STOCHASTIC ENUMERATION WITH IMPORTANCE SAMPLING

Alathea Jensen

December 11, 2017

Tree Size Problems

- Many problems in math, physics, and computer science boil down to the same underlying question: how big is this tree?
- Some different flavors of this question:
 - How many leaves are on this tree?
 - How many nodes are in this tree?
 - Given a cost function, what's the total cost of this tree?
- Example
 - 3 leaves
 - 6 nodes
 - \$10 cost

Tree Size Problems

- Counting problems
 - Any set whose elements can be constructed by a series of decisions can be modeled by a decision tree
 - E.g. graph colorings, spanning trees, set partitions, etc.
- Algorithms
 - A decision tree can model all possible ways that an algorithm might proceed
 - Statistics such as runtime and memory usage can be modeled by cost functions on the tree
- Databases
 - Most large databases are organized as trees in order to optimize searching and updating
 - E.g. personal computer files (~300,000), Amazon listings (~500 million), Facebook accounts (~2 billion), indexed pages on Google (~100 trillion)

Database Examples

General Customize					
-	366,054 Files, 54,911 Folders				
	Alarms & Clock		_		
Type:	Multiple ⁻				
Location:	All in C:\	Ø	°.	Ō	Ō
Size:	240 GB (Alarm	World Clock	Timer	Stopwatch
Size on disk:	235 GB (
Attributes	 Read- Hidder 	00):01	:02	2 .23

About 4,300,000 results (0.57 seconds)

Tree Size Estimation

- Calculating tree size is *#P*-complete in general
- Goal: efficient estimation of tree size
- Two main types of estimation algorithms
- Markov Chain Monte Carlo (MCMC)
 - Easier to bound variance of samples
 - Takes longer to get each sample
- Sequential Importance Sampling (SIS)
 - Harder to bound variance of samples
 - Get samples very quickly

Motivation

- If the number of children per node is uniform across each level...
- Then the number of leaves is the product of the number of children along any path from root to leaf
- Example

Motivation

- If the number of children per node is not uniform across each level...
- Products will be different along different paths
- Example
 - Blue node path: $2 \cdot 3 \cdot 1 \cdot 3 = 18$
 - Yellow node path: $2 \cdot 2 \cdot 2 \cdot 1 = 8$
 - But the number of leaves is still 12

Knuth's Algorithm

- Donald E. Knuth, 1975
- Construct a path by starting with the root and choosing a random child (uniform distribution) of the previous node to continue the path
- The estimate associated with each path is the product of the number of children seen along the path
- Example
 - The blue node path gives an estimate of $2 \cdot 3 \cdot 1 \cdot 3 = 18$
 - The probability of constructing blue node path is $\frac{1}{2} \cdot \frac{1}{3} \cdot 1 \cdot \frac{1}{3} = \frac{1}{18}$
 - The yellow node path gives as estimate of $2 \cdot 2 \cdot 2 \cdot 1 = 8$
 - The probability of constructing the yellow node path is $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1 = \frac{1}{8}$

Knuth's Algorithm

- Call the set of all possible paths *P*
- For each possible path, p ∈ P, the associated estimate, est(p), is the reciprocal of the probability prob(p) of choosing that path

$$\operatorname{est}(p) = \frac{1}{\operatorname{prob}(p)}$$

• Each possible path contributes exactly 1 to the expected value sum

$$\mathbb{E}[\operatorname{est}(p)] = \sum_{p \in P} \operatorname{est}(p) \cdot \operatorname{prob}(p) = \sum_{p \in P} 1 = |P|$$

- Hence the expected value of the estimate is the number of possible paths, which is the same as the number of leaves
- Therefore the average value of many estimates will converge to the correct answer

Sequential Importance Sampling

- The reason Knuth's algorithm works is because the estimate for each path is the reciprocal of the probability of that path
- New idea
 - Use a different probability distribution to choose the paths
 - Define the estimate produced to be the reciprocal of the probability used
 - Then we still have

$$\mathbb{E}[\operatorname{est}(p)] = \sum_{p \in P} \operatorname{est}(p) \cdot \operatorname{prob}(p) = \sum_{p \in P} 1 = |P|$$

- To get a different probability distribution...
 - Assign an importance value to each node using an importance function
 - Choose each node with probability proportional to its relative importance amongst its siblings

Sequential Importance Sampling Example

- Labeled numbers are the importance values of the nodes
- Blue path probabilities
 - First node $\frac{3}{3+5} = \frac{3}{8}$
 - Second node $\frac{4}{4+2+2} = \frac{1}{2}$
 - Third node 1
 - Fourth node $\frac{1}{1+1+1} = \frac{1}{3}$
 - Complete probability $\frac{3}{8} \cdot \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{16}$
- Blue path estimate is 16
- Better than the previous blue path estimate, 18

Sequential Importance Sampling Example

- Labeled numbers are the importance values of the nodes
- Yellow path probabilities
 - First node $\frac{5}{3+5} = \frac{5}{8}$
 - Second node $\frac{4}{5+4} = \frac{4}{9}$
 - Third node $\frac{1}{1+1} = \frac{1}{2}$
 - Fourth node 1
 - Complete probability $\frac{5}{8} \cdot \frac{4}{9} \cdot \frac{1}{2} = \frac{20}{144}$
- Yellow path estimate is $\frac{144}{20} = 7.2$
- Worse than the previous yellow path estimate, 8

Sequential Importance Sampling Variance

- Sequential importance sampling has the potential to make the variance better, but also the potential to make it worse
- The optimal importance function is the number of leaves beneath a node, which gives zero variance
- The closer the importance function comes to approximating the number of leaves, the better the variance
 - Call the optimal importance function r_* and the actual importance function r
 - Assume both *r* and *r*_{*} have been normalized so the sum of importance for all sibling sets is 1
 - If we always have $\frac{r_*(n)}{r(n)} \le a_i$ for all nodes *n* at level *i* of the tree, then the relative variance will be less than the product of a_i over all levels *i* of the tree

Ideas for Improving Variance

- Better importance functions
 - Use all available information
- Conditioning the input
 - Prune uniform regions of the tree (if any exist) and handle separately
 - Structure the decision process so as to make the tree more uniform
- Improving the algorithm itself
 - Visit more regions of the tree (stratified sampling)
 - Use more paths (stochastic enumeration)

Stochastic Enumeration

- Reuven Rubinstein, 2013
- Given a fixed budget, *B*, instead of 1 node per level, we select *B* nodes per level
- At each level, the new set of nodes is chosen with uniform probability from the children of the previous set of nodes
- This means some paths dead end while other paths split
- If there are fewer than *B* children, we take all the children
- At each level, instead of multiplying the estimate by the number of children, we multiply by the average number of children over all chosen nodes at that level

Stochastic Enumeration Example

- Let B = 3
- Blue edges = available children
- Red nodes = chosen nodes
- Average number of children per level?

• Level 1:
$$\frac{2}{1} = 2$$

• Level 2: $\frac{3+2}{2} = \frac{5}{2}$
• Level 3: $\frac{1+4+2}{3} = \frac{7}{3}$
• Level 4: $\frac{3+1+1}{3} = \frac{5}{3}$
Estimate is $2 \cdot \frac{5}{2} \cdot \frac{7}{3} \cdot \frac{5}{3} = 19.\overline{4}$

Stochastic Enumeration Example

• Probability of selecting these nodes?

•
$$1 \cdot 1 \cdot \frac{1}{\binom{5}{3}} \cdot \frac{1}{\binom{7}{3}} \cdot \frac{1}{\binom{5}{3}} = \frac{1}{3500}$$

- Estimates and probabilities are no longer reciprocal
- Sample space is now hyperpaths, not paths, so it's no longer in 1-1 correspondence with tree leaves
- Proving estimates are unbiased now requires induction on tree height

Stochastic Enumeration with Importance

- My project's goal: introduce an importance function
- With sequential importance sampling, our estimates look like total importance of available nodes on level i importance of chosen node on level i
- This worked because it was the reciprocal of the probability with which we chose the nodes
- With stochastic enumeration with an importance function, we want our estimates to look similar

total importance of available nodes on level i importance of chosen nodes on level i

• But the probabilities here are more complicated, so...

Stochastic Enumeration with Importance

- For level *i* of the tree
 - Let A_i be the set of available nodes to choose from
 - Let $C_i \subset A_i$ be the chosen set of nodes
 - Let *r* be the importance function
- We want our estimates to look like

$$\prod_{i} \frac{\sum_{a \in A_{i}} r(a)}{\sum_{c \in C_{i}} r(c)}$$

• It turns out this will only be an unbiased estimate if we choose each C_i from A_i with probability

$$\operatorname{prob}(C_i) = \frac{\sum_{c \in C_i} r(c)}{\sum_{a \in A_i} r(a)} \cdot \frac{1}{\binom{|A_i| - 1}{|C_i| - 1}}$$

- To achieve this probability...
 - Choose one element x from A_i with probability proportional to its importance
 - Choose the other elements with uniform probability from the remaining elements in A_i

- Applied stochastic enumeration with importance sampling to the problem of counting linear extensions of posets
- A linear extension of a poset is a total ordering of the poset that is consistent with the partial order
- One procedure for getting a linear extension is
 - Select a maximal element, then delete it from the poset
 - Repeat until poset is empty
- We can make a decision tree representing all possible ways to do this

- Tested three importance functions and compared them to the uniform importance function
- Notation
 - *n* is the number of elements in the poset
 - sib(x) is the number of siblings of node x in the decision tree
 - desc(x) is the number of descendants of node x in the poset, including x itself
 - level(x) is the level of node x in the decision tree
- Importance function 1: $r(x) = sib(x)^3$
- Importance function 2: $r(x) = sib(x)^3 \cdot desc(x)$

• Importance function 3: $r(x) = \operatorname{sib}(x)^3 \cdot \frac{n - \operatorname{level}(x) + 1 + \operatorname{desc}(x)}{n - \operatorname{level}(x) + 1 - \operatorname{desc}(x)}$

- The first set of tests kept *B* fixed and let *n* run through the values n = 10,15,20, ..., 85
- For each value of n, n^2 random posets of size n were generated
 - For each pair of poset elements p_i and p_j with i > j, the relation $p_i > p_j$ was given a 20% chance to exist
 - The poset was then transitively completed
- n² estimates were performed on each poset and relative variance calculated
- Relative variance was averaged for each value of *n*
- Results are plotted on a log-log scale

Numerical Results (B = 1)

Numerical Results (B = 5)

Numerical Results (B = 10)

Numerical Results (B = 15)

Numerical Results (B = 20)

- The second set of tests kept *n* fixed and let *B* run through the values B = 1, 2, 3, ..., 100
- For each value of n, n^2 random posets of size n were generated
 - For each pair of poset elements p_i and p_j with i > j, the relation $p_i > p_j$ was given a 20% chance to exist
 - The poset was then transitively completed
- n² estimates were performed on each poset and relative variance calculated
- Relative variance was averaged for each value of *B*
- Results are plotted on a semi-log scale

Numerical Results (n = 10)

Numerical Results (n = 20)

Numerical Results (n = 40)

References

- Reuven Rubinstein, *Stochastic enumeration method for counting NP-hard problems*, Methodology and Computing in Applied Probability (2013).
- Radislav Vaisman, Dirk P. Kroese, *Stochastic Enumeration Method for Counting Trees*, Methodology and Computing in Applied Probability (2015).
- Alathea Jensen, *Stochastic Enumeration with Importance Sampling*.