Pusiness activity of company and s

600 / 640

TECHNOLOGIES

TECHNOLOGY SAVING LIFE AND MONEY

Intellego Technologies Background

- Founded in 2011
- R&D company based in Sweden
- Focus on development of patent protected dosimeter technology
- Active in consumer, healthcare and construction industry
- Just set up US office:
 - Contact person is
 - Leigh Veasey
 - leigh@intellego-technologies.com
 - 404 955 4345

Increasing intserest is having a visual indication of UV exposure

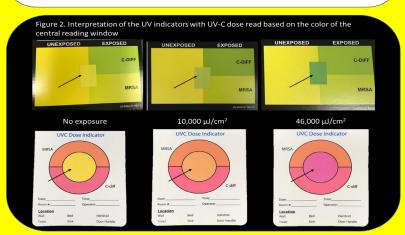
"How do I know that it works?"

Ultraviolet-C (UV-C) monitoring made ridiculously simple: UV-C dose indicators for convenient measurement of UV-C dosing

Contact: Jennifer.Cadnum@VA.gov

Poster #1215

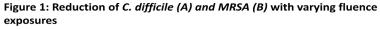
Jennifer L. Cadnum, BS¹; Annette L. Jencson, CIC²; Sarah Redmond, MD³; Thriveen Sankar Chittoor Mana, MS³

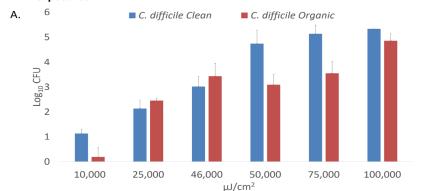

& Curtis J. Donskey, MD¹⁻³ 1. Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland OH,

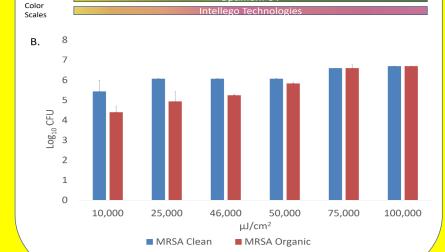
- 2. The Cleveland VA Medical Research and Education Foundation, Cleveland, OH
- 3. Department of Medicine, Division of Infectious Diseases, Case Western Reserve University, Cleveland, OH

Dosimete

Background


- Ultraviolet-C (UV-C) light is increasingly used as an adjunct to standard cleaning in healthcare facilities
- Most facilities do not have a means to measure UV-C to determine if effective doses are being delivered
- We tested the efficacy of 2 easy-to-use colorimetric indicators for monitoring UV-C dosing in comparison to log reductions in pathogens




Methods

- o In a laboratory setting, we exposed methicillin-resistant Staphylococcus aureus (MRSA) and Clostridioides difficile spores on steel disk carriers to UV-C for varying fluence exposures ranging from 10,000 to 100,000 µJ/cm2
- The UV-C indicators were placed adjacent to the carriers
- Change in color of the indicators was correlated with dose and log₁₀ **CFU** reductions

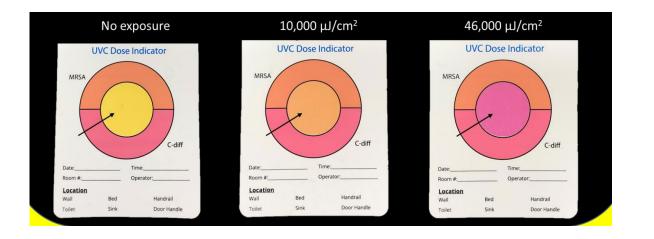
Results

- o The UV-C doses required to achieve a 3-log reduction in MRSA and C. difficile were 10,000 and 46,000 µJ/cm², respectively
- o For both indicators, there was a visible color change from baseline at 10,000 µJ/cm2 and a definite final color change by 46,000 μJ/cm2 (Figure 1&2)
- Organic load had only a modest impact on UV-C efficacy
- o The indicators required only a few seconds to place and were easy to read (Figure 2)

Conclusions

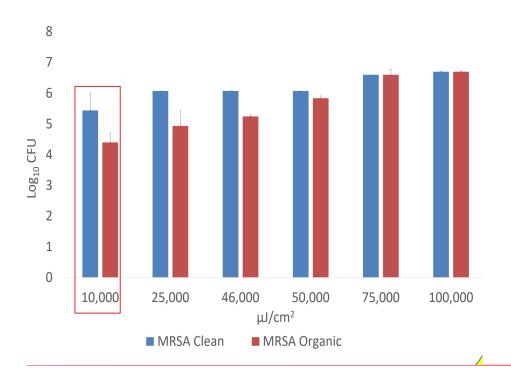
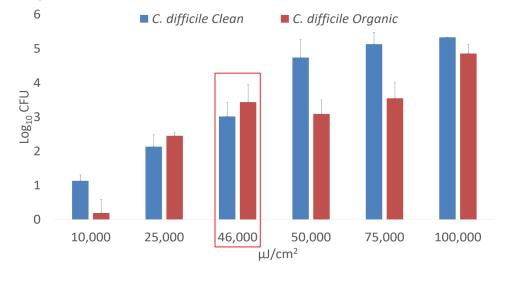
- O UV-C doses of 10,000 μJ/cm² and 46,000 μJ/cm² were required to achieve 3 log reductions of MRSA and C. difficile spores, respectively.
- The colorimetric indicators provide an easy means to monitor UV-C
- Additional studies are needed to evaluate use of the indicators in patient rooms including in shaded areas

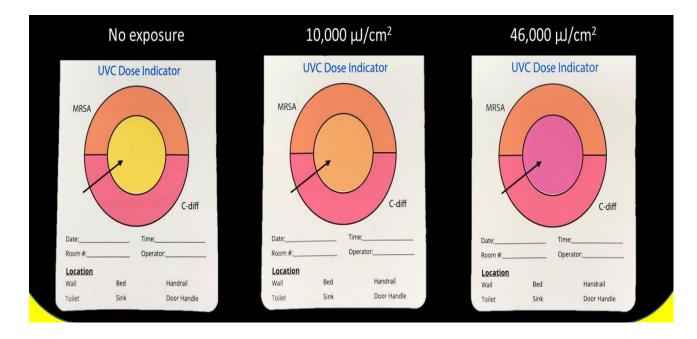
Acknowledgement


- We thank The Clorox Company and Intellego Technologies for providing devices for testing
- Providing companies did not have any role in planning or design of the study and no funding was received

Method

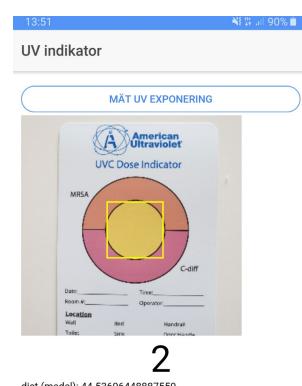
- o In a laboratory setting, we exposed methicillin-resistant Staphylococcus aureus (MRSA) and *Clostridioides difficile* spores on steel disk carriers to UV-C for varying fluence exposures ranging from 10,000 to 100,000 μJ/cm2
- The UV-C indicators were placed adjacent to the carriers
- Change in color of the indicators was correlated with dose and log₁₀
 CFU reductions


Figure 1: Reduction of *C. difficile (A) and MRSA (B)* with varying fluence exposures

Results

- The UV-C doses required to achieve a 3-log reduction in MRSA and
 C. difficile were 10,000 and 46,000 μJ/cm², respectively
- \circ For both indicators, there was a visible color change from baseline at 10,000 μ /cm2 and a definite final color change by 46,000 μ /cm2 (Figure 1&2)
- Organic load had only a modest impact on UV-C efficacy
- The indicators required only a few seconds to place and were easy to read (Figure 2)


Conclusion

- O UV-C doses of 10,000 μJ/cm² and 46,000 μJ/cm² were required to achieve 3 log reductions of MRSA and *C. difficile* spores, respectively.
- The colorimetric indicators provide an easy means to monitor UV-C dosing.
- Additional studies are needed to evaluate use of the indicators in patient rooms including in shaded areas

For tomorrow....

- Dosimeter development
- Additional studies
- What does the hospitals think of the dosimeters?
 - App system to photograph, read and store dosimeter results
 - Possible to go back 12 months in time and review the colour change of a specific dosimeter

dist (medel): 44.53696448887559 dist (histo): 45

Pusiness activity of company and s

600 / 640

TECHNOLOGIES

TECHNOLOGY SAVING LIFE AND MONEY