Thermodynamic Properties of Dioxygen Difluoride (O_2F_2) and Dioxygen Fluoride (O_2F)

John L. Lyman

Chemical and Laser Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Received April 25, 1988; revised manuscript received August 18, 1988

Recent spectroscopic and chemical kinetic studies have provided sufficient data for construction of reliable thermodynamic tables for both dioxygen difluoride (O_2F_2 ; Chemical Abstracts Registry Number, 7783-44-0) and dioxygen fluoride (O_2F ; Chemical Abstracts Registry Number, 15499-23-7). This paper contains those tables for these species in both SI units (0.1 MPa standard state) and cal K mol units (1.0 atm standard state). The experimental basis includes three recent assignments of the fundamental vibrational frequencies for O_2F_2 , a new set of rotational constants for O_2F , an enthalpy change for dissociation of O_2F_2 .

Key words: oxygen fluoride; dioxygen difluoride; dioxygen fluoride; entropy; enthalpy of formation; heat capacity; Gibbs energy function; equilibrium constant; spectroscopic constants; thermochemical functions.

Contents

;	Introduction	799
2	Experimental Basis for Calculations	800
	2.1. Heat Capacity and Entropy for O_2F_2	800
	2.2. Heat Capacity and Entropy for O ₂ F	800
	2.3. Enthalpy of Formation for O_2F_2	801
	2.4. Enthalpy of Formation for O ₂ F	801
ł,	Thermochemical Tables for O_2F_2 and O_2F_3	802
4,	Conclusions	802
٩,	Acknowledgments	807
\mathbf{h}	References	807

1. Introduction

The JANAF Thermochemical Tables¹ have a listing for the thermochemical properties of O_2F , but not for O_2F_2 . Additional thermodynamic and spectroscopic data relating to both of these species has recently become available. These new data make possible the calculation of a thermochemical table for O_2F_2 and a more reliable table for O_2F . Furthermore, interest in these species as fluorinating agents is growing. Accurate thermochemical properties are desirable for the development of techniques for synthesis of the oxygen fluorides and for their use in fluorination procedures.

The experimental quantities required for calculation of the thermochemical properties are the enthalpy of formation at some temperature, the fundamental vibrational frequen-

Reprints available from ACS; see Reprints List at back of issue.

List of Tables

1. Spectroscopic constants for O ₂ F ₂	800
2. Spectroscopic constants for O ₂ F	801
3. Dioxygen difluoride (O_2F_2) , ideal gas	803
4. Dioxygen difluoride (O_2F_2) , ideal gas, cal K mol	
units	804
5. Dioxygen fluoride (O ₂ F), ideal gas	805
6. Dioxygen fluoride (O_2F) , ideal gas, cal K mol	
units	806

cies, the three rotational constants, and the degeneracies and energies of electronic states. This information is now available for both of these species.

The procedures used were to take the experimental quantities mentioned above and calculate the thermochemical properties for a range of temperatures by using the statistical mechanics methods described in the introduction to the JANAF tables.¹ The temperatures and properties are the same as those in the 1985 JANAF edition. The calculations are for the gas phase. Earlier JANAF editions and most thermochemical data are based on a standard state pressure of 1.0 atm with the energy unit being the calorie. The third edition¹ changed the standard state pressure to 0.1 MPa with all quantities in SI units. I have included two tables for each species. One of these is in SI units and the other is in cal K mol atm units.

Both species are nonlinear polyatomic molecules. I have followed the JANAF assumptions: (i) an ideal gas equation of state; (ii) rigid rotator and high-temperature limit for properties derived from the rotational spectroscop-

^{©)1989} by the U. S. Secretary of Commerce on behalf of the United States. This copyright is assigned to the American Institute of Physics and the American Chemical Society.

ic constants; (iii) harmonic oscillator for all properties derived from molecular vibrations.

2. Experimental Basis for Calculations

2.1. Heat Capacity and Entropy for O₂F₂

Table 1 shows the spectroscopic constants necessary for calculation of the heat capacity and entropy for O_2F_2 . Three recent assignments²⁻⁴ of the fundamental vibrational frequencies for O_2F_2 all agree to within a few percent. The assignment taken from gas-phase spectra² is the one used for calculation of the thermochemical quantities because some distortion of the vibrational frequencies occurs in condensed phases.^{3,4} The gas-phase assignment still, however, agrees well with both the assignment from the matrix-isolation study³ and the one from condensed-phase Raman spectra.⁴ The latter also has a complete vibrational analysis with experimental spectra of three isotopic forms of the molecule. Because of the excellent agreement among the three assignments, thermochemical quantities such as entropy calculated from any of the assignments agree to within better than 0.2% (0.04% at 298.15%). Table 1 shows all three assignments. The assignments from Refs. 3 and 4 are in parenthesis.

The structure^{5,6} of O_2F_2 is a nonlinear FOOF chain with an OOF angle of 109°30′, a dihedral angle of 87°30′, an O–O bond length of 1.217 Å, and an F–O bond length of

1.575 Å. The molecular point group is C₂. The ground-clastronic-state symmetry number (σ) follows from the putlished structure,⁶ and Ref. 5 gives the degeneracy (g_0). By published⁷⁻¹⁰ absorption spectra of O₂F₂ indicate no clastronic states at energies below the dissociation energy of By molecule. Therefore, inclusion of excited electronic states at the partition functions was not necessary.

2.2. Heat Capacity and Entropy for O₂F

Measurements since the JANAF tables have resulted a minor changes in some of the spectroscopic constants never sary for calculation of thermodynamic functions related a heat capacity and entropy. Table 2 shows the spectroscopy constants used in the JANAF Tables and in this work.

The JANAF tables used the vibrational frequencies of tained by Pimentel's^{13,14} group in matrix-isolation studies Arkell¹⁵ also measured the spectrum in a cryogenic matrix. One additional matrix-isolation study³ and two gas-phase studies^{11,12} since the JANAF entry have refined these frequencies somewhat. I have used the gas-phase values where available. One of these papers¹² is a diode-laser spectrum of O_2F . This gave precise values of the rotational constants and hence, the moments of inertia for the molecule. These also differ somewhat from those used in the JANAF entry The structure¹² of the molecule is that of a bent FOO triatemic with a bond angle of 111.2°, an O–O bond length of 1.200 Å, and an F–O bond length of 1.649 Å. The molecular points

Constant	Values	Ref.
$ \begin{array}{c} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \\ \nu_5 \\ \nu_6 \end{array} $	1210 (1250, 1281) cm ⁻¹ 625 (612, 607) 350 (366, 373) 202 (195, 197)	2,(3, 4)
ν_5 ν_6	614 (627, 623) 471 (466, 461)	
IA	$4.1409 \times 10^{-39} \text{ g cm}^2$	5,6
I _B I _C	$1.6747 \times 10^{-38} \text{ g cm}^2$	5,6
I _c	$1.9247 \times 10^{-38} \text{ g cm}^2$	5,6
I _A I _B I _C	$1.3348 \times 10^{-114} g^3 cm^6$	5
a°	1	5
σ	2	5

Table 1. Spectroscopic Constants for O_2F_2

^a The first number is from Ref. 2. The numbers in parenthesis are from Refs. 3 and 4.

Table 2. Spectroscopic Constants for O_2F

	JANAF	Current Values	Ref.
' 1	1495.0	1490.0 $\rm cm^{-1}$	11
′2	584.5	579.3 cm ⁻¹	12
' 3	376.0	376.0 cm ⁻¹	3,13
A A	$1.1104 \times 10^{-39} \text{ g cm}^2$	$1.0688 \times 10^{-39} \text{ g cm}^2$	12
Б	7.8188x10 ⁻³⁹ g cm ²	8.3810x10 ⁻³⁹ g cm ²	12
c	$8.9292 \times 10^{-39} \text{ g cm}^2$	$9.4775 \times 10^{-39} \text{ g cm}^2$	12
I_AI_BI_C	$7.7523 \times 10^{-116} \text{ g}^3 \text{ cm}^6$	8.4896x10 ⁻¹¹⁶ g^3 cm ⁶	12
I _o	2	2	1
	1	1	1

to up is C_s . The ground state degeneracy (g_0) , and the symmetry number (σ) are those used in the JANAF tables.

The published^{10,16} absorption spectra of O_2F indicate the electronic states at energies below the dissociation energy of the molecule. Therefore, inclusion of excited electronic tates in the partition functions was not necessary.

2.3. Enthalpy of Formation for O₂F₂

A critical measurement for calculation of the thermolynamic functions for both O_2F and O_2F_2 is the standard inhalpy of formation of O_2F_2 by Kirshenbaum *et al.*¹⁷ These authors made a calorimetric measurement at 190 K for decomposition of O_2F_2 into O_2 and F_2 . Conversion of that measurement from 190 K to the standard enthalpy of formation at 298 K required knowledge of the difference in constant-volume heat capacity between the reactant (O_2F_2) and the products (O_2 and F_2). The authors assumed that difference to be zero over the entire range. With the published¹ heat capacities for fluorine and oxygen, plus that for O_2F_2 reported here, we find that the average heat capacity difference over the 190 to 298 K temperature range to be L41 cal K⁻¹ mol⁻¹. The standard heat of formation that Kirshenbaum *et al.*¹⁷ reported was

$$\Delta_{f}H^{0}(O_{2}F_{2}, 298.15) = +4.73 \pm 0.30$$
 kcal/mol, (1)

with the heat-capacity correction it becomes

$$\Delta_f H^0(O_2F_2, 298.15) = +4.58 \pm 0.20$$
 kcal/mol, (2)

I used this value for the enthalpy-related functions for both of the species.

2.4. Enthalpy of Formation for O₂F

801

The JANAF value of the enthalpy of formation of gasphase O_2F at 298.15 K is based on two experimental results, neither of which was a direct measurement of the enthalpy of formation.

The first result is the activation energy of 17.3 kcal/mol that Schumacher and Frisch¹⁸ obtained for the decomposition of O_2F_2 . The most likely rate-limiting step for this decomposition is

$$O_2 F_2 \rightarrow O_2 F + F. \tag{3}$$

Levy and Copeland¹⁹ assumed that the reverse of Reaction (3) has no activation energy, which gave 17.3 kcal/mol for the enthalpy change for this reaction.

The second experimental result is the measurement¹⁷ of the heat of formation for O_2F_2 that was discussed in the previous section [Eqs. (1) and (2)]. Levy and Copeland¹⁹ used the initial value [Eq. (1)], along with the heat of formation for atomic fluorine and the above enthalpy change for Reaction (3) to obtain

$$\Delta_f H^0(O_2F, 298.15) = +3.5 \text{ kcal/mol},$$
 (4)

Another approach¹ was to assume that Reaction (3) has half the enthalpy change of the dissociation to oxygen plus two fluorine atoms. This assumption, with Eq. (1), gave

$$\Delta_f H^0(O_2F, 298.15) = +2.4 \text{ kcal/mol.}$$
 (5)

The JANAF authors used this information [Eqs. (4) and (5)] to conclude that

$$\Delta_f H^0(O_2F, 298.15) = +3 \pm 5$$
 kcal/mol. (6)

Information since the JANAF compilation includes an enthalpy change for the reaction

$$O_2 + F + M \rightarrow O_2F + M \tag{7}$$

of

$$\Delta H^{0}(298.15) = -13.48 \pm 0.33 \text{ kcal/mol}, \qquad (8)$$

that Lyman and Holland²⁰ obtained. They obtained this value by using the expression for the equilibrium constant

$$K_{\rm eq}(T) = k_f / k_r$$

= $RT \exp[-\Delta S^0(T) / R + \Delta H^0(T) / RT].$
(9)

All of the quantities in this expression were known but the enthalpy change [$\Delta H^0(T)$]. They had measured the ratio of the rate constants for the forward (k_f) and reverse (k_r) of Reaction (7) at 298 K (1.1×10^{-15} molecules⁻¹ cm³). The published¹ entropies of the reactants and products gave the entropy change [$\Delta S^0(T)$] for the reaction at the same temperature. These quantities, with Eq. (9), gave the enthalpy change for Reaction (7), which in turn gave²⁰

$$\Delta_f H^0(O_2F, 298.15) = +5.49 \pm 0.40$$
 kcal/mol,
(10)

for the standard enthalpy of formation of O_2F . The O–F bond is by far the weaker of the two bonds in O_2F . From this work and the JANAF Tables¹ the O–O bond strength is 80 kcal/mol.

Preliminary analysis²¹ of experiments similar to those described in Ref. 20 gave another value for the enthalpy of formation for O_2F . These were direct measurements of the temperature dependence of the forward and reverse rates of Reaction (7). The enthalpy change for Reaction (7) derived from these experiments was

$$\Delta H^0(298.15) = -13.2 \text{ kcal/mol.}$$
(11)

With this value we obtain

$$\Delta_f H^0(O_2F, 298.15) = +5.77 \text{ kcal/mol},$$
 (12)

The measured^{11,22} activation energy for Reaction (7) is -1.8 kcal/mol (-1.7 kcal/mol for Ref. 23). Derivation of Eq. (11) required the assumption that the reverse of Reaction (3) had that same activation energy. One would expect a small, negative activation energy for this type of recombination reaction. Note that Levy and Copeland¹⁹ assumed that that activation energy was zero. If we assume that the activation energy for the reverse of Reaction (3) is -1.8 kcal/mol, use Eq. (2) for the standard enthalpy of formation for O₂F₂, and use the slightly modified¹ formation enthalpies for fluorine and oxygen, then Eq. (4) becomes

$$\Delta_f H^0(O_2F, 298.15) = +5.16 \text{ kcal/mol},$$
 (13)

These three values [Eqs. (10), (12), and (13)] of the standard enthalpy of formation for O_2F all fall within the 0.4 kcal/mol of Eq. (10). Their mean gives the value used to calculate the tables,

$$\Delta_{f} H^{0}(O_{2}F, 298.15) = +5.47 \pm 0.40$$
 kcal/mol,
(14)

This is somewhat greater than the JANAF value [Eq. (6)], but it is still well within the stated error limits.

3. Thermochemical Tables for O₂F₂ and O₁

Tables 3-6 are the thermochemical tables for O_2F_2 (1; bles 3,4) and for O_2F (Tables 5,6) over the temperature range of 0 to 6000 K. Tables 3 and 5 are for an enthaly reference temperature (T_r) of 298.15 K and a standard stars pressure (p_0) of 0.1 MPa. The units for C_p^0 , S^0 , and $-[G^0 - H^0(T_r)]/T$ are J K⁻¹ mol⁻¹, and kJ mol⁻¹ fer $H^0 - H^0(T_r)$, $\Delta_f H^0$, and $\Delta_f G^0$. The quantity Log K_f is the base-10 logarithm of the equilibrium constant. The last three columns are all relative to the elements (F_2 and O_2) in the standard states.¹

For convenience in working with older data sets Table 4 and 6 tabulate the thermochemical quantities for a standard state pressure (p_0) of 1.0 atm. The units for C_p^0 , S^0 , and $-[G^0 - H^0(T_r)]/T$ are cal K^{-1} mol⁻¹ (Gibbs mol⁻¹) and kcal mol⁻¹ for $H^0 - H^0(T_r)$, $\Delta_f H^0$, and $\Delta_f G^0$.

The differences between the values in Table 5 and thow in the JANAF tables¹ are very minor for C_p^0 , $S - [G^\circ - H^\circ(T_r)]/T$ and $H^\circ - H^\circ(T_r)$. For example S° is about 0.5 J K⁻¹ mol⁻¹ higher in Table 5 than in the JANAF Tables over the entire temperature range. They small differences reflect the minor changes in the spectroscopic constants (Table 2). The differences for $\Delta_f H^\circ$, $\Delta_f G^\circ$, and Log K_f are somewhat greater. The values we Table 5 for $\Delta_f H^\circ$ and $\Delta_f G^\circ$ exceed those in the JANAF Tables by about 10 kJ mol⁻¹. These differences reflect the change in the enthalpy of formation for O₂F.

4. Conclusions

The thermochemical properties in this paper are a significant improvement over what was previously available. The lack of spectroscopic data for O_2F_2 until recently have prevented calculation of properties for that species. The three published sets of vibrational frequencies agree to with in a few percent. This agreement gives high confidence in the entropy and heat capacity for O_2F_2 . The standard enthalpy of formation for O_2F_2 is based on a direct measurement. The minor adjustment made here removes the main uncertainty in the measurement.

The most significant uncertainty in the JANAF tables for O_2F was in the enthalpy of formation. Two additional experiments and a re-evaluation of a third have reduced the uncertainty in the standard enthalpy of formation for O_2F by an order of magnitude. Changes in the spectroscopic constants for O_2F were minor.

This pair of oxygen fluorides is somewhat unique. The corresponding chlorides are possible analogs, but the monochloride has a different structure¹ (C_{2v}) and the dichloride has not been studied sufficiently for comparison. The dinitrogen diffuoride molecule exists as a stable species in both a *cis* and *trans* forms.¹ The nitrogen compound is more stable than the corresponding oxide. Isomerization of the nitrogen compound occurs more rapidly than dissociation (isomerization activation energy¹ = 27.5 kcal/mol). The nitrogen diffuoride does, however, have a higher heat of formation Table 3. Dioxygen Difluoride (O_2F_2) , Ideal Gas

	Enthalpy	Ref. Tem	p. - 298.15	K Sta	ndard St	tate Pres	- 0.1 MPa	
		-J K ⁻¹ mo	1 ⁻¹		kJ mol	-1		
T/K	C°p	s° -	[G ⁰ -H ⁰ (T _r)]/T $H^{\circ}-H^{\circ}(T_{r})$) $\Delta_{f}^{H^{0}}$	۵ _f G۵	Log K _f	
0	0. 39.558	0. 222.863	INFINITE 325.879	- 13.803 - 10.302	22.868 20.558	22.868 32.640	INFINITE -17.049	
200	52.759	254.411	282.778	-5.673	19.346	45.292	-11.829	
250	58.065	266.775	278.367	-2.898	19.161 19.163	51.803 58.092	-10.824 -10.177	
298.15 300	62.155 62.294	277.365 277.750	277.365 277.366	0.000 0.115	19.166	58.277	- 10. 147	
350	65.656	287.615	278.138	3.317	19.302	64.853	-9.679	
400 450	68.347 70.518	296.564 304.744	279.890 282.204	6.670 10.143	19.530 19.819	71.342 77.806	-9.316 -9.031	
500	72.283	312.268	284.839	13.715	20.150	84.232	-8.800	
600	74.925	325.696	290.557	21.083	20.886	96.980 109.600	-8.443 -8.178	
700 800	76.753 78.056	337.391 347.730	296.430 302.209	28.673 36.417	21.668 22.467	122.109	-7.973	
900	79.011	356.981	307.790	44.272	23.262	134.514	-7.807	
1000 1100	79.726 80.275	365.345 372.970	313.134 318.232	52.211 60.212	24.049 24.822	146.834 159.076	-7.670 -7.554	
1200	80.704	379.974	323.089	68.262	25.577	171.247	-7.454	
1300	81.046	386.448	327.717	76.350	26.312	183.356	-7.367	
1400 1500	81,321 81,546	392.464 398.083	332.129 336.341	84.469 92.613	27.029 27.718	195.412 207.413	-7.291 -7.223	
1600	81.732	403.352	340.366	100.777	28.387	219.369	-7.162	
1700 1800	81.888 82.020	408.312 412.996	344.219 347.911	108.958	29.031 29.651	231.286	-7.106	
1900	82.132	417.434	351.454	117.154 125.361	30.247	243.166 255.012	-7.056 -7.011	
2000	82.228	421.649	354.859	133.580	30.822	266.828	-6.969	
2100	82.312 82.384	425.663 429.494	358.136 361.293	141.807 150.042	31.376 31.914	278.614 290.373	-6.930 -6.894	
2300	82.448	433.157	364.339	158.283	32.437	302.111	-6.861	
2400	82.503	436.667	367.280	166.531	32.948	313.826	-6.830	
2500 2600	82.553 82.597	440.036 443.275	370.123 372.875	174.784 183.041	33.451 33.950	325.515 337.190	-6.801 -6.774	
2700	82.636	446.393	375.540	191.303	34.449	348.845	-6.749	
2800 2900	82.671 82.703	449.399 452.301	378.125 380.633	199.568	34.948	360.479	-6.725	
3000	82.732	455.105	383.068	207.837 216.109	35.455 35.969	372.097 383.696	-6.702 -6.681	
3100	82.758	457.818	385.436	224.383	36.492	395.277	-6.660	
3200 3300	82.781 82.803	460.446 462.993	387.739 389.981	232.660 240.939	37.029 37.581	406.841 418.393	-6.641 -6.623	
3400	82.822	465.466	392.165	249.221	38.150	429.920	-6.605	
3500	82.840	467.867	394.294	257.504	38.739	441.436	-6.588	
3600 3700	82.857 82.872	470.201 472.471	396.370 398.397	265.789 274.075	39.345 39.973	452.933 464.415	-6.572 -6.556	
3800	82.886	474.681	400.375	282.363	40.622	475.877	-6.541	
3900	82.899	476.834	402.308	290.652	41.293	487.327	-6.527	
4000 4100	82.911 82.922	478.933 480.981	404.198 406.045	298.943 307.234	41.986 42.699	498.752 510.162	-6.513 -6.499	
4200	82.933	482.979	407.853	315.527	43.437	521.556	-6.486	
4300	82.942	484.931	409.623	323.821	44.196	532.931	-6.474	
4400 4500	82.951 82.960	486.837 488.702	411.357 413.055	332.116 340.411	44.975 45.777	544.285 555.624	-6.461	
4600	82.968	490.525	414.719	348.708	46.597	566.944	-6.438	
4700	82.975	492.310	416.351	357.005	47.438	578.249	-6.426	
4800 4900	82.982 82.988	494.056 495.768	417.952 419.522	365.303 373.601	48.296 49.173	589.532 600.797	-6.415 -6.404	
5000	82.995	497.444	421.064	381.900	50.065	612.049	-6.394	
5100	83.000	499.088	422.578	390.200	50.972	623.279	-6.384	
5200 5300	83.006 83.011	500.700 502.281	424.065 425.526	398.500 406.801	51.893 52.826	634.493 645.685	-6.373 -6.364	
5400	83.016	503.832	426.962	415.102	53.769	656.866	-6.354	
5500	83.020	505.356	428.373	423.404	54.723	668.024	-6.344	
5600 5700	83.025 83.029	506.852 508.321	429.761 431.127	431.707	55.683 56.650	679.173 690.295	-6.335 -6.326	
5800	83.033	509.765	432.470	448.312	57.620	701.401	-6.317	
5900	83.037	511.185	433.792	456.616	58.595		-6.308	
6000	83.040	512.580	435.094	464.920	59.568	712.488 723.563	-6.299	

JOHN L. LYMAN	JO	HN	L.	L	ΥM	AN
---------------	----	----	----	---	----	----

Table 4.	Dioxygen	Difluoride	(O_2F_2) ,	Ideal	Gas,	cal-K-mol u	inits
----------	----------	------------	--------------	-------	------	-------------	-------

	Enthalpy 1	Ref. Tem	р. - 298.15 К	Star	ndard St	ate Pres	s.=1.0 atm	
	c	al K ⁻¹ mo	ol ⁻¹	k	cal mol	-1		
T/K	C ⁰ p	S ⁰ -	$[G^0-H^0(T_r)]/T$	$H^0-H^0(T_r)$	∆ _f H ⁰	$\Delta_{f}G^{0}$	Log K _f	
0	0. 9.455	0.	INFINITE	-3.299	5.466	5.466	INFINITE	<u> </u>
200	12.610	53.239 60.779	77.861 67.559	-2.462 -1.356	4.914 4.624	7.798 10.820	-17.043 -11.823	
250	13.878	63.735	66.505	-0.693	4.580	12.375	-10.818	
98.15 300	14.855 14.889	66.266 66.358	66.266 66.266	0.000	4.580	13.877	-10.172	
350	15.692	68.715	66.450	0.028 0.793	4.581 4.613	13.921	-10.141 -9.673	
400	16.335	70.854	66.869	1.594	4.668	17.041	-9.310	
450 500	16.854 17.276	72.809 74.608	67.422 68.052	2.424 3.278	4.737	18.584	-9.026	
600	17.907	77.817	69.419	5.039	4.816 4.992	20.119 23.163	-8.794 -8.437	
700	18.344	80.612	70.822	6.853	5.179	26.177	-8.173	
800	18.656	83.083	72.204	8.704	5.370	29.164	-7.967	
900 1000	18.884 19.055	85.294 87.293	73.537 74.815	10.581 12.479	5.560 5.748	32.126	-7.801 -7.664	
1100	19.186	89.116	76.033	14.391	5.933	37.991	-7.548	
1200	19.289	90.790	77.194 78.300	16.315	6.113	40.898	-7.448	
1300 1400	19.370 19.436	92.337 93.775	79.355	18.248 20.189	6.289 6.460	43.789 46.668	-7.362 -7.285	
1500	19.490	95.118	80.361	22.135	6.625	49.534	-7.217	
1600	19.535	96.377	81.323	24.086	6.785	52.389	-7.156	
1700 1800	19.572 19.603	97.563 98.682	82.244 83.126	26.042 28.000	6.939 7.087	55.234 58.071	-7.101 -7.051	
1900	19.630	99.743	83.973	29.962	7.229	60.900	-7.005	
2000	19.653	100.750	84:787	31.926	7.367	63.721	-6.963	
2100 2200	19.673 19.690	101.710	85.570 86.325	33.893 35.861	7.499 7.628	66.535 69.343	-6.924 -6.889	
2300	19.705	103.501	87.053	37.831	7.753	72.146	~6.855	
2400	19.719	104.340	87.756	39.802	7.875	74.943	-6.824	
2500 2600	19.731 19.741	105.145	88.435 89.093	41.774 43.748	7.995 8.114	77.735 80.522	-6.795 -6.768	
2700	19.751	106.664	89.730	45.722	8.233	83.305	-6.743	
2800	19.759	107.383	90.348	47.698	8.353	86.083	-6.719	
2900 3000	19.766 19.773	108.076	90.947 91.529	49.674 51.651	8.474 8.597	88.857 91.627	-6.696 -6.675	
3100	19.780	109.395	92.095	53.629	8.722	94.392	-6.655	
3200	19.785	110.023	92.646	55.607	8.850	97.154	-6.635	
3300 3400	19.790 19.795	110.632	93.182 93.704	57.586 59.565	8.982 9.118	99.912 102.664	-6.617 -6.599	
3500	19.799	111.797	94.212	61.545	9.259	105.414	-6.582	
3600	19.803	112.354	94.709	63.525	9.404	108.159	-6.566	
3700 3800	19.807 19.810	112.897 113.425	95.193 95.666	65.506 67.486	9.554 9.709	110.901	-6.551 -6.536	
3900	19.813	113.940	96.128	69.468	9.869	116.372	-6.521	
\$000	19.816	114.442	96.579	71.449	10.035	119.100	-6.507	
100	19.819	114.931	97.021	73.431	10.205	121.824	-6.494	
4200 4300	19.821 19.824	115.409	97.453 97.876	75.413 77.395	10.382 10.563	124.545	-6.481 -6.468	
400	19.826	116.331	98.290	79.378	10.749	129.972	-6.456	
\$500	19.828	116.776	98.696	81.360	10.941	132.680	-6.444	
1600 1700	19.830 19.831	117.212	99.094 99.484	83.343 85.326	11.137 11.338	135.383 138.082	-6.432 -6.421	
800	19.833	118.056	99.867	87.309	11.543	140.776	-6.410	
900	19.835	118.465	100.242	89.293	11.753	143.466	-6.399	
5000	19.836	118.866	100.611	91.276	11.966	146.152	-6.388	
5100 5200	19.838 19.839	119.259	100.972 101.328	93.260 95.244	12.183 12.403	148.834	-6.378 -6.368	
5300	19.840	120.022	101.677	97.228	12.626	154.184	-6.358	
5400	19.841	120.393	102.020	99.212	12.851	156.854	-6.348	
5500 5600	19.842 19.843	120.757	102.357	101.196 103.180	13.079 13.309	159.518 162.180	-6.339 -6.329	
5700	19.844	121.466	102.689 103.016	105.165	13.540	164.835	-6.329	
5800	19.845	121.811	103.337	107.149	13.772	167.487	-6.311	
5900	19.846	122.150	103.653	109.134	14.004	170.134	-6.302	
5000	19.847	122.483	103.964	111.118	14.237	172.779	-6.293	

804

Table 5. Dioxygen Fluoride (O_2F) , Ideal Gas

*	-		p.=298.15		andard St		.=0.1 MPa	
			-					
T/K	C ⁰ p	S ⁰ -	$[G^{0}-H^{0}(T_{r})]$	$/T H^0 - H^0 (T_r$) ∆ _f H ⁰	∆ _r G⁰	Log K _f	
0	0. 34,494	0. 216.955	INFINITE 296.034	-11.256	24.726 23.717	24.726 27.870	INFINITE - 14 . 558	
200	40.259	242.614	263.475	-4.172	23.077	32.316	-8.440	
250	42.625 44.449	251.862 259.531	260.253 259.531	-2.098 0.000	22.942 22.886	34.643 36.903	-7.238 -6.465	
300	44.512	259.806	259.532	0.082	22.886	36.961	-6.435	
350 400	46.073 47.408	266.788 273.029	260.079 261.315	2.348	22.880 22.909	39.341	-5.871 -5.444	
450	48.572	278,682	262.935	7.086	22.957	44.037	-5.112	
500 600	49.595 51.282	283.854 293.052	264.772 268.738	9.541 14.588	23.022 23.173	46.376 51.033	-4.845 -4.443	
700	52.582	301.059	272.795	19.784	23.338	55.663	-4.154	
800 900	53.584 54.360	308.148 314.506	276.780 280.624	25.095 30.494	23.508 23.673	60.270 64.854	-3.935	
000	54.969	320.266	284.305	35.961	23.834	69.421	-3.626	
100	55.450 55.837	325.529 330.371	287.817 291.164	41.483 47.048	23.987 24.130	73.973 78.511	-3.513 -3.417	
300	56.150	334.853	294.354	52.648	24.262	83.037	-3.336	
400 500	56.40 6 56.619	339.024 342.923	297.398 300.304	58.276 63.9 28	24.383 24.486	87.556 92.062	-3.267 -3.206	
600	56.797	346.583	303.083	69. 599	24.576	96.564	-3.152	
700 800	56.947 57.075	350.031 353.289	305.745 308.296	75.286 80.987	24.649 24.705	101.050 105.554	-3.105 -3.063	
900	57.184	356.378	310.746	86.701	24.742	110.045	-3.025	
000 100	57.279 57.361	359.314 362.110	313.102 315.369	92.424 98.156	24.763 24.765	114.535	-2.991 -2.960	
200	57.433	364.780	317.555	103.896	24.753	123.511	-2.932	
300 400	57.496 57.551	367.335 369.783	319.664 321.702	109.642 115.395	24.724 24.682	128.001 132.493	-2.907	
500	57.601	372.133	323.672	121.152	24.627	136.984	-2.884 -2.862	
600 700	57.645 57.684	374.393 376.570	325.580	126.914	24.562	141.482	-2.842	
800	57.719	378.668	327.429 329.221	132.681	24.488 24.407	145.980 150.481	-2.824 -2.807	
900	57.751	380.694	330.961	144.225	24.321	154.986	-2.792	
000 100	57.780 57.806	382.652 384.547	332.652 334.296	150.001 155.781	24.230 24.136	159.493 164.002	-2.777 -2.763	
200	57.830	386.383	335.895	161.562	24.040	168.514	-2.751	
300 400	57.852 57.872	388.163 389.890	337,452 338,969	167.347 173.133	23.946 23.852	173.033	-2.739 -2.728	
500	57.890	391.568	340.448	178.921	23.761	182.073	-2.717	
500 700	57.907 57.922	393.199 394.786	341.891 343.299	184.711 190.502	23.672 23.587	186.597 191.125	-2.707	
300	57.937	396.331	344.674	196.295	23.506	195.655	-2.698 -2.689	
900 000	57.950	397.836	346.018	202.090	23.430	200.189	-2.681	
100	57.962 57.973	399.303 400.735	347.332 348.617	207.885 213.682	23.359 23.292	204.720 209.254	-2.673 -2.666	
200	57.984	402.132	349.875	219.480	23.232	213.792	-2.659	
100 100	57.994 58.003	403.496 404.829	351,106 352,312	225.279	23.177 23.126	218.330	-2.652	
500	58.012	406.133	353.493	231.079 236.879	23.126	222.867	-2.646	
00	58.020	407.408	354.651	242.681	23.039	231.947	-2.634	
00	58.027 58.034	408.656 409.878	355.787 356.901	248.483 254.286	23.003 22.968	236.491 241.031	-2.628 -2.623	
00	58.041	411.074	357.995	260.090	22.937	245.574	-2.618	
000	58.047 58.053	412.247 413.397	359.068	265.894	22.907	250.119	-2.613	
200	58.059	414.524	360.122 361.158	271.700 277.505	22.879 22.851	254.666	-2.608 -2.604	
00	58.064	415.630	362.175	283.311	22.822	263.755	-2.599	
100 100	58.069 58.074	416.715	363.175 364.158	289.118 294.925	22.790	268.302	-2.595	
00	58.078	418.827	365.125	300.733	22.756 22.717	272.847	-2.591 -2.587	
00	58.083	419.855	366.076	306.541	22.673	281.947	-2.584	
00	58.087 58.090	420.865 421.858	367.012	312.349	22.621	286.495		
80	58.094	422.835	367.933 368.840	318.158 323.967	22.562 22.492	291.041 295.592	-2.577 -2.573	

	Enthalpy R	ef. Tem	р. - 298.15 К	Star	ndard Sta	ate Pres	1.0 atm	
	ca	1 K ⁻¹ mo	o1 ⁻¹		ccal mol	1		
I/K	C ⁰ p	s° -	$[G^{0}-H^{0}(T_{r})]/2$	$I H^0 - H^0 (T_r)$	∆ _f H ⁰	∆ _f G⁰	Log K _f	
0	0. 8.244	0. 51.827	INFINITE 70.728	-2.690	5.910	5.910	INFINITE - 14.555	
100 200	9.622	57.960	62.946	-0.997	5.668 5.515	6.660 7.721	-14.555	
250	10.188	60.170	62.176	-0.501	5.483	8.277	-7.235	
98.15	10.624 10.639	62.003	62.003 62.003	0.000	5.470 5.470	8.816	-6.462	
300 350	11.012	62.069 63.738	62.134	0.020	5.468	8.830 9.398	-6.433 -5.868	
400	11.331	65.229	62.430	1.120	5.475	9.959	-5.441	
450	11.609	66.580	62.81/	1.094	5.487	10.519	-5.109	
500 600	11.853 12.257	67.816 70.015	63.256 64.204	2.280 3.487	5.502 5.538	11.078 12.189	-4.842 -4.440	
700	12.567	71.929	65.174	4.729	5.578	13.295	-4.151	
800	12.807	73.623	66.126	5.998	5.618	14.394	-3.932	
900	12.992	75.143	67.045	7.288	5.658	15.489	-3.761	
1000	13.138 13.253	76.519 77.777	67.924 68.764	8.595	5.696 5.733	16.579 17.666	-3.623 -3.510	
1200	13.345	78.934	69.564	11.245	5.767	18.749	-3.415	
1300	13.420	80.006	70.326	12,583	5.799	19.829	-3.334	
1400	13.481 13.532	81.002 81.934	71.054	13.928 15.279	5.828 5.852	20.908 21.984	-3.264 -3.203	
1600	13.575	82.809	72,413	16.635	5.874	23.058	-3.150	
1700	13.611	83.633		17.994	5.891	24.132	-3.102	
1800	13.641	84.412	73.658	19.356	5.905	25.205	-3.060	
1900	13.667	85.150		20.722	5.913 5.918	26.277 27.348	-3.022 -2.988	
2000	13.690 13.710	85.852 86.520	74.807	22.090 23.460	5.919	28.420	-2.958	
2200	13.727	87.158	75.871	24.832	5.916	29.491	-2.930	
2300	13.742	87.769	76.375	26.205	5.909	30.563	-2.904	
2400	13.755	88.354	76.862 77.333	27.580 28.956	5.899 5.886	31.635 32.707	-2.881 -2.859	
2500	13.767 13.777	88.916 89.456	77.789	30.333	5.870	33.781	-2.840	
2700	13.787	89.976	78.231	31.712	5.853	34.855	-2.821	
2800	13.795	90.478	78.660	33.091	5.833	35.929	-2.804	
2900	13.803 13.810	90.962 91.430	79.076 79. 480	34.471 35.851	5.813 5.791	37.005 38.080	-2.789 -2.774	
3000 3100	13.816	91.883	79.872	37.232	5.769	39.157	-2.761	
200	13.822	92.322	80.255	38.614	5.746	40.234	-2.748	
300	13.827	92.747		39.997	5.723	41.313	-2.736	
8400	13.832 13.836	93.160 93.561	80.989 81.343 81.688	41.380 42.763	5.701 5.679	42.391 43.471	-2.725 -2.714	
1500 1600	13.840	93.951	81.688	44.147	5.658	44.551	-2.705	
700	13.844	94.330	82.024	45.531	5.637	45.632	-2.695	
800	13.847	94.699		46.916	5.618	46.713	-2.687	
900°	13.850 13.853	95.059		48.301 49.686	5.600	47.795 48.877	-2.678 -2.670	
100	13.856	95.752		51.071	5.567	49.959	-2.663	
200	13.859	96.086		52.457	5.553	51.043	-2.656	
300	13.861	96.412		53.843	5.539	52.126	-2.649	
400	13.863	96.730		55.229	5.527 5.517	53.209 54.292	-2.643 -2.637	
500	13.865 13.867	97.042 97.347	84.461 84.738	56.615 58.002	5.507	55.377	-2.631	
700	13.869	97.645	85.009	59.389	5.498	56.461	-2.625	
800	13.871	97.937	85.275	60.776	5.490	57.545	-2.620	
900	13.872	98.223		62.163	5.482	58.629		
1000	13.874 13.875	98.503 98.778	85.793 86.045	63.550 64.938	5.475 5.468	59.715 60.800		
200	13.875	99.047	86.293	66.325	5.462	61.885		
300	13.878	99.312		67.713	5.455	62.970	-2.597	
400	13.879	99.571	86.775	69.101	5.447	64.055		
500	13.880	99.826	87.010	70.489	5.439	65.140		
600 700	13.881 13.882	100.076		71.877 73.265	5.430 5.419	66.227 67.312		
800	13.883	100.563		74.653	5.406	68.398		
900	13.884	100.800	87.912	76.042	5.392	69.483	-2.574	
000	13.885	101.034	88.129	77.430	5.376	70.570) -2.570	

THERMODYNAMIC PROPERTIES OF DIOXYGEN DIFLUORIDE AND DIOXYGEN FLUORIDE 807

the oxygen diffuoride by about 11 kcal/mol for the *cis* somer and about 15 kcal/mol for the *trans* isomer.

Note added in proof

Recent experimental evidence (K. D. Abney, P. G. ¹ller, M. P. Eastman, W. H. Woodruff, C. F. Pace, S. A. Ankead, and R. J. Kissane, unpublished data) suggests that ¹le values for $\Delta_f H^0(T)$ [and $\Delta_f G^0(T)$] for O_2F_2 in this ¹aper are low by 5.65 kJ mol⁻¹ (1.35 kcal mol⁻¹). The basis ¹this conclusion is an experimental study of the equilibrium

 $O_2 + O_2F_2 \leftrightarrow O_2F + O_2F$

at 297 K. The discrepancy may be due to errors in the calooctric study of Ref. 6, to errors in the enthalpy of formation $4 O_2 F$, or to the lack of attainment of equilibrium. Adjustocnt of the thermochemical tables is probably premature at his point. The authors are continuing their research over a inge of temperatures. Analysis of these data will help reolve the discrepancy.

5. Acknowledgments

This work was performed under the auspices of the United States Department of Energy. The author apprecites the support from the DoE Division of Nuclear Materials and the FOOF/Superacids Project of the Los Alamos Natonal Laboratory. Helpful discussions with Dr. R. Berhens, Dr. R. Holland, Dr. G. Loge, Dr. K. C. Kim, and Dr. G. 'ampbell were also greatly appreciated.

6. References

¹M. W. Chase, Jr, C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, "JANAF Thermochemical Tables, Third Edition," J. Phys. Chem. Ref. Data Suppl. 1 14, (1985).

²K. C. Kim and G. M. Campbell, J. Mol. Struct. 129, 263 (1985).

³M. E. Jacox, J. Mol. Spectrosc. 84, 74 (1980).

⁴W. H. Woodruff, E. M. Larson, B. I. Swanson, S. A. Kinkead, L. H. Jones, and P. G. Eller, "Raman Spectroscopic studies of F¹⁶O¹⁶OF, F¹⁸O¹⁸OF, and F¹⁸O¹⁶OF," paper presented at the American Chemical Society National Meeting, Denver, CO, April 1987.

⁵A. G. Streng, Chem. Rev. 63, 607 (1963).

⁶R. H. Jackson, J. Chem. Soc. 1962, 4585.

⁷P. H. Brodersen, P. Frisch, and H. J. Schumacher, Z. phys. Chem. Abt. B **37**, 25 (1937).

⁸A. D. Kirshenbaum and A. G. Streng, J. Chem. Phys. 35, 1440 (1961).

⁹A. G. Streng and L. V. Streng, J. Phys. Chem. 69, 1079 (1965).

¹⁰N. M. Matchuk, V. I. Tupikov, A. I. Malkova, and S. Ya. Pshezhetskii, Opt. Spectrosc. (USSR) 40, 7 (1976).

¹¹K. C. Kim and G. M. Campbell, Chem. Phys. Lett. 116, 236 (1985).

¹²C. Yamada and E. Hirota, J. Chem. Phys. 80, 4694 (1984).

¹³P. N. Noble and G. C. Pimentel, J. Chem. Phys. 44, 3641 (1966).

¹⁴R. D. Spratley, J. J. Turner, and G. C. Pimentel, J. Chem. Phys. **44**, 2063 (1966).

¹⁵A. Arkell, J. Amer. Chem. Soc. 87, 4057 (1965).

¹⁶A. Glissman and H. J. Schumacher, Z. physik. Chem. Abt. B 24, 328 (1934).

¹⁷A. D. Kirshenbaum, A. V. Grosse, and J. G. Aston, J. Am. Chem. Soc. 81, 6398 (1959).

¹⁸H. J. Schumacher and P. Frisch, Z. physik. Chem. Abt. B 37, 1 (1937).

¹⁹J. B. Levy and B. K. W. Copeland, J. Phys. Chem. **69**, 408 (1965).

²⁰J. L. Lyman and R. Holland, "Oxygen Fluoride Chemical Kinetics," J. Phys. Chem. **92**, 7232 (1988).

²¹R. Holland, G. L. Loge, and J. L. Lyman (unpublished).

²²N. F. Shamonima and A. G. Kotov, Kinet. Katal. 20, 233 (1979)

²³P. P. Chegodaev, V. I. Tupikov, E. G. Strukov, and S. Ya. Pshezhetskii, Khim. Vys. Energ. **12**, 116 (1978).