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1. Introduction

Understanding the flow properties of complex fluids
like suspensions (e.g., colloids, ceramic slurries, and
concrete) is of importance to industry and presents a
significant theoretical challenge. The computational
modeling of such systems is also a great challenge
because it is difficult to track boundaries between dif-
ferent fluid/fluid and fluid/solid phases. Recently, a
new computational method called dissipative particle
dynamics (DPD) [2] has been introduced which has
several advantages over traditional computational
dynamics methods while naturally accommodating
such boundary conditions. In structure, a DPD algo-
rithm looks much like molecular dynamics (MD),
where atomistic particles move according to Newton’s
laws. However, the DPD “particles” are a mesoscopic
description of the fluid, and do not represent individual
atoms or molecules, but loosely correspond to “lumps”
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of fluid or clusters of molecules. As a result, the inter-
actions between the DPD particles are not directly
based on a Lennard-Jones potential, but are typically
subject to three types of forces, namely, conservative
forces, dissipative forces, and a random force. All of the
forces conserve momentum and mass. The conserva-
tive force is simply a central force, derivable from some
potential. The dissipative force is proportional to the
difference in velocity between particles and acts to
slow down their relative motion. The dissipative force
can be shown to produce a viscous effect. The random
force (usually based on a Gaussian random noise) helps
maintain the temperature of the system while producing
a viscous effect. It can be shown that, in order to main-
tain a well defined temperature by way of consistency
with a fluctuation-dissipation theorem [3], coefficients
describing the strength of the dissipative and random
forces must be coupled. By mapping of the DPD equa-
tions of motion to the Fokker-Planck equation [4], it
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has been demonstrated that the DPD equations can
recover hydrodynamic behavior consistent with the
Navier-Stokes equations.

As in MD, the forces on each particle are computed
in each time step. The particles are then moved and the
forces recomputed. In DPD the interparticle interac-
tions are chosen to allow for much larger time steps so
that physical behavior, on time scales many orders of
magnitude greater than that possible with MD, may be
studied. The original DPD algorithm [2] used an Euler
algorithm for updating the positions of the free particles
(which represent “lumps” of fluids), and a leap frog
algorithm for updating the positions of solid inclusions
(rigid bodies). Our algorithm QDPD [5], for quar-
ternion-based dissipative particle dynamics, is a modi-
fication of DPD that uses the velocity-Verlet algorithm
of Groot and Warren [6] to update the positions of both
the free particles and the solid inclusions. The velocity-
Verlet algorithm for DPD [5] is chosen because it is less
sensitive to variation in time step size than the Euler
algorithm. The solid inclusion motion is determined
from the quaternion-based scheme of Omelayan [7]
(hence the Q in QDPD).

QDPD in its present form is being used to study the
steady-shear viscosity of a suspension of solid inclu-
sions (such as ellipsoids) in a Newtonian fluid. The
model consists of N particles moving in a continuum
domain of volume V. As in MD the system is complete-
ly defined by specifying all N positions r; and momen-
tap,(i=1, ..., N). To model a rigid body inclusion in a
fluid, a subset of the DPD particles are initially
assigned a location in space so that they approximate
the shape of the object [8]. The motion of these parti-
cles is then constrained so that their relative positions
never change. The total force and torque are determined
from the DPD particle interactions and the rigid body
moves according to the Euler equations. As mentioned
above, our simulations use a quaternion-based scheme
developed by Omelayan and modified by Martys and
Mountain [5] for a velocity-Verlet algorithm to inte-
grate the equations of motion. Finally, we use a Lees-
Edwards boundary condition [9] (pp 246-247) to pro-
duce a shearing effect akin to an applied strain at the
boundaries.

The basic idea is to compute all of the forces on each
particle (which accounts for the momenta change in the
collision phase) during each time step, and then move
the particles (propagation phase). The forces are short-
range and are a sum of contributions over pairs of par-
ticles. The interaction decays rapidly with separation,
which means that only particles closer than some cutoff’
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distance r, need be considered. Several methods are
available for identifying the nearest neighbors of a par-
ticle, i.e, those within the cutoff distance. QDPD uses
an implementation of the link-cell method of Quentrec
et al. [10] described in Allen and Tildesley’s book [9]
(pp. 149-152). Here, the simulation box is partitioned
into a number of cells. For example, see Fig. 1, which
depicts a 2D system. To find the particles within the
cutoff distance r, of the particle shown in the central
cell, it is sufficient to only consider particles within the
central cell and each of its eight nearest neighbor cells
(where 7, is < the cell widths in X'and Y, /, and /)). The
use of Newton’s third law makes it possible for us to
only have to consider half of the nearest neighboring
cells, which are cross-hatched (lines parallel to the
right-diagonal in the cell) in the figure. Generalizing
this to all particles in the system, a linked list of all the
particles contained in each cell is constructed every
timestep. Then, for each particle, the selection of all
particles within the cutoff is achieved by looping over
one half (considering Newton’s third law) of all nearest
neighbor cells, and considering only the particles with-
in these cells. We show this schematically in Fig. 2.
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Fig. 1. Schematic diagram of link-cell algorithm for a two dimen-
sional system (after Tildesley, Pinches, and Smith [11]).
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Fig. 2. Schematic 2-D representation of the link-cell algorithm.

The (forces calculation) search scheme involves an
outer loop over all 25 link-cells. In this outer loop, each
particle in a link-cell interacts with all particles within
its link-cell that are within 7, of the particle. Then there
is an inner loop over four of the eight nearest neighbor
link-cells, and each particle interacts with all of the par-
ticles within the chosen neighbor link-cells that are
within r, of the particle. For example, particles in cell
13 interact with other particles in 13 plus particles in
17, 18, 19, and 14 that are within the cutoff distance of
the chosen particle. Note that to account for the forces
on particles in edge cells, periodic boundaries are used
to have, for example, 25 interacting with the appropri-
ate nearest neighbor periodic cells 4', 5/, 1", and 21’
(more on this later). The program for figuring out near-
est neighbor cells is easy to set up. Introducing cell
indices /, and /, for the 2D grid in Fig. 2, each cell’s
index in the 2D grid can be computed from

ICELL(I_,1,) =1+MOD(I, =1 + M M , M)

+MOD(I, -1+ M M MM, (1)
where MOD is the function which returns the modulo
of its arguments and M, and M, are the number of cells
inXand Y (/.= {1, M}, 1= {1, M}).

For each cell, one-half of the nearest neighbor cells
are given by

ICELL(I, +1,1,) + ICELL(I, +1,1, +1)

+ICELL({ 1, +1)+ICELL(I, —1,1 +1), 2)
which correctly gives the cell neighbors of 13 to be 17,
18, 19, and 14. Now we can explain the treatment of
Newton’s third law. A particle in cell 13 interacts with
the particles in 8 neighboring cells, but the algorithm
only checks particles in 17, 18, 19, and 14. Interactions
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of particles in 13 with particles in 12, for example, are
treated when particles in cell 12 are the focus of atten-
tion, and similarly for 7, 8, and 9. Note that this formu-
la also gives the nearest neighbors of particles in cell 25
to be those in 4, 5, 1, and 21 (not the periodic cells 4/,
5, 1", and 21"). This will be explained later. Because
of their regular arrangement, the list of neighboring
cells is fixed and may be precomputed once and for all
at the beginning of the program (in subroutine MAPS).

2. Sequential Link-Cell Algorithm

Incorporating a link-cell search into the velocity-
Verlet algorithm gives, in outline,

Read in initial data.

Read in configurational data
inclusions) .

(solid

Set up the map to find neighboring
cells (subroutine MAPS) .

Perform the QDPD cycle for each time
step.

Given the forces f;; acting on particles at time ¢, the fun-
damental QDPD cycle, repeated for as many timesteps
as are in a simulation, is

Compute the new particle positions
from

v, =n, +v,At+ fLAF 2. 3)
Compute the midpoint velocity (veloc-

ity at the midpoint of the time step)
from

B, =v, + f,A]2. (4)

Create the linked 1list
TOPMAP and LINKS).

(subroutines

Calculate new forces f,.

Compute new velocities from the new
forces

v, =¥ + fyAL/2. (5)
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And then the cycle begins again.

In the basic QDPD (MD) cycle above, the r,s may
belong to particles which have moved out of the simu-
lation box, such as particles in the periodic image of
cell 21 represented by the dashed box 21"in Fig. 2. This
can be handled by introducing another set of coordi-
nates, ry, given by

r3x(i) = r2x(i) = ANINT (r2x(i)/ L)L,
r3y(i) =r2y(i)— ANINT (r2y(i)/ L,)L,

r32(i) = r2z(i) — ANINT (r22(i)/ L) L., (©6)

where L,, L,, and L, are the simulation dimensions and
ANINT is the function which returns the nearest whole
integer to its argument. The r; coordinates are used in
creating linked lists of particles in cells prior to the
force calculations. Consequently, particles which have
moved into 21" will end up assigned to 21 which is
where the formula for nearest neighbors expects to find
them. Hence the r; coordinates make sure that particles
are assigned to one of the cells in the QDPD simulation
box (i.e., particles are kept within the QDPD simulation
box running from (-L,/2,-L,/2,-L./2) to (L,/2,L,/2,
L./2) in ry space). They also are consistent with the
proper mapping of nearest neighbor cells given by the
ICELL(I,, I,) formula. One other point has to do with
calculating forces on particles > r, away (since the par-
ticles may have moved out of the simulation box). In
calculating forces, r, coordinates are used, and these r,
coordinates may be > r, away, a violation of the mini-
mum image condition. To correct for this, the differ-
ence between particles in the forces calculation is

Ar, (i) = r2x(i) —r2x(j) -
ANINT[(r2x(i) = r2x(j)])/ L)L,

Ary (i) = r2y(i) =r2y(j) -
ANINT[(r2y())—r2y()]/ L)L,

Ar, (i) = r2z2(0) —r2z(j) -
ANINT[(r2z(i)—r2z(j)]/ L.)L. @)

Consider Fig. 2 again. With the ANINT corrections
above, particles in the cells 4, 5, 1, and 21 are within 7,
away from particles in cell 25. This is the way our
sequential version of the program was written. Our par-
allel version of the program does this differently. In
treating edge cells, a “ghost” layer of cells is added to
the QDPD simulation box. The dashed cells in Fig. 2,
the nearest neighbor periodic cells, are part of the
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“ghost” layer of cells. The formation of these “ghost”
cells will be discussed in the next section.

In the sequential version of the program, MAPS con-
siders all cells in all layers except for the top layer (the
topmost layer in Y in a 3D simulation), and computes
only half of these cells, taking into account Newton’s
third law. Because QDPD in its present form is being
used to study the steady-shear viscosity of a suspension
of solid inclusions in a Newtonian fluid, there is a shear
boundary condition at the topmost layer of the QDPD
simulation box, implemented with the Lees-Edwards
boundary conditions [9] (pp. 246-247). These boundary
conditions simulate a uniform shear in the XY plane
(i.e, a constant velocity gradient is set up in the Y direc-
tion and the actual shear occurs in the X direction).
Figure 3 shows a time series of the motion of a single
ellipsoidal inclusion subject to shear. Proceeding from
left to right, the different colors (or greyscale levels)
[12] correspond to the time sequence. The single ellip-
soid rotation is a well known phenomenon seen in
experiments called Jeffery’s orbits. The shearing
boundary conditions were obtained by applying a con-
stant strain rate to the right at the top of the figure and
to the left at the bottom of the figure. Figure 4 [9] (p.
246) demonstrates this situation in the context of the
computer simulation. The central box in the figure is
the QDPD simulation box (the entire box in Fig. 5, not
just the one on the central processor 4). Boxes in the
layer above are moving at a certain speed in the posi-
tive direction, and boxes in the layer below are moving
at the same speed in the negative direction. To imple-
ment this shear boundary condition at the topmost layer
(because of Newton’s third law, we only have to treat
the top), the top layer is tackled separately in subrou-
tine TOPMAP in our sequential version of the program.
Its purpose is to create the list of neighboring cells for
the topmost layer of cells, taking into account the

B T

Fig. 3. Tumbling of a single ellipsoidal inclusion under shear.
Details of the algorithm for a rigid body are given in [5].
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Fig. 4. Lees-Edwards boundary conditions for homogeneous shear
(adopted from Allen and Tildesley, Computer Simulation of Liquids,
Oxford, 1987, Fig. 8.2).

Fig. 5. A 9 processor 2-D domain. The small rectangles are cells
associated with the link-cell algorithm. The dashed lines correspond
to the ghost cells.

movement of the cells with respect to each other due to
shear. TOPMAP is called every timestep in the simula-
tion just before the force calculation, but only on the
topmost processors. The periodic minimum image con-
vention must also be modified to account for this shear.
The r;s are modified to be

cory = ANINT (r2y(i)/ L, )
r3x(i) = r2x(i) — cory * strain
r3x(i) = r3x(i) — ANINT (r2x(i)/ L, )L,
r3y(i) = r2y(i) = ANINT (r2y(i)/ L, )L,

r3z(i) = r22(i) = ANINT (r22())/ L.)L.,  (8)
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where the upper layer (BCD in Fig. 4) is displaced rel-
ative to the central box by an amount strain. Similar
corrections are made in forces.

3. Spatial Decomposition Theory
QDPD was originally written in Fortran 77 as a seri-
al program. A lot of the formalism of the sequential
link-cell algorithm relies heavily on the Allen and
Tildesley book [9] and computer routines (such as
MAPS and TOPMAP) discussed in the book and avail-
able on the Web [13]. We have retained the names of
the Allen and Tildesley routines in our program and in
the discussion. Routines discussed later in the text, such
as EXTVOL, LEBC, and MOVPAR, are parallel rou-
tines and have no counterpart in Allen and Tildesley. To
improve computational performance, a parallelization
was done relatively quickly using a simplified version
of the replicated data approach and the standard mes-
sage passing interface library (MPI [1]), as described in
Sims et. al. [14]. We reported speedups of as much as
17.5 times on 24 processors of a 32 processor shared
memory SGI Origin 2000'. When doing a calculation
on multiple processors, the total run time can be repre-
sented as the sum of computation (cpu) time and com-
munication time, viz.,

t=t.,, tt

9)

In the replicated data approach, as P (number of
processors) increases, Z,, goes down, but we still have
to communicate the same amount of information (pro-
portional to N (number of particles), so it doesn’t
scale). Also distributed memory machines often do not
possess enough memory on a processing node to hold
all of the data for a large job. When the goal is to sim-
ulate an extremely large system on a distributed-mem-
ory computer to allow for the larger total memory of the
distributed-memory computer and also to take advan-
tage of a larger number of processors, a different
approach is needed. Since the link-cell algorithm we
used in the sequential and replicated data approaches
breaks the simulation space into domains, it seems nat-
ural to map this geometrical, or domain, decomposition
onto separate processors. Doing so is the essence of the

! Certain commercial equipment, instruments, or materials are iden-
tified in this paper to foster understanding. Such identification does
not imply endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identi-
fied are necessarily the best available for the purpose.
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parallel link-cell technique [11,15]% By subdividing the
physical volume among processors, most of the compu-
tation becomes local and the communication is mini-
mized so there is, in principle, an N/ P scaling (N =
number of particles, P = number of processors), an effi-
cient approach for distributed-memory computers and
networks of workstations.

The basic idea is this:

Split the total volume into P domains, where P is the
number of processors. If we choose a 1D decomposi-
tion (“slices of bread”), then the pth processor is
responsible for particles whose x-coordinates lie in the
range

(»-1L,/P<x<pL./P. (10)
Similar equations apply for 2D and 3D decompositions
for simulation dimensions L, and L. Whether the
decomposition is 1D, 2D, or 3D depends on the num-
ber of processors. An algorithm due to Plimpton [17] is
used to assign P processors to a 3D box so as to mini-
mize the surface area (and hence, yield a good load bal-
ancing). For P processors and a given simulation box of
dimensions L,, L,, and L,, the algorithm is the follow-
ing. Loop through all factorizations of P into P,, P,, and
P_ processors, computing the area of the resulting box,
and pick the one with the minimum surface area. Of
multiple equal surface areas (for example, P,, P, P, =
(4,2,2), (2,4,2), (2,2,4)), pick the one with P. <P <P,

Each processor runs a link-cell program correspon-
ding to a particular domain of the simulation box. For
example, in Fig. 5 nine processors were used to divide
the 2D simulation space into domains, each processor
being assigned to one of the nine domains (here we
assign each processor an index, where the indices start
at 0). We also show the central processor’s domain
being subdivided into cells. To complete the force cal-
culation on particles in cells at the interface between
processors, each processor needs to know information
about the particles in the adjacent cells, which now will
be found on a neighboring processor. To handle this
problem we construct an extra layer of cells on each
processor at the interface between processors. At each
timestep we communicate information across the inter-
face between adjacent processors describing the parti-
cles in these edge cells (subroutine EXTVOL). The
information that has to be passed by EXTVOL is the
information needed for the forces calculations, which

% See Plimpton [16] for excellent discussions of all fast parallel algo-
rithms.
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is, Iy, Iy, V,, and the unique particle number discussed
below. For example, in Fig. 5 we show processors 3, 4,
and 5 and we also show, with dashed lines, the cells in
processors 3 and 5 which are adjacent to 4. Information
about the particles in these dashed line cells is commu-
nicated to 4, making up “ghost” cells on 4. To complete
the “extended volume” needed on processor 4 to com-
pute the forces on all the particles it “owns”, informa-
tion is communicated (swapped) across the interface
between adjacent processors in the Y direction as well.
To account for the cross-hatched corner cells, the swap
in Y includes information about not only particles that
the processor owns but also information about “other”
particles in “ghost” cells. So processor 7 sends infor-
mation about particles in the dashed line cells as well as
the cross-hatched cells (obtained from processors 6 and
8) to processor 4. At this point processor 4 has all the
information it needs to calculate forces on all the parti-
cles it owns (processor 4 now has information about all
the particles shown in the extended volume comprised
of the domain of processor 4 plus the surrounding
dashed line ghost cells), and similarly all of the other
processors have all the information they need. These
exchanges of data can be achieved by one set of com-
munications between the processors. A processor only
has to communicate once with all of its neighbors, so
each processor communicates with at most four other
processors (six in 3D), rather than, say 64 in a 64
processor replicated data calculation. Now on each
processor, form a link-cell list of all particles in the
original volume plus the extended volume. Loop over
the particles in the original volume, calculating the
forces on them and their pair particle (for conservation
of momentum). Care must be taken to add these pair
particle forces on particles in the extended volume to
the forces on the pair particles in the processor “own-
ing” them, which necessitates an extra set of communi-
cations between processors (the reverse of the commu-
nication swaps setting up the “ghost” cells). This extra
communication step is necessary in the QDPD method
since the interparticle force calculation involves the use
of a random number for thermal effects and momentum
conservation requires that the same random number be
used in the equal and opposite force calculation.
Finally calculate the new positions of all particles and
move the particles which have left a processor to their
new home processor. If particles move into domains
controlled by other processors, information about the
particle (the particle’s properties) must be moved to its
new “home” processor. Again these exchanges of data
can be achieved by one set of communications between
the processors, and are implemented in subroutine
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MOVPAR. In this set of communications, al/ informa-
tion about a particle needed for one time step must be
communicated, not just the information needed for the
forces calculation (the information communicated in
EXTVOL as explained above).

Our spatial decomposition program has the follow-
ing added features. First, following Plimpton [17], we
distinguish between “owned” particles and “other” par-
ticles, those particles that are on neighboring proces-
sors and are part of the extended volume on any given
processor. For “other” particles, only the information
needed to calculate forces is communicated to neigh-
boring processors. Second, the QDPD technique is
being applied to suspensions, so there are two types of
particles, “free” particles and particles belonging to
ellipsoids (the solid inclusions). A novel feature of this
work is that we explicitly do not keep all particles
belonging to the same ellipsoid on the same processor.
Since the largest ellipsoid that might be built can con-
sist of as much as 50 % of all particles, that would be
difficult if not impossible to handle without serious
load-balancing implications. What we do is assign each
particle a unique particle number when it is read in.
Each processor has the list of ellipsoid definitions con-
sisting of lists of particles defined by these unique par-
ticle numbers. Each processor computes solid inclusion
properties for each particle it “owns”, and these proper-
ties are globally summed (using MPI REDUCE [1,18]
over all processors so that all processors have the same
solid inclusion properties. Since there are only a small
number of ellipsoids (relative to the number of parti-
cles), the amount of communication necessary for the
global sums is small and the amount of extra memory
is also relatively small. Hence it is an efficient tech-
nique.

4. Spatial Decomposition Program
Details

After various preliminaries, the program reads infor-
mation about the simulation space and then calls
DOMAIN to figure out the spatial (domain) decompo-
sition. To determine which processors control adjacent
domains we identify each processor uniquely by con-
sidering each processor in the network as a cell in a
link-cell structure. We then use the link-cell algorithm
to determine the addresses of a processor’s neighbors.
Particles are then mapped onto processors on the basis
of their x, y, and z coordinates. For 3D, we denote the
number of processors allocated in the X, ¥, and Z
dimensions by P,, P,, and P,, respectively, so
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P=PP,P. (11)

For a particle at position r, = (x;, y;, z;) in a simulation
box with sides of length ,, L,, and L,, with 0 <x,;<L,,
0<y, <L, 0=<z<L. the processor coordinates are
given by

I, =INT(x,P,/L,)
I, =INT(y,P,/L)

I, =INT(zP./L), (12)
where INT is the function returning the integer part of
the argument in brackets. The mapping from processor
coordinates (/,, 1,, I.) to processor index is given by

xp Lyp

I=1,+1, P+ 1,P,P. (13)
Coordinates of the center of each processor’s simula-
tion box can be calculated from

rorigin(1) =L (({, +0.5)/ P, —0.5)
rorigin(2) =L, (({, +0.5)/ P, =0.5)

rorigin(3)=L_((1, +0.5)/ £, -0.5). (14)
Particles are allocated to processors on the basis of /; at
the start (subroutines INITPR (for particles) and INIT-
SNEW (for ellipsoids)) and whenever particles are
moved. While figuring out the domain decomposition,
a processor’s north (+y direction), south (—y direction),
east (+x direction), west (—x direction), up (+z direc-
tion), and down (—z direction) neighboring processors
are tabulated.

The simulation box size for each processor is given
by

rprosil)=L_ /P,
rprosl(2)=L, /P,
rprosl(3)=L_/P. (15)

In the domain decomposition molecular dynamics
cycle (subroutine CYCLE), we now have, on each
processor,
Compute the
from

new particle positions

r, =1, v At+ fLAF 2.

2i

(16)
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Compute the midpoint velocity (veloc-
ity at the midpoint of the time step)
from

v, =y, + f,At/2. (17)
Calculate r3s to make sure particles
remain in the QDPD box.

Move particles (MOVPAR) to their new
home processor based on r3s.

Construct an extended volume consist-
ing of owned cells plus ghost cells
(EXTVOL) based on r3s.

EXTVOL calls a subroutine (LEBC)
apply Lees-Edwards shear boundary
conditions.

to

Construct the link-cell list (LINKS)
based on r3 coordinates.

Calculate new forces (FORCES),
including a call to THIRDLAW, which

transfers pair forces back to their
home processor and adds them to
forces there.

Compute new velocities from the new
forces
vy, =V, + [, At/2. (18)
The way the Newton’s third law forces are handled
in spatial (domain) decomposition is the following. A
table is kept of edge particles that are sent in all direc-
tions. Then after forces are calculated, THIRDLAW
loops over just the “other” particles looking for force
contributions that have to be sent back to the processor
that “owns” the particle and added to the forces there.
THIRDLAW then communicates these Newton’s third
law force additions back to the “home” processors of
the “other” particles and adds them to the forces there.
Some of these steps require additional explanation.
In MOVPAR r;; coordinates are transformed, by sub-
tracting the coordinates of the center of each proces-
sor’s simulation box, so that they are in the range

—rprosi(k)/2 < r3(k, i) — rorigin(k) < rprosi(k)/2, (19)
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where rprosi(k) is the size of that processor’s domain in
the & direction. Particles which don’t meet this criterion
have moved out of the processor and are sent to their
new home processor. A subtle point is that this is rela-
tively slow motion so we know that the move is to the
nearest neighbor in the k& dimension, the one in the neg-
ative or positive direction, depending on whether
r3(k, i) — rorigin(k) <—rprosl(k) or r3(k, i) — rorigin(k)
2 rprosl(k). This is true for k=2 or 3, but because of
the shear boundary condition at the topmost layer, par-
ticles may have moved more than one processor away
in X in a single time step. We handle this by finding the
maximum number of swaps in X on each processor,
then do a global MAX of the values of each processor
to determine how many swaps to do.

Next comes the formation of extended volumes
using “ghost” cells in EXTVOL. To accomodate the
“ghost” cells, the number of cells in each direction is
increased by 2. So, for example, for a division of the
central processor into 100 cells as in Fig. 5, the X' and Y
cell dimensions are 10. M, and M,, the cell X and Y cell
dimensions for this processor are 12 (10 + 2) to acco-
modate the left and right ghost cells. We use the follow-
ing to define a cell index for particle i (/CELL))

ICELL,= I+ (I, - DM, + (I, - M. M, (20)
where 7., 1,, and I, are now given by
I =1+INT((r(1,i)S, +0.5) M)
I, =1+ INT((r(2,))S, +0.5) M)
I =1+INT((r(3,)S. +0.5)M). 21

S, S, and S, are scale factors whose purpose is to trans-
form coordinates so that a processor’s “own” particles

in a domain will have values in the range

2<1 <M, -1
<I, <M, -1
2<1 <M. -1. (22)

In Fig. 6 we show the central processor from Fig. 5
again, with its “own” and “ghost” cells renumbered
according to the above. Using these scale factors, it is
straightforward to identify which particles need to be
passed in all 4 (or 6) directions. For example, particles
whose /, value is 2 are left edge particles and need to
be passed to the processor to the left; particles whose /,
value is 11 (M, — 1) are right edge particles and need to
be passed to the processor on the right. It is important
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Domain bopndaries

Fig. 6. Enlargement of the central region of Figure 5. Link-cell peri-
odic boundaries become processor domain boundaries. Dashed lines
correspond to ghost cells.

to note that particles in “ghost” cells are included in
subsequent swaps, so for example particles whose I,
value is 2 are passed down, and that includes partlcles
in the “ghost” cells with /, =1 and 12, and particles
whose I, value is 1 are passed up. This is the way the
partlcles in corner cells are made available to adjacent
processors. As processor 4 communicates information
about particles in its edge cells with /. = 11 to processor
5, processor 5 in turn communicates information about
particles in its left edge cells to processor 4, which
become the right edge ghost cells on processor 4. So
after swapping with processors to its left, right, north,
and south, the complete “extended volume” exists on
processor 4, and this can be followed by the link-cell
list construction (/. = {1,12},/,= {1,12}) and computa-
tion of forces (for particles owned by this processor,
which are those in cells with 7, = {2,11}, [, = {2,11}).

Now consider Fig. 5 again, and imagine calculating
the forces using a single processor and the link-cell
algorithm, and subdividing the simulation box into 30
cells in X and Y. The force calculation on particles in
cells with 7, I, = {11,20} in Fig. 5 would be calculated
exactly the same way as the particles owned by proces-
sor 4 in Fig. 6, for which 7, /,= {2,11}. This is the
essence of the parallel link-cell method.

Similar conditions apply for the other processors,
except for processors containing cells on the edge of
the simulation box, such as processor 8 in Fig. 7. Cells
interior to the processor, for which /,, 1, are {2,10} are
just like the cells on processor 4. At issue are the cells
for which 7, = 11 and those for which /,=11, i.e, edge
cells on the processor which are also edge cells for the
whole simulation box (Fig. 5). But the right edge ghost
cells (1, = 12) for processor 8 are /., = 1 cells for proces-
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Fig. 7. A 2-D example of the parallel link-cell algorithm showing a
processor containing cells on the edge of the simulation box.

sor 6 and would be sent to processor 8 during the swap
between these two processors (8 is the processor to the
west (—x direction) of 6 and 6 is the processor to the east
(+y direction) of 8). Similarly, processors 2 and 8§ pair
up to create the /,= 12 ghost cells on 8. The net result
of this is that the force calculation on particles in the
domain of processor 8 will be calculated exactly the
same way as the force on particles in the cells with 7, =
121,30}, 7,= {21,30} in a sequential simulation of the
whole box with 30 cells in X and Y. Similar conditions
pertain to other processors containing cells on the edge
of the simulation box.

One point that was skipped in the above discussion is
the treatment of the shear boundary conditions. In Fig.
8 we show the Fig. 5 simulation box again, and three
boxes above the simulation box, moving to the right, as
well as three boxes below the simulation box, moving
to the left. 0’, 17, and 2" are images of 0, 1, and 2 which
have moved to the right because of the shear. 6, 7, and
8" have moved left. In Fig. 9 we redraw Fig. 8, showing
the sheared upper boundary and the extended volume
we have to build prior to computing forces. Cells that
must be considered for edge cells (2,31) and (31,31) are
shown with arrows. Note that because of Newton’s
third law, the extended volume we need includes left,
right, and up layers, but not down (/, = 1). Also care
must be taken to include the shear shown in the figure.
Subroutine EXTVOL handles this by forming the Y
“ghost” layer before X (for 3D, the order is Z, Y, X). The
I,= 32 layer is formed by processors 0, 1, and 2 send-
ing their /, = 2 cells to processors 6, 7, and 8 respective-
ly, and adding the simulator box distance in Y. In addi-
tion, movement to the right coming from the shear is
computed from
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Fig. 8. A nine processor 2-D domain decomposition and neighbor-
ing layers resulting from application of an applied strain consistent
with the Lees-Edwards boundary condition.
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; 6 7 8 5
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i 0 1 2 :

Fig. 9. A more detailed nine processor 2-D domain decomposition
including shear.

r3(1, k) = r3(1, k) + strainl0 —
ANINT (tempx / rmax(1))rmax(1) (23)
where rmax(1) is the simulation box dimension in X
and

tempx = r3(1, k) + strainl 0
strainl0 = rmax (1) * strain. (24)
Now subroutine LEBC is called to relocate particle
properties to the processor that needs the information.
This is done using the same technique as in MOVPAR,
but care must be taken to keep track of the relocations
so they can be reversed in the THIRDLAW transfer of
forces back to their home processor. With these maneu-
vers, the Lees-edwards boundary condition is accom-
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plished in our parallel program. Basically the program
implements particles leaving at the bottom of the simu-
lation box and entering at the top “ghost” layer (the
mirror image) but with its X coordinate shifted to
account for the strain.

5. Results and Discussion

Figure 10 shows the performance of our codes on
two distributed memory architectures. In the figure we
plot normalized processing time, which is the ratio of
the time to complete a benchmark run on multiple
processors divided by the time to compute a benchmark
run on a single processor.

e®— ® REPLICATED DATA: LINUX CLUSTER

L SPATIAL DECOMPOBITION: 8P2

NORMALIZED PROCESZING TIME

¢ SPATIAL DECOMPOSITION: LINUX CLUSTER

& T T T
1 2 4 i

NUMBER OF PROCESS0RS

Fig. 10. Logarithm (base e) of normalized CPU time (seconds) ver-
sus number of processors. The performance of the replicated data
version degrades much more quickly than the spatial decomposition
version of the same code.

For the replicated data version of our code, the best
we could do was a factor of 4.3 improvement on 16
processors on a Linux cluster with Myrinet. In compar-
ison, the spatial decomposition version of the code,
running on the same Linux cluster showed a greatly
enhanced performance (a factor of 10.5 on 16 proces-
sors). The best results, for the spatial decomposition
version, show a speed up of a factor of 24 on 27
200MHz Power3 processors on an IBM SP2, a distrib-
uted memory cluster, but with a high-speed intercon-
nect which allows it to approach the scalability of a
shared memory machine in many cases.

Our spatial decomposition code has proven effective
in a shared memory environment [14] as well, where
the speedups are a factor of 29 on 32 processors of an
SGI Origin 3000 system and a factor of 50 on 64
processors of the same system. In contrast, for the repli-
cated data parallelization, speedups are a factor of 17.5
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on 24 processors of an SGI Origin 3000 [14]. Clearly,
communication costs quickly become prohibitive for
replicated data parallelizations on distributed memory
architectures. Scaling to a very large number of proces-
sors is poor even in the shared memory environment,
and it makes the replicated data approach almost unus-
able on distributed memory machines including those
with high-speed interconnects like the IBM SP2 cluster.

6. Summary

In adopting a spatial decomposition approach, we
found a significant improvment in performance of our
codes despite the additional complications of commu-
nicating the random forces®, implementation of the
Lees-Edwards boundary condition, and accounting for
objects that can extend over many processor domains.
Clearly, the main bottleneck of such an approach is the
message passing between processors. As such tech-
nologies improve, we expect corresponding improve-
ments in the computional performance of our algo-
rithms.

Speedups like this on parallel architecture computers
also allow us to systematically explore regions of
parameter space (e.g., different solid fractions, broader
particle size and shape distributions and other boundary
conditions) that would be prohibitive on single proces-
sor computers. We also note for the record that this
technique has proven effective in a shared memory
environment [14] where the speedups were a factor of
29 on 32 processors of an SGI Origin 3000 system and
a factor of 50 on 64 processors.
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