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Abstract 
It is a challenging task to accurately model the perfor-

mance of a face recognition system, and to predict its indi-
vidual recognition results under various environments. This 
paper presents generic methods to model and predict the 
face recognition performance based on analysis of similar-
ity measurement. We frst introduce a concept of “perfect 
recognition”, which only depends on the intrinsic struc-
ture of a recognition system. A metric extracted from per-
fect recognition similarity scores (PRSS) allows modeling 
the face recognition performance without empirical testing. 
This paper also presents an EM algorithm to predict the 
recognition rate of a query set. Furthermore, features are 
extracted from similarity scores to predict recognition re-
sults of individual queries. The presented methods can se-
lect algorithm parameters offine, predict recognition per-
formance online, and adjust face alignment online for better 
recognition. The experimental results show that the perfor-
mance of recognition systems can be greatly improved using 
presented methods. 

1. Introduction 

How to evaluate the performance of an algorithm has 
been studied for many years in the computer vision commu-
nity. Especially with the intensive research and application 
of biometric systems, the performance modeling and pre-
diction receives a lot of attention since it involves the great 
concerns of security and privacy [14]. Face recognition is 
one of the most popular biometric systems. However, cur-
rent face recognition systems always have errors, and their 
performance varies under different environments. This pa-
per presents generic methods to model and predict the sys-
tem performance based on analysis of similarity scores. 

In our work, the “performance” of a recognition sys-
tem means its accuracy in correctly matching face images. 
We do not consider other aspects of performance, such as 
speed, cost, availability and maintainability. We also use 
“failure recognition” to refer to the misclassifcation of a 
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given input image. We frst introduce a concept of “perfect 
recognition” and a statistical analysis of similarity scores 
from “perfect recognition”. Such analysis only depends on 
the intrinsic structure of a recognition system, and provides 
a metric that can characterize the recognition performance 
under different environments without empirical testing. The 
performance metric is further assumed to be Gaussian dis-
tributions under the cases of success and failure recognition, 
and is used to predict the recognition accuracy of a query set 
via an EM algorithm. To predict individual recognition re-
sults, we extract features by comparing actual recognition 
results with their corresponding perfect recognition results, 
and train a performance predictor with the extracted fea-
tures. 

Our methods can select optimal or near-optimal algo-
rithm parameters offine without using additional training 
data, predict face recognition result online, and adjust the 
face alignment online for better recognition. Experiment 
results demonstrate that our methods can signifcantly im-
prove the performance of a face recognition system. In this 
paper, our methods are validated on PCA based face recog-
nition systems [7]. However, the methods can be easily gen-
eralized to any other recognition systems using similarity 
scores. 

The paper is organized as following. Related work is 
reviewed in Section 2. In Section 3, we introduce the mod-
eling method of a face recognition system. The face recog-
nition prediction methods are introduced in Section 4. Ex-
periments results are presented in Section 5. We conclude 
in Section 6. 

2. Related Work 

Sampling methods are the most popular methods to em-
pirically evaluate a recognition system. In these methods, 
the training and testing is conducted separately on different 
sets which are randomly sampled or specially designed. The 
typical random sampling methods include cross validation 
method and Bootstrap method [3]. To study the system per-
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formance under specifc environments, special experiments 
are designed, such as the face recognition vendor test sets of 
FERET [9] and FRGC [8]. Although such specifcally de-
signed experiments can directly assess the performance of a 
system under typical circumstance, they cannot perform on-
line performance prediction, and they need to acquire train-
ing data for different environments. 

There are already some work on performance model-
ing and prediction of biometric systems, such as fngerprint 
recognition[11], iris recognition[10], and face recognition 
[9, 8, 4]. In [11], the quality of a fngerprint image is de-
fned as the normalized distance between matching and non-
matching similarity scores. A 11-dimensional feature vec-
tor is extracted from image analysis algorithms to identify 
the existence of feature points, e.g., minutia, and outliers. 
Then a Neural Network is trained using the feature vectors 
to predict the image quality. The experiments show that 
the images with higher predicted quality will achieve bet-
ter recognition accuracy. The feature extraction method for 
fngerprint image quality prediction cannot be directly used 
to face recognition since most face recognition methods use 
holistic appearance instead of feature points. 

Schmid et. al. provide a probabilistic estimation of 
lower bound of Iris recognition algorithms based on analy-
sis of the hamming distance between query and gallery 
iris images [10]. The distance is assumed to be a single 
Gaussian distribution under both genuine and imposter hy-
pothesis, and the likelihood ratio is used to identify the pat-
tern best matching the query iris. With learned parameters, 
the method estimates ROC of iris recognition by applying 
the Chernoff bound theory and the Large Deviation theory. 
However, both of the lower bounds only provide approxi-
mate error orders. They cannot be used to predict either an 
individual recognition result, or the performance of systems 
which do not use likelihood ratio method for recognition. 

Givens and Beveridge et. al. apply statistical tools to 
analyze how the human face features, such as age, race, 
gender, skin, glasses, and expression, affect face recogni-
tion accuracy [4]. A generalized linear model is built to 
regress the relationship between the affecting factors and 
recognition accuracy. The analysis of variance (ANOVA) is 
conducted to study how signifcantly each factor affects the 
recognition accuracy. To model the performance, the statis-
tical model needs to explicitly identify each affecting factor, 
which is an extremely diffcult task in practical implementa-
tion. Also, such factors cannot totally model the face recog-
nition performance. It is shown that about 34% of variance 
cannot be explained by the generalized liner model. 

Some other work uses similarity scores to predict sys-
tem performance. Li et. al. cluster the similarity scores into 
different sets, and then use the distance among the sets as 
features which are selected and combined with AdaBoost to 
detect failure recognition [6]. A problem is that AdaBoost 

usually needs a large pool of features and many training 
samples, so over 10,000 samples are used in [6]. Such a 
large number of training samples are usually diffcult to col-
lect for practical systems. The similarity scores are also 
used to predict CMC curves with a small set of gallery data 
[5, 13]. In their methods, the rank k recognition results are 
modeled using parametric models. With model parameters 
estimated from a small gallery set, their methods can predict 
CMC when more gallery data are applied. Their method can 
only work well for the case that gallery data and query data 
are under the same condition, and cannot predict individual 
recognition results online either. 

3. Performance Modeling 

In this section, we analyze face recognition systems, and 
then introduce a concept of “perfect recognition”. By ana-
lyzing the similarity scores output from perfect recognition, 
we present a metric that can model system performance 
without using additional training data. 

3.1. Model of Face Recognition Systems 

There is no shortage of algorithmic approaches to face 
recognition [15]. The function of a face recognition sys-
tem is to map a query (also called probe) image to a label 
that represents its identifcation. Usually a face recognition 
system consists of at least two intrinsic components, i.e., 
a set of gallery images and a face recognition algorithm. 
The gallery set, denoted as G = {g1, g2, ..., gn}, includes n 
exemplars of known identifcation to be used for the com-
parison with query data. A face recognition algorithm maps 
query data to a feature space, measures the similarity be-
tween query data and gallery data, and outputs the identi-
fcation of query data . For a query image, a recognition 
algorithm usually outputs n similarity scores corresponding 
to n gallery images respectively. For rank k recognition, the 
system outputs labels of the gallery images corresponding 
to the k largest similarity scores. 

The similarity score plays an important role in face 
recognition because it relates query images with both the 
recognition algorithm and each gallery image available in 
the system. The similarity score is denoted as S(xi, gj ), 
or S(i, j), for the comparison between the query xi and 
the gallery gj . There are many type of similarity measure-
ments [1], and larger similarity scores mean better recogni-
tion. In our work, all the similarity scores are sorted in a 
descending order, and are further normalized to the range 
[0, 1]. So the set of similarity scores of data xi are repre-
sented as Si = {S(i, j1) = 1, S(i, j2), ..., S(i, jn) = 0}, 
where jk indicates the label of gallery data corresponding 
to the k-th sorted similarity score. The largest similarity 
score is called “matching” score since it represents the best 
matching between query and gallery while the remaining 



similarity scores are called “non-matching” scores. 

3.2. Perfect Recognition 

When all the intrinsic components of a recognition sys-
tem are given, we believe that its performance is actually 
fxed, but unknown to users. To empirically measurement 
its performance, we need large sets of query data with 
ground truth. The resulting performance analysis will ap-
ply only to the particularly query images and will not be 
extendable to images, even from the same people, if taken 
in unknown environments. In this work, we utilize statisti-
cal analysis of similarity scores to discover the relationship 
between the intrinsic structure of a recognition system and 
its performance under various environments. To systemati-
cally analyze the intrinsic components of a face recognition 
system, we introduce the concept of “perfect recognition”. 

The defnition of “perfect recognition” is simple and 
straightforward. A query set Q is duplicated from the 
gallery set, i.e., Q = G = {g1, ..., gn}. The “per-
fect recognition” uses the duplicated set as the query set 
for recognition, and obtains the similarity scores: Si = 
{s(gi, g1), s(gi, g2), ..., s(gi, gn)}, i = 1, ..., n. We call 
such similarity scores as “Perfect Recognition Similarity 
Scores” (PRSS). 

The defned perfect recognition has two characteristics. 
First, it can achieve 100% recognition accuracy. Second, 
the perfect recognition encodes information of all the com-
ponents in a recognition system: it uses all the gallery data, 
and the similarity scores encode both the recognition algo-
rithm and its parameters. So by analyzing PRSS, it is possi-
ble to model the performance of a recognition system with-
out using additional query images. 

3.3. Performance Metric from Similarity Scores 

(a) (b) 
Figure 1. Normalized similarity scores of a single query data. (a) 
normalized similarity scores sorted in a descending order. (b) his-
togram of normalized similarity scores 

An example of PRSS is shown in Figure 1, where the 
system uses FERET gallery data and PCA based recog-
nition algorithm. It shows that non-matching scores (less 
than 1) are much smaller than the matching score (equal to 
1), and non-matching scores can be modeled using a single 

Gaussian model. To quantitatively characterize the differ-
ence between matching and non-matching scores for data 
xi, a measurement qi is calculated as Equation (1). 

nmS(i, j1) − µi qi = (1)
˙nm 

i 

nmwhere µ and ̇ nmare the mean and standard deviation of i i 

non-matching scores S(i, jk), k = 2, ..., n. Such defned qi 

has also been used to represent image quality in fngerprint 
recognition [11]. Based on the distance between matching 
and non-matching scores, we defne a metric from similarity 
scores as fi = exp{ qi }, where � is a constant to scale the � 
performance metric. It is set as 20 in this paper. However, 
our method is insensitive to the value of �. For a recognition 

isystem, the mean of all fi’s, i.e. f = 
P 

fi , is used to n 
describe the whole set of PRSS. 

Intuitively, a system with good performance should also 
be able to well discriminate the gallery data, regardless of 
query data. Since PRSS represent the similarity measure-
ment among gallery data, the metric f extracted from PRSS 
is able to model the system performance. To quantitatively 
demonstrate the intuition, the following experiments are de-
signed. Firstly, parameters of a recognition algorithm are 
changed to get different recognition systems. In a PCA 
based recognition system, the parameters can be the dimen-
sion of subspace, the measurement methods (L1, L2 or Co-
sine measurements), and the measurement space (“Euclid-
ean” or “Mahalanobis” space) [1]. Then f of each system is 
calculated, and the actual recognition accuracy is also vali-
dated with a query set. 

(a) (b) 
Figure 2. PRSS of two systems using FRGC V1.0 Experiment 1 
data set. In each graph, the horizontal axis is the rank, and the 
vertical axis is the corresponding PRSS values. (a) dim = 40, space 
= Euclidean, method = Cosine. The recognition rate is 37.2%, 
f = 1.1417. (b) dim = 100, space = Euclidean, method = L2. The 
recognition rate is 73.3%. f = 1.6785 

Figure 2 shows PRSS of two PCA based recognition sys-
tems with different parameters. As observed from the fg-
ure, the system with better performance has larger differ-
ence between matching similarity scores and non-matching 
similarity scores, so its f is larger. More relationship be-
tween f and actual recognition rates under different query 
sets is shown in Figure 3, from which we observe that 
the recognition rate almost monotonically increases with 
f . Such relationship can be ftted with a generalized linear 



model(GLM). The generalized linear model that character-
izes the relationship between the recognition accuracy and 
f is called “performance characteristic curve” in this paper. 

(a) (b) 
Figure 3. Relationship between f and actual recognition perfor-
mance. Blue and red points represent the results of using different 
measurement methods. The lines are the ftting results using GLM 
model. (a) systems using FRGC V1.0 experiment 1 data. (b) sys-
tems using FERET FC set 

It is also observed from the graphs that the performance 
characteristic curve of using Cosine measurement method is 
different from that of using L1 and L2 measurement meth-
ods since Cosine measurement method scales the similar-
ity in a different way from other methods. To evaluate the 
systems using various measurement methods, a linear cor-
rection algorithm is presented to unify all the performance 
characteristics curves into one curve. We assume that all 
the performance characteristic curves achieve the similar 
mean and lower bound of performance although their per-
formance upper bound could be different. The mean and 
lower recognition rates of i-th performance characteristic 
curve are denoted as P m(i) and P d(i). Since all the curves 
are near linear, the average gradient of i-th curve is approxi-

(i)−P d(i)mated as P m 

where fm(i) and fd(i) are the metric 
fm(i)−fd(i) 

corresponding to P (i)m and P (i)d respectively. Based on 
the assumption that fm(i) ˇ fm(j) and fd(i) ˇ fd(j) for 
i-th and j-th curves, we have 

fm(i) − fd(i)
f(j) ˇ (f(i) − fd(i)) + fd(j) (2)

fm(j) − fd(j) 

Equation (2) unifes a metric f(i) on the i-th curve to the 
j-th curve, and only PRSS performance metrics are needed. 
The actual recognition rate is eliminated by assuming simi-
lar mean and low performance bounds. This assumption, of 
course, is only very approximate and may introduce some 
errors during parameter selection. However, it allows us to 
avoid using training data for offine parameter tuning and 
can be generalized to other measurement methods due to its 
simplicity. 

Figure 4 shows the unifed performance characteristic 
curve. The monotonic relationship between unifed f and 
system performance can be used to select system parame-
ters offine to achieve optimal or near-optimal performance. 
More experiment results are presented in Section 5. 

(a) (b) 
Figure 4. Relationship between unifed metrics and actual recog-
nition rates of different systems. (a): systems using FRGC V1.0 
experiment 1 data set. (b) systems using FERET FC data set 

4. Performance Prediction 

Actual face recognition results are categorized into two 
cases: success recognition (SR) and failure recognition 
(FR). A variable R(x) is introduced to indicate the recog-
nition accuracy of query x. R(x) is defned as Equation 
(3), where �(x) is the label output from a face recognition 
system, and I(x) is the true label of query x. 

R(x) = 1 : I(x) = �(x) 
−1 : I(x) 6= �(x) (3) 

R(x) = 1 indicates a success recognition, and R(x) = −1 
otherwise. 

In this section, we study how to predict recognition ac-
curacy of a query set or an individual query data. The per-
formance prediction methods are also based on the analysis 
of actual similarity scores. Assuming the metric fi of actual 
recognition similarity scores as a single Gaussian under SR 
and FR, an EM algorithm is applied to estimate recogni-
tion rates of a query set at different ranks, i.e., to predict its 
cumulative matching curve (CMC). Then, our method pre-
dicts an individual query to be a success or failure recog-
nition. For this purpose, a predictor (e.g., a Support Vector 
Machine) is trained with features extracted from similarity 
scores. 

4.1. Predicting CMC of a Query Set 

Actual Recognition Similarity Scores (ARSS), which are 
the similarity scores between query data and gallery data, 
are used to predict the actual recognition performance given 
a query set. The performance metric of ARSS is defned in 
the same way as PRSS, and is also denoted as fi for query 
data xi. In fact, PRSS can be seen as a special case of ARSS 
since the query set in perfect recognition is the duplication 
of gallery data. 

We model fi using a single Gaussian distribution un-
der SR or FR , i.e., P (fi|SR) = N(fi; µs, ˙s) and 
P (fi|FR) = N(fi; µf , ˙f ). Given a query set, the distri-
bution of fi is actually a mixture of Gaussian, as Equation 
(4), where its two components correspond to success and 



failure recognition respectively. 

P (fi) = ˇsP (fi|SR) + ˇf P (fi|FR) (4) 

In (4), ̌ s and ̌ f are the percentages of success and failure 
recognition, and ̌s + ˇf = 1. Therefore ̌s is actually the 
recognition rate of rank 1. Given a data set, we can apply an 
EM algorithm to estimate the model parameters, therefore 
to predict the recognition rate. 

The previously defned fi only characterizes recognition 
quality of rank 1 . Following the same principle, the met-
ric fk are defned to characterize the recognition quality of i 

rank k, as Equation (5): 
nmS(i, j1) − µ (k) 

q k = i 
i ˙nm(k)i 

kqifk = exp{ } (5)i � 

nm ˙nmwhere µ (k) and (k) are the mean and stan-i i 

dard deviation of rank k non-matching scores 
{S(i, jk+1), ..., S(i, jN )}. Compared with the previ-
ously defned fi for rank 1 recognition, the non-matching 
scores in Equation (5) are limited to the scores after k-th 
rank. The reason behind is that for rank k recognition, the 
frst k similarity scores are all matching scores, and the 
maximum of matching scores is S(i, j1). 

To estimate the parameters in the mixture of Gaussian 
model, an EM learning algorithm is applied. It needs an ini-
tialization of mean and standard deviation at rank 1, which 
can be learned from a small set of data. We assume that the 
parameters of the mixture model P (fk) smoothly change i 

with increasing rank k, so the estimation results from rank 
k can be used as the initialization of rank k +1. Also recog-
nition rate of rank k + 1 is not less than the recognition rate 
of rank k, which can help smooth the prediction result of 
CMC. The EM algorithm to predict CMC is summarized in 
Table 1. 

4.2. Predicting Individual Recognition 

To predict each individual recognition result as success 
or failure recognition, the relationship of ARSS and PRSS 
are further studied. If an actual recognition is closer to its 
corresponding perfect recognition, it is more likely to get a 
success recognition result. The difference between an actual 
recognition and its corresponding perfect recognition can be 
quantitatively represented by the difference between ARSS 
and PRSS. Mathematically, the similarity score difference 
vector D1 of rank 1 is defned as: x 

d1 (x) = s(x, jk) − s(j1, jk)k 

D1 = {d1(x)w1, ..., d
1 (x)wn} (6)x 1 n 

where s(x, jk) is k-th score of ARSS, and s(j1, jk) is the k-
th score of PRSS corresponding to rank 1 recognition result. 

• Given a query set. Initialize model with parameters 
learned from a small set of query data. C0 = 0; 

• For k = 1...T , estimate the recognition rate of rank k 
as the follows. 

1. Initialize the mixture model P (fk) = i 
k kˇs

kN(fi
k; µ , ˙s

k) + ˇkN(fi
k; µf , ˙f

k) withs f 
k k−1the parameters of rank k − 1, i.e. µ = µ , 

˙k = ˙k−1 , and ˇk = ˇk−1 . 

2. For each data xi in the query set, calculate fk asi 

Equation (5). The set of fi
k is applied to learn 

the parameters of P (fk) using the standard EM i 

algorithm. 

3. The weight corresponding to the component with 
larger mean in the mixture model is ˇs, and Ck = 
max(ˇs, Ck−1). 

• Output CMC curve, Ck, k = 1, ..., T . 

Table 1. Algorithm of predicting CMC curve 

The difference of k-th similarity score d1 (x) is smoothed by k 

a weight wk to emphasize the scores of frst several ranks 
since they are more important for recognition. In this paper, 

wk is defned as wk = exp{−(k−1)2 

} where ̇ r is set as 20. 2˙2 

Based on our experiments, 
r 

the frst difference d1(x)1 
can separate about 50% of success recognition results 
from the failure recognition results. However, it is still 
not enough to predict all the success and failure recogni-
tion cases. So the difference vectors of more ranks are 
included as features. For rank m, the difference vec-
tor is Dm = {dm(x)w1, ..., d

m(x)wn} where dm(x) = x 1 n k 

s(x, jk) − s(jm, jk). The extracted feature vectors Vx is 
as: 

Vx = { d1
1(x)w1, ..., dK 

1 (x)wK , 

..., 

dM (x)w1, ..., d
M (x)wK }1 K 

where the difference between ARSS and FRSS of the frst 
M ranks are used. For each rank, only difference of the frst 
K scores are used. Totally there are M � K elements in the 
feature vector (some elements may be redundant because 
s(x, j1) = s(j1, j1) = 1 due to normalization). 

A Support Vector Machine (SVM) [2] is trained with ex-
tracted features to predict face recognition results. Usually, 
a SVM outputs a continuous value dis(Vx), which repre-
sents a distance of input data Vx to the class boundary in a 
high dimensional feature space. By thresholding the con-



tinuous output dis(Vx) , the SVM gives the prediction re-
sults R0(x) as failure recognition (R0(x) = −1) or success 
recognition (R0(x) = 1), as in Equation (7). 

R0(x) = 1 : dis(Vx) >= dish 

= −1 : dis(Vx) < dish (7) 

R0(x) is the predicted value of R(x) in Equation (3). The 
performance predictor also has misclassifcation error itself. 
By adjusting the threshold dish, the predictor shows differ-
ent false alarm rate and positive error rate. The false alarm 
of performance predictor means that the data causing fail-
ure recognition is predicted to cause successful recognition, 
i.e., R0(x) = 1 and R(x) = −1. The positive error rate is 
the case where R0(x) = −1 and R(x) = 1. 

5. Experiments 

Two face databases, FERET [9] and FRGC V1.0 [8], are 
used in our experiments. FERET provides a fxed gallery 
set and some query sets to study recognition performance 
under changes of facial expression (FB), illumination (FC) 
and age (Dup1). In FRGC experiment 1, both gallery 
and query images are taken under controlled environments 
while query images in experiment 4 are taken under un-
controlled environments. We implement the PCA-based 
recognition method, in which each face is normalized to 
the size of 45 by 30, and the pixels at image corners are 
removed with an ellipse mask. Pixel intensity is normal-
ized by histogram equalization. The following experiments 
show the results of offine selection of system parameters, 
recognition performance prediction, and online adjusting 
face alignment for better recognition. 

5.1. Offine Parameter Selection 
P

i fiIn the previous sections, we have shown that f = n 
can be used to offine select system parameters since f 
has near linear relationship with recognition accuracy with-
out using training data. In this experiment, we try to fnd 
the optimal parameter out of all possible parameters based 
on f of PRSS. The parameters include the dimension of 
subspace, measurement method and measurement space, 
as stated in Section 3.3. The performance characteristic 
curves for different measurement methods are unifed into 
one curve by linear correction, and the parameter corre-
sponding to the largest unifed f is selected as the optimal 
parameter. As a result, the selected parameter for FERET is 
[200, Cosine, Mahalanobios], which means that the sys-
tem uses 200 PCA features, Cosine measurement methods, 
and Mahalanobios space. The parameter selected for FRGC 
V1.0 Experiment 1 and 4 is [120, Cosine, Mahalanobios]. 
We test the recognition rates of all the possible parameters, 
and compare them with the recognition rate of selected pa-
rameter, as Table 2. From the table, we can observe that 

different query sets actually need different parameters to 
achieve the maximal accuracy. However, the offine se-
lected parameters consistently achieve near-optimal accu-
racy under different environments even the accuracy range 
is large for some sets, such as FERET FC. 

Table 2. Summary of parameter selection and actual recognition 
accuracy 

Query 
Set 

Accuracy of 
selected 

parameter 

Accuracy range Parameters of 
maximal actual 
accuracy 

FERET FB 80.0% [70.2% , 82.0%] [160, L1, Eucli.] 
FERET FC 49.4% [5.2% , 50.7%] [180, Cos., Maha.] 

FERET Dup1 34.7% [22.6% , 38.8%] [100, Cos., Maha.] 
FRGC Exp. 1 75.1% [32.7% , 75.5%] [100, Cos., Maha.] 
FRGC Exp. 4 23.4% [4.9% , 27.0%] [100, Cos., Maha.] 

5.2. Recognition Performance Prediction 

We apply the algorithm shown in Table 1 to predict the 
recognition accuracy of a query set. The prediction results 
are summarized, and compared with actual recognition re-
sults in Table 3. In this experiment, the initial parameters 
of the Gaussian models are learned from a small set (20% 
of the whole query set), and are used to predict the perfor-
mance on the remaining data. Due to model error, the algo-
rithm usually underestimates the recognition rate. However, 
the method provides a rough estimation of the error range 
in the case that only a small portion of ground truth is pro-
vided. 

Table 3. Summary of predicting recognition rate (actual recogni-
tion rate vs. predicted recognition rate) 

Data Set Rank=1 Rank=5 Rank=15 
FERET FB 80% vs. 71% 90% vs. 76% 96% vs. 82% 
FERET FC 49% vs. 42% 82% vs. 47% 90% vs. 57% 

FERET Dup1 35% vs. 31% 46% vs. 36% 55% vs. 48% 
FRGC Exp. 1 76% vs. 62% 90% vs. 75% 96% vs. 78% 
FRGC Exp. 4 23% vs. 19% 45% vs. 32% 63% vs. 42% 

To predict individual recognition results, the difference 
values between ARSS and FRSS are extracted as features 
to train a SVM to classify individual recognition results into 
two cases: success and failure cases. In the following exper-
iments, we frstly validate the accuracy of trained predictor 
on FERET and FRGC data sets, and then apply the predic-
tor to improve face recognition performance. The perfor-
mance predictor is validated using cross-validation meth-
ods, in which 50% data is used for training, and the re-
maining 50% data is used for validation. To validate the 
generalization capability of trained predictor, two types of 
cross-validation methods, intra-set and inter-set validation 
methods, are applied. In the intra-set validation method, the 
training data is uniformly sampled from all the data sets, 
and then the predictor is validated on the remaining data 



of each set. In the inter-set validation method, the predic-
tor is trained with data selected from only some of the sets, 
and validated on the other sets. From example, when us-
ing FERET data sets, the predictor is trained with data from 
FB (or FC and Dup1) set, and validated on FC and Dup1 
(or FB) sets. When using FRGC V1.0 data sets, the predic-
tor is trained with experiment 1 (or experiment 4 ) set, and 
validated on experiment 4 (or experiment 1). The intra-set 
validation method assumes that we can obtain training data 
from different environments while inter-set validate method 
simulates the situation that we can only obtain training data 
of limited environments. 

Figure 5 shows the intra-set validation results on FERET 
data sets, and the false alarm rate and positive error rate are 
further summarized in Table 4 for both intra-set and inter-
set validation. The overall error rate of the performance pre-
dictor is between 15% and 25% for FERET sets and FRGC 
experiment 1 while FRGC experiment 4 shows worse accu-
racy. From the table, we can see that the accuracy of inter-
set validation is only slightly worse than intra-set validation, 
which demonstrates that the presented prediction method is 
not constrained in a specifc environment, but can be ap-
plied in various environments after the predictor has been 
trained. 

Figure 5. ROC curves of predictor on FERET (intra-set validation) 

Table 4. Summary of performance prediction accuracy with intra-
set and inter-set cross-validation on FERET and FRGC 

Data Set Prediction accuracy 
([false alarm rate, positive error rate]) 

Intra-set validation Inter-set validation 

FERET FB 
[0.1063, 0.1563] 
[0.1568, 0.1239] 

[0.1174, 0.2079] 
[0.1973, 0.1530] 

FERET FC 
[0.1079, 0.2121] 
[0.1601, 0.1623] 

[0.1218, 0.2096] 
[0.1921, 0.1622] 

FERET Dup1 
[0.0961, 0.3106] 
[0.1630, 0.2545] 

[0.0843, 0.3629] 
[0.1783, 0.2555] 

FRGC Exp. 1 
[0.0896, 0.2574] 
[0.1642, 0.2025] 

[0.1053, 0.3114] 
[0.1447, 0.2500] 

FRGC Exp. 4 
[0.1295, 0.5625] 
[0.2634, 0.3625] 

[0.2366, 0.5000] 
[0.3259, 0.3500] 

The predictor is applied on validation sets to improve 
the recognition results. To improve the recognition per-
formance, the data predicted to cause success recognition 
will be preserved while the data predicted to cause failure 

recognition will be discarded. The experiments compar-
ing the recognition results with or without applying perfor-
mance prediction are shown in Figure 6. In the experiments, 
the data can actually be successfully recognized is called 
“good” data, and a threshold is adjusted to preserve a certain 
percentage of good data for recognition. The percentage is 
denoted as P , and the threshold corresponding to each P is 
obtained from training sets. The experiments results sum-
marized in Table 5 show that performance are greatly im-
proved by applying performance prediction. For example, 
the recognition rate of FERET FB set is increased to 96.2% 
from 80.0% when only 10% good data is discarded. For 
the query sets that usually have low recognition rate, such 
as FERET FC, FERET Dup1, and FRGC experiment 4, the 
performance improvement is also obvious. It is shown the 
error rate is near zero when only 10% of good data are pre-
served. But, the price paid is that many useful data is also 
discarded. It remains our future research to preserve all the 
data while still improving face recognition performance. 

Table 5. Summary of rank 1 recognition rate with and without per-
formance prediction 

Data Set All P = 90% P = 60% P = 10% 
FERET FB 80.0% 96.2% 99.7% 100.0% 
FERET FC 49.3% 93.7% 96.4% 100.0% 

FERET Dup1 34.7% 82.9% 93.1% 100.0% 
FRGC Exp. 1 75.0% 91.8% 100.0% 100.0% 
FRGC Exp. 4 23.9% 57.2% 64.3% 97.9% 

5.3. Adjusting Face Alignment Online 

All the above experiments use the manually marked eye 
positions for face alignment. However, real world appli-
cations require automatic eye localization. Although some 
eye localization methods have been developed, there still 
exist localization errors, so the results of using automatic 
eye localizations are consistently lower than those of using 
manually marked eyes [9, 12]. In addition, the problem if 
the manually marked eye positions can provide the optimal 
face alignment for recognition has not been answered in the 
face recognition community. 

Our method automatically adjusts the eye position 
around an initial eye position, which is automatically or 
manually marked, for better recognition. In our experi-
ments, 9 candidates are searched around each initial eye. 
The distance between neighbor candidates is 2 pixel. There 
are totally 81 eye-pair candidates to be evaluated. We calcu-
late the fi of each eye-pair candidate to represent its recog-
nition quality. The eye-pair candidate corresponding to the 
maximal fi is selected as the adjusted eyes for alignment. 
Table 6 compares the recognition rates of using the origi-
nal eyes and adjusted eyes. In this experiment, the auto-
matic eye localization method in [12] is used. It is observed 
that the adjusted eyes not only outperform the automatically 



(a) (b) (c) (d) 

Figure 6. CMC curves of face recognition with and without performance prediction: (a) FERET FB set; (b) FERET FC set; (c) FERET 
Dup1 set; (d) FRGC V1.0 Experiment 1 set; (e) FRGC V1.0 Experiment 4 set 

detected eyes, but also provide better recognition accuracy 
than the manually marked eyes. 

Table 6. Summary of rank 1 recognition rate with adjusted eyes 

Data 
Set 

Manual 
eyes 

Adjusted on 
manual eyes 

Automatic 
eyes 

Adjusted on 
automatic eyes 

FERET FB 79.8% 85.1% 74.8% 84.8% 
FERET FC 49.3% 59.8% 43.3% 57.2% 

FERET Dup1 34.8% 44.6% 30.6% 42.9% 

6. Conclusion 

In this paper, we present our work on performance mod-
eling and prediction of face recognition systems based on 
the analysis of similarity scores. We introduce a concept 
of “perfect recognition,” and analyze the output from “per-
fect recognition” to model the intrinsic system performance 
without training data. Based on the analysis of actual 
recognition similarity scores, we present methods to pre-
dict recognition results of individual or a set of query data. 
The presented methods provide various ways to improve the 
performance of recognition systems. The future work will 
apply our methods to other similarity measurement based 
biometric systems. 
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