


# **JARVIS-DFT**

### Quantum calculation database for 2D, Solarcell and Thermoelectric materials

NIST Materials Genome Initiative Gateway to Materials Genome Information

### What is JARVIS-DFT?

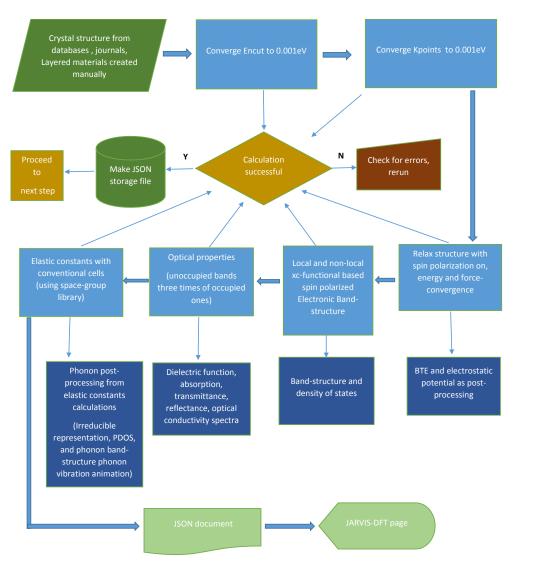
JARVIS-DFT is a **density functional theory** (DFT) calculation database for **2D materials, solar cells and thermoelectric**.

At present, the database consists of **873 DFT calculations (>25000 sub-calculations)** for **energetics**, **structural properties** (computational X-ray diffraction, radial distribution function), **electronic properties** (density of states, band-structure), **elastic properties** (modulus of elasticity, associated phonon, its representation and visualization) , **optical properties** (dielectric function, absorption spectra, refractive index) and **thermoelectric properties** (Seebeck coefficient, ZT-factor, effective mass of charge-carriers).

All the calculations were done with VASP software. Some of the key-features for JARVIS-DFT are:

- 1) We used the **vDW-DF functional**, which works better for 2D materials than PBE or other commonly used functionals;
- 2) The database contains **both 2D-layered and 2D-bulk structure data** (for comparison) and we used a **tighter DFT convergence criteria** than other databases.
- 3) JARVIS-DFT was made with custom-modification of the publicly available Pymatgen, Phonopy and ASE tools. We greatly appreciate these tools.
- 4) To enhance **data-reproducibility**, all **data** in the database, as well as all the **metadata** (input files etc.) needed to reproduce the results are **available for download** from the website

http://www.ctcms.nist.gov/~knc6/JVASP.html


## Methodology

- 1. Crystal structure: Crystal structures were obtained from publicly available DFT-repositories such as **Materials project, AFLOW and OQMD** based on criteria for 2D materials. Single-layer counterparts were created manually from these structures.
- 2. High-throughput calculations: We compute optimized energy cut-off and K-point sampling within tolerance of 0.001 eV. After that full ionic and electronic relaxation were carried out. After relaxation properties such as elastic calculations, optical properties and band-structures were calculated in next set of calculations. Automatic error-checking and error-correction features were included in JARVIS-DFT.
- 3. User-interface: MongoDB for all the calculation data were prepared and then an interactive periodic table was constructed for all the calculations. We also provide materials project, AFLOW and ICSD links wherever applicable.

| Mo-S-<br>Refresh                                                          |                                                                    |                              |       |          |      |       |                    |      |      |                      |                                     |               |            |               |                  |                           |    |  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------|-------|----------|------|-------|--------------------|------|------|----------------------|-------------------------------------|---------------|------------|---------------|------------------|---------------------------|----|--|
| JARVIS for DFT                                                            |                                                                    |                              |       |          |      |       |                    |      |      |                      |                                     |               |            |               |                  |                           |    |  |
| Н                                                                         |                                                                    |                              |       |          |      |       |                    |      |      |                      |                                     |               |            |               |                  |                           | He |  |
| Li                                                                        | Be                                                                 |                              |       |          |      |       |                    |      |      |                      |                                     | В             | C          | N             | 0                | F                         | Ne |  |
| Na                                                                        | Mg                                                                 | √lg                          |       |          |      |       |                    |      |      |                      |                                     |               |            | Р             | s                | Cl                        | Ar |  |
| K                                                                         | Ca                                                                 | Sc                           | Ti    | V        | Cr   | Mn    | Fe                 | Co   | Ni   | Cu                   | Zn                                  | Ga            | Ge         | As            | Se               | Br                        | Kr |  |
| Rb                                                                        | Sr                                                                 | Y                            | Zr    | Nb       | Mo   | Tc    | Ru                 | Rł   | Pd   | Ag                   | Cd                                  | In            | Sn         | Sb            | Те               | Ι                         | Xe |  |
| Cs                                                                        | Ba                                                                 | *                            | Hf    | Ta       | W    | Re    | Os                 | Ir   | Pt   | Au                   | Hg                                  | T1            | Pb         | Bi            | Po               | At                        | Rn |  |
| Fr                                                                        | Ra                                                                 | *                            | Rf    | Db       | Sg   | Bh    | Hs                 | M    | Ds   | Rg                   | Cn                                  | Uut           | Uu         | Uu            | Uu               | Uu                        | Uu |  |
|                                                                           | La Ce P                                                            |                              |       |          |      |       | Id P               | m s  | Sm E | u G                  | d Tb                                | Dy            | Ho         | Er            | Tn               | Yb                        | Lu |  |
|                                                                           |                                                                    |                              | ł     | Ac 1     | 'h P | 'a T  | JN                 | Ip I | Pu A | .m Ci                | n Bk                                | Cf            | Es         | Fn            | n Mo             | No                        | Lr |  |
| JARVI:<br>ID                                                              | JARVIS-<br>ID Formula Functional Calculation Bandgap (eV) & nature |                              |       |          |      |       |                    |      |      |                      | HSE B <sub>v</sub><br>Bandgap (GPa) |               |            | ice           | Energ<br>(eV)    | Energy per atom<br>(eV)   |    |  |
| JVASP-                                                                    |                                                                    |                              |       | 1L       |      |       | 1.721 D            |      |      | na .                 |                                     |               | 18.327 P-6 |               | 2 -7.27843686333 |                           |    |  |
| JVASP-                                                                    |                                                                    | Mo1 S2 LDA<br>1 Mo2 S4 PBEBO |       |          |      |       | 1.905 I            |      |      | na 4<br>na 5         |                                     | 20.48         |            | P-6m2<br>R-3m |                  | -8.13386759667            |    |  |
| JVASP-<br>IVASP-                                                          |                                                                    | -                            |       |          |      | 0.0 I | 1.714 D            |      |      |                      |                                     | 45.47<br>18.5 |            | P-6m2         |                  | -5.0248438<br>-5.21029455 |    |  |
|                                                                           |                                                                    |                              | PBEBO | 1L<br>1L |      | na    |                    |      |      | 2.142 I 37.<br>na na |                                     | na            | na         |               | 5.210            | 5.21025455                |    |  |
| JVASP-                                                                    | . <u>521</u> Mo                                                    | 21 Mo2 S4 PBE                |       |          |      | 1.519 | 1.519 I            |      |      | na 5                 |                                     | 34.73         |            | P6_3/mmc      |                  | -7.281354035              |    |  |
|                                                                           | <u>SP-522</u> Mo2 S4 LDA                                           |                              |       | Bulk     |      |       | 0.721 I            |      |      | na 7                 |                                     | 56.89         |            |               |                  | -8.17299610333            |    |  |
|                                                                           | ASP-541 Mo2 S4 PBEBO                                               |                              |       | Bulk     |      |       | 0.919 I            |      |      | 1.493 I 70           |                                     | 47.64         |            |               |                  | -5.28728532167            |    |  |
|                                                                           | ASP-550 Mo1 S2 PBE<br>ASP-551 Mo1 S2 PBEBO                         |                              |       | Bulk     |      |       | 1.523 I            |      |      | na 51                |                                     | 34.93         |            |               | -7.280           | -7.2809158                |    |  |
|                                                                           |                                                                    |                              |       | Bulk     |      |       | 0.909 I<br>0.702 I |      |      | na na                |                                     | na            | 11a        |               | 8 17262212       |                           |    |  |
| <u>IVASP-552</u> Mol S2 LDA Buik 0.702 I na 81.244 56.387 R3m -8.17262313 |                                                                    |                              |       |          |      |       |                    |      |      |                      |                                     | 02313         |            |               |                  |                           |    |  |

## Fig.1: Main components of the web user interface

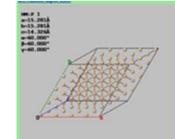
### **Technical details**



- First we extract crystal structures from DFT databases and journals repository for bulk-structures, then, for most of them, we manually created the layered structures;
- JARVIS-DFT obtains **optimized energy-cut-off and K-point** based on series of runs. We impose **force-convergence criteria** in addition to energy-convergence.
- After main-relaxation, **optical**, **elastic**, **phonon**, **thermoelectric**, **band-structure and magnetic property** calculations are performed. **Automatic error-check** and error-corrections are implemented. On the website we provide details on all the assumptions used in calculations.
- All the data is saved in **JSON** format making a main MongoDB for JARVIS-DFT.
- The interactive website is constructed with <u>HTML5 and JavaScript</u>.

### Structural formula: Si2

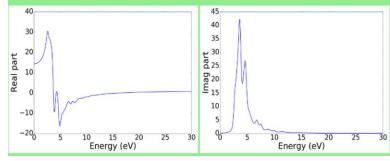
NIST Disclaimer


Functional: LDA

Space group : Fd-3m

Calculation type: Bulk

### JARVIS ID: JVASP-94


### **Examples of computed quantities**



Right click on the atomic structure. Then select third option "model" and then select the frequency to be visualized

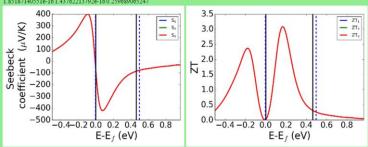
### Optical properties

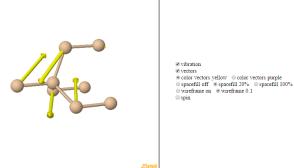
ncident photon energy dependence of real and imaginary part of dielectric function is shown below. Only interband optical transitions are aken into account. Absorption, reflectanc, transmittance spectra and Drude-Lorentz parameters will be available soon. Please note the inderestimation of band-gap problem with DFT will reflect in the spectra sa well.



### **Thermoelectric properties**

Thermoelectric properties are calculated using BoltzTrap code. Electron and hole mass tensors are given at 300 K. Following plots show the Seebeck coefficient and 2T factor (eigenvalues of the tensor shown) at 300 K along three different crystallographic directions. Seebeck coefficient and ZT plots can be compared for three different temperatures available through the buttons given below. Generally very high Kpoints are needed for obtaining thermoelectric properties. We assume the Kpoints obtained from above convergence were sufficient.


WARNING: Constant relaxation time approximation (10<sup>-14</sup> s) and only electronic contribution to thermal conductivity were utilized for calculating ZT.


### Electron mass tensor (me unit)

0.213343254384 7.30501044958e-171.81890909804e-16 7.30501044958e-170.213342672914 1.38823476056e-16 1.81890909804e-161.38823476056e-160.213342995953

### Hole mass tensor (m<sub>e</sub> unit)

0.259689400293 6.59511675992e-171.85187140551e-16 6.59511675992e-170.259688682339 1.43762213792e-16 1.85187140551e-161.43762213792e-160.259689065247



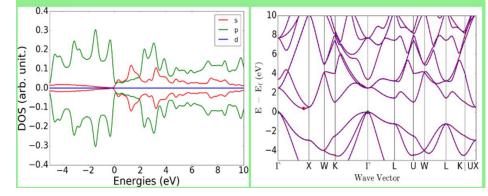


### Visualization of phonon modes

### Elastic tensor and derived phonon properties

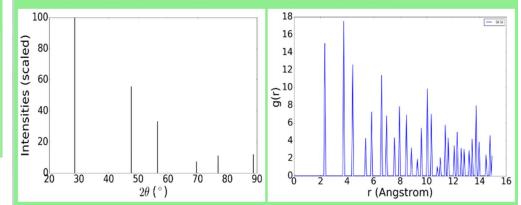
Elastic tensor calculated for the conventional cell of the system with finite-difference method. For layered materials, the elastic constants are excaled with respect to vacuum padding (see the input files) and the units for elastic coefficients are in Nm. Phonons obtained from this acloution are also shown.

WARNING: Please note this may not be the exact phonon modes of the system as we did not test the cell-size dependence of phonons yet. At least 1.2 mm x1.2 mm x1.2 mm or more is needed for obtaining reliable phonon spectrum. For systems having primitive-cell phonon representation hables. I denotes infrared activity and R denotes Ramma active modes (where applicable).


### Elastic Tensor C<sub>ij</sub> GPa

59.665.1 65.1 0.0 0.0 0.0 5.1 159.665.1 0.0 0.0 0.0 55.1 65.1 159.60.0 0.0 0.0 0 0.0 0.0 75.00.0 0.0 0.0 0.0 0.0 0.0 75.00.0 0 0.0 0.0 0.0 0.0 75.0 Phonon mode (cm-1) 0521466365 0 0521466361 0.0521466347 136 23976017 408 173817120 460.782147546 09.75668251 0.30 0.25 11 0.20 Q 0.15 S 0.10 0.05 0.00 00.0 100 200 300 400 500 600 -100 LUW Frequency (cm<sup>-1</sup>)

### **Electronic structure**


The following shows the electronic density of states and bandstructure. DFT is generally predicted to underestimate bandgap of materials. Accurate band-gaps are obtained with higher level methods (with high computational requirement) such as HSE, GW, which are under progress. Total DOS, Orbital DOS and Element dos buttons are provided for density of states options. Energy is rescaled to make Fermienergy zero. In the bandstructure plot, spin up is is shown with blue lines while spin down are shown with red lines. Non-degenerate spin-up and spin-down states (if applicable) would imply a net orbital magnetic moment in the system.

### Bandgap (eV): 0.376 I



### Structural analysis

### The following shows the X-ray diffraction (XRD) pattern and the Radial distribution function (RDF) plots.

