
Autonomous Mapping in the
Real Robots Rescue League

Stefano Carpin, Holger Kenn, Andreas Birk

School of Engineering and Science
International University of Bremen

Germany
{s.carpin,h.kenn,a.birk}@iu-bremen.de

Abstract. We describe the mapping system implemented by the IUB
team in the Robocup Real Robot Rescue league. Although very simple,
this represents the first and up to now unique system which produces a
human readable map that can be directly given to the rescue team to
quickly locate victims. We describe the sensors suite we used, how data
are fused together, and the algorithm we implemented. Examples coming
both from lab experience and real competition are provided.

1 Introduction

The ultimate goal of the Robocup Rescue league is to develop autonomous sys-
tems that can be used in the time immediately following a natural disaster, like
earthquakes or similar calamities ([1],[2],[3]). While the simulation league aims to
develop high level coordination algorithms to optimize the interaction between
different entities involved in the rescue scenario, the real robots league attacks
the problem from the other side. The goal is to develop easy to deploy and to
operate systems that can be used to assist human rescuers teams. In particular,
such systems are supposed to be used right after the emergency starts, where
human operators must be extremely cautious but also extremely fast. On the
one hand, right after an earthquake, for example, buildings can be unstable, so
they should be entered only when they have been assessed to be stable. On the
other hand, victims should be located as soon as possible, but without exposing
the rescue teams to unnecessary dangers. Robots, either autonomous or teleop-
erated, can then be used to quickly determine whether there are victims in the
buildings or not, but keeping high safety standards. If a victim is located into a
partially collapsed building, providing the rescue team a map with its location
would result in a cut in the rescue operation time. This lowers the risk for the op-
erators and enhances the likelihood that the victim will be extracted promptly.
It is then evident that the ability of producing such maps is one of the funda-
mental abilities that rescue robots must exhibit. The challenging aspect emerges
from the nature of the environment to be mapped, which is reasonably assumed
to be deeply unstructured. The problem of features identification turns out to
be much more difficult in such scenario, thus preventing a straightforward use of



standard techniques. An additional point which deserves attention is the single
shot nature of the problem, and the time constraints. By single shot we mean
that during the exploration, either autonomous or teleoperated, it is unlikely
that the robot will visit many times the same place. Instead, it can be expected
that it will run down hallways and it will enter rooms just once or very few
times. This is related to the need to complete the exploration and mapping cy-
cle quickly, in order to maximize the chances to locate possibly wounded victims.
The paper is organized as follows: section 2 describes the sensors we used for
building the map, while section 3 describes the mapping algorithm. Conclusions
are offered in section 4. For an overall description of the robots we developed,
the interested reader is referred to [4].

2 Sensors used for mapping

During the 2003 competition we used two different platforms, in order to be able
to negotiate all the three arenas (see figure 1).

(a) (b)

Fig. 1. On the left the six wheels platform, designed to enter the yellow and orange
arenas. On the right the tracked platform, designed to enter all the arenas.

The platforms however share the sensors we used for mapping purposes.
Such sensors significantly drove our mapping strategy. While of course better
choices could have been taken, it is worth stressing once again that the system
engineering approach puts additional constraints. The main sensor we used for
mapping is the Hokuyo PB911 ([5]). The sensors is a proximity range finder,
based on the well established time of flight principle. The sensor covers and
area 162 degrees wide with 91 samples. It returns distances in meters that can
be considered reliable if below 3 meters. While compared with other commercial
similar devices it could seem that the sensor performs poorly, this is not the case.
In fact, rescue robots are supposed to operate in indoor cluttered environments
likely to be occluded by debris and similar. Thus, the need for a long range



scanner is not so high. Additional advantages are its small size, weight and
power consumption (see figure 2.a).

(a) (b)

Fig. 2. On the left, the Hokuyo PB9-11 sensor. On the right a snapshot of the data
provided by the PB911 sensor. It is possible to see that the robot is facing a corner in
the walls (on its left, two meters ahead), as well as spurious readings (on the right)

The sensor provides its output via a standard RS232 serial interface and we
controlled it using the FAST-Robots software architecture recently developed
at IUB ([6]). Figure 2.b illustrates how the data provided by the sensor are
presented to the operator which is driving the robot.
In addition to the range scanner, the robots are equipped with traditional dead
reckoning sensors, plus a magnetic compass for absolute orientation (see [4]). We
also point out that for the mapping task we did not use at all the sonar sensors
available on our platforms.

3 Mapping the arena

As a first step towards the implementation of a robot able to build environment
maps, we implemented a very simple occupancy grid based approach. Among
the many mapping approaches available ([7],[8],[9],[10] or see [11] for an excel-
lent overview) we chose occupancy grids for the following reasons. First, the
environments we wish to map are significantly unstructured. This means that
features extraction could be a challenging problem. Not only this is true from



an hypothetical long term goal point of view (after an earthquake walls collapse,
furniture falls, etc), but also from the point of view of the actual competition.
Indeed, just the yellow arena exhibits a reasonable structure with corridors, cor-
ners and so on. On the contrary, in the orange and red arenas it is very difficult
to encounter such features. Second, occupancy grids are easy to implement and
can produce easy to use information without the need of an iterative procedure.
The mapping procedure uses the input coming from the odometry system and
from the range finder sensor. It is worth recalling that the odometry system does
not just integrate the motors output, but also takes into consideration the input
coming from the magnetic compass. This gives us the possibility to bound the
orientation error which would arise from pure integration. Preliminary lab runs
outlined that odometry works pretty well as long as the robot moves along a
straight line, but goes significantly bad while turning. This is no surprise, as
in order to turn in place our platforms rely in the skidding of the wheels or
tracks. Thus, when the robot turns, odometry data coming from the encoders
are corrected with the orientation coming from the compass. This matter of lo-
calization is an important aspect, as occupancy grids based approaches rely on
the assumption of precise pose estimation. We are aware this simple schema for
bounding such errors is doomed to accumulate large errors in a long run. On
the other hand, it turned out to work acceptably during the competition. Single
runs are a few minutes long and the robots do not travel for long distances.
The occupancy grid accounts for three different kinds of information, namely
obstacle detected, free area detected, and no information available. This in-
formation is expressed in terms of beliefs. The robot starts with a completely
empty grid. At every time step, the input from the range scanner is acquired.
By combining this with the actual pose (x,y and orientation θ) coming from
the odometry measurement subsystem, it is possible to update the beliefs of the
covered grid cells. Technically, every grid cell holds an integer value, initially set
to 0. This means that no information is available for that grid cell. When an
obstacle is detected in the grid cell, the value is incremented. When the grid
cell is determined to be free, such value is decremented. Both increments and
decrements are bounded. This means that such beliefs cannot arbitrarily grow or
decrease when the robot is standing at a fixed position (similar to what happens
with [12]). This to take into account the possibility that some parts of the world
can change, and to give a chance for updates. For example, if a door opens, after
a certain number of updates such obstacle disappears from the map (see figure
3).

The promptness of such update is influenced by the increase/decrease values
and by the bounds. During the competition we set the bounds to be 250 and
the increments/decrements were set to 10. This means that after 50 readings a
belief can be completely reversed. As data are coming from the range sensor at
about 3Hz, this means that the complete update can take place in less than 20
seconds. While this could seem a big amount of time, it is worth noting that
during the competition most of the robots move very slowly. A more prompt
update could take place by changing the outlined values, but this comes at the



(a) (b)

Fig. 3. Figure a shows the map built by the robot while mapping a corner of the
laboratory. Figure b illustrates the map produced after the door facing the robot has
been closed and a few cycles elapsed. Each square has an edge of one meter.

cost of decreased map precision.
Algorithm 1 provides the algorithmic sketch of the procedure. In order to find
out if a cell is free or not (lines 5 and 11), we remind that once the position
and orientation are known this is a matter of simple geometric computation (see
figure 4).

Fig. 4. Once the position and the orientation of the robot are known it is easy to
determine which grid cells can be considered occupied or free. If the distance returned
by the sensor is considered unreliable (i.e. greater than three meters), it is completely
discarded (upper ray). If it is reliable, (lower ray), it can be used to mark free and
occupied cells.

Figure 5 illustrates the mapping of the main hall of our research building. It can
be appreciated how the robot mapped the shape of the room, as well as the four
boxes placed around.

During the Robocup competition the grid resolution was set such that each
square was 25 cm wide, while the overall map was set to be 10 by 10 meters and



Algorithm 1 Mapping procedure
1: Initialization: fill the grid map with 0s
2: loop
3: Get data from scanner: vector v of MAX READINGS distances
4: Get x,y and θ from odometry
5: for n← 1 to MAX READINGS do
6: if v[n] < RELIABLE DISTANCE then
7: Let G[i][j] be the corresponding occupied grid cell (computed from x,y,θ

and v[n])
8: if G[i][j] < MAX then
9: Increase G[i][j]

10: end if
11: for all intermediate free cells G[i][j] do
12: if G[i][j] > MIN then
13: Decrease G[i][j]
14: end if
15: end for
16: else
17: Discard v[n]
18: end if
19: end for
20: end loop

(a) (b)

Fig. 5. On the left, an example of map. Green points indicate detected free grid cells,
while red points indicate detected obstacle cells. Black points indicate that no infor-
mation is available. The intensity of colors is proportional to strength of the belief. On
the right you can see a photo of the hall being mapped.



the robot was assumed to be placed initially in the middle point of such square.
This because the robot was supposed to enter different arenas from different
sides. The software we developed builds the map on the onboard robot PC and
offloads it to the control station where the operator is teleoperating it. There
the operator has a complete control of all the robot’s sensors, i.e. range finders,
cameras and so on. The operator can then put some notes on the map, for
example to mark where victims are, or where specific environmental features are
placed. This, again, to make easier and safer the work of the rescue team which
will use the map to enter the explored building. In addition, the software also
keeps track of the path followed by the robot while exploring the arena, thus
providing also a sort topological information (see figure 6).

Fig. 6. One of the maps produced while mapping the yellow arena. The blue points
indicate the path followed by the robot. The numbers indicate the location where
victims have been located. The operator can also associate a brief textual description
to each identified victim or feature, to provide additional information to the rescue
team.

It can be observed that the quality of the maps obtained during the competition
is below what we got while mapping the our research building. This is mainly
due to the fact that the arenas are composed by movable glass like panels which
often spread false reflection or turns out to be transparent to the range finder.

4 Conclusions and future work

We illustrated our approach in developing a robotic system able to autonomously
build maps of the rescue arenas. Although is the robot is teleoperated, the map-
ping software runs on the robot itself and offloads the map to the operator base
station, where the operator can put annotations on the map to make it more
useful. While the approach is extremely easy in itself, it represents the first
completely autonomous mapping software appeared in the competition. The
representation used for the map is an occupancy grid.



In the future we will develop our research along two lines. First, we plan to
implement and evaluate some of the classical algorithms developed for mapping.
While we expect them to be clearly superior to our approach in terms of quality
of the produced map, we are interested in seeing how they will perform under
the competition constraints. Additionally, we will investigate the problem of
mapping three dimensional environments. In fact, while negotiating collapsed
areas in damaged buildings, one can expect the robot to climb over slopes, stairs
and so on. In that case, a three dimensional map is clearly needed as the planar
one could be not only imprecise, but also misleading for the rescue team. This
problem calls for the fusion of different sensors as well as for more efficient
mapping algorithms as the dimensionality of the environment being mapped
significantly grows. In this direction we are currently evaluating the opportunity
to use inertial sensors and 3D cameras for getting depth information.

References

1. Kitano, H., Tadokoro, S.: Robocup rescue. a grand challenge for multiagent and
intelligent systems. AI Magazine 22 (2001) 39–52

2. Takahashi, T., Tadokoro: Working with robots in disasters. IEEE Robotics and
Automation Magazine 9 (2002) 34–39

3. Osuka, K., Murphy, R., Schultz, A.: Usar competitions for physically situated
robots. IEEE Robotics and Automation Magazine 9 (2002) 26–33

4. Birk, A., Carpin, S., Kenn, H.: The iub 2003 rescue robot team. (this volume)
5. Hokuyo Automation Co.: http://www.hokuyo-aut.jp/
6. Kenn, H., Carpin, S., Pfingsthorn, M., Liebald, B., Hepes, I., Ciocov, C., Birk,

A.: Fast-robots: A rapid-prototyping framework for intelligent mobile robots. In:
Proceedings of the Third International Conference on Artificial Intelligence and
Applications. (2003) 76–81

7. McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions. Wiley-
Interscience (1996)

8. Kalman, R.: A new approach to linear filtering and prediction problems. Trans-
actions of ASME. Journal of Basic Engineering 83 (1960)

9. Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H., , Csorba., M.: A
solution to the simultaneous localisation and map building (slam) problem. IEEE
Transactions of Robotics and Automation 17 (2001) 229–241

10. Moravec, H.P.: Sensor fusion in certainty grids for mobile robots. AI Magazine
(1988)

11. Thrun, S.: Robot mapping: a survey. Technical Report CMU-CS-02-111, Carnegie
Mellon University (2002)

12. Biswas, S., Limketkai, B., Sanner, S., Thrun, S.: Towards object mapping in dy-
namic environments with mobile robots. In: Proceedings of the IEEE/RSJ Inter-
national Conference on Intelliegent Robots and Systems. (2002) 1014–1019


