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A method of error analysis is presented Calibration may be generally thought of as
using data obtained from dead-weight calibration the process of comparing an unknown with a stand-
of various capacity proving rings. A breakdown ard and determining the value of the unknown from
of the errors into components by statistical the accepted value of the standard. The accuracy
methods and their combination into a final uns of the reported values are usually given in terms
certainty statement is discussed in detail. of bounds to inaccuracy, or limits of uncertainty.
Graphical representations are used in several
places to help in the exposition, ’ In any calibration process there are three

possibilities available in dealing with the un-

Extension of the analysis and method of certainties. These are:
handling calibration data for multiple proving )
ring setups is discussed in an effort to show 1. Report only the values obtained and make
that the same general method of analysis should no statement about their uncertainty.

be adequate, 2. Make some statement of the uncertainties

affecting the calibration process based

. on personal judgement and general ex-
INTRODUCTION perience.

A proving ring is a compact and dependable 3. Through the use of érror analysis form
force measurement device developed at the an objective estimate of the uncertain-
National Bureau of Standards by H. L. Whittemore ties affecting the reported values.
and S. N. Petrenko for the original purpose of
calibrating testing machines. A typical prov- The uncertainty of a wmeasurement process may
ing ring is shown in Figure l. It consists basi- be characterized by giving (1) the imprecision,
cally of the following componente} an elactic and (2) limits to the overall cyctomatic exrror.
steel ring with diametrically opposed integral Imprecision means the degree of mutual disagree-
loading bosses, .a vibrating reed, and a micro- ment, characteristic of independent measurements
meter dial and screw assembly. The reed and mi- of a single quantity, yielded by repeated appli-
crometer screw assembly are mounted along the cations of the process under specified conditilons.
diameter concentric with the bosses. When a load The accepted unit for the imprecision of a cali-
is applied to the ring a deflection is measured bration process is the standard deviation, o,
by turning the micrometer screw until positive which provides a wmeasure of how close a particular
contact is made with the vibrating reed. This calibration result in hand is likely to agree with
deflection value is read in terms af the arbit- the results that might have baen (or might he) ab-
rary scale inscribed in the face of the micro~ tained by the same calibration process in this
meter dial. For details on the design, use, (or other) instance(s). The larger the value of
and calibration of proving rings, see Circular o, the more Imprecise the method of measurement,
of the National Bureau of Standards € 454 [1]*. and the greater the disagreement to be anticipated

between strictly cou;par_a.bl_e calibracions.
In recent years a significant increase in

the use of the proving ring as a secondary The systematic error of a calibration pro-
transfer standard, in the field of force meas- ce¢ss refers to the more or less consistent de~
urement, has precipitated the need for informa- viations of the values observed, from the stand~
tion dealing with accuracy of the calibration ard, or from the value intended to be measured.
process. The purpose of this paper is to dis- If the direction and the magnitude of systematic
cugs methods of extracting such information error were known with sufficient accuracy, a

from the calibration data and to present the correction could be applied to render the re-
ragults in a ugasbla foxm, ’ ported values frea £rom bias. Uoually only

dlimits of systematic error can be given, e.g.,
resulting from the uncertainty in the deter-

*The numbers in brackets refer to similaxrly-numbered references at the end of this paper.



mination of the mass of weights in a dead-weight
load calibrating machine, Limits of systematic
error are generally based on knowledge and ex~
perience ‘with similiar measurements, information
available from special studies, and judgement.
In calibration the sources of systematic errors
are usually studied carefully, and their effect
on the final results minimized or eliminated if
possibles

The total uncertainty of a calibration
process places limits on its probable inaccuracy.
It includes both the imprecision and the system-
atic error. Accuracy requires precision but pre-
cision does not necessarily imply accuracy. For
example, a calibration process may be highly
precise and yet when applied to a standard yield
values consistently greater, or consistently 1ess,
than the accepted value of the standard.

The present method of reporting proving
ring calibration employed by the NBS does mot
give explicitly a single expression of_ the over-
all uncertainty involved, but instead, gives
eslimates of Lhe fwpiecisloun and systeuwatic
error from which the total uncértainty can be
derived. This practice is in keéping with the
recormendations on "Expression on the Uncertain~
ties of Final Results" in Chapter 23 of NBS
Handbook 91 {2]. The estimate of imprecision
of the calibration process is given by the stand-
ard errors of the tabulated load values, which
measure the combined performance of the calibra-
tion procass and the particular ring. Bounds
for the systematic errors are given in percent
error of applied load for both dead~weight loads,
and loads measured by means of a multiple ring
setup.

DEAD-WETGHT CALTBRATTON

A dead-weight calibration of a proving ring
consists of ten mearly equally spaced loads ap-
plied in either the 10,100-1b or the 111,000-1b
capacity testing machines presently in use at
the National Bureau of Standards.

Three runs of ten loads are taken on each
ring to make up a calibration. Before and after
each load reading a no-load reading is taken and
recorded. The average of the two no-load read-
ings is subtracted from the load reading to
yield a deflection value of the ring under that
load. This yields a total of thirty deflection
values, three values for each load point from
ten-percent of capacity to capacity load. These
thirty deflections are punchéed on computer data
cards with thelr corresponding load values and
are fed into an electronic digital computer. A
second degree equation of the form

D=a+ bl + c:(L)2
is fitted to the averages of the three deflec-

tion values for each load, where

D = average deflection value
L = load in pounds

and a, b, ¢, are coefficients, The computer pro-

gram performs the task of statistically analyzing

the data, fitting the data by the method of least
squares, and printing out a load versus deflection
table as well as the various statistical quanti-
ties included in the report. The thirty deflec-
tion values obtained during the calibration of a
'100,000-1b capacity proving ring are given in
Table 1. A sample .of the load versus deflection
table printed out as a result of the computer fit
of these data is found in Table 2.

The selection of a second degree equation in
terms of load was decided upon as a result of pre-
liminary investigation, both theoretical and ex~
perimental, to determine the proper degree of the

calibration curve to represent the characterxistics

of the proving ring as evidenced by the raw data.

At the same time it was necessary to keep in mind

the many problems associated with applying an err-
or analysis to such data.

Figure 2 shows the three deflection values
at each of the ten load points for proving ring
A, with most of the linear trend removed from the
deflection values. The smooth curve represents
the plot of the computed deflection vdlues derived
from the second degree fit with the same linear
trend removed. This figure shows how well the
second degree curve £its the observed deflections.

Several interesting and useful comparisons
resulting from the error analysis and fitting
techniques employed are as follows. From the
dispersion of the three deflection values at each
load point about their average, the standard de-
viation of a deflection value can be computed with
two degrees of freedom, Since these standard de-
viations computed over the range of loads are
comparable in magnitude, the ten values may be
pooled together. This pooled value of the stand-

ard deviation,denoted as sy, can be compared to
its long run average value over many previous |
cglibrations to determine if the calibration pro-
cess is under control, i.e., stable with respect
to precision.

A standard deviation s assoclated with the
calibration of this particular ring can be com-
puted from the residuals of the ten average de=
flection values about the second degree curve,
This value of the standard deviation, s, can be
eompared with the pacled standard deviation of
an average deflection value, s /N3, obtained from
the ten sets of triplicate deflection values (i.
e., the pooled estimate of the standard deviation
of an individual deflection divided by«/3). IE
the two standard deviations s and s w/«/ 3 are of
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nearly the same magnitude then the ring is in
good condition and the scatter of the points 1is
due mainly to the inability of the calibration
process as a whole to repeat. Conversely, if
the standard deviation s computed from the de-
viations of the ten average deflection values
from the curve is considerably larger than s wNB;
the estimated standard deviation of an average
deflection value, then the condition of the ring
is not good and reconditioning by the manufac~
turer is indicated. An example of this can be
seen In figure 2, This ring 4s apparently not

_in good condition since the broken curve con-
necting the averages of the three deflection
values at each load point does not follow the
fitted curve closely, For rings in good condi-
tion, the two curves are practically indistin-
guishable on a graph to this scale. In the
future this type of reasoning may be used as a
basis for acceptance or rejection of a particular
devica.

Previously a calibration graph was in-
cluded with the calibration certificate as shown
In figure 3. This graph was a plot of the cali-
bration factor for the ring ip pounds per dlvi-
sion versus the deflection in divisions, The
straight line through the points was drawn for
“"bast £it", Because the calibration factors were
computed by dividing .each deflection into its
corresponding Loud, the points of the plot near
the lower end of the load range, of the device,
show considerably more dispersion than the points
near the upper end. Therefore the upper points
were considered to be better indicators for the
drawing of the “best f£it" lipe through the plot-
ted points, In the case of the second degree
fit of deflection versus load by the method of
least squares, the individual points are treated
with equal weight, a more accurate fit of the
calibration data is obtained, and no possibility
of personal bias is introduced.

The above can be illustrated as the by-
products of a simple test designed and suggested
by W. J, Youden of NBS. This test consisted of
several operators taking readings with a proving
ring under various known dead-weight loads.
These. loads were then computed as if they were
unknown using first the table of load values
from the second degree fit and second the load
values derived from the “best £it" curve. Com-
parison showed that over the range of the ring,
the load values computed from the second degree
£it were closer to the actual known loads applied
to the ring. Therefore, if the ring is to be
used over its entire calibrated range the second
degree fit gives more accurate load values. The
same data were also used to check the computed
limits of uncertainty for the particular ring
and in no case did the difference between the
actual and computed load value exceed these
limits. 4 sample of the values determined dur-
ing this experiment can be found in Table 3.

In order to arrive at some measure of de~
pendability of the values given in the load table
the corresponding confidence interval is needed.
To determine such an interval, the standard err-~
or of a deflection value for a given load is
computed and some multiple of this value is used
as limits of uncertalnty on the imprecision.

To predict a deflection value D, for a
particular given load L , the deflec ign value

can be expressed ag Di 23 % bLi + d‘i . Thus

D, is a linear combination of the coefficients
eStimated, and its standard error s, can be ex~
pressed in terms of the standard deviation s
(estimated from the residuals of the fit, with
seven degrees of freedom),and the load L,, and
the variance-covariance matrix [G,,] of the
estimated coefficilents a, b, and c-,1 as follows:

sza‘L’{G )I..s2
i — , u - 2
where the wvector I'= (1, L, L, ).

(For details of the method -5f p%lynomial fitting

used and the calculation of the standard error

s, the reader is referred to sections 6-3 and
6=5 of Chapter 6 of NBS Handbook 91 BExporimcutal
Statistics" [2].)

The dependence of s, on the value of L, in-
dicates that D, values corresponding to L, Values
at the two ends of the range of L have lafger
prediction errors than do D, values corresponding
to L, in the center portiony For convenience,
the fargest value of the standard error s, com-
puted from the above expression is used for all
values of L, in a provipg rlug report, and for
ten equal increments of equally spaced loads 1,,,
the value of the largest standard error, s,, is
approximately equal to 0,798, This is conVerted
into load in pounds by multiplying 0.79s by the
waxluuw calibracion factor, in pounds per divi-
sion, for the particular ring.

Using the t statistic and the computed stand-
ard error a confidence interval for the deflection
value on the curve for a single given load ean be
calculated. In calibration work, however, we re-
quire.not merely the calculation of a confiderice
interval for the deflectlon value corresponding
to a single load, but the calculation of a confi-
dence band for the whole calibration cutve,
Therefore, a wider interval will be required for
the same level of confidence, The confidence
band for a line as a whole is discussed on pages
5-15 to 5-17 of reference [2) and for entire
curves, in Chapter 28 of {31, whexe it is shown
that in the general case, the half width at I, =
L, of the confidence band for the curve as a

whole ist ‘

VEF o) x s,

where k is the number of coefficients estimated,
vV is the number of degrees of freedom in esti-
mating s,, .and F is an appropriate upper percent-
age pcin% of the distribution of the F statistic
(as an illustration we are using the upper 5%

12.3-2-64

3



point). Thus for k = 3, v = 7, and ten equal in-
crements of loads the half width of the 95% con-
fidence interval is./3 x 4,35 x 0,795 = 2.86s.
(Since the largest value of the computed stand-
ard error is used, the confidence level is at
least 95%.) Therefore the over-all limits of
uncertainty for the calibration by this procedure
could be expressed as 2,86 x s, (s 1s the stand-
ard deviation given in the report), plus the
systematic error,

It may appear that the above procedure for
determining the limits of uncertainty in the
calibration of a proving ring by basing it on
the prediction of a deflection value for a given
load is a reverse procedure. IHowevexr, for the
method of calibration described this seemingly
zreverse procedure is the proper one. Figure 4
is a schematic diagram of the deflection - load -
curve obtained from a calibration with the cor-
responding confidence band sketched about it.
For any given load, the true deflection value is
expected to be situated within the band. Con-
versely, if a deflection value d is given, a
horizontal line parallel to the load axis will
intercept the curve at the corresponding load
value L, in addition this line will also inter-
cept the band at two points L, and L which give
the corresponding lower and -upper confidence
limits for the load. Tails is true provided that
the deflection value is known without error. If
the uncertainty of the deflection value can be
represented by D, and D , then the corresponding
confidence :I.nterval for the load will be wider,
as given by L7 and L . In other words, the ac-
curacy with 11iich thé deflection readings are
obtained in using the ring must be taken into
account by the user of the ring.

Each load value given in the table of load
versus daflection is therefore the predicted
value of the load, given a deflection value, and
is expected to be within the uncertainty 1limits
given for the calibration.

CALIBRATION OF RINGS USING MULTIPLE RING SETUPS

The present practice for calibrating prov-
ing rings with nominal capacities in excess of
110,000 1b is as follows:

1. to divide the nominal capacity into ten
approximately equal increments,

2. to calibrate the ring by dead weights
for the increments of load less than

110,000 1b, and

3. to calibra‘(;e the ring by either a 3, 4,
or 5 proving ring setup for the re-
‘maining increments of load.

For a calibration using this procedure
‘there are a number of problems relating to the
analysis of data and interpretation of results.

Some of these problems cammot be solved without
considerable changes in the procedure of cali-
bration. Since such changes are impractical, and
in the near future dead-weight calibration capa-
¢ity will be extended to 1,000,000 1b, one solu~-
tion is to fit multiple ring calibrations by the

‘same method as that for the dead-weight calibra-

tions. The following discussion is based on the
results of calibrations of rings fitted by this
method.

Examination of these results showed no .evi-
dence of bias in the sense that residuals of the
fit at the two adjoining increments of load, i.e.
the last dead-weight and the first multiple ring
1load, are not unusually large or coasistently of
opposite sign. TFor this to remain true it is
necessary that the calibrations of the rings used
to determine the load in a multiple ring setup
be unbiased. To insure that this condition is
maintained the rings owned by the Bureau are
usually reconditioned yearly and are calibrated
frequently.

For dead-weight calibratien the errars of

- the applied loads were assumed to be negligible

in fitting the data; for multiple ring calibra-
tion, errors are introduced in the determination
of the loads applied. Thus a non-linear func-
tional relationship is to be estimated between
deflection and load where the measurements of
both are subject to error. There is mo simple
solution to this problem except that experience
in this laboratory has shown that the least
square fitting procedure still gives satisfactory
estimates provided the errors are small compared
with the range covered. This requirement is
satisfied since each increment of load is more
than 700 times the magnitude of the error in-
volved,

Considering the above, and from a study of
numerous past calibrations, it was decided the
deflection should be fitted as a function of
load since the former is believed to have larger
errors than the latter.

Since the dead-weight calibration is pre-
sumably more precise than the multiple ring cali-

‘bration, the question of weighting the observa-

tions prior to least square fitting was consider-=
ed, Results of the rings studied indicated that’
the standard deviation of an average deflection
obtalned from multiple ring calibrations was not
significantly larger than that for the ‘dead
weights. Thus the inflation of this deviation
due to the errors in the loads does mot increase
the total imprecision by any appreciable amount.
The use of welghting factors is therefore not of
practical importance.

Examipation of the plot of residuals re-
sulting from fitting deflections to the loads,
both in dead weights and in multiple ring setups,
indicates that the deviations of the data points
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from the fitted curve contribute a large part of
the total error. In view of this it appears
reasonable that the averages of the deflection
readings should be used for fitting, similar

to the procedure used for dead-weight calibration.
Thus, the standard error includes the imprecision
components of the calibration error for both the
ring being calibrated and the rings belng used

to mea.ure the applied load,

Bounds for systematilc error of a multiple
ring setup can be estimated by summing (1) the
systematic error due to the dead weights (2) the
systematic difference due to change with time in
the calibrated values of the load measuring de-
vices, and (3) other sources of error due to the
inherent difficulties in using and reading the
devices simultaneously. For example, such an
estimate can be given an percent error of applied
load for loads in excess of the dead weights.

CONCLUSION

In the above we have presented a procedure
for the determination of limits of uncertainty
for the calibration of proving rings. The
method of analysis includes; the fitting of this
type of data to an appropriate curve by the meth-
od of least squares, the use of confidence in-
tervals and bands as limits of imprecision, and
the estimate of bounds for systematic errox.

Since many types of devices and instruments
are calibrated similiarly at selected points a-
long their ranges, it is belleved that the pro-
cedures outlined above may be useful, when
properly moditied, in yielding a realist:l.c eval-
uvation of the uncertainties associated with their
calibration.
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Figure 1

Proving Ring
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TPable 1 A Calibration of Proving Ring A

Applied —— Deflection
load __Runl _Run 2 Run 3
1b div div div
10,000 68432 68.35 68. 30
20,000 136.78 136.68 136.80
30,000 204,98 205.02 204,98
40,000 273.85 273.85 273,80
50,000 342,70 342.63 342.63
60,000 411,30 411,35 411,28
~70,000 480,65 480,60 480,63
80,000 549,85 549.85 549.83
90,000 £19.00 619.02 619.10
100,000 688,70 688.62 688.58
Table 2 - Computed Load Table in 1b for 70 Degrees ¥ for Proving Ring A
Deflection 90 1. 2 3 4 5 6 - 7_ g 9
Div
60. - ~ - - - - - - 9952, 10099,
70. 10245, 10392, 10538, 10685, 10831. 10978. 11124, 11270. 11417, 11564,
80. 11710, 11856, 12003, 12149, 12295, 12442, 12588, 12735. 12881. 13027.
90. 13174, 13320. 13467, 13613, 13759, 13906. 14052, 14199. 14345, 14491,
100. 14638, 14784, 14930,  15077. 15223, 15369, 15516. 15662, 15808. 15954, .
640, 93007.  93151. 93295. 93439. 93582, 93727, 93871, 94014,  94158. 94302,
650. 94446,  94590. 94734,  94878. 95021, 95163. 95309, 95453, 95597. 95741,
660, 95885, 96029, 96173. 96316, 96460. 96604, 96748,  96892.  97035. 97179,
670, 97323, 97467. 97611, ‘ 97754, 97898, 98042, 98186. 98330. 98473, 98617,
680. 98761, 98905, 99048, 99192, 99336. 99480, 99623. 99767. 99911. 100054,
12.3~2-6l
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Table 3 ~ Sample Results of Experiment Designed by W, J., Youden of NBS for
Proving Ring A

S . B—
Computed load

G
A _ using second Column A Computed load Column A
Load applied degree fitting minus using “best minus Ring
to ring . method . Coluun B £it" method Column € . reader
ib b 1b 1b 1b
10,070 10,077 -7 10,090 -20 1
30,000 29,987 +13 29,994 + 6 1
40,050 40,059 -9 40,064 ~14 1
80,020 80,032 ~12 80,036 -16 1
10,020 10,033 -13 10,046 -26 2
30,050 30,047 +3 30,053 -3 2
40,000 : 40,011 ~-11 40,016 -16 2
80,070 80,081 ~-11 80,082 -12 2
10,000 9,993 + 7 10,007 -1 3
30,070 30,063 +7 30,069 + 1 3
40,020 40,029 -9 40,034 ~-14 3
80,050 80,061 -11 80,062 -12 3
10,050 10,058 . -8 10,068 -18 4
30,020 30,010 +10 30,013 + 7 4
40,070 40,087 -17 . 40,096 ~26 4
80,000 80,025 -25 80,030 -30 4
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