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What is inverse scattering theory?

Determine information about unknown obstacles based on how acoustic or
electromagnetic waves scatter off of them.

By “scattered” I mean reflected, transmitted, and absorbed.
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Ultrasound

Acoustic waves can characterize human tissue.
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Testing airplane canopies

Quickly finding flaws can save millions of dollars.
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TechSat 21 Project

RF Imaging with distributed satellites.
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Challenges

• Vastly different material properties (human body vs. state-of-the-art
materials)

• Orders-of-magnitude different sizes (landmasses vs. microscopic
cracks)

• Cost to probe (satellites vs. ultrasound machines)

Can we design general techniques which are useful at all of these scales?

How expensive are these techniques?

Are we confident in our results?
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Different approaches to inverse problems

Iterative
Methods

Statistical
Methods

Direct
Methods

• “Guess” a solution
and check against
collected data

• Solve large
non-linear
optimization
problem

• Need to understand
physical system

• Use Bayes rule to
incorporate prior
information into
solution

• Typically uses an
iterative method
within the
algorithm

• Use mathematical
properties of system
non-iteratively

• Fast, but need lots
of data
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Today’s topics

• Introduction to wave scattering theory

• Ways to use understanding of system to reduce measurement
requirements

• Uncertainty in reconstructions

• Bayesian inversion

Inverse scattering problems

N



Chapter One
Scattering Theory



Simple physical setting

c(x), ρ0
c0, ρ0 incident

scattered

• Scattering from an infinite cylinder

• Acoustic speed of sound, c , and
pressure, ρ, are constant outside
object

• Speed of sound changes inside
object

Acoustic wave scattering of a time-harmonic incident field from an
penetrable object.



Simple physical setting

c(x), ρ0
c0, ρ0 incident

scattered

∆usy (x) + k2n(x)usy (x) = −k2n(x)uiy (x)

∆uiy (x) + k2uiy (x) = 0

lim
|x |→∞

|x |1/2

(
∂us

∂ν
− ikus

)
= 0,

k is the wave number

n(x) is related to physical
constants

us is the scattered acoustic field

ui is the incident plane wave

Acoustic wave scattering of a time-harmonic incident field from an
penetrable object.
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k is the wave number

n(x) is related to physical
constants

us is the scattered acoustic field

ui is the incident plane wave

Acoustic wave scattering of a time-harmonic incident field from an
penetrable object.

• Everything that follows can be done
with the full system of Maxwell’s
equations (for realistic electromagnetic
materials).



Multistatic Data collection

D

D

ui

Determine material parameters by measuring how the material affects an
incident wave.
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Multistatic Data collection

D

D

ui

us

us • Useful in medical settings
or testing material
properties of small objects

• Lots of reconstruction
algorithms can be used
with this type of data

• Impractical for most
applications

Can we do better?



Direct inversion algorithms

• Assume only the location of object is needed (e.g., looking for a crack
or a tumor).

• Based on model, derive an indicator function I (z), depending on
coordinates, so that

I (z) =

{
0 z /∈ object

1 z ∈ object.

• I (z) must be easy and fast to compute from scattered field data.



Intuition behind reconstruction algorithm

z

ui us

x

z

ui

x

The scattered field from a small object at point z is proportional to an
incident field emitted from the point z .



Reconstruction from one obstacle

• Collect us at receivers
around obstacle.

• Generate a grid Z which
contains the obstacle.

• For each point ζ ∈ Z test
if measured scattered field
is proportional to an
incident field coming from
point ζ.

• This is possible if and only
if ζ is the center of the
obstacle.

ζ

obstacle

usy (x)gζ = uiζ(x)



Intuition behind reconstruction algorithm

z1

ui

us

x

z2
ui

us
x

z1

z2
ui

us

x

us

Scattered fields from multiple small objects behave nearly linearly.



Reconstruction of multiple obstacles

• Collect us at receivers
around obstacle.

• Generate a grid Z which
contains the obstacle.

• For each point ζ ∈ Z try
to match measured
scattered field to an
incident field coming from
point ζ.

• The is possible if and only
if ζ is the center of the
obstacle.

ζ

obstacle

obstacle

∫
Γi

usy (x)g(y) ds(y) = uiζ(x)



Reconstruction of multiple obstacles

• Collect us at receivers
around obstacle.

• Generate a grid Z which
contains the obstacle.

• For each point ζ ∈ Z try
to match measured
scattered field to an
incident field coming from
point ζ.

• The is possible if and only
if ζ is the center of the
obstacle.

ζ

obstacle

obstacle

∫
Γi

usy (x)g(y) ds(y) = uiζ(x)

Exactly the same algorithm as for one obstacle.



Range test

At the discrete level, we want to find g so that

Ng = uiζ , (1)

where N is the matrix which approximates
∫

Γi
usy (x)g(y)ds(y).

Let N = UΣVH be a singular value decomposition of N.

Equation (1) holds if and only if

I (z) =
number incident fields∑
r=number obstacles+1

[U]ru
i
ζ ≈ 0.



Reconstruction algorithm

• Collect us at receivers
around obstacle

• Generate a grid Z which
contains the obstacle

• For each point ζ ∈ Z, plot(
number incident fields∑
number obstacles+1

[U]ru
i
ζ

)−1

• Large values on grid
indicate object

ζ

obstacle

obstacle



Simulated Reconstruction



Measurement geometry

Reconstruction methods are independent of receiver geometry.

• More receivers leads to more stable reconstructions

• Theoretically, transmitter locations need to surround obstacles -
experimentally we can use fewer

• Physical and financial constraints can be used to select measurement
geometry



Quasi-backscattering measurements

D

D

ui

us

us
• Measure scattered field

only near transmitter
location

• Easier data collection
when obstacles are large
(e.g., plane canopies and
TechSat 21)



Simulated results



Simulated results



Extensions

• Large objects
• Requires deeper mathematical theory, but idea is the same

• Limited aperture transmitter locations
• Time domain data
• Multi-frequency data
• Couple with nonlinear optimization routines

• Different physical models
• Similar methods have been shown to work for time dependent acoustic

data and time harmonic elastic data
• The necessary components (nearly linear scattering and knowledge of

how waves propagate in free space) are available in many physical
situations



Chapter Two
Uncertainty Propagation and
Bayesian Inverse Problems



The problem with noisy measurements

For each ζ ∈ Z, we solve∫
Γi

usy (x)g(y) ds(y) = uiζ(x)

• Uncertainty in measurements of us

• Uncertainty in shape of ui

• Uncertainty in location of transmitters and receivers

• Uncertainty in model (constant background parameters?)

How can we quantify this lack of knowledge in our reconstructions?



Monte Carlo approach

Seek the probability law of gζ and an estimate of its statistics.

Assume errors can be separated so that∫
Γi

usy (x)g(y) ds(y) = uiζ(x) + ε.

A simple Monte Carlo-type method (or, e.g., spectral expansion method)
can be used to find statistics of gζ .

Ignores modeling assumptions which validate reconstruction algorithm.



Bayesian Inverse Problems

∆usy (x) + k2(1−m(x))usy (x) = −k2(1−m(x))uiy (x)

∆uiy (x) + k2uiy (x) = 0

lim
|x |→∞

|x |1/2

(
∂us

∂ν
− ikus

)
= 0,

• Calculate probability law of m, given the data we collected

• Requires a priori information about how errors are distributed

• Bayesian approach helps to incorporate lack of information in a
principled fashion

πpost(m|usobs) ∝ πlike(usobs|m)πprior(m)
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Components needed for Bayesian inversion

• Function, f (m), mapping from m to usobs

• Numerical approximation to scattering PDE
• Assume

usobs = f (m) + η

where η ∼ N (0, Γnoise)
• Allows us to write

πlike(usobs|m) ∝ exp

(
−1

2
(f (m)− usobs)

TΓ−1
noise(f (m)− usobs)

)
.

• A priori distribution for m
• Assume normal distribution for simplicity,

m ∼ N (m0, C0)

• For technical reasons, C0 = A−2 must be related to the inverse of a
solution map for an elliptic PDE



Linearized case

Assume that errors are small. Then,

usobs ≈ f (m̂) + F (m − m̂) + η

is a good approximation where F is the Frechet derivative of f and

m̂ = min
(
‖f (m)− usobs‖2 + ‖A(m −m0)‖2

)
.

In this case,

πpost(m|usobs) ∼ N
(
m̂,
(
F ∗Γ−1

noiseF + C−1
0

)−1
)

Statistics on such a distribution and samples from it can be obtained easily
(but maybe slowly).



Sample reconstructions

Estimate of mean



Extensions

• Non-linear assumptions
• Harder (impossible?) to write closed-form solution
• Monte Carlo-type sampling can be used, but requires many PDE solves
• Lots of research on how to address these issues, but problems is not

solved

• Speed of solution
• PDE needs to be solved for each parameter (e.g., m on every point of a

finite element grid)
• Need fast solution techniques, particularly for non-linear problem

• A priori assumptions
• Infinite dimensional Bayesian inverse problems use prior distribution to

ensure that solution exists
• We would like to use physical reasoning or bootstrap based on

deterministic reconstructions



Answers to challenges

Can we design general techniques which are useful at all of these scales?

• Many problems have similar characteristics which lead to useful
reconstruction techniques

• Better understanding of physical situation can be incorporated into
model uncertainties

How expensive are these techniques?

• Cost of data collection can be reduced by better understanding model

• Fast reconstructions available when looking for limited data

Are we confident in our results?

• Different uncertainties can be included in reconstruction algorithms

• Speed of reconstructions is decreased, but we gain extra information

Thanks!
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