STOCHASTIC ENUMERATION WITH IMPORTANCE SAMPLING

Alathea Jensen
December 11, 2017

Tree Size Problems

- Many problems in math, physics, and computer science boil down to the same underlying question: how big is this tree?
- Some different flavors of this question:
- How many leaves are on this tree?
- How many nodes are in this tree?
- Given a cost function, what's the total cost of this tree?
- Example
- 3 leaves
- 6 nodes
- \$10 cost

Tree Size Problems

- Counting problems
- Any set whose elements can be constructed by a series of decisions can be modeled by a decision tree
- E.g. graph colorings, spanning trees, set partitions, etc.
- Algorithms
- A decision tree can model all possible ways that an algorithm might proceed
- Statistics such as runtime and memory usage can be modeled by cost functions on the tree
- Databases
- Most large databases are organized as trees in order to optimize searching and updating
- E.g. personal computer files ($\sim 300,000$), Amazon listings (~ 500 million), Facebook accounts (~ 2 billion), indexed pages on Google (~ 100 trillion)

Database Examples

Google

All Videos Books Images News

About 4,300,000 results (0.57 seconds)

Tree Size Estimation

- Calculating tree size is \# P-complete in general
- Goal: efficient estimation of tree size
- Two main types of estimation algorithms
- Markov Chain Monte Carlo (MCMC)
- Easier to bound variance of samples
- Takes longer to get each sample
- Sequential Importance Sampling (SIS)
- Harder to bound variance of samples
- Get samples very quickly

Motivation

- If the number of children per node is uniform across each level...
- Then the number of leaves is the product of the number of children along any path from root to leaf
- Example
- $2 \cdot 3 \cdot 2 \cdot 1=12$ leaves

Motivation

- If the number of children per node is not uniform across each level...
- Products will be different along different paths
- Example
- Blue node path: $2 \cdot 3 \cdot 1 \cdot 3=18$
- Yellow node path: $2 \cdot 2 \cdot 2 \cdot 1=8$
- But the number of leaves is still 12

Knuth's Algorithm

- Donald E. Knuth, 1975
- Construct a path by starting with the root and choosing a random child (uniform distribution) of the previous node to continue the path
- The estimate associated with each path is the product of the number of
 children seen along the path
- Example
- The blue node path gives an estimate of $2 \cdot 3 \cdot 1 \cdot 3=18$
- The probability of constructing blue node path is $\frac{1}{2} \cdot \frac{1}{3} \cdot 1 \cdot \frac{1}{3}=\frac{1}{18}$
- The yellow node path gives as estimate of $2 \cdot 2 \cdot 2 \cdot 1=8$
- The probability of constructing the yellow node path is $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1=\frac{1}{8}$

Knuth's Algorithm

- Call the set of all possible paths P
- For each possible path, $p \in P$, the associated estimate, $\operatorname{est}(p)$, is the reciprocal of the probability $\operatorname{prob}(p)$ of choosing that path

$$
\operatorname{est}(p)=\frac{1}{\operatorname{prob}(p)}
$$

- Each possible path contributes exactly 1 to the expected value sum

$$
\mathbb{E}[\operatorname{est}(p)]=\sum_{p \in P} \operatorname{est}(p) \cdot \operatorname{prob}(p)=\sum_{p \in P} 1=|P|
$$

- Hence the expected value of the estimate is the number of possible paths, which is the same as the number of leaves
- Therefore the average value of many estimates will converge to the correct answer

Sequential Importance Sampling

- The reason Knuth's algorithm works is because the estimate for each path is the reciprocal of the probability of that path
- New idea
- Use a different probability distribution to choose the paths
- Define the estimate produced to be the reciprocal of the probability used
- Then we still have

$$
\mathbb{E}[\operatorname{est}(p)]=\sum_{p \in P} \operatorname{est}(p) \cdot \operatorname{prob}(p)=\sum_{p \in P} 1=|P|
$$

- To get a different probability distribution...
- Assign an importance value to each node using an importance function
- Choose each node with probability proportional to its relative importance amongst its siblings

Sequential Importance Sampling Example

- Labeled numbers are the importance values of the nodes
- Blue path probabilities
- First node $\frac{3}{3+5}=\frac{3}{8}$
- Second node $\frac{4}{4+2+2}=\frac{1}{2}$
- Third node 1
- Fourth node $\frac{1}{1+1+1}=\frac{1}{3}$
- Complete probability $\frac{3}{8} \cdot \frac{1}{2} \cdot \frac{1}{3}=\frac{1}{16}$
- Blue path estimate is 16
- Better than the previous blue path estimate, 18

Sequential Importance Sampling Example

- Labeled numbers are the importance values of the nodes
- Yellow path probabilities
- First node $\frac{5}{3+5}=\frac{5}{8}$
- Second node $\frac{4}{5+4}=\frac{4}{9}$
- Third node $\frac{1}{1+1}=\frac{1}{2}$
- Fourth node 1
- Complete probability $\frac{5}{8} \cdot \frac{4}{9} \cdot \frac{1}{2}=\frac{20}{144}$

- Yellow path estimate is $\frac{144}{20}=7.2$
- Worse than the previous yellow path estimate, 8

Sequential Importance Sampling Variance

- Sequential importance sampling has the potential to make the variance better, but also the potential to make it worse
- The optimal importance function is the number of leaves beneath a node, which gives zero variance
- The closer the importance function comes to approximating the number of leaves, the better the variance
- Call the optimal importance function r_{*} and the actual importance function r
- Assume both r and r_{*} have been normalized so the sum of importance for all sibling sets is 1
- If we always have $\frac{r_{*}(n)}{r(n)} \leq a_{i}$ for all nodes n at level i of the tree, then the relative variance will be less than the product of a_{i} over all levels i of the tree

Ideas for Improving Variance

- Better importance functions
- Use all available information
- Conditioning the input
- Prune uniform regions of the tree (if any exist) and handle separately
- Structure the decision process so as to make the tree more uniform
- Improving the algorithm itself
- Visit more regions of the tree (stratified sampling)
- Use more paths (stochastic enumeration)

Stochastic Enumeration

- Reuven Rubinstein, 2013
- Given a fixed budget, B, instead of 1 node per level, we select B nodes per level
- At each level, the new set of nodes is chosen with uniform probability from the children of the previous set of nodes
- This means some paths dead end while other paths split
- If there are fewer than B children, we take all the children
- At each level, instead of multiplying the estimate by the number of children, we multiply by the average number of children over all chosen nodes at that level

Stochastic Enumeration Example

- Let $B=3$
- Blue edges = available children
- Red nodes $=$ chosen nodes
- Average number of children per level?
- Level $1: \frac{2}{1}=2$
- Level 2: $\frac{3+2}{2}=\frac{5}{2}$
- Level 3: $\frac{1+4+2}{3}=\frac{7}{3}$
- Level 4: $\frac{3+1+1}{3}=\frac{5}{3}$
- Estimate is $2 \cdot \frac{5}{2} \cdot \frac{7}{3} \cdot \frac{5}{3}=19 . \overline{4}$

Stochastic Enumeration Example

- Probability of selecting these nodes?

$$
\cdot 1 \cdot 1 \cdot \frac{1}{\binom{5}{3}} \cdot \frac{1}{\binom{7}{3}} \cdot \frac{1}{\binom{5}{3}}=\frac{1}{3500}
$$

- Estimates and probabilities are no longer reciprocal
- Sample space is now hyperpaths, not paths, so it's no longer in 1-1 correspondence with tree leaves

- Proving estimates are unbiased now requires induction on tree height

Stochastic Enumeration with Importance

- My project's goal: introduce an importance function
- With sequential importance sampling, our estimates look like $\prod_{i} \frac{\text { total importance of available nodes on level } i}{\text { importance of chosen node on level } i}$
- This worked because it was the reciprocal of the probability with which we chose the nodes
- With stochastic enumeration with an importance function, we want our estimates to look similar

$$
\prod_{i} \frac{\text { total importance of available nodes on level } i}{\text { importance of chosen nodes on level } i}
$$

- But the probabilities here are more complicated, so...

Stochastic Enumeration with Importance

- For level i of the tree
- Let A_{i} be the set of available nodes to choose from
- Let $C_{i} \subset A_{i}$ be the chosen set of nodes
- Let r be the importance function
- We want our estimates to look like

$$
\prod_{i} \frac{\sum_{a \in A_{i}} r(a)}{\sum_{c \in C_{i}} r(c)}
$$

- It turns out this will only be an unbiased estimate if we choose each C_{i} from A_{i} with probability

$$
\operatorname{prob}\left(C_{i}\right)=\frac{\sum_{c \in C_{i}} r(c)}{\sum_{a \in A_{i}} r(a)} \cdot \frac{1}{\binom{\left|A_{i}\right|-1}{\left|C_{i}\right|-1}}
$$

- To achieve this probability...
- Choose one element x from A_{i} with probability proportional to its importance
- Choose the other elements with uniform probability from the remaining elements in A_{i}

Numerical Testing

- Applied stochastic enumeration with importance sampling to the problem of counting linear extensions of posets

Numerical Testing

- Tested three importance functions and compared them to the uniform importance function
- Notation
- n is the number of elements in the poset
- $\operatorname{sib}(x)$ is the number of siblings of node x in the decision tree
- $\operatorname{desc}(x)$ is the number of descendants of node x in the poset, including x itself
- level (x) is the level of node x in the decision tree
- Importance function 1: $r(x)=\operatorname{sib}(x)^{3}$
- Importance function 2: $r(x)=\operatorname{sib}(x)^{3} \cdot \operatorname{desc}(x)$
- Importance function 3: $r(x)=\operatorname{sib}(x)^{3} \cdot \frac{n-\operatorname{level}(x)+1+\operatorname{desc}(x)}{n-\operatorname{level}(x)+1-\operatorname{desc}(x)}$

Numerical Testing

- The first set of tests kept B fixed and let n run through the values $n=10,15,20, \ldots, 85$
- For each value of n, n^{2} random posets of size n were generated
- For each pair of poset elements p_{i} and p_{j} with $i>j$, the relation $p_{i}>p_{j}$ was given a 20% chance to exist
- The poset was then transitively completed
- n^{2} estimates were performed on each poset and relative variance calculated
- Relative variance was averaged for each value of n
- Results are plotted on a log-log scale

Numerical Results ($B=1$)

Numerical Results ($B=5$)

Numerical Results ($B=10$)

Numerical Results ($B=15$)

Numerical Results ($B=20$)

Numerical Testing

- The second set of tests kept n fixed and let B run through the values $B=1,2,3, \ldots, 100$
- For each value of n, n^{2} random posets of size n were generated
- For each pair of poset elements p_{i} and p_{j} with $i>j$, the relation $p_{i}>p_{j}$ was given a 20% chance to exist
- The poset was then transitively completed
- n^{2} estimates were performed on each poset and relative variance calculated
- Relative variance was averaged for each value of B
- Results are plotted on a semi-log scale

Numerical Results ($n=10$)

Numerical Results ($n=20$)

Numerical Results ($n=40$)

References

- Reuven Rubinstein, Stochastic enumeration method for counting NP-hard problems, Methodology and Computing in Applied Probability (2013).
- Radislav Vaisman, Dirk P. Kroese, Stochastic Enumeration Method for Counting Trees, Methodology and Computing in Applied Probability (2015).
- Alathea Jensen, Stochastic Enumeration with Importance Sampling.

