

Recent Advancements in SiC power devices & the impact of normally-off SiC JFETs on PV inverter platforms

Jeffrey B. Casady, CTO & VP Bus Dev

SemiSouth Laboratories Inc.

www.semisouth.com

High MW Electronics – Industry Roadmap Meeting December 11th 2009

Introduction

SemiSouth Laboratories is a <u>clean energy enabler</u>

specializing in the design & manufacture of silicon carbide (SiC) power devices used to harvest and transfer power in renewable energy systems, telecom server farms & hybrid electric vehicles.

SemiSouth silicon carbide based devices offer higher efficiency, greater power density and higher reliability than comparable silicon-based devices

SiC Wafer

SiC Properties

SiC Advantages

Material property	Si	4H-SiC	GaN	
Bandgap	1.12 eV	3.25 eV	3.4 eV	
Breakdown field	0.25 MV/cm	~3 MV/cm	~3 MV/cm	
Thermal conductivity	1.5 W/cm•K	4.9 W/cm•K	1.3 W/cm•K	
Electron mobility	1200 cm²/V•s	800 cm ² /V•s	900 cm²/V•s	
Dielectric constant	11.7	9.7	9	

- Silicon carbide is the ideal power semiconductor material
- o Most mature "wide bandgap" power semiconductor material
- o Electrical breakdown strength ~ 10X higher than Si
- o Commercial substrates available since 1991
 - now at 100 mm dia; 150 mm dia soon
- o Defects up to 1,000 times less than GaN
- o Thermal conductivity ~ 3X greater than Si or GaN

SemiSouth Thinner Devices, Lower Losses

unipolar devices

 $r_{on} \sim w_{drift} / N_{D}$

bipolar (plasma) devices

 $q_{st} \sim W_{drift}^2$

E_{crit,SiC} ≈ 10-E_{crit,Si}

 $W_{drift,SiC} \approx W_{drift,Si} / 10$

 $N_{D,SiC} \approx 100 \cdot N_{D,Si}$

 $r_{\text{on,SiC}} \approx r_{\text{on,Si}} / 1000$

 $W_{drift,SiC} \approx W_{drift,Si} / 10$

 $q_{st,SiC} \approx q_{st,Si} / 100$

ON-Resistances: Theoretically

N. Kaminski, EPE2009 ALB

SemiSouth

A Note on Device Size

- SiC devices can not be 500 times smaller
 - 500 times higher current densities are tough
 - 500 times higher loss densities are deadly (same losses on 500 times smaller area)
- Rather: Design on the same loss density
 - Area and losses reduced by the same factor
 - Benefit would be √BFoM , i.e. still factor 22
- Note: Threshold voltages do not scale!

Parameter		Silicon	4H-SiC	GaN	Diamond
Band-gap E _g	eV	1.12	3.26	3.39	5.47
Critical Field Ecrit	MV/cm	0.23	2.2	3.3	5.6
Permitivity ε _r	_	11.8	9.7	9.0	5.7
Electron Mobility µ _n	cm²/V·s	1400	950	1500	1800
BFoM: $\varepsilon_r \cdot \mu_n \cdot E_{krit}^3$	rel. to Si	1	500	2400	9000
Intrinsic Conc. n _i	cm ⁻³	1.4·10 ¹⁰	8.2·10 ⁻⁹	1.9·10 ⁻¹⁰	1·10 ⁻²²
Thermal Cond. λ	W/cm·K	1.5	3.8	1.3	20

- Low leakage currents (at least theoretically)
- High temperature operation possible (packaging!)
- Better cooling and temperature homogeneity

SemiSouth

Device Concepts for WBG

Functionality Conductivity	Diodes	Switches junction controlled MOS-controlled poor & instable interface props.			
unipolar $ \rightarrow r_{on} \sim V_{BR}^{2,5}$					
bipolar (plasma) crystal degradation (SiC) low plasma lifetime (GaN) $V_T \approx \frac{E_g}{q} / q - 0.5V$					

SemiSouth

Device Concepts for WBG

N. Kaminski, EPE2009

SemiSouth ON-Resistances: State of the Art

N. Kaminski, EPE2009 ALB

SiC is the Ideal Power Device Technology

SemiSouth JFETs can Replace IGBTs and MOSFETs for Higher Efficiency and Higher Frequency Switching
....Power Dissipation can be reduced by over 50%

JFET Technology

SemiSouth JFET advantages

- All benefits of SiC
- Normally-off
- Low process complexity
- No degradation issues (bipolar, MOS, etc.)
- No body diode
- Easily paralleled for high power modules
- Demonstrated stable operation at 350C+
- Lowest Rds(on),sp of EM SiC devices
- fast switching / low switching energy

SemiSouth Vertical-Channel JFET

SemiSouth Competitiveness against IGBTs

SemiSouth

		<u>Jeilii Joutii</u>			
Critical Parameter		NPT IGBT <u>FGL40N</u>	VJFET <u>SJEP120R063</u>	Performance <u>Improvement</u>	
Technology		Silicon – IGBT	Silicon Carbide		
Breakdown Voltage	V_{DS}	1200V	1400V	Higher breakdown margin	
On Voltage (conduction)	Von	2.5V	Unipolar (Reduced losses at low Ihigher light load Efficiency	
Input Capacitance	Ciss	1700 pF.	1220pF	Reduced Gate Power Loss	
Effective Output Cap Energy Related	$C_{O(ER)}$	260 pF	100 pF	2.5X Lower Switching Losses	
Operating Temperature	Tj	-55°C to 150°C	-55°C to 175°C	Safe Operation at higher Temp	
Thermal Impedance	Rthj-c	0.25K/W	0.6K/W	X2 worse but offset by overall lower dissipation losses	
Turn-On Losses Turn-Off Losses Total Losses	Joules	550uJ 1000uJ 1550uJ	110uJ 70uJ 180uJ	X10 Lower Switching Energy	

Fairchild

SS JFETs HAVE 50% LOWER LOSSES

Smallest Switching Energy

Allows high-frequency, high-efficiency, higher power density solutions!

Half-Bridge Configuration:

•SJEP120R063: 1200V / 63mΩ VJFET

•SDP20S120: 1200V / 20A SBD

Performance Validation

WORLD RECORD Power Conversion Efficiency*

"We now use junction field-effect transistors (JFETs) made of silicon carbide (SiC) manufactured by SemiSouth Laboratories Inc.. This is the main reason for the improvement", - Prof. Bruno Burger, leader of the Power Electronics Group at Fraunhofer ISE, July 2009 press release.

- Single phase Heric[®]
- Commercial inverters @ 98%
- SemiSouth's JFET lowers losses ~ 50%

- Three phase full bridge inverter
- SemiSouth JFET <u>boosts efficiency</u> 1.2%
- SemiSouth JFET operates 3X higher freq.

^{*} Bruno Burger, Dirk Kranzer, "Extreme High Efficiency PV-Power Converters," EPE, Barcelona, Spain, 8-10 September 2009

SemiSouth Normally-off JFET Performance

Trench JFET Technology Evolution:

- Initial demonstration in 2007
- Compact design leads to ultra-low specific on-resistance
- Initial product release in 2008

SemiSouth sjep120R063 JFET Driver Scheme

- **Opto Coupler:** This reference design uses the HP "wide body" HCHW4503 high speed opto coupler enabling fast switching speeds while allowing layout spacing to meet safety isolation requirements.
- **509 Gate Driver:** The IXYS IXDD509 high speed Driver is used to provide a high current Turn-on and Turn-off gate pulse through Rg(on/off) for very fast switching and low switching losses.
- **Q1 Conduction Driver:** Q1 is a small PNP transistor used to provide the ON-state gate current of 200mA to maintain a low Rds(on) in the SJEP120R063 or 050 JFET during the conduction period.
- **15V to 6V DCDC:** This step down (85% eff) DCDC converter IC is used as the power source for Q1 and enables a reduction in gate power loss during the conduction period. (optional).
- **Timing Logic:** The logic / timing circuit generates the required timing signal for the IXDD509 gate Driver and Q1. The timing is set to achieve a 100nsec turn on high I pulse and then maintain the 200mA conduction pulse.

Typical Switching Waveforms – with SJEP120R063 JFET

Comments:

These switching losses are in line with the data sheet and the higher temperature (150C) switching loses would be similar to the data sheet as well and only 10% higher.

SemiSouth Demo Module Example

- 600 V / 450 A SiC Normally-off JFET module
- Up to 57% reduction in conduction losses possible at 1200 V level (\sim 2.2m Ω @ 1V)

1200 V SiC JFET / diode module (SemiSouth enhancement-mode JFET)

Improved "125" to "100"

SemiSouth Vertical Trench JFET Roadmap

	improved 12	ט נט וטט	Duai Die	1 Toducis	i i cicascu ii	1 0cpt 2000
	<u> </u>					
Part	SJEP120R125	SJEP120R100	SJEP120R063	SJEP120R050	SJEP120R025	SJEP170R550
Package	23	3	1 2 3	2 3 1 2 3	1 2 3 1 2 3	2 3 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 1 1
	3L TO-247	3L TO-247	3L TO-247	3L TO-247	3L TO-247	3L TO-247
Voltage (V)	1200	1200	1200	1200	1200	1700
Rds(on)	125 mΩ	100 mΩ	63 mΩ	50 mΩ	25 m Ω	550 mΩ
Ciss Tr*/Tf* (ns) Die size	576 pF 50 /50 4 mm ²	TBD TBD 4.5 mm ²	2 x 576 pF 50 /50 2 x 4 mm ²	1168 pF 50 /50 9 mm ²	2320 pF 50 /50 15 mm ²	167 pF 50 /50 2 mm ²
Co-Pak Options	5A SBD Q2 09	5A SBD TBD	-	10A SBD Q3 09	-	-
Samples	Now	Now	Now	Q3 09	Q1 10	Q2 09
Production	Now	Now	Now	Q4 09	Q2 10	Q4 09

Dual Dia

Latest Datasheets at http://www.semisouth.com/products/powersemi.html

Accepting Sample and Production orders 30-50 ns typical

UPDATED 11 Aug 2009

Products Released in Sent 2008

SemiSouth SiC Schottky Diode Roadmap

Part	SDA05S120	SDP10S120D	SDA10S120	SDP20S120D	SDA30S120	SDP30S120
Package		23	3	23		3
	2L TO-220	3L TO-247	2L TO-220	3L TO-247	2L TO-220	2L TO-247
BV (V)	1200	1200	1200	1200	1200	1200
I _F (A)	5A	10A (2 x 5A)	10A	20A (2 x 10A)	30A	30A
V _{Fmin} (V) V _{Fmax} (V)	1.6 1.8	1.6 1.8	1.6 1.8	1.6 1.8	1.6 1.8	1.6 1.8
Samples	Now	Q1 09	Now	Now	Q3 09	Now
Production	Q2 09	Q2 09	Now	Now	Q4 09	Q2 09

Accepting Sample and Production orders

SemiSouth Summary of SemiSouth JFET

- SiC is maturing, cost declining
 - 100 mm dia wafers now; 150 mm dia wafers soon
 - SiC FET devices suitable up to 3-4 kV, and being released now
 - SiC bipolar (BJT, IGBT, ...) for > 3 kV still being developed
 - MOS controlled devices still challenging
- Released first normally-off SiC JFET in 2008
 - High reliability, easily paralleled for high power modules
 - Small die + High Performance + Low process complexity
 - Low \$ for SiC level performance expectations
 - World record (> 99%) PV inverter efficiency
 - Enables higher power density inverters

