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with e.g. Metropolis:
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1. Introduce “bias” functions
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1.  Introduce “bias” functions

2.  Define “restrained” distributions
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4.  Assemble general averages
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A detailed analysis
We establish a central limit theorem with a detailed 
expression for the asymptotic variance along with a 

general bound:
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so this last step costs O(L).
The total cost of the algorithm described above is a single L⇥L matrix inversion

plus O(L2). ⇤
Remark 4. Most perturbation bounds in the literature have the same computational
complexity as our bound. For example, some bounds are based on the group inverse
of I �F [9,11]. The cost of computing the group inverse is O(L3) [5], so our bound
has the same complexity as [9, 11]. Computing the bound on relative error in [7]
requires finding

��(I � F
j

)�1
��
1 for all j; see (5). This could be done in O(L3)

operations by methods similar to Theorem 5, so we conjecture that our bound and
the bound of [7] have the same complexity. On the other hand, the bound on
relative error in [13] (see (6)) requires almost no calculation at all.

6. The hilly landscape example

In this section, we discuss an example in which the invariant distribution is very
sensitive to some entries of the transition matrix, but insensitive to others. The
example arose from a problem in computational statistical physics. We will use
the example to compare our results with previous work, especially [2,7,13] and the
bounds on absolute error summarized in [3].

6.1. Transition matrix and physical interpretation. Our hilly landscape ex-
ample is a simple analogue of the dynamics of a single particle in contact with a
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An illustrative example

A. Dinner, E. Thiede, B. Van Koten, and JW, SIMAX 36(3), 917-941 (2015)
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We can sample e.g. by Metropolis

with simple random walk proposals



The inequality:
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i.e. not exponentially!

An illustrative example
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A detailed analysis
US can reduce the cost to compute tail 

probabilities                       from exponential in        
to algebraic.
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Instead of trying to estimate the 
small probability with relative 
accuracy, US estimates the 
relatively large entries in    . 

But:  Again, you have to think 
about how the eigenproblem 
amplifies errors in    .
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A key ingredient

We need to understand the error in the        
resulting from sampling error in a stochastic matrix      
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Existing perturbation bounds for Markov matrices   
blow up as (one over) the spectral gap of  
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In US applications the spectral gap of           
is typically extremely small. 

A. Dinner, E. Thiede, B. Van Koten, and JW, SIMAX 36(3), 917-941 (2015)



A key ingredient
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We are far from the first to consider this problem

Existing bounds blow up as the spectral gap decreases

A. Dinner, E. Thiede, B. Van Koten, and JW, SIMAX 36(3), 917-941 (2015)

Some bounds of the form                                       (from Chao and Meyer 2001):
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A key ingredient

We establish new more detailed bounds that show  
that error can be small even when spectral gap is small 

Perturbation bounds in the rare event context Quantifying the error in the invariant measure
of a Markov process resulting from misspecification of the parameters of that process is a classical
problem (see e.g. [?]). Very generally, existing results tell us that, when the mixing of the Markov
process is slow, the invariant measure will be highly sensitive to general perturbations in the pa-
rameters of the process. Unfortunately, existing results are not su�ciently detailed to distinguish
between perturbations that do not lead to large errors and those that do. In many applications such
distinctions are crucial. We have recently introduced very detailed perturbation bounds for finite
state Markov processes which revealed that, for example, that perturbations resulting from sampling
errors from a widely used family of Monte Carlo methods (umbrella sampling) do not typically result
in large relative errors even when the spectral gap of the relevant matrix is tiny [?, ?]. More precisely,
we prove that, if z and z̃ are the invariant probability vectors for stochastic matrices F and F̃ and
if, for some substochastic matrix S, the entries of F and F̃ are bounded below by the corresponding
entry in S, then

max
k

|log zk � log z̃k|| 
X

i 6=j

|log(Fij + �ij)� log(F̃ij + �ij)|

where �ij = Pi(⌧j < min{⌧i, ⌧})� Sij where ⌧i is the return time to state i for the absorbing Markov
chain governed by S, and ⌧ is the time to absorption for that chain. The first important feature of
this inequality is that it bounds a form of relative error in the entries of the invariant probability
vector. This is crucial in the rare event context where the goal is to compute small probabilities.
Notice for example that removing the �ij (which are all non-negative) from the right hand side of the
inequality shows that the relative error in the invariant probability vector is bounded by the relative
errors in the non-zero entries of F. It is not di�cult to construct simple stochastic matrices for which
the spectral gap is extremely small, but the non-zero entries in F are large and, consequently, large
perturbations of those entries do not result in large perturbations to the invariant probability vector.
The second important feature of the inequality is its robustness. In cases of practical interest (in
particular for umbrella sampling) error in an entry in F can be extremely large relative to the size of
the entry, but small relative to the corresponding entry of �, and consequently translate to a small
error in the invariant probability vector.

While these bounds are interesting, they are only a first step. They do not cover the more general
Markov processes of interest in this proposal. A major mathematical thrust will therefore be to
establish similar perturbation bounds for more general families of Markov processes (e.g. irreversible
di↵usions). Not only is the quantification of errors in the invariant measure of a Markov process
resulting from misspecification of its parameters an interesting mathematical question in its own right,
but the resulting bounds could be used to, for example, more accurately quantify errors resulting from
discretization of di↵usion processes in contexts where the process is expected to mix slowly, such as
in molecular dynamics (SUB ANOTHER APP).

Sensitivities in the rare event context Probabilities and expectations involving rare events
are notoriously di�cult to estimate accurately. Roughly, when computing the expectation of an
objective function whose support is far into the tail of the underlying distribution, one can expect any
generic Monte Carlo scheme to generate very few samples in regions where the objective function is
large, resulting in large relative error in the estimate. For example, while the damage caused by the
largest hurricanes dwarfs that caused by smaller storms, they are comparatively very rare and direct
simulation of a weather system for long enough times to observe an extremely large hurricane (at
spatial resolutions that can represent large hurricanes) is not feasible. This situation is exacerbated
when the goal is to not only compute an expectation involving a rare event, but also to compute
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A typical US application:  A free energy surface for the 
 alanine dipeptide 

184114-6 Tempkin et al. J. Chem. Phys. 140, 184114 (2014)

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

iteration

er
ro

r

 

 

FG only
Multilevel with bad CG model
Multilevel with good CG model
Bad CG only
Good CG only

FIG. 6. String method for the Müller-Brown model. We plot the error (as
computed by Eq. (14)) at each iteration of the indicated string methods: the
string method with only the FG model (◦), the multilevel string method with
bad CG model (×), the multilevel string method with good CG model (+),
the string method applied directly to the bad CG model (∗), and the string
method applied directly to the good CG model (!).

smoothed FG model (i.e., the fixed point of S), the agreement
is not perfect. The two paths are plotted over isoenergetic con-
tours of the good CG potential in the top panel of Fig. 5. The
difference (as measured by Eq. (14)) between the fixed point
of SCG with the good CG model and the fixed point of S is
apparent from the “Good CG only” curve in Fig. 6. Despite
the discrepancy, the form of Eq. (7) guarantees convergence
of the multilevel string method to a fixed point of S, as shown
by the “Multilevel” curves in Fig. 6.

Interestingly, with the bad CG potential (and !m = 0.25),
the multilevel string method still accelerates convergence of
the path. This is surprising given that the minimum free en-
ergy path on the bad CG potential bears little resemblance
to the fixed point of S (see bottom panel in Fig. 5). In fact,
with the bad CG model, the fixed point of SCG is farther (as
measured by the error above) from the fixed point of S than
is the initial straight line connecting the basins (see Fig. 6).
This makes clear the value of Eq. (7) and distinguishes our ap-
proach from simple alternation between CG and FG string op-
erations. The latter would result in a path somewhere between
the fixed point of SCG and S. Analysis beyond the scope of
this paper is required to determine how different properties of
CG models contribute to the speedup.

2. Alanine dipeptide

To evaluate the multilevel string with a molecular
model, we consider finding reaction pathways of the well-
characterized30, 31 c7ax to c7eq transition of the alanine dipep-
tide (Figure 7). The potential used for the FG model is the all-
atom CHARMM22 force field with the CMAP correction32

and a Generalized-Born implicit solvation model.33 We sim-
ulate the system with Langevin dynamics on the heavy atoms
with a timestep of 1 fs and a friction coefficient of 5 ps−1

at 273 K unless otherwise noted. The SHAKE algorithm is

N
H

H
N

CH3H3C

O

O

H3C H

FIG. 7. The collective variables used in the string method are the φ and ψ
backbone dihedral angles (above). The structures used for the PNM basins
are the c7ax and c7eq configurations (below).

used to constrain bonds involving hydrogen atoms.34 The
FG calculations are performed in NAMD2.9,35 and the CG
calculations are performed using the PNM module in
CHARMM (version c35b3).1

The collective variables (CVs) for the string procedure
are the φ and ψ backbone dihedrals (Figure 7). The string has
16 images. The initial position of the string is obtained by lin-
early interpolating between the points (φ, ψ) = (70.5, –69.5)
and (φ, ψ) = (–82.7, 73.5). We generate initial structures
(i.e., the values for remaining degrees of freedom) for the
images sequentially starting from the endpoints. The struc-
ture for each image is equilibrated for 500 ps with harmonic
restraints on each dihedral angle using a force constant of
200 kcal/mol/deg2; then, the harmonic restraints were moved
to the next image and the system was allowed to relax over
500 ps.

The string method is used to evaluate the operator S. At
each iteration we do the following:

1. Update the images by dragging the peptide toward the
target point in the CV space. The dragging step moves
the minima of harmonic restraints with force constants
of 500 kcal/mol/deg2 in 10 equal increments over a total
of 100 ps.

2. Simulate the prepared images with harmonic restraints
at the target point in CV space with a force constant of
25 kcal/mol/deg2 for a total of 10 ps. The CVs are sam-
pled every 10 steps and averaged over the trajectory to
determine the new CV values. Samples that exceed a
cutoff distance of 15◦ from the target in each CV are
removed from the average.

3. Reparameterize the interpolated path to maintain ap-
proximately equidistant spacing between the images
while smoothing the string as in Ref. 12 with κ = 0.1.
The reparameterization and smoothing steps are applied
iteratively 5 times for each evaluation of S.

The CG model is a plastic network model36 (PNM) that
is supplemented with the bond, angle, dihedral angle, and im-
proper dihedral angle energy terms from the CHARMM22
force field in vacuum. The basin structures for the PNM
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In both cases US gives much more accurate representation 
 of the tails of the posterior  

In particular we obtain a more accurate estimate of the 
probability that the expansion of the universe is decelerating, 

contradicting previous (higher) estimates.
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FIG. 6. String method for the Müller-Brown model. We plot the error (as
computed by Eq. (14)) at each iteration of the indicated string methods: the
string method with only the FG model (◦), the multilevel string method with
bad CG model (×), the multilevel string method with good CG model (+),
the string method applied directly to the bad CG model (∗), and the string
method applied directly to the good CG model (!).

smoothed FG model (i.e., the fixed point of S), the agreement
is not perfect. The two paths are plotted over isoenergetic con-
tours of the good CG potential in the top panel of Fig. 5. The
difference (as measured by Eq. (14)) between the fixed point
of SCG with the good CG model and the fixed point of S is
apparent from the “Good CG only” curve in Fig. 6. Despite
the discrepancy, the form of Eq. (7) guarantees convergence
of the multilevel string method to a fixed point of S, as shown
by the “Multilevel” curves in Fig. 6.

Interestingly, with the bad CG potential (and !m = 0.25),
the multilevel string method still accelerates convergence of
the path. This is surprising given that the minimum free en-
ergy path on the bad CG potential bears little resemblance
to the fixed point of S (see bottom panel in Fig. 5). In fact,
with the bad CG model, the fixed point of SCG is farther (as
measured by the error above) from the fixed point of S than
is the initial straight line connecting the basins (see Fig. 6).
This makes clear the value of Eq. (7) and distinguishes our ap-
proach from simple alternation between CG and FG string op-
erations. The latter would result in a path somewhere between
the fixed point of SCG and S. Analysis beyond the scope of
this paper is required to determine how different properties of
CG models contribute to the speedup.

2. Alanine dipeptide

To evaluate the multilevel string with a molecular
model, we consider finding reaction pathways of the well-
characterized30, 31 c7ax to c7eq transition of the alanine dipep-
tide (Figure 7). The potential used for the FG model is the all-
atom CHARMM22 force field with the CMAP correction32

and a Generalized-Born implicit solvation model.33 We sim-
ulate the system with Langevin dynamics on the heavy atoms
with a timestep of 1 fs and a friction coefficient of 5 ps−1

at 273 K unless otherwise noted. The SHAKE algorithm is
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FIG. 7. The collective variables used in the string method are the φ and ψ
backbone dihedral angles (above). The structures used for the PNM basins
are the c7ax and c7eq configurations (below).

used to constrain bonds involving hydrogen atoms.34 The
FG calculations are performed in NAMD2.9,35 and the CG
calculations are performed using the PNM module in
CHARMM (version c35b3).1

The collective variables (CVs) for the string procedure
are the φ and ψ backbone dihedrals (Figure 7). The string has
16 images. The initial position of the string is obtained by lin-
early interpolating between the points (φ, ψ) = (70.5, –69.5)
and (φ, ψ) = (–82.7, 73.5). We generate initial structures
(i.e., the values for remaining degrees of freedom) for the
images sequentially starting from the endpoints. The struc-
ture for each image is equilibrated for 500 ps with harmonic
restraints on each dihedral angle using a force constant of
200 kcal/mol/deg2; then, the harmonic restraints were moved
to the next image and the system was allowed to relax over
500 ps.

The string method is used to evaluate the operator S. At
each iteration we do the following:

1. Update the images by dragging the peptide toward the
target point in the CV space. The dragging step moves
the minima of harmonic restraints with force constants
of 500 kcal/mol/deg2 in 10 equal increments over a total
of 100 ps.

2. Simulate the prepared images with harmonic restraints
at the target point in CV space with a force constant of
25 kcal/mol/deg2 for a total of 10 ps. The CVs are sam-
pled every 10 steps and averaged over the trajectory to
determine the new CV values. Samples that exceed a
cutoff distance of 15◦ from the target in each CV are
removed from the average.

3. Reparameterize the interpolated path to maintain ap-
proximately equidistant spacing between the images
while smoothing the string as in Ref. 12 with κ = 0.1.
The reparameterization and smoothing steps are applied
iteratively 5 times for each evaluation of S.

The CG model is a plastic network model36 (PNM) that
is supplemented with the bond, angle, dihedral angle, and im-
proper dihedral angle energy terms from the CHARMM22
force field in vacuum. The basin structures for the PNM
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Illustrative example: Computing set hitting probabilities in the 
isomerization of the alanine dipeptide

Compute the probability                                 
that the system hits the set B before hitting the set A and 
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This probability can be very difficult to estimate when the 
probability of hitting B is very small.
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Illustrative example: Computing set hitting probabilities in the 
isomerization of the alanine dipeptide

�(0) = �58.0�
f(t,X(t)) = 1B(X
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In our examples, we discretize time and only one additional “collective variable”598

(a dihedral angle in subsection 5.2 and the nonequilibrium work in subsection 5.3).599

Here we denote the collective variable by �, and we discretize it within some interval600
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examples, ⌧ is a fixed time horizon. The function  
j

is largest when t 2 [tj
start

, tj
end

)609

and �(x) = �
j

. The supports of the various  
j

correspond to products of overlapping610

intervals in the � variable, but non-overlapping intervals in time. The fact that  
j

611

depends on time is essential in our examples.612

5.2. Finite-Time Hitting Probability. In this section we compute the prob-613

ability, P
BA

(⌧
max

), of hitting a set B before a separate set A and before a fixed time614

⌧
max

> 0 given that the system is at a point X(0) /2 A [ B at time t = 0. In the615

case where X(0) and B are separated by a large free energy barrier while X(0) and A616

are not, computing P
BA

(⌧
max

) can be challenging since trajectories that contribute617

to P
BA

(⌧
max

) are rare in direct simulations. To compute P
BA

(⌧
max

) via the scheme618

in subsection 3.3, we let the stopping time ⌧ be the minimum of ⌧
max

and the first619

time, t, at which X(t�1) is in either A or B, i.e., ⌧ � 1 = min{⌧
A

, ⌧
B

, ⌧
max

� 1}620

where ⌧
A

and ⌧
B
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equation by (t, X(t�1), X(t)). The set D corresponding to our choice of ⌧ is then623
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, x /2 (A [ B)}. As we have already mentioned, this can be624

done without further modification of the scheme. Then f(t, X(t)) in (10) is625

(46) f(t, X(t)) = 1
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The system that we simulate is the alanine dipeptide (CH
3

-CONH-C↵H(C�H
3

)-627
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done without further modification of the scheme. Then f(t, X(t)) in (10) is625

(46) f(t, X(t)) = 1
B

(X(t)).626

The system that we simulate is the alanine dipeptide (CH
3

-CONH-C↵H(C�H
3

)-627
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Repeated direct integration (106 independent simulations) 
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          a hard rare event problem
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Software Tools: Enhanced Sampling Toolkit

I’ve developed a set of software tools designed to facilitate rapid 
prototyping of enhanced sampling algorithms. 

MD Engines: 
• LAMMPS, OpenMM, CHARMM, 

GROMACS (potential future 
implementation) 

• Dynamics are executed in 
widely available and popular MD 
codes 

• Computationally expensive part 
of the code is still executed in 
fast MD codes

Enhanced Sampling Toolkit

Enhanced Sampling Algorithms: 

• Allows developers to write 
algorithms in 100% Python 

• Enables rapid prototyping in 
developer friendly languages 

• Enables clean and concise 
writing of algorithmic code 


