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Tree Size Problems

• Many problems in math, physics, and computer science boil 

down to the same underlying question: how big is this tree?

• Some different flavors of this question:

• How many leaves are on this tree?

• How many nodes are in this tree?

• Given a cost function, what’s the total cost of this tree?

• Example

• 3 leaves

• 6 nodes

• $10 cost $1$2

$3 $1 $2

$1



Tree Size Problems

• Counting problems

• Any set whose elements can be constructed by a series of decisions can be 

modeled by a decision tree

• E.g. graph colorings, spanning trees, set partitions, etc.

• Algorithms

• A decision tree can model all possible ways that an algorithm might 

proceed

• Statistics such as runtime and memory usage can be modeled by cost 

functions on the tree

• Databases

• Most large databases are organized as trees in order to optimize searching 

and updating

• E.g. personal computer files (~300,000), Amazon listings (~500 million), 

Facebook accounts (~2 billion), indexed pages on Google (~100 trillion)



Database Examples



Tree Size Estimation

• Calculating tree size is #𝑃-complete in general

• Goal: efficient estimation of tree size

• Two main types of estimation algorithms

• Markov Chain Monte Carlo (MCMC)

• Easier to bound variance of samples

• Takes longer to get each sample

• Sequential Importance Sampling (SIS)

• Harder to bound variance of samples

• Get samples very quickly



Motivation

• If the number of children per node is uniform across each 

level…

• Then the number of leaves is the product of the number of 

children along any path from root to leaf

• Example

• 2 ⋅ 3 ⋅ 2 ⋅ 1 = 12 leaves
2 children

3 children

1 child

2 children



Motivation

• If the number of children per 

node is not uniform across each 

level…

• Products will be different along 

different paths

• Example

• Blue node path: 2 ⋅ 3 ⋅ 1 ⋅ 3 = 18

• Yellow node path: 2 ⋅ 2 ⋅ 2 ⋅ 1 = 8

• But the number of leaves is still 12



Knuth’s Algorithm

• Donald E. Knuth, 1975

• Construct a path by starting with 
the root and choosing a random 
child (uniform distribution) of the 
previous node to continue the path

• The estimate associated with each 
path is the product of the number of 
children seen along the path

• Example
• The blue node path gives an estimate 

of 2 ⋅ 3 ⋅ 1 ⋅ 3 = 18
• The probability of constructing blue 

node path is 
1

2
⋅
1

3
⋅ 1 ⋅

1

3
=

1

18
• The yellow node path gives as estimate 

of 2 ⋅ 2 ⋅ 2 ⋅ 1 = 8
• The probability of constructing the 

yellow node path is 
1

2
⋅
1

2
⋅
1

2
⋅ 1 =

1

8



Knuth’s Algorithm

• Call the set of all possible paths 𝑃

• For each possible path, 𝑝 ∈ 𝑃, the associated estimate, est 𝑝 , is the 

reciprocal of the probability prob 𝑝 of choosing that path

est 𝑝 =
1

prob 𝑝

• Each possible path contributes exactly 1 to the expected value sum

𝔼 est 𝑝 = 

𝑝∈𝑃

est 𝑝 ⋅ prob 𝑝 = 

𝑝∈𝑃

1 = 𝑃

• Hence the expected value of the estimate is the number of possible 

paths, which is the same as the number of leaves

• Therefore the average value of many estimates will converge to the 

correct answer



Sequential Importance Sampling

• The reason Knuth’s algorithm works is because the estimate for 

each path is the reciprocal of the probability of that path

• New idea

• Use a different probability distribution to choose the paths

• Define the estimate produced to be the reciprocal of the probability used

• Then we still have

𝔼 est 𝑝 = 

𝑝∈𝑃

est 𝑝 ⋅ prob 𝑝 = 

𝑝∈𝑃

1 = 𝑃

• To get a different probability distribution…

• Assign an importance value to each node using an importance function

• Choose each node with probability proportional to its relative importance 

amongst its siblings



Sequential Importance Sampling Example

• Labeled numbers are the 
importance values of the nodes

• Blue path probabilities

• First node 
3

3+5
=

3

8

• Second node 
4

4+2+2
=

1

2

• Third node 1

• Fourth node 
1

1+1+1
=

1

3

• Complete probability 
3

8
⋅
1

2
⋅
1

3
=

1

16

• Blue path estimate is 16

• Better than the previous blue 
path estimate, 18

2 2

1 1 1 1

1 1

5

5 4

1 1 1 1 1 1

1 1 1 1 1 1

3

4

1

1

1



Sequential Importance Sampling Example

• Labeled numbers are the 

importance values of the nodes

• Yellow path probabilities

• First node 
5

3+5
=

5

8

• Second node 
4

5+4
=

4

9

• Third node 
1

1+1
=

1

2

• Fourth node 1

• Complete probability 
5

8
⋅
4

9
⋅
1

2
=

20

144

• Yellow path estimate is 
144

20
= 7.2

• Worse than the previous yellow 

path estimate, 8

2 2

1 1 1 1

1 1

5

5 4

1 1 1 1 1 1

1 1 1 1 1 1

3

4

1

1

1



Sequential Importance Sampling Variance

• Sequential importance sampling has the potential to make the 

variance better, but also the potential to make it worse

• The optimal importance function is the number of leaves 

beneath a node, which gives zero variance

• The closer the importance function comes to approximating the 

number of leaves, the better the variance

• Call the optimal importance function 𝑟∗ and the actual importance function 

𝑟

• Assume both 𝑟 and 𝑟∗ have been normalized so the sum of importance for 

all sibling sets is 1

• If we always have 
𝑟∗(𝑛)

𝑟(𝑛)
≤ 𝑎𝑖 for all nodes 𝑛 at level 𝑖 of the tree, then the 

relative variance will be less than the product of 𝑎𝑖 over all levels 𝑖 of the 

tree



Ideas for Improving Variance

• Better importance functions

• Use all available information

• Conditioning the input

• Prune uniform regions of the tree (if any exist) and handle separately

• Structure the decision process so as to make the tree more uniform

• Improving the algorithm itself

• Visit more regions of the tree (stratified sampling)

• Use more paths (stochastic enumeration)



Stochastic Enumeration

• Reuven Rubinstein, 2013

• Given a fixed budget, 𝐵, instead of 1 node per level, we select 

𝐵 nodes per level

• At each level, the new set of nodes is chosen with uniform 

probability from the children of the previous set of nodes

• This means some paths dead end while other paths split

• If there are fewer than 𝐵 children, we take all the children

• At each level, instead of multiplying the estimate by the number 

of children, we multiply by the average number of children over 

all chosen nodes at that level



Stochastic Enumeration Example

• Let 𝐵 = 3

• Blue edges = available children

• Red nodes = chosen nodes

• Average number of children per 

level?

• Level 1: 
2

1
= 2

• Level 2: 
3+2

2
=

5

2

• Level 3: 
1+4+2

3
=

7

3

• Level 4: 
3+1+1

3
=

5

3

• Estimate is 2 ⋅
5

2
⋅
7

3
⋅
5

3
= 19. ത4



Stochastic Enumeration Example

• Probability of selecting these 

nodes?

• 1 ⋅ 1 ⋅
1
5
3

⋅
1
7
3

⋅
1
5
3

=
1

3500

• Estimates and probabilities are 

no longer reciprocal

• Sample space is now hyperpaths, 

not paths, so it’s no longer in 1-1 

correspondence with tree leaves

• Proving estimates are unbiased 

now requires induction on tree 

height



Stochastic Enumeration with Importance

• My project’s goal: introduce an importance function

• With sequential importance sampling, our estimates look like

ෑ

𝑖

𝑡𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑛𝑜𝑑𝑒𝑠 𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑖

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐ℎ𝑜𝑠𝑒𝑛 𝑛𝑜𝑑𝑒 𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑖

• This worked because it was the reciprocal of the probability 

with which we chose the nodes

• With stochastic enumeration with an importance function, we 

want our estimates to look similar

ෑ

𝑖

𝑡𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑛𝑜𝑑𝑒𝑠 𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑖

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐ℎ𝑜𝑠𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑖

• But the probabilities here are more complicated, so…



Stochastic Enumeration with Importance

• For level 𝑖 of the tree

• Let 𝐴𝑖 be the set of available nodes to choose from

• Let 𝐶𝑖 ⊂ 𝐴𝑖 be the chosen set of nodes

• Let 𝑟 be the importance function

• We want our estimates to look like

ෑ

𝑖

σ𝑎∈𝐴𝑖
𝑟 𝑎

σ𝑐∈𝐶𝑖
𝑟 𝑐

• It turns out this will only be an unbiased estimate if we choose each 𝐶𝑖 from 
𝐴𝑖 with probability

prob 𝐶𝑖 =
σ𝑐∈𝐶𝑖

𝑟 𝑐

σ𝑎∈𝐴𝑖
𝑟 𝑎

⋅
1

𝐴𝑖 − 1

𝐶𝑖 − 1

• To achieve this probability…

• Choose one element 𝑥 from 𝐴𝑖 with probability proportional to its importance

• Choose the other elements with uniform probability from the remaining elements in 𝐴𝑖



Numerical Testing

• Applied stochastic enumeration with 

importance sampling to the problem of 

counting linear extensions of posets

• A linear extension of a poset is a total 

ordering of the poset that is consistent 

with the partial order

• One procedure for getting a linear 

extension is

• Select a maximal element, then delete it 

from the poset

• Repeat until poset is empty

• We can make a decision tree 

representing all possible ways to do this

A B

C D

B

C D

D C

DA

C D

D C C

A

A B



Numerical Testing

• Tested three importance functions and compared them to the 

uniform importance function

• Notation

• 𝑛 is the number of elements in the poset

• sib 𝑥 is the number of siblings of node 𝑥 in the decision tree

• desc 𝑥 is the number of descendants of node 𝑥 in the poset, including 𝑥
itself

• level 𝑥 is the level of node 𝑥 in the decision tree

• Importance function 1: 𝑟 𝑥 = sib 𝑥 3

• Importance function 2: 𝑟 𝑥 = sib 𝑥 3 ⋅ desc 𝑥

• Importance function 3: 𝑟 𝑥 = sib 𝑥 3 ⋅
𝑛−level 𝑥 +1+desc 𝑥

𝑛−level 𝑥 +1−desc 𝑥



Numerical Testing

• The first set of tests kept 𝐵 fixed and let 𝑛 run through the values 

𝑛 = 10,15,20,… , 85

• For each value of 𝑛, 𝑛2 random posets of size 𝑛 were generated

• For each pair of poset elements 𝑝𝑖 and 𝑝𝑗 with 𝑖 > 𝑗, the relation 𝑝𝑖 > 𝑝𝑗
was given a 20% chance to exist

• The poset was then transitively completed

• 𝑛2 estimates were performed on each poset and relative variance 

calculated

• Relative variance was averaged for each value of 𝑛

• Results are plotted on a log-log scale



Numerical Results (𝐵 = 1)



Numerical Results (𝐵 = 5)



Numerical Results (𝐵 = 10)



Numerical Results (𝐵 = 15)



Numerical Results (𝐵 = 20)



Numerical Testing

• The second set of tests kept 𝑛 fixed and let 𝐵 run through the 

values 𝐵 = 1,2,3,… , 100

• For each value of 𝑛, 𝑛2 random posets of size 𝑛 were generated

• For each pair of poset elements 𝑝𝑖 and 𝑝𝑗 with 𝑖 > 𝑗, the relation 𝑝𝑖 > 𝑝𝑗
was given a 20% chance to exist

• The poset was then transitively completed

• 𝑛2 estimates were performed on each poset and relative variance 

calculated

• Relative variance was averaged for each value of 𝐵

• Results are plotted on a semi-log scale



Numerical Results (𝑛 = 10)



Numerical Results (𝑛 = 20)



Numerical Results (𝑛 = 40)



References

• Reuven Rubinstein, Stochastic enumeration method for counting 

NP-hard problems, Methodology and Computing in Applied 

Probability (2013).

• Radislav Vaisman, Dirk P. Kroese, Stochastic Enumeration 

Method for Counting Trees, Methodology and Computing in 

Applied Probability (2015).

• Alathea Jensen, Stochastic Enumeration with Importance 

Sampling.


