Joint Initiative for Metrology in Biology

5 October 2015 NIST VCAT

Dr. Marc Salit, NIST MML Prof. Drew Endy, Stanford BioE

Science & engineering of biology are helping to define 21st century economy

Upgrade ad hoc practices with reliable reproducibility. Enable scaling via metrology.

PERSPECTIVE

The Economics of Reproducibility in Preclinical Research On the reproducibility

Leonard P. Freedman¹*, Iain M. Cockbu

1 Global Biological Standards Institute, Washin School of Management, Boston, Massachusetts Washington, D.C., United States of America

* Ifreedman@gbsi.org

Abstract

Low reproducibility rates within life scie production and contribute to both delay analysis of past studies indicates that th preclinical research exceeds 50%, resu \$28B)/year spent on preclinical researc alone. We outline a framework for solut producibility rates that will help to accel and cures.

On the reproducibility of science: unique identification of research resources in the biomedical literature

Nicole A. Vasilevsky¹, Matthew H. Brush¹, Holly Paddock², Laura Ponting³, Shreejoy J. Tripathy⁴, Gregory M. LaRocca⁴ and Melissa A. Haendel¹

Ontology Development Group, Library, Oregon Health & Science University, Portland, OR, USA

Zebrafish Information Fram FlyBase, Department of Ger Department of Biological Sc Carnegie Mellon University,

ABSTRACT

Scientific reproducil exist numerous initi is simply a lack of sp ducibility. In particu as antibodies and m experiments even wh the magnitude of thi tifiability" of researc journal articles in th Cell and Molecular diversity of impact f reporting guidelines rat. zebrafish. worm

Must try harder

Nature 483, 509 (29 March 2012) | doi:10.1038/483509a

Published online 28 March 2012

Too many sloppy mistakes are creeping into scientific papers. Lab heads must look more rigorously at the data — and at themselves.

Subject terms: Authorship · Publishing

Science: Branch of knowledge or study dealing with a body of facts or truths systematically arranged. So says the dictionary. But, as most scientists appreciate, the fruits of what is called science are occasionally anything but. Most of the time, when attention focuses on divergence from this gold (and linguistic) standard of science, it is fraud and fabrication — the facts and truth — that are in the spotlight. These remain important problems, but this week *Nature* highlights

NIST VCAT & friends foresaw importance of further advancing biometrology

Michael Amos

Ann Arvin

We applaud the efforts of the Director of the Chemical Sciences and Technology Laboratory (CSTL) for his leadership and implementation of a Bioscience plan that provides the foundation for a Bioscience strategic plan. In collaboration with the VCAT Bioscience subcommittee, the CSTL Director organized a process to identify customer and industry segment "critical measurement needs" for bioscience applications. This effort was launched by the recent bioscience international conference that was jointly hosted with UMBI titled, "Accelerating Innovation in 21st Century Biosciences: Identifying the Measurement, Standards, and Technological Challenges." The proceedings from this joint conference will provide an excellent foundation for developing a more comprehensive strategic plan. An initial draft of a document "Measurement Challenges to Innovation in the Biosciences: Critical Roles for NIST" has already been produced. The organization plans to use this to continue its interaction with technology and industry experts to further refine their determination of the most critical needs in Bioscience. We support this approach for NIST program prioritization, given the complexity and breadth of possible bioscience applications and emerging technologies.

 <u>Recommendation</u>: We urge the organization to continue its work on Bioscience strategic planning and to use this excellent work as a model for expanded work throughout the NIST laboratories.

Specific goals and recommendations for CY 2008

- We recommend that the OU directors and NIST senior management develop a comprehensive Bioscience/Healthcare Strategic Plan during 2008.
- We recommend that the management team explore establishing additional strategic alliance partnerships in order to gain application expertise for implementation of its strategic plan.

2007 & 2008 NIST VCAT Annual Reports

Thomas Baer

Joint Initiative for Metrology in Biology (JIMB)

"Biology" as both a science and as a type of material.

Combine innovative academics with metrology professionals and commercial partners; biometrology enabling everyone.

Advance science, engineering, & medicine:

- enabling science via better measurement methods
- advance engineering via reliable reuse of measures and materials as needed to support coordination of labor.
- not merely more; smarter science and engineering.

Advance in commerce:

- accelerate rollouts and reuse of products and offerings.
- develop metrology foundations underpinning regulatory science.
- position and maintain U.S. as the global leader in coordinating bioscience & biotechnology

Developing JIMB as a win-win for NIST & Stanford

NIST

Instant access to innovative academics

Immediate proximity to commercial customers

Prototype & promulgate biometrology curricula supporting workforce

> Co-development of novel facilities

Stanford

Instant strengthening of metrology expertise

Sustained & celebrated focus on foundational science & technology

Scaling "influence in behalf of humanity"

Co-development of novel facilities

What's inside JIMB v1.0?

Engaging critical mass of Stanford faculty

JIMB Foundational & Training grant faculty

Enabling future biometrology leaders

Yuling Liu (Chemistry)

Yuhong Cao (Material Science)

Josh Mason (Bioengineering)

Fengjiao Lyu (Mechanical Engr.)

Michael Sikora (Genetics)

Calvin Schmidt (Bioengineering)

Erin Mitsunaga (Genetics)

Aaron Mitchell (Bioengineering)

Dr. Luke Bawazer (Endy)

Dr. Noah Spies (Sidow)

Dr. Jeff Glasgow (Cochran)

Dr. Peter McLean (Smolke) Dr. Crystal Han (Santiago) **JIMB Training Grant Graduate Trainees & Embedded NRC Fellows**

Connecting commercial partners

1	Name	Location		Classification		
2	10X Genomics	Pleasanton, CA		Genomics Platform		
3	23andMe	Mountain View, CA		DNA Testing		
4	Affymetrix	Emeryville, CA		Gene Expression, Microarrays, Sequenci	ng	
5	Agilent	Santa Clara, CA		Measurement Tools		
6	Amgen	South SF, CA	702	Trivascular	Santa Rosa, CA	Devices for Endovascular Aortic Rep
7	Annai Systems	Burlingame, CA	703	True North Therapeutics	San Francisco, CA	Complement targeting antibodies
8	Applied Biosystems (Thermo Fisher)	Foster City, CA	704	TTI Medical	San Ramon, CA	Surgical imaging
9	Ariosa Diagnostics	San Jose, CA	705	Tunitas Therapeutics	San Francisco, CA	Protein therapeutics
10	Bina Technologies	Redwood City, CA	706	twoXAR	Palo Alto, CA	Drug Discovery Software
11	Bio-rad	Pleasanton, CA	707	Ultragenyx	Novato, CA	Small Molecules, Biologics
12	Boehringer Ingelheim	Fremont, CA	708	Unchained Labs	Pleasanton, CA	Tools for biologics research & deve
13	Boreal Genomics	Los Altos, CA	709	United Immunoassay	San Bruno, CA	Antibodies and conjugates
14	Bristol-Myers Squibb	Redwood City, CA	710	Valitor	Berkeley, CA	Protein therapeutics
15	Calico Labs (Google)	Mountain View, CA	711	Vanton Research Laboratory	Concord, CA	Contract Research
16	Caliper Life Sciences (Perkin Elmer)	Mountain View, CA	712	Varian Medical Systems	Palo Alto, CA	Medical Devices & Software
17	CareDx	Brisbane, CA	713	Vascular Dynamics	Mountain View, CA	Hypertension Device
18	Caribou Biosciences	Berkeley, CA	714	Vaxart	San Francisco, CA	Oral Vaccines
19	Celera (Quest Diagnostics)	Alameda, CA	715	Vector Labs	Burlingame, CA	Blotting Products, Antibodies
20	Centrillion Biosciences	Palo Alto, CA	716	Vedic Life Sciences	Redwood Shores, CA	Research/Consulting
21	Clontech (Takara Bio)	Mountain View, CA	717	Veeva Systems	Pleasanton, CA	Life Science Software
22	CollabRx	Palo Alto, CA	718	Velocity Pharmaceutical Development	South SF, CA	Assisting companies to advance dru
23	Color Genomics	Milbrae, CA	719	Venta Medical	Milpitas, CA	Contract Medical Devices
24	Complete Genomics	Mountain View, CA	720	Veristat	San Bruno, CA	Contract Clinical Research
25	Counsyl	South SF. CA	721	Verrica Pharmaceuticals	Palo Alto, CA	Topical therapies
26	DNA2.0	Menlo Park, CA	722	Versartis	Mountain View, CA	Therapeutic Proteins
27	DNAnexus	Mountain View, CA	723	ViewRay	Mountain View, CA	MRI/Radiation combination therap
28	Elim Biopharm	Hayward, CA	724	Virobay	Menlo Park, CA	Protease inhibitors as drugs
29	Eureka Genomics	Hercules, CA	725	VisionCare	Saratoga, CA	Ophthalmic devices
30	Fluidigm	South SE, CA	726	VistaGen	South SF. CA	Stem Cell Technology
31	Genansys	Redwood City, CA	727	Viveve	Sunnyvale, CA	Vaginal laxity correction
32	Genentech (Boche)	South SE CA	728	Vivus	Mountain View, CA	Small Molecules
33	Genomic Health	Redwood City, CA	729	Volcano (Philips)	Bancho Cordova, CA	Medical Devices
34	GigaGen	San Francisco, CA	730	Xalud Therapeutics	San Francisco, CA	Neuropathic pain therapies
35	GlavoSmithKline	Palo Alto CA	731	Xcell Biosciences	San Francisco, CA	Cell culturing system
36	Guardant Health	Redwood City, CA	732	Xcell Science	Novato, CA	Stem cell lines, cellular research mo
37	Human Longevity Inc	Mountain View, CA	733	XenoPort	Santa Clara, CA	Small Molecules
37	Illumina	Have and CA	734	Xlumena (Boston Scientific)	Mountain View CA	Endoscopic technology
30	Ingenuity (Oisgen)	Redwood City, CA	735	Xoft (iCad Inc)	San Jose CA	Electronic Brachytherany (eBy) syst
40	Invites	San Francisco, CA	736	Yoma	Berkeley CA	Biologics
40	ModGonomo	San Francisco, CA	730	VenZym Antibodies	South SE_CA	Custom antihodies
41	Natara	San Francisco, CA	739	Zinline Medical	Campbell CA	non-invasive skin closure solutions
42	Natera	San Carlos, CA	730	Zogeniy	Emenwille CA	Small Molecules, Medical Devices
			739	Zoparo (Mindrau)	Mountain View CA	Ultracound imaging
			740	Zonare (Windray)	Fromont CA	Drug Delivery
			741	Zosano Pharma	Premont, CA	Drug Delivery
			742	ZS Pharma	Redwood City, CA	Small Molecule

Example JIMB work products

The Washington Post

Innovations

Three recent developments in synthetic biology you need to know

By Dominic Basulto May 7 🔽 😏 Follow @dominicbasulto

Synthetic biology has the reputation for being a bit of freewheeling industry where anything goes and results are hard to replicate, so it's no surprise that the push is growing for standards so that companies and researchers can compare apples with apples and oranges with oranges. On March 31, the U.S. National Institute of Standards and Technology (NIST) convened a working group at Stanford University to launch the Synthetic Biology Standards Consortium. Working in groups, participants at Stanford discussed the types of standards would make it easier for researchers to share methods, materials and information within the field of synthetic biology.

The New York Times

HEALTH

U.S. Introduces New DNA Standard for Ensuring Accuracy of Genetic Tests

By ROBERT PEAR MAY 14, 2015

The National Institute of Standards and Technology said Thursday that it had developed "reference materials" that could be used by laboratories to determine whether their machines and software were properly analyzing a person's genetic blueprint, or genome.

"If you send a sample of blood or a tumor <u>biopsy</u> to different genetic testing laboratories, you can get different results," said Marc L. Salit, the leader of a genome measurement group at the institute. "While largely in agreement, they may have significant differences. Now, for the first time, we have a standard to check the reliability and quality of gene sequencing."

JIMB impacts & benefits

Initial JIMB partnering challenges

1. Space (where?), space (whose?), & space (how?).

2. Administrative "double jeopardy."

3. Scaling NIST staffing (people) & engagement (resources) to match faculty enthusiasm.

4. Many minor details.

JIMB needs & next steps

1. Develop long-term staffing and space plan.

2. Create a simple administrative framework for JIMB.

3. Prototype JIMB platforms and standards realization labs.

4. Recruit three additional NIST Scientists (18 months); growing to ten Scientists (60 months).

5. Earn full support of Stanford, NIST, and industry.

Biometrology enabling science, engineering, & medicine.

mall

21st century government; better partners, process, & products.