91-02	-1.320	В	1
				375.094	2 524 600–2 791 200	6-4	3.41+00	4.79-03	3.55-02	-1.542	$\mathrm{B}+$	LS
				374.813	2 524 400–2 791 200	4-2	3.79+00	3.99-03	1.97 - 02	-1.797	В	LS
				374.813	2 524 400–2 791 200	4–4	3.79-01	7.98-04	3.94-03	-2.496	В	LS
64	5 <i>d</i> -9 <i>p</i>	$^{2}D-^{2}P^{\circ}$		329.95	2 524 520–2 827 600	10-6	2.50+00	2.45-03	2.66-02	-1.611	C+	1
				330.033	2 524 600-2 827 600	6-4	2.25+00	2.45-03	1.60-02	-1.833	C+	LS
				329.815	2 524 400-2 827 600	4-2	2.50+01	2.04 - 03	8.86-03	-2.088	C+	LS
				329.815	2 524 400–2 827 600	4–4	2.51-01	4.09-04	1.78 - 03	-2.786	C	LS
65	6 <i>p</i> – 6 <i>d</i>	$^{2}P^{\circ}-^{2}D$		$2~300~cm^{-1}$	2 656 500–2 658 800	6–10	2.56-03	1.21-01	1.04+02	-0.139	A+	1
				$2\ 300\ cm^{-1}$	2 656 500-2 658 800	4-6	2.56-03	1.09-01	6.24+01	-0.361	A+	LS
				$2\ 300\ cm^{-1}$	2 656 500-2 658 800	2-4	2.13-03	1.21 - 01	3.46+01	-0.616	A+	LS
				$2\ 300\ cm^{-1}$	2 656 500–2 658 800	4-4	4.27 - 04	1.21-02	6.93+00	-1.315	A+	LS
66	6 <i>p</i> – 7 <i>d</i>	$^{2}P^{\circ}-^{2}D$		1 203.4	2 656 500–2 739 600	6–10	1.62+01	5.87-01	1.39+01	0.547	A	1
				1 203.37	2 656 500–2 739 600	4-6	1.62+01	5.28-01	8.37 + 00	0.325	A	LS
				1 203.37	2 656 500–2 739 600	2-4	1.35+01	5.87 - 01	4.65+00	0.070	A	LS
				1 203.37	2 656 500–2 739 600	4-4	2.70+00	5.87-02	9.30-01	-0.629	A	LS
67	6 <i>d</i> -7 <i>p</i>	$^{2}D-^{2}P^{\circ}$		1 256.3	2 658 800–2 738 400	10-6	5.94+00	8.43-02	3.49+00	-0.074	A	1
				1 256.28	2 658 800–2 738 400	6-4	5.34+00	8.43-02	2.09+00	-0.296	A	LS
				1 256.28	2 658 800–2 738 400	4–2			1.16+00			LS
				1 256.28	2 658 800–2 738 400	4–4	5.96-01	1.41 - 02	2.33-01	-1.249	B+	LS
68	6 <i>d</i> -8 <i>p</i>	$^{2}D-^{2}P^{\circ}$		755.3	2 658 800–2 791 200	10-6	3.51+00	1.80-02	4.47-01	-0.745	B+	1
				755.29	2 658 800–2 791 200	6-4	3.16+00	1.80-02	2.69-01	-0.967	$\mathrm{B} +$	LS
				755.29	2 658 800–2 791 200	4–2	3.51+00	1.50 - 02	1.49 - 01	-1.222	B +	LS
				755.29	2 658 800–2 791 200	4–4	3.50-01	2.99-03	2.97-02	-1.922	B+	LS
69	6 <i>d</i> -9 <i>p</i>	$^{2}D-^{2}P^{\circ}$		592.4	2 658 800–2 827 600	10-6	2.26+00	7.13-03	1.39-01	-1.147	В	1
				592.42	2 658 800–2 827 600	6-4	2.03+00	7.13-03	8.34-02	-1.369	В	LS
				592.42	2 658 800–2 827 600	4-2	2.26+01	5.94-03	4.63 - 02	-1.624	В	LS
				592.42	2 658 800–2 827 600	4-4	2.26-01	1.19-03	9.28-03	-2.322	C+	LS
70	7p-7d	$^{2}P^{\circ}-^{2}D$		$1\ 200\ cm^{-1}$	2 738 400–2 739 600	6–10	6.98-04	1.21-01	1.99+02	-0.139	A+	1
				1 200 cm ⁻¹	2 738 400–2 739 600	4-6	6.98-04	1.09-01	1.20+02	-0.361	A+	LS
				1 200 cm ⁻¹	2 738 400–2 739 600	2-4	5.81 - 04	1.21 - 01	6.64+01	-0.616	A+	LS
				1 200 cm ⁻¹	2 738 400–2 739 600	4-4	1.16-04	1.21-02	1.33 + 01	-1.315	A	LS
71	7 <i>d</i> -8 <i>p</i>	$^{2}D-^{2}P^{\circ}$		1 938	2 739 600–2 791 200	10-6	3.31+00	1.12-01	7.14+00	0.049	A	1

Mult.

No.

TABLE 76. Transition probabilities of allowed lines for Mg X (references for this table are as follows: 1=Peach *et al.*, ⁷⁵ 2=Tachiev and Froese Fischer, ¹⁰² 3=Yan *et al.*, ¹²⁷ 4=Zhang *et al.* ¹²⁹)—Continued

No.	Transition array	Mult.	$\begin{array}{c} \lambda_{air} \\ (\mathring{A}) \end{array}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	$\begin{array}{c} A_{ki} \\ (10^8 \text{ s}^{-1}) \end{array}$	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				1 938.0	2 739 600–2 791 200	6–4	2.98+00	1.12-01	4.29+00	-0.173	A	LS
				1 938.0	2 739 600-2 791 200	4-2	3.31+00	9.31-02	2.38+00	-0.429	A	LS
				1 938.0	2 739 600–2 791 200	4-4	3.30-01	1.86 - 02	4.75 - 01	-1.128	A	LS
72	7 <i>d</i> -9 <i>p</i>	$^{2}D-^{2}P^{\circ}$		1 136.4	2 739 600–2 827 600	10-6	2.08+00	2.42-02	9.06-01	-0.616	В	1
				1 136.36	2 739 600–2 827 600	6–4	1.88+00	2.42-02	5.43-01	-0.838	В	LS
				1 136.36	2 739 600-2 827 600	4-2	2.09+00	2.02-02	3.02-01	-1.093	В	LS
				1 136.36	2 739 600–2 827 600	4-4	2.09-01	4.04 - 03	6.05 - 02	-1.792	C+	LS

Wavelength

(vac) (Å)

11.11. Mg xı

Helium isoelectronic sequence

Ground state: $1s^2$ 1S_0

Ionization energy: 1761.804 eV = 14 209 908 cm⁻¹

11.11.1. Allowed Transitions for Mg XI

Not surprisingly, the computed transition rates for this heliumlike spectrum are very accurate. This applies as well to the results of the OP.²⁶ Most of the compiled data below have been taken from this source. Khan *et al.*⁵⁰ started with hydrogenic wave functions and then applied the effective-charge technique.

To estimate accuracies, we pooled the relative standard deviation of the mean (RSDM) of each of the lines for which a transition rate is quoted by both of the references cited below, as discussed in the General Introduction.

11.11.2. References for Allowed Transitions for Mg XI

²²J. A. Fernley, K. T. Taylor, and M. J. Seaton, J. Phys B 20, 6457 (1987).

⁵⁰F. Khan, G. S. Khandelwal, and J. W.Wilson, Astrophys. J. **329**, 489 (1988).

TABLE 77. Wavelength finding list for allowed lines for Mg XI

Wavelength (vac) (Å)	Mult. No.
7.104	9
7.119	8
7.142	7
7.174	6
7.225	5
7.310	4
7.473	3
7.851	2
9.169	1
30.879	22

TABLE 77. Wavelength finding list for allowed lines for Mg XI—Continued

(vac) (11)	110.
31.179	21
31.608	20
32.254	19
33.304	18
34.022	16
34.025	16
34.026	16
35.132	33
35.142	33
35.185	33
35.186	33
35.204	17
35.241	31
35.251	31
35.295	31
36.074	34
36.120	32
37.918	14
37.925	14
37.926	14
39.256	29
39.268	29
39.269	29
39.321	29
39.323	29
39.324	29
39.332	15
39.526	27
39.539	27
39.595	27
40.433	30
40.545	28
50.438	12
50.464	12
50.471	12
52.599	25
52.620	25
52.621	25
52.653	13
52.709	25
52.719	25

^aWavelengths (Å) are always given unless cm⁻¹ is indicated.

²⁶J. A. Fernley, K. T. Taylor, and M. J. Seaton, http://legacy.gsfc.nasa.gov/topbase, downloaded on July 28, 1995 (Opacity Project). See Fernley *et al.* (Ref. 22).

TABLE 77. Wavelength finding list for allowed lines for Mg XI—Continued

Table 77. Wavelength finding list for allowed lines for Mg XI—Continued

Vavelength vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
2.721	25	156.202	56
.787	23	156.212	56
.811	23	156.305	56
.915	23	156.311	56
.714	26	156.321	56
.197	24	156.338	56
.590	45	157.488	48
.466	64	158.834	71
.314	44	160.582	84
.233	63	176.633	70
.866	43	178.797	83
.848	62	213.486	69
.912	42	216.656	82
.000	61	248.722	93
040	41	250.933	100
327	60	269.590	92
1.605	39	272.190	99
1.628	39	305.410	99
1.634	39	308.751	98
4.052	40	319.095	67
4.063	53	319.328	67
4.091	53	319.387	67
4.092	53	326.386	68
4.196	53	327.225	77
4.205	53	327.337	77
4.206	53	327.345	77
5.025	51	327.724	77
5.054	51	327.813	77
5.171	51	327.822	77
5.813	59	333.853	81
6.135	58	336.231	78
6.140	58	336.932	75
6.161	58	337.059	75
6.165	58	337.564	75
6.167	58	337.847	80
6.183	58	337.864	80
6.307	54	338.049	80
6.709	52	338.107	80
2.002	73	338.125	80
3.398	86	338.174	80
6.583	37	340.284	76
6.678	37	378.809	90
6.702	37	383.963	97
8.568	72	601.49	89
0.096	85	614.58	96
0.838	38	997.49	10
1.076	49	1 034.32	10
1.133	49	1 043.26	10
1.136	49	1 474.19	10
1.337	49	1 7/7.17	11
1.374	49		
1.378	49	W 1 3	
4.567	57	Wavelength	Mult.
5.153	47	(air) (Å)	No.
5.216	47	3 620.1	35
5.471	47	3 764.1	35
5.806	50	3 801.9	35

TABLE 77. Wavelength finding list for allowed lines for Mg XI—Continued

TABLE 77. Wavelength finding list for allowed lines for Mg XI—Continued

Wavelength (vac) (Å)	Mult. No.	Wavelength (vac) (Å)	Mult. No.
5 074.2	36	16 166	74
5 360	46	16 601	74
17 359	87	16 643	74
5 452	46	Wavenumber	Mult.
5 469	46	(cm^{-1})	No.
5 747	46	4.226	00
925	46	4 226	88
944	46	3 708	55
8 075	87	3 331	94
3 780	65	3 281	94
136	65	3 273	94
230	65	3 136	94
2 062	66	3 053	94
15 233	74	3 045	94
18 267	87	1 435	79
15 461	74	683	95
15 497	74		

Table 78. Transition probabilities of allowed lines for Mg XI (references for this table are as follows: $1 = \text{Fernley } et \ al.^{26}$ and $2 = \text{Khan } et \ al.^{50}$)

No.	array	Mult.	$\begin{array}{ccc} \lambda_{air} & & \lambda_{vac} \; (\mathring{A}) \\ (\mathring{A}) & & \text{or} \; \sigma \; (cm^{-1})^a \end{array}$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10^8 s^{-1})	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
1	$1s^2 - 1s2p$	$^{1}S-^{1}P^{\circ}$	9.169	0–10 906 612	1–3	1.96+05	7.41-01	2.24-02	-0.130	A+	1,2
2	$1s^2 - 1s3p$	$^{1}S-^{1}P^{\circ}$	7.851	0–12 738 006	1–3	5.43+04	1.50-01	3.89-03	-0.824	A+	1,2
3	$1s^2 - 1s4p$	$^{1}S-^{1}P^{\circ}$	7.473	0–13 381 265	1–3	2.24+04	5.62-02	1.38-03	-1.250	A+	1,2
4	$1s^2 - 1s5p$	$^{1}S-^{1}P^{\circ}$	7.310	0–13 679 363	1–3	1.13+04	2.72-02	6.56-04	-1.565	A+	1,2
5	$1s^2 - 1s6p$	$^{1}S-^{1}P^{\circ}$	7.225	0–13 841 392	1–3	6.52+03	1.53-02	3.64-04	-1.815	A+	1,2
6	$1s^2 - 1s7p$	$^{1}S-^{1}P^{\circ}$	7.174	0–13 939 122	1–3	4.10+03	9.50-03	2.24-04	-2.022	A	1,2
7	$1s^2 - 1s8p$	$^{1}S-^{1}P^{\circ}$	7.142	0–14 002 566	1–3	2.74+03	6.29-03	1.48-04	-2.201	A	1,2
8	$1s^2 - 1s9p$	$^{1}S-^{1}P^{\circ}$	7.119	0–14 046 070	1–3	1.92+03	4.39-03	1.03-04	-2.358	A	1,2
9	$1s^2 - 1s10p$	$^{1}S-^{1}P^{\circ}$	7.104	0–14 077 192	1–3			7.44-05			1,2
10	1s2s-1s2p	$^{3}S-^{3}P^{\circ}$	1 014.5	10 736 136–10 834 709	3–9			6.43-01			1
10	1020 102p	5 1	997.49	10 736 136–10 836 388	3–5			3.57-01			LS
			1 034.32	10 736 136–10 832 818	3–3			2.15-01			LS
			1 043.26	10 736 136–10 831 989	3–1			7.14-02			LS
11		$^{1}S-^{1}P^{\circ}$	1 474.19	10 838 778–10 906 612	1–3	4.72-01	4.61-02	2.24-01	-1.336	A	1
12	1s2s-1s3p	$^{3}S-^{3}P^{\circ}$	50.45	10 736 136–12 718 287	3–9	3.30+03	3.78-01	1.88-01	0.055	A	1
			50.420	10.726.126.12.710.706	2.5	2.20 - 02	2.10 01	1.05.01	0.201		LS
			50.438	10 736 136–12 718 786	3–5			1.05-01			
			50.464	10 736 136–12 717 729	3–3			6.28-02			LS
			50.471	10 736 136–12 717 465	3–1	3.30+03	4.20-02	2.09-02	-0.900	Α	LS
13		$^{1}S-^{1}P^{\circ}$	52.653	10 838 778–12 738 006	1–3	3.18+03	3.96-01	6.86-02	-0.402	A	1
14	1s2s-1s4p	$^3S - ^3P^{\circ}$	37.92	10 736 136– <i>13 373 168</i>	3–9	1.46+03	9.43-02	3.53-02	-0.548	A	1
			37.918	10 736 136–13 373 378	3–5	1.46+03	5.24-02	1.96-02	-0.804	A	LS
			37.925	10 736 136–13 372 934	3–3			1.18-02			LS
			37.926	10 736 136–13 372 822	3–1			3.93-03			LS

TABLE 78. Transition probabilities of allowed lines for Mg XI (references for this table are as follows: 1=Fernley et al. 26 and 2=Khan et al. 50)—Continued

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
15		$^{1}S-^{1}P^{\circ}$		39.332	10 838 778–13 381 265	1–3	1.40+03		1.26-02	-1.013	A	1
16	1s2s-1s5p	$^{3}S - ^{3}P^{\circ}$		34.02	10 736 136– <i>13 675 269</i>	3–9	7.50+02	3.90-02	1.31-02	-0.932	A	1
				34.022	10 736 136–13 675 377	3–5	7.50+02	2.17-02	7.29-03	-1.186	Α	LS
				34.025	10 736 136–13 675 149	3–3			4.37-03			LS
				34.026	10 736 136–13 675 091	3–1			1.46-03			LS
17		$^{1}S-^{1}P^{\circ}$		35.204	10 838 778–13 679 363	1–3	7.19+02	4.01-02	4.65-03	-1.397	A	1
18	1s2s-1s6p	$^{1}S-^{1}P^{\circ}$		33.304	10 838 778–13 841 392	1–3	4.17+02	2.08-02	2.28-03	-1.682	A	1
19	1s2s-1s7p	$^{1}S-^{1}P^{\circ}$		32.254	10 838 778–13 939 122	1–3	2.63+02	1.23-02	1.31-03	-1.910	A	1
20	1s2s-1s8p	$^{1}S-^{1}P^{\circ}$		31.608	10 838 778–13 002 566	1–3	1.76+02	7.91-03	8.23-04	-2.102	A	1
21	1s2s-1s9p	$^{1}S-^{1}P^{\circ}$		31.179	10 838 778–14 046 070	1–3	1.24+02	5.40-03	5.54-04	-2.268	A	1
22	1s2s-1s10p	$^{1}S-^{1}P^{\circ}$		30.879	10 838 778–14 077 192	1–3	9.02+01	3.87-03	3.93-04	-2.412	A	1
23	1s2p-1s3s	$^{3}P^{\circ}-^{3}S$		53.87	<i>10 834 709</i> –12 691 170	9–3	1.20+03	1.74-02	2.78-02	-0.805	A	1
				53.915	10 836 388-12 691 170	5-3	6.65+02	1.74-02	1.54-02	-1.060	A	LS
				53.811	10 832 818-12 691 170	3-3	4.03 + 02	1.75 - 02	9.30-03	-1.280	A	LS
				53.787	10 831 989–12 691 170	1-3	1.34+02	1.75 - 02	3.10-03	-1.757	A	LS
24		$^{1}P^{\circ}-^{1}S$		55.197	10 906 612–12 718 304	3–1	1.12+03	1.70-02	9.27-03	-1.292	A	1
25	1s2p-1s3d	$^{3}P^{\circ}-^{3}D$		52.67	10 834 709–12 733 392	9–15	9.76+03	6.76-01	1.06+00	0.784	A	1
				52.709	10 836 388-12 733 603	5–7	9.74+03	5.68-01	4 93-01	0.453	Α	LS
				52.620	10 832 818–12 733 223	3–5		5.08-01		0.183		LS
				52.599	10 831 989–12 733 183	1–3			1.17-01			LS
				52.719	10 836 388–12 733 223	5–5			8.76-02			LS
				52.621	10 832 818–12 733 183	3–3			8.78-02			LS
				52.721	10 836 388–12 733 183	5–3			5.87-03			LS
26		$^{1}P^{\circ}-^{1}D$		54.714	10 906 612–12 734 298	3–5			3.79-01	0.323		1
27	1s2p-1s4s	$^{3}P^{\circ}-^{3}S$		39.57	<i>10 834 709</i> –13 361 991	9-3	4.81+02	3.76-03	4.41-03	-1.471	A	1
				39.595	10 836 388–13 361 991	5–3	2 67+02	3 76_03	2.45-03	_1 726	Λ	LS
				39.539	10 832 818–13 361 991	3–3			1.47-03			LS
				39.526	10 831 989–13 361 991	1–3			4.89-04			LS
		1- 9 1										
28		$^{1}P^{\circ}-^{1}S$		40.545	10 906 612–13 372 977	3–1			1.50-03			1
29	1s2p-1s4d	$^{3}P^{\circ} - ^{3}D$		39.30	10 834 709–13 379 473	9–15			1.43-01	0.041		1
				39.321	10 836 388–13 379 562	5–7			6.67 - 02			LS
				39.268	10 832 818–13 379 400	3–5			3.56 - 02			LS
				39.256	10 831 989–13 379 385	1–3			1.58 - 02			LS
				39.323	10 836 388–13 379 400	5–5	7.89 + 02	1.83 - 02	1.18 - 02	-1.039	A	LS
				39.269	10 832 818–13 379 385	3–3	1.32 + 03	3.06 - 02	1.19 - 02	-1.037	A	LS
				39.324	10 836 388–13 379 385	5–3	8.77+01	1.22 - 03	7.90-04	-2.215	A	LS
30		$^{1}P^{\circ}-^{1}D$		40.433	10 906 612–13 379 830	3–5	2.96+03	1.21-01	4.83-02	-0.440	A	1
31	1s2p-1s5s	$^{3}P^{\circ}-^{3}S$		35.27	<i>10 834 709</i> –13 669 618	9–3	2.38+02	1.48-03	1.55-03	-1.875	A	1
				35.295	10 836 388-13 669 618	5–3	1.32+02	1.48-03	8.60-04	-2.131	A	LS
				35.251	10 832 818-13 669 618	3–3	7.94 + 01	1.48 - 03	5.15 - 04	-2.353	A	LS
				35.241	10 831 989-13 669 618	1-3	2.65+01	1.48 - 03	1.72 - 04	-2.830	A	LS
32		$^{1}P^{\circ}-^{1}S$		36.120	10 906 612–13 675 137	3–1	2.27+02	1.48-03	5.28-04	-2.353	A	1

Table 78. Transition probabilities of allowed lines for Mg XI (references for this table are as follows: 1=Fernley et al. 26 and 2=Khan et al. 50)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
33	1s2p-1s5d	$^{3}P^{\circ}-^{3}D$		35.16	10 834 709–13 678 467	9–15	1.47+03	4.53-02	4.72-02	-0.390	A	1
				35.185	10 836 388-13 678 513	5–7	1.46+03	3.80 - 02	2.20 - 02	-0.721	A	LS
				35.142	10 832 818-13 678 430	3-5	1.10+03	3.40-02	1.18-02	-0.991	A	LS
				35.132	10 831 989-13 678 422	1-3	8.16+02	4.53 - 02	5.24-03	-1.344	A	LS
				35.186	10 836 388-13 678 430	5-5	3.66+02	6.79 - 03	3.93-03	-1.469	A	LS
				35.142	10 832 818-13 678 422	3–3	6.10+02	1.13 - 02	3.92 - 03	-1.470	A	LS
				35.186	10 836 388–13 678 422	5–3	4.06+01	4.52-04	2.62-04	-2.646	A	LS
34		$^{1}P^{\circ}-^{1}D$		36.074	10 906 612–13 678 680	3–5	1.34+03	4.37-02	1.56-02	-0.882	A	1
35	1s3s-1s3p	$^{3}S - ^{3}P^{\circ}$	3 687	3 688	12 691 170– <i>12 718 287</i>	3–9	1.76-01	1.08-01	3.93+00	-0.489	A	1
			3 620.1	3 621.1	12 691 170–12 718 786	3-5	1.86-01	6.10-02	2.18+00	-0.738	A	LS
			3 764.1	3 765.2	12 691 170-12 717 729	3-3	1.66-01	3.52-02	1.31 + 00	-0.976	A	LS
			3 801.9	3 803.0	12 691 170–12 717 465	3–1	1.60-01	1.16-02	4.36-01	-1.458	A	LS
36		$^{1}S-^{1}P^{\circ}$	5 074.2	5 075.6	12 718 304–12 738 006	1–3	6.94-02	8.04-02	1.34+00	-1.095	A	1
37	1s3s-1s4p	$^{3}S - ^{3}P^{\circ}$		146.63	12 691 170– <i>13 373 168</i>	3–9	4.28+02	4.14-01	6.00-01	0.094	A	1
				146.583	12 691 170–13 373 378	3–5	4.28+02	2.30-01	3.33-01	-0.161	A	LS
				146.678	12 691 170-13 372 934	3-3	4.28 + 02	1.38-01	2.00-01	-0.383	Α	LS
				146.702	12 691 170-13 372 822	3-1	4.29+02	4.61-02	6.68-02	-0.859	A	LS
38		$^{1}S-^{1}P^{\circ}$		150.838	12 718 304–13 381 265	1–3	4.25+02	4.35-01	2.16-01	-0.362	A	1
39	1s3s-1s5p	$^{3}S-^{3}P^{\circ}$		101.62	12 691 170– <i>13 675 269</i>	3–9	2.35+02	1.09-01	1.10-01	-0.485	A	1
				101.605	12 691 170–13 675 377	3–5	2 35 ± 02	6.07_02	6.09-02	_0.740	٨	LS
				101.628	12 691 170–13 675 149	3–3			3.65-02			LS
				101.628	12 691 170–13 675 091	3–3			1.21 - 02			LS
40		$^{1}S-^{1}P^{\circ}$		104.052	12 718 304–13 679 363	1–3			3.87-02			1
41	1s3s-1s6p	$^{1}S-^{1}P^{\circ}$		89.040	12 718 304–13 841 392	1–3			1.42-02			1
42	1s3s - 1s0p 1s3s - 1s7p	$^{1}S-^{1}P^{\circ}$		81.912	12 718 304–13 939 122	1–3			7.04-03			1
	•											
43	1s3s-1s8p	${}^{1}S - {}^{1}P^{\circ}$		77.866	12 718 304–13 002 566	1–3			4.05-03			1
44	1s3s-1s9p	$^{1}S-^{1}P^{\circ}$		75.314	12 718 304–14 046 070	1–3	4.08+01	1.04-02	2.58-03	-1.983	A	1
45	1s3s-1s10p	$^{1}S-^{1}P^{\circ}$		73.590	12 718 304–14 077 192	1–3	2.97+01	7.24-03	1.75-03	-2.140	A	1
46	1s3p-1s3d	$^{3}P^{\circ}-^{3}D$	6 620	6 620	12 718 287–12 733 392	9–15	2.35-02	2.57-02	5.05+00	-0.636	A	1
			6 747	6 749	12 718 786–12 733 603	5–7	2.22-02	2.12-02	2.36+00	-0.975	A	LS
			6 452	6 454	12 717 729–12 733 223	3–5	1.90-02	1.98 - 02	1.26+00	-1.226	A	LS
			6 360	6 362	12 717 465–12 733 183	1-3	1.47 - 02	2.68 - 02	5.61 - 01	-1.572	A	LS
			6 925	6 927	12 718 786–12 733 223	5–5	5.13-03	3.69-03	4.21 - 01	-1.734	A	LS
			6 469	6 471	12 717 729–12 733 183	3–3	1.05 - 02	6.58 - 03	4.21 - 01	-1.705	A	LS
			6 944	6 946	12 718 786–12 733 183	5–3	5.65-04	2.45-04	2.80-02	-2.912	A	LS
47	1s3p-1s4s	$^{3}P^{\circ}-^{3}S$		155.35	<i>12 718 287</i> –13 361 991	9–3	3.36+02	4.05-02	1.87-01	-0.438	A	1
				155.471	12 718 786–13 361 991	5–3			1.04 - 01			LS
				155.216	12 717 729–13 361 991	3–3			6.22 - 02			LS
				155.153	12 717 465–13 361 991	1–3	3.75+01	4.06-02	2.07-02	-1.391	A	LS
48		$^{1}P^{\circ}-^{1}S$		157.488	12 738 006–13 372 977	3–1	3.15+02	3.90-02	6.07-02	-0.932	A	1
49	1s3p-1s4d	$^{3}P^{\circ}-^{3}D$		151.24	12 718 287–13 379 473	9–15	1.03+03	5.87-01	2.63+00	0.723	A	1
				151.337	12 718 786–13 379 562	5–7	1.03+03	4.93-01	1.23+00	0.392	A	LS

TABLE 78. Transition probabilities of allowed lines for Mg XI (references for this table are as follows: 1=Fernley et al. 26 and 2=Khan et al. 50)—Continued

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	$\lambda_{\text{vac}} (\mathring{A})$ or $\sigma (\text{cm}^{-1})^a$	$E_i - E_k $ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
				151.133	12 717 729-13 379 400	3-5	7.73+02	4.41-01	6.58-01	0.122	A	LS
				151.076	12 717 465-13 379 385	1-3	5.73 + 02	5.88 - 01	2.92-01	-0.231	A	LS
				151.374	12 718 786-13 379 400	5-5	2.56+02	8.81 - 02	2.20 - 01	-0.356	A	LS
				151.136	12 717 729-13 379 385	3–3	4.29+02	1.47 - 01	2.19-01	-0.356	A	LS
				151.378	12 718 786–13 379 385	5–3	2.85+01	5.87-03	1.46-02	-1.532	A	LS
50		$^{1}P^{\circ}-^{1}D$		155.806	12 738 006–13 379 830	3–5	1.04+03	6.31-01	9.71-01	0.277	A	1
51	1s3p-1s5s	$^{3}P^{\circ}-^{3}S$		105.12	<i>12 718 287</i> –13 669 618	9–3	1.63+02	8.99-03	2.80-02	-1.092	A	1
				105.171	12 718 786–13 669 618	5–3	9.04+01	8.99-03	1.56-02	-1.347	A	LS
				105.054	12 717 729–13 669 618	3–3	5.44 + 01	9.00 - 03	9.34 - 03	-1.569	A	LS
				105.025	12 717 465–13 669 618	1–3	1.81 + 01	9.00-03	3.11-03	-2.046	A	LS
52		$^{1}P^{\circ}-^{1}S$		106.709	12 738 006–13 675 137	3–1	1.54+02	8.74-03	9.21-03	-1.581	A	1
53	1s3p-1s5d	$^{3}P^{\circ}-^{3}D$		104.15	12 718 287–13 678 467	9–15	5.05+02	1.37-01	4.23-01	0.091	A	1
				104.196	12 718 786–13 678 513	5–7	5.05+02	1.15-01	1.97-01	-0.240	A	LS
				104.091	12 717 729-13 678 430	3-5	3.80+02	1.03 - 01	1.06 - 01	-0.510	A	LS
				104.063	12 717 465-13 678 422	1-3	2.81 + 02	1.37-01	4.69-02	-0.863	A	LS
				104.205	12 718 786-13 678 430	5-5	1.26+02	2.05 - 02	3.52-02	-0.989	A	LS
				104.092	12 717 729-13 678 422	3-3	2.11 + 02	3.42-02	3.52-02	-0.989	A	LS
				104.206	12 718 786–13 678 422	5–3	1.40+01	1.37 - 03	2.35 - 03	-2.164	A	LS
54		$^{1}P^{\circ}-^{1}D$		106.307	12 738 006–13 678 680	3–5	4.96+02	1.40-01	1.47-01	-0.377	A	1
55	1s3d-1s3p	$^{1}D-^{1}P^{\circ}$		3 708 cm ⁻¹	12 734 298–12 738 006	5–3	5.75-04	3.76-03	1.67+00	-1.726	A	1
56	1s3d-1s4p	$^{3}D - ^{3}P^{\circ}$		156.30	12 733 392–13 373 168	15–9	5.95+01	1.31-02	1.01-01	-0.707	A	1
				156.305	12 733 603–13 373 378	7–5	5.01+01	1.31-02	4.72-02	-1.038	A	LS
				156.321	12 733 223-13 372 934	5-3	4.46 + 01	9.80 - 03	2.52-02	-1.310	Α	LS
				156.338	12 733 183-13 372 822	3-1	5.94 + 01	7.26-03	1.12-02	-1.662	A	LS
				156.212	12 733 223-13 373 378	5-5	8.94 + 00	3.27 - 03	8.41 - 03	-1.786	A	LS
				156.311	12 733 183-13 372 934	3-3	1.49 + 01	5.44-03	8.40-03	-1.787	A	LS
				156.202	12 733 183–13 373 378	3–5	5.95-01	3.63-04	5.60-04	-2.963	A	LS
57		$^{1}D-^{1}P^{\circ}$		154.567	12 734 298-13 381 265	5–3	4.84+01	1.04-02	2.65-02	-1.284	A	1
58	1s3d-1s5p	$^{3}D-^{3}P^{\circ}$		106.17	12 733 392–13 675 269	15–9	2.55+01	2.59-03	1.36-02	-1.411	A	1
				106.183	12 733 603–13 675 377	7–5	2.15+01	2.59-03	6.34-03	-1.742	A	LS
				106.165	12 733 223-13 675 149	5–3	1.91+01	1.94-03	3.39-03	-2.013	Α	LS
				106.167	12 733 183-13 675 091	3-1			1.51-03			LS
				106.140	12 733 223-13 675 377	5–5			1.13-03			LS
				106.161	12 733 183–13 675 149	3–3			1.13-03			LS
				106.135	12 733 183–13 675 377	3–5			7.54-05			LS
59		$^{1}D-^{1}P^{\circ}$		105.813	12 734 298–13 679 363	5–3	2.09+01	2.10-03	3.66-03	-1.979	A	1
60	1s3d-1s6p	$^{1}D-^{1}P^{\circ}$		90.327	12 734 298–13 841 392	5–3	1.09+01	8.00-04	1.19-03	-2.398	A	1
61	1s3d-1s7p	$^{1}D-^{1}P^{\circ}$		83.000	12 734 298–13 939 122	5–3	6.46+00	4.00-04	5.46-04	-2.699	A	1
62	1s3d-1s8p	$^{1}D-^{1}P^{\circ}$		78.848	12 734 298–13 002 566	5–3	4.15+00	2.32-04	3.01-04	-2.936	A	1
63	1s3d-1s9p	$^{1}D-^{1}P^{\circ}$		76.233	12 734 298–14 046 070	5–3	2.85+00	1.49-04	1.87-04	-3.128	A	1
64	1s3d-1s10p	$^{1}D-^{1}P^{\circ}$		74.466	12 734 298–14 077 192	5–3	2.04+00	1.02-04	1.25-04	-3.292	A	1
65	1s4s-1s4p	$^{3}S - ^{3}P^{\circ}$	8 940	8 947	13 361 991– <i>13 373 168</i>	3–9	4.14-02	1.49-01	1.32+01	-0.350	A	1
			8 780	8 782	13 361 991–13 373 378	3–5	4.37-02	8.43-02	7.31 + 00	-0.597	A	LS
			9 136	9 138	13 361 991–13 373 378	3–3			4.39+00			LS
			7 130	/ 150	10 001 771 10 014 704	5 5	5.00 -02	1.50 -02	1.37 FUU	5.550	4.1	20

Table 78. Transition probabilities of allowed lines for Mg XI (references for this table are as follows: 1=Fernley et al. 26 and 2=Khan et al. 50)—Continued

No.	Transition array	Mult.	$\begin{matrix} \lambda_{air} \\ (\mathring{A}) \end{matrix}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	$A_{ki} \\ (10^8 \text{ s}^{-1})$	f_{ik}	S (a.u.)	$\log gf$	Acc.	Source
			9 230	9 233	13 361 991–13 372 822	3–1	3.76-02	1.60-02	1.46+00	-1.319	A	LS
66		$^{1}S-^{1}P^{\circ}$	12 062	12 066	13 372 977–13 381 265	1–3	1.73-02	1.13-01	4.49+00	-0.947	A	1
67	1s4s-1s5p	$^{3}S - ^{3}P^{\circ}$		319.21	13 361 991– <i>13 675 269</i>	3–9	1.01+02	4.61-01	1.45+00	0.141	A	1
				319.095	13 361 991–13 675 377	3–5	1.01+02	2.56-01	8.07-01	-0.115	A	LS
				319.328	13 361 991-13 675 149	3-3	1.01 + 02	1.54 - 01	4.86 - 01	-0.335	A	LS
				319.387	13 361 991–13 675 091	3–1	1.00+02	5.12-02	1.62-01	-0.814	A	LS
68		$^{1}S-^{1}P^{\circ}$		326.386	13 372 977–13 679 363	1–3	1.01+02	4.84-01	5.20-01	-0.315	A	1
69	1s4s - 1s6p	$^{1}S-^{1}P^{\circ}$		213.486	13 372 977–13 841 392	1–3	6.20+01	1.27-01	8.93-02	-0.896	A	1
70	1s4s-1s7p	$^{1}S-^{1}P^{\circ}$		176.633	13 372 977–13 939 122	1–3	3.98+01	5.59-02	3.25-02	-1.253	A	1
71	1s4s-1s8p	$^{1}S-^{1}P^{\circ}$		158.834	13 372 977–13 002 566	1–3	2.69+01	3.05-02	1.59-02	-1.516	A	1
72	1s4s-1s9p	$^{1}S-^{1}P^{\circ}$		148.568	13 372 977–14 046 070	1–3	1.88+01	1.87-02	9.15-03	-1.728	A	1
73	1s4s-1s10p	$^{1}S-^{1}P^{\circ}$		142.002	13 372 977–14 077 192	1–3	1.38+01	1.25-02	5.84-03	-1.903	A	1
74	1s4p-1s4d	$^{3}P^{\circ}-^{3}D$	15 860	15 860	13 373 168–13 379 473	9–15	7.32-03	4.60-02	2.16+01	-0.383	A	1
			16 166	16 171	13 373 378–13 379 562	5–7	6.91_03	3 79 - 02	1.01+01	-0.722	Δ	LS
			15 461	15 466	13 372 934–13 379 400	3–5			5.41+00			LS
			15 233	15 237	13 372 822–13 379 385	1–3			2.40+00			LS
			16 601	16 606	13 373 378–13 379 400	5–5			1.80+00			LS
			15 497	15 501	13 372 934–13 379 385	3–3			1.81+00			LS
			16 643	16 647	13 372 934–13 379 385	5–3			1.20-01			LS
75	1s4p - 1s5s	$^{3}P^{\circ}-^{3}S$		337.33	<i>13 373 168</i> –13 669 618	9–3	1.16+02	6.59-02	6.58-01	-0.227	A	1
				337.564	13 373 378–13 669 618	5–3	6.42+01	6.58-02	3.66-01	-0.483	A	LS
				337.059	13 372 934–13 669 618	3–3			2.19-01			LS
				336.932	13 372 822–13 669 618	1–3			7.32 - 02			LS
76		$^{1}P^{\circ}-^{1}S$		340.284	13 381 265–13 675 137	3–1	1.09+02	6.30-02	2.12-01	-0.724	A	1
77	1s4p-1s5d	$^{3}P^{\circ}-^{3}D$		327.55	13 373 168–13 678 467	9–15	2.13+02	5.72-01	5.55+00	0.712	A	1
				327.724	13 373 378–13 678 513	5–7	2.13+02	4.80-01	2.59+00	0.380	A	LS
				327.337	13 372 934-13 678 430	3-5	1.60+02	4.29 - 01	1.39 + 00	0.110	Α	LS
				327.225	13 372 822-13 678 422	1-3	1.19 + 02	5.73 - 01	6.17 - 01	-0.242	Α	LS
				327.813	13 373 378-13 678 430	5-5	5.32 + 01	8.57 - 02	4.62 - 01	-0.368	Α	LS
				327.345	13 372 934-13 678 422	3-3	8.90 + 01	1.43 - 01	4.62 - 01	-0.368	Α	LS
				327.822	13 373 378–13 678 422	5–3	5.92+00	5.72-03	3.09-02	-1.544	A	LS
78		$^{1}P^{\circ}-^{1}D$		336.231	13 381 265–13 678 680	3–5	2.20+02	6.21-01	2.06+00	0.270	A	1
79	1 <i>s</i> 4 <i>d</i> −1 <i>s</i> 4 <i>p</i>	$^{1}D-^{1}P^{\circ}$		1 435 cm ⁻¹	13 379 830–13 381 265	5–3	1.42-04	6.21-03	7.12+00	-1.508	A	1
80	1s4d-1s5p	$^{3}D - ^{3}P^{\circ}$		338.07	13 379 473–13 675 269	15–9	3.16+01	3.25-02	5.43-01	-0.312	A	1
				338.049	13 379 562–13 675 377	7–5			2.53-01			LS
				338.125	13 379 400–13 675 149	5–3	2.37+01	2.44 - 02	1.36-01	-0.914	A	LS
				338.174	13 379 385–13 675 091	3–1	3.17+01	1.81 - 02	6.05 - 02	-1.265	A	LS
				337.864	13 379 400–13 675 377	5–5	4.75+00	8.13 - 03	4.52 - 02	-1.391	A	LS
				338.107	13 379 385–13 675 149	3–3	7.88+00	1.35 - 02	4.51 - 02	-1.393	A	LS
				337.847	13 379 385–13 675 377	3–5	3.17-01	9.04-04	3.02-03	-2.567	A	LS
81		$^{1}D-^{1}P^{\circ}$		333.853	13 379 830–13 679 363	5–3	2.63+01	2.64-02	1.45-01	-0.879	A	1
82	1s4d-1s6p	$^{1}D-^{1}P^{\circ}$		216.656	13 379 830–13 841 392	5–3	1.32+01	5.58-03	1.99-02	-1.554	A	1

Table 78. Transition probabilities of allowed lines for Mg XI (references for this table are as follows: 1=Fernley et al.²⁶ and 2=Khan et al.⁵⁰)—Continued

No.	Transition array	Mult.	$^{\lambda_{air}}_{(\mathring{A})}$	λ_{vac} (Å) or σ (cm ⁻¹) ^a	$E_i - E_k$ (cm ⁻¹)	$g_i - g_k$	A_{ki} (10 ⁸ s ⁻¹)	f_{ik}	<i>S</i> (a.u.)	$\log gf$	Acc.	Source
83	1s4d-1s7p	$^{1}D-^{1}P^{\circ}$		178.797	13 379 830–13 939 122	5–3	7.58+00	2.18-03	6.42-03	-1.963	A	1
84	1s4d-1s8p	$^{1}D-^{1}P^{\circ}$		160.582	13 379 830–13 002 566	5–3	4.79+00	1.11-03	2.93-03	-2.256	A	1
85	1s4d-1s9p	$^{1}D-^{1}P^{\circ}$		150.096	13 379 830–14 046 070	5–3	3.22+00	6.52-04	1.61-03	-2.487	A	1
86	1s4d-1s10p	$^{1}D-^{1}P^{\circ}$		143.398	13 379 830–14 077 192	5–3	2.28+00	4.22-04	9.96-04	-2.676	A	1
87	1s5s-1s5p	$^3S - ^3P^{\circ}$	17 690	17 696	13 669 618– <i>13 675 269</i>	3–9	1.34-02	1.89-01	3.30+01	-0.246	A	1
			17 359	17 364	13 669 618–13 675 377	3–5	1.42-02	1.07-01	1.83+01	-0.493	A	LS
			18 075	18 080	13 669 618-13 675 149	3-3	1.25 - 02	6.15 - 02	1.10+01	-0.734	A	LS
			18 267	18 272	13 669 618–13 675 091	3–1	1.22-02	2.03-02	3.66+00	-1.215	A	LS
88		$^{1}S-^{1}P^{\circ}$		4 226 cm ⁻¹	13 675 137–13 679 363	1–3	5.72-03	1.44-01	1.12+01	-0.842	A	1
89	1s5s - 1s6p	$^{1}S-^{1}P^{\circ}$		601.49	13 675 137–13 841 392	1–3	3.30+01	5.37-01	1.06+00	-0.270	A	1
90	1s5s-1s7p	$^{1}S-^{1}P^{\circ}$		378.809	13 675 137–13 939 122	1–3	2.20+01	1.42-01	1.77-01	-0.848	A	1
91	1s5s-1s8p	$^{1}S-^{1}P^{\circ}$		305.410	13 675 137–13 002 566	1–3	1.50+01	6.28-02	6.31-02	-1.202	A	1
92	1s5s-1s9p	$^{1}S-^{1}P^{\circ}$		269.590	13 675 137–14 046 070	1–3	1.06+01	3.45-02	3.06-02	-1.462	A	1
93	1s5s - 1s10p	$^{1}S-^{1}P^{\circ}$		248.722	13 675 137–14 077 192	1–3	7.69+00	2.14-02	1.75-02	-1.670	A	1
94	1s5p-1s5d	$^{3}P^{\circ}-^{3}D$		3 198 cm ⁻¹	13 675 269–13 678 467	9–15	2.59-03	6.33-02	5.87+01	-0.244	A	1
				3 136 cm ⁻¹	13 675 377–13 678 513	5–7	2.45-03	5.22-02	2.74+01	-0.583	A	LS
				3 281 cm ⁻¹	13 675 149-13 678 430	3-5	2.10 - 03	4.87 - 02	1.47 + 01	-0.835	A	LS
				3 331 cm ⁻¹	13 675 091-13 678 422	1-3	1.63 - 03	6.60-02	6.52 + 00	-1.180	A	LS
				$3~053~{\rm cm}^{-1}$	13 675 377-13 678 430	5-5	5.64-04	9.07-03	4.89 + 00	-1.343	A	LS
				$3\ 273\ cm^{-1}$	13 675 149-13 678 422	3-3	1.16-03	1.62-02	4.89 + 00	-1.313	A	LS
				$3~045~{\rm cm}^{-1}$	13 675 377–13 678 422	5–3	6.22-05	6.03-04	3.26-01	-2.521	A	LS
95	1s5d-1s5p	$^{1}D-^{1}P^{\circ}$		683 cm ⁻¹	13 678 680–13 679 363	5–3	4.20-05	8.10-03	1.95+01	-1.393	A	1
96	1s5d-1s6p	$^{1}D-^{1}P^{\circ}$		614.58	13 678 680–13 841 392	5–3	1.35+01	4.58-02	4.63-01	-0.640	A	1
97	1s5d-1s7p	$^{1}D-^{1}P^{\circ}$		383.963	13 678 680–13 939 122	5–3	7.50+00	9.94-03	6.28-02	-1.304	A	1
98	1s5d-1s8p	$^{1}D-^{1}P^{\circ}$		308.751	13 678 680–13 002 566	5–3	4.59+00	3.94-03	2.00-02	-1.706	A	1
99	1s5d-1s9p	$^{1}D-^{1}P^{\circ}$		272.190	13 678 680–14 046 070	5–3	3.03+00	2.02-03	9.05-03	-1.996	A	1
100	1s5d-1s10p	$^{1}D-^{1}P^{\circ}$		250.933	13 678 680–14 077 192	5–3	2.12+00	1.20-03	4.96-03	-2.222	A	1

12. References

¹C. W. Allen, *Allen's Astrophysical Quantities*, 4th ed. (Springer, New York, 2000).

²W. Ansbacher, Y. Li, and E. H. Pinnington, Phys. Lett. A **139**, 165 (1989)

³K. M. Aggarwal, Astrophys. J., Suppl. Ser. **118**, 589 (1998).

⁴K. M. Aggarwal, F. P. Keenan, and A. Z. Msezane, Astrophys. J., Suppl. Ser. **136**, 763 (2001).

⁵K. Berrington, J. Phys. B **34**, 1443 (2001).

K. A. Berrington, P. G. Burke, K. Butler, M. J. Seaton, P. J. Storey, K. T. Taylor, and Y. Yan, J. Phys. B 20, 6379 (1987).

⁷E. Biémont, Phys. Scr. **31**, 45 (1985).

⁸H. M. S. Blackford and A. Hibbert, At. Data Nucl. Data Tables **58**, 101 (1994).

⁹P. Bogdanovich, R. Karpushkiene, A. Momkauskaite, and A. Udris, Lith. Phys. J. 39, 9 (1999).

¹⁰ J. P. Buchet, M. C. Buchet-Poulizac, and P. Ceyzeriat, Phys. Lett. 77A, 424 (1980).

¹¹ V. M. Burke and D. J. Lennon, http://legacy.gsfc.nasa.gov/topbase, down-loaded on July 28, 1995 (Opacity Project).

¹² V. M. Burke and D. J. Lennon, http://legacy.gsfc.nasa.gov/topbase, down-loaded on Aug. 8, 1995 (Opacity Project).

¹³ K. Butler, C. Mendoza, and C. J. Zeippen, J. Phys. B **26**, 4409 (1993); http://legacy.gsfc.nasa.gov/topbase, downloaded on July 28, 1995 (Opacity Project).

¹⁴ K. Butler and C. J. Zeippen, http://legacy.gsfc.nasa.gov/topbase, down-loaded on July 28, 1995 (Opacity Project).

¹⁵ K. Butler and C. J. Zeippen, http://legacy.gsfc.nasa.gov/topbase, downloaded on Aug. 8, 1995 (Opacity Project).

¹⁶ K. Butler and C. J. Zeippen, http:/legacy.gsfc.nasa.gov/topbase.

¹⁷T. N. Chang and X. Tang, J. Quant. Spectrosc. Radiat. Transf. 43, 207 (1990).

¹⁸ R. D. Cowan, *The Theory of Atomic Structure and Spectra* (University of California Press, Berkeley, CA, 1981).

¹⁹ L. J. Curtis, S. T. Maniak, R. W. Ghrist, R. E. Irving, D. G. Ellis, M. Henderson, M. H. Kacher, E. Träbert, J. Granzow, P. Bengstsson, and L. Engstroem, Phys. Rev. A 51, 4575 (1995).

- ²⁰ J. L. Devore, *Probability and Statistics for Engineering and the Sciences* (Duxbury, Pacific Grove, CA, 2000), Tables A.5 (critical values for the *t* distribution) and A.7 (critical values for the χ^2 distribution).
- ²¹B. C. Fawcett, At. Data Nucl. Data Tables **37**, 367 (1987).
- ²²J. A. Fernley, K. T. Taylor, and M. J. Seaton, J. Phys. B **20**, 6457 (1987).
- ²³ J. A. Fernley, A. Hibbert, A. E. Kingston, and M. J. Seaton, J. Phys. B 32, 5507 (1999).
- ²⁴ J. A. Fernley, A. Hibbert, A. E. Kingston, and M. J. Seaton, http:// legacy.gsfc.nasa.gov/topbase, downloaded on July 28, 1995 (Opacity Project).
- ²⁵ J. A. Fernley, A. Hibbert, A. E. Kingston, and M. J. Seaton, http:// legacy.gsfc.nasa.gov/topbase, downloaded on Aug. 8, 1995 (Opacity Project).
- ²⁶ J. A. Fernley, K. T. Taylor, and M. J. Seaton, http://legacy./gsfc./ nasa.gov/topbase, downloaded on July 28, 1995 (Opacity Project).
- ²⁷ J. A. Fernley, K. T. Taylor, and M. J. Seaton, http://legacy.gsfc.nasa.gov/topbase, downloaded on Aug. 8, 1995 (Opacity Project).
- ²⁸ A. Filippov and V. K. Prokof'ev, Z. Phys. **56**, 458 (1929).
- ²⁹ J. Fleming, N. Vaeck, A. Hibbert, K. L. Bell, and M. R. Godefroid, Phys. Scr. 53, 446 (1996).
- ³⁰ S. Fritzsche and I. P. Grant, Phys. Scr. **50**, 473 (1994).
- ³¹C. Froese-Fischer and H. P. Saha, Phys. Scr. **32**, 181 (1996).
- ³² C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on Mar. 28, 2002).
- ³³C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on May 6, 2002).
- ³⁴ C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (non-orthogonal B-spline CI, downloaded on May 6, 2002).
- ³⁵C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on Aug. 6, 2002).
- ³⁶C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (non-orthogonal spline CI, downloaded on Nov. 29, 2002).
- ³⁷C. Froese Fischer, http://www.vuse.vanderbilt. edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on Dec. 15, 2003).
- ³⁸C. Froese Fischer, T. Brage, and P. Jönsson, Computational Atomic Structure—An MCHF Approach (IOP, Bristol, 1997).
- ³⁹ G. Gaigalas, J. Kaniauskas, R. Kisielius, G. Merkelis, and M. J. Vilkas, Phys. Scr. **49**, 135 (1994).
- ⁴⁰ M. E. Galavis, C. Mendoza, and C. J. Zeippen, Astron. Astrophys. Suppl. Ser. **123**, 159 (1997).
- ⁴¹ M. E. Galavis, C. Mendoza, and C. J. Zeippen, Astron. Astrophys. Suppl. Ser. 131, 499 (1998).
- ⁴² M. Godefroid, C. E. Magnusson, P. O. Zetterberg, and I. Joelsson, Phys. Scr. 32, 125 (1985).
- ⁴³ C. Hastings, Approximations for Digital Computers (Princeton University Press, Princeton, NJ, 1955).
- ⁴⁴ A. Hibbert, Rep. Prog. Phys. **38**, 1217 (1975).
- ⁴⁵ A. Hibbert, M. Le Dourneuf, and M. Mohan, At. Data Nucl. Data Tables 53, 23 1993.
- ⁴⁶ W. R. Johnson and K.-N. Huang, Phys. Rev. Lett. **48**, 315 (1982).
- ⁴⁷ W. R. Johnson, Z. W. Liu, and J. Sapirstein, At. Data Nucl. Data Tables 64, 279 1996
- ⁴⁸ K. M. Jones, P. S. Julienne, P. D. Lett, W. D. Phillips, E. Tiesinga, and C. J. Williams, Europhys. Lett. 35, 85 (1996).
- ⁴⁹D. E. Kelleher (unpublished).
- ⁵⁰ F. Khan, G. S. Khandelwal, and J. W. Wilson, Astrophys. J. **329**, 493 (1988)
- ⁵¹ A. E. Kingston and A. Hibbert, J. Phys. B **34**, 81 (2001).
- ⁵²B. Kundu and P. K. Mackerjee, Phys. Rev. A **35**, 980 (1987).
- ⁵³D. A. Landman, J. Quant. Spectrosc. Radiat. Transf. **34**, 365 (1985).
- ⁵⁴D. Luo and A. K. Pradhan, J. Phys. B **22**, 3377 (1989).
- ⁵⁵D. Luo and A. K. Pradhan, http://legacy.gsfc.nasa.gov/topbase, down-loaded on July 28, 1995 (Opacity Project).
- ⁵⁶ D. Luo and A. K. Pradhan, http://legacy.gsfc.nasa.gov/topbase, downloaded on Aug. 8, 1995 (Opacity Project).
- ⁵⁷D. McPeake and A. Hibbert, J. Phys. B **33**, 2809 (2000).
- ⁵⁸ S. Majumder, G. Gopakumar, R. K. Chaudhuri, B. P. Das, H. Merlitz, U. S. Mahapatra, and D. Mukherjee, Eur. Phys. J. D 28, 3 (2004).
- ⁵⁹ I. Martin, J. Karwowski, G. H. F. Diercksen, and C. Barrientos, Astron. Astrophys. Suppl. Ser. **100**, 595 (1993).
- ⁶⁰W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 9, 1 (1980).
- ⁶¹ W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 10, 153 (1981).

- ⁶²C. Mendoza, C. J. Zeippen, and P. J. Storey, Astron. Astrophys. Suppl. Ser. 135, 159 (1999).
- ⁶³G. Merkelis, I. Martinson, R. Kisielius, and M. J. Vilkas, Phys. Scr. 59, 122 (1999).
- ⁶⁴G. Merkelis, M. J. Vilkas, G. Gaigalas, and R. Kisielius, Phys. Scr. 51, 233 (1995).
- ⁶⁵G. Merkelis, M. J. Vilkas, R. Kisielius, G. Gaigalas, and I. Martinson, Phys. Scr. 56, 41 (1997).
- ⁶⁶ C. Mendoza, C. J. Zeippen, and P. J. Storey, Astron. Astrophys. Suppl. Ser. **135**, 159 (1999).
- ⁶⁷ P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. 77, 1 (2005); http:// physics.nist.gov/constants
- ⁶⁸D. C. Morton, Astrophys. J., Suppl. Ser. **149**, 205 (2003).
- ⁶⁹ Yu. Ralchenko, F.-C. Jou, D. E. Kelleher, A. E. Kramida, A. Musgrove, J. Reader, W. L. Wiese, and K. Olsen (2007). NIST Atomic Spectra Database (version 3.1.3), http://physics.nist.gov/asd3, National Institute of Standards and Technology, Gaithersburg, MD.
- ⁷⁰ J. R. Fuhr, A. E. Kramida, H. R. Felrice, K. Olsen, and S. Kotochigova (2006). NIST Atomic Transition Probability Bibliographic Database (version 8.1), http://physics.nist.gov/Fvalbib, National Institute of Standards and Technology, Gaithersburg, MD.
- ⁷¹H. Nussbaumer and C. Rusca, Astron. Astrophys. **72**, 129 (1979).
- ⁷²C. W. Oates, K. R. Vogel, and J. L. Hall, Phys. Rev. Lett. **76**, 2866 (1996).
- ⁷³The Opacity Team, *The Opacity Project* (IOP Bristol, England, 1994), Vol. I, http://legacy.gsfc.nasa.gov/topbase
- ⁷⁴G. Peach, H. E. Saraph, and M. J. Seaton, J. Phys. B **21**, 3669 (1988).
- ⁷⁵G. Peach, H. E. Saraph, and M. J. Seaton, http://legacy.gsfc.nasa.gov/ topbase, downloaded on July 28, 1995 (Opacity Project).
- ⁷⁶ G. Peach, H. E. Saraph, and M. J. Seaton, http://legacy.gsfc.nasa.gov/ topbase, downloaded on Aug. 8, 1995 (Opacity Project).
- ⁷⁷ E. R. Peck and K. Reeder, J. Opt. Soc. Am. **62**, 958 (1972).
- ⁷⁸ L. I. Podobedova, D. E. Kelleher, J. Reader, and W. L. Wiese, J. Phys. Chem. Ref. Data 33, 495 (2004).
- ⁷⁹ Y. V. Ralchenko and L. A. Vainshtein, Phys. Rev. A **52**, 2449 (1995).
- ⁸⁰ U. I. Safronova, A. Derevianko, M. S. Safronova, and W. R. Johnson, J. Phys. B 32, 3527 (1999). A complete data listing was made available by private communication.
- ⁸¹ U. I. Safronova, W. R. Johnson, and A. E. Livingston, Phys. Rev. A 60, 996 (1999). A complete data listing was made available by private communication.
- ⁸² U. I. Safronova, W. R. Johnson, M. S. Safronova, and A. Derevianko, Phys. Scr. **59**, 286 (1999). A complete data listing was made available by private communication.
- ⁸³M. J. Seaton, J. Phys. B **20**, 6363 (1987).
- ⁸⁴ W. Siegel, J. Migdalek, and Y.-K. Kim, At. Data Nucl. Data Tables 68, 303 (1998).
- ⁸⁵ B. W. Shore and D. H. Menzel, *Principles of Atomic Spectra* (Wiley, New York, 1968).
- ⁸⁶G. Tachiev and C. Froese Fischer, J. Phys. B **32**, 5805 (1999).
- ⁸⁷G. Tachiev and C. Froese Fischer, J. Phys. B **33**, 2419 (2000).
- ⁸⁸ G. Tachiev and C. Froese Fischer, Can. J. Phys. **79**, 955 (2001).
- ⁸⁹G. Tachiev and C. Froese Fischer, Astron. Astrophys. **385**, 716 (2002).
- ⁹⁰G. Tachiev and C. Froese Fischer, Complete and current results can be found at http://www.vuse.vanderbilt.edu/~cff/mchf_collection/
- ⁹¹G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on Mar. 20, 2002).
- ⁹²G. Tachiev, and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on Mar. 28, 2002).
- ⁹³ G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on May 5, 2002).
- ⁹⁴G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, *ab initio*, downloaded on May 6, 2002).
- ⁹⁵G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on Sept. 3, 2003).
- ⁹⁶G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, energy adjusted, downloaded on Sept. 3, 2003).
- ⁹⁷G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, energy adjusted, downloaded on December 3, 2002)
- ⁹⁸G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/

- mchf_collection/ (MCHF, energy adjusted, downloaded on December 3, 2003).
- ⁹⁹G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, energy adjusted, downloaded on Dec. 10, 2003).
- ¹⁰⁰G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, energy adjusted, downloaded on Dec 23, 2003).
- ¹⁰¹G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, 2000, downloaded on Dec. 23, 2003).
- ¹⁰²G. Tachiev and C. Froese Fischer, http://www.vuse.vanderbilt.edu/~cff/mchf_collection/ (MCHF, ab initio, downloaded on July 22, 2004).
- ¹⁰³ K. T. Taylor, http://legacy.gsfc.nasa.gov/topbase, downloaded on July 28, 1995 (Opacity Project).
- ¹⁰⁴ K. T. Taylor, http://legacy.gsfc.nasa.gov/topbase, downloaded on Aug. 8, 1995 (Opacity Project).
- ¹⁰⁵ C. E. Theodosiou, L. J. Curtis, and M. El-Mekki, Phys. Rev. A 44, 7144 (1991).
- ¹⁰⁶C. E. Theodosiou and S. R. Federman, Astrophys. J. **527**, 470 (1999).
- ¹⁰⁷E. Träbert, Phys. Scr. **53**, 167 (1996).
- ¹⁰⁸ E. Träbert, J. Granzow, P. Bengtsson, and L. Engström, Phys. Rev. A 51, 4575 (1995).
- ¹⁰⁹ E. Träbert, P. H. Heckmann, B. Raith, and U. Sander, Phys. Scr. **22**, 363 (1980).
- ¹¹⁰C. E. Tull, M. Jackson, R. P. McEachran, and M. Cohen, Can. J. Phys. 50, 1169 (1972).
- ¹¹¹ J. A. Tully, M. J. Seaton, and K. A. Berrington, J. Phys. B 23, 3811 (1990).
- ¹¹² J. A. Tully, M. J. Seaton, and K. A. Berrington, http:// legacy.gsfc.nasa.gov/topbase, downloaded on July 28, 1995 (Opacity Project).
- 113 J. A. Tully, M. J. Seaton, and K. A. Berrington, http://

- legacy.gsfc.nasa.gov/topbase, downloaded on Aug. 8, 1995 (Opacity Project).
- ¹¹⁴K. Ueda, M. Karasawa, and K. Fukuda, J. Phys. Soc. Jpn. **51**, 2267 (1982).
- ¹¹⁵M. G. Vangel, Am. Stat. **15**, 21 (1996).
- ¹¹⁶T. P. Verhey, B. P. Das, and W. F. Perger, J. Phys. B **20**, 3639 (1987).
- 117 S. Verrill, Exact confidence bounds for a normal distribution coefficient of variation, http://www1.fpl.fs.fed.us/covnorm.html
- ¹¹⁸ M. J. Vilkas, I. Martinson, G. Merkelis, G. Gaigalas, and R. Kisielius, Phys. Scr. **54**, 281 (1996).
- ¹¹⁹ M. J. Vilkas, G. Merkelis, R. Kisielius, G. Gaigalas, A. Bernotas, and Z. Rudzikas, Phys. Scr. 49, 592 (1994).
- ¹²⁰ U. Volz, M. Majerus, H. Liebel, A. Schmitt, and H. Schmoranzer, Phys. Rev. Lett. **76**, 2862 (1996).
- ¹²¹ A. W. Weiss, Phys. Rev. **162**, 71 (1967).
- ¹²² A. W. Weiss, Phys. Rev. A **51**, 1067 (1995).
- ¹²³ A. W. Weiss (private communication).
- ¹²⁴W. L. Wiese, in *Progress in Atomic Spectroscopy*, edited by B. Bederson and W. Fite (Academic, New York, 1968), Vol. 7B, p. 307.
- ¹²⁵ W. L. Wiese, M. W. Smith, and B. M. Miles, Atomic Transition Probabilities, Vol. II: Sodium through Calcium, NSRDS-NBS Vol. 22 (U.S. GPO, Washington, D.C., 1969). The first updated compilation of NIST transition probabilities has been published. [Wiese et al., Ref. 125].
- ¹²⁶ W. L. Wiese, J. R. Fuhr, and T. M. Deters, Atomic Transition Probabilities of Carbon, Nitrogen, and Oxygen, JPCRD Monograph 7 (AIP, New York, 1996).
- ¹²⁷Z.-C. Yan, M. Tambasco, and G. W. F. Drake, Phys. Rev. A 57, 1652 (1998).
- ¹²⁸O. Zatsarinny and C. Froese Fischer, J. Phys. B 35, 4669 (2002).
- ¹²⁹ H. L. Zhang, H. H. Sampson, and C. J. Fontes, At. Data Nucl. Data Tables **44**, 31 (1990).