
IREX IV
Evaluation of One-to-Many Iris Recognition

Concept, Evaluation Plan, and API Specifcation
Version 0.2

George W. Quinn and Patrick Grother

Image Group
Information Access Division

Information Technology Laboratory

May 4th, 2012

i

1 Status of this Document

2 This is the second public version of this document. Comments and questions should be submitted to irex@nist.gov.
3 This document can be downloaded from http://iris.nist.gov/irex.

4 Timeline

Table 1: Milestones and deadlines

June 28, 2012 Last day to submit and still receive an interim report back.
May 16 - August 2, 2012 Anticipated submission window.
May 16, 2012 Final API will be released.
May 14, 2012 Comments due on version 0.2 of API
May 4, 2012 NIST releases API version 0.2
May 1, 2012 Comments due on Initial API
April 16, 2012 NIST releases API version 0.1

5 Release Notes

Changes relating to the second release of this document are highlighted with a green background color. Most
notably:

1. The submission window has been extended to Aug 2, 2012.

2. The process of interim reporting of results is explained in greater detail in Section 2.4.2.
6

3. The dead links pointing to the encryption procedures and participation agreement have been corrected.

4. The decision parameter of identify_template() is now a pointer type.

5. gcc version 4.4.6 is now specifed as the system that will be used to link the libraries.

NOTE: IREX IV is very similar to IREX III with respect to its API and implementation requirements. Notable
7

changes are highlighted throughout this document with a yellow background color.

IREX IV: Concept, Evaluation Plan, and API Specifcation

mailto:irex@nist.gov
http://iris.nist.gov/irexIV

10

15

20

25

30

35

40

45

ii CONTENTS

8 Contents

9 1 IREX IV Concepts 1

1.1 Overview . 1
11 1.2 Market Drivers . 1
12 1.3 Application Scenarios . 2

13 2 Evaluation Overview 2
14 2.1 Performance Metrics . 3

2.2 Iris Datasets . 7
16 2.3 Test Environment . 7
17 2.4 Reporting of Results . 8

18 3 Software Submission 8
19 3.1 Participation Requirements . 8

3.2 Submission Procedure . 8
21 3.3 Requirements for Library Submissions . 9

22 3.4 Linking Requirements . 10

23 3.5 Single-thread Requirement . 10

24 3.6 Installation Requirements . 10

3.7 Runtime Behavior Requirements . 11

26 4 API Specifcation 12

27 4.1 Overview . 12
28 4.2 Functions . 14
29 4.2.1 Function Documentation . 14

4.2.1.1 get_pid . 14

31 4.2.1.2 get_max_template_sizes . 15

32 4.2.1.3 initialize_enrollment_session . 15

33 4.2.1.4 convert_multiiris_to_enrollment_template . 16

34 4.2.1.5 fnalize_enrollment . 17

4.2.1.6 initialize_feature_extraction_session . 18

36 4.2.1.7 convert_multiiris_to_identifcation_template . 18

37 4.2.1.8 initialize_identifcation_session . 19

38 4.2.1.9 identify_template . 19

39 4.2.1.10 convert_raster_to_cropped_and_masked . 20

5 Supporting Data Structures 21

41 5.1 CANDIDATE Struct Reference . 21
42 5.2 MULTIIRIS Struct Reference . 22
43 5.3 MULTISEGMENTATION Struct Reference . 22
44 5.4 ONEIRIS Struct Reference . 23

5.5 ONESEGMENTATION Struct Reference . 24

46 6 References 25

IREX IV: Concept, Evaluation Plan, and API Specifcation

1 1 IREX IV Concepts

47 Terms and Defnitions

Table 2: The following terms and defnitions are used in this document

ANSI American National Standards Institute
ANSI/NIST Type 17 American National Standard for Information Systems - Data Format for the In-

terchange of Fingerprint, Facial, and Other Biometric Information - Part 1
API Application Programming Interface
EDB Enrollment Database
FNIR False Negative Identifcation Rate
FPIR False Positive Identifcation Rate
FTS Failure to search
FTX Failure to extract features from an enrollment image
DET Detection Error Tradeoff
ISO International Standards Organization
ISO/IEC 19794-6 ISO/IEC standard titled "Information technology - Biometric data interchange

formats - Part 6: Iris image data"
ISO/IEC 29794-6 ISO/IEC standard titled "Biometric Sample Quality - Part 1: Framework"
IREX Iris Exchange
NIST National Institution of Standards and Technology
UID India’s Unique Identity scheme

48 1 IREX IV Concepts

49 1.1 Overview

50 This document establishes a concept of operations (CONOPS) and application programming interface (API) for the
51 Iris Exchange (IREX) IV Evaluation. IREX IV will be a large-scale evaluation of iris recognition technology over
52 operational data. Like IREX III [1], it will focus exclusively on one-to-many applications.

53 The goals of this evaluation are

54 • To investigate the use of cost parameters for application specifc optimization (see Section 2.1.2).

55 • To establish a compression profle for the effcient and compact storage of iris images (see Section 2.1.3).

56 • To measure the speed and accuracy of iris matchers over the OPS-II dataset of operational iris images.

57 This marks the fourth installment in the IREX program (see Figure 1). See http://iris.nist.gov/irex for all IREX related
58 documentation.

59 1.2 Market Drivers

60 This evaluation is intended to support a plural marketplace of iris recognition systems. While the largest applica-
61 tions, in terms of revenue, have been for border control and war zone identity management, India’s Unique Identity
62 (UID) scheme is currently using iris (in conjunction with fngerprints) for de-duplication on a massive scale.

63 The expanding marketplace for iris recognition has fueled the development of iris cameras designed to operate in
64 a variety of applications. For example:

65 • Some standoff-capture cameras can rapidly image and verify (in a one-to-many mode) high volumes of
66 people.

IREX IV: Concept, Evaluation Plan, and API Specifcation

http://iris.nist.gov/irex

2 1.3 Application Scenarios

Figure 1: Current extent of the IREX program as well as planned expansions.

67 • Some mobile cameras can be preloaded with frm-ware based segmentation and identifcation capability for
68 rapid one-to-many watchlist searches.

69 These applications are differentiated by population size, hardware capabilities, quality of the iris samples, and other
70 variables.

71 1.3 Application Scenarios

72 The evaluation will focus on practical applications of iris recognition with an emphasis on large-scale deployments
73 (i.e. where the enrollment database contains up to several million subjects). The interest is in one-to-many open-set
74 identifcation systems. Systems operating in a one-to-many mode (sometimes referred to as "identifcation mode")
75 are tasked with identifying the individual without a prior claim to identity. Open-set means there is no guarantee
76 that the searched individual is enrolled in the database. To explore the potential for application-specifc algorithm
77 optimization, participants will submit two classes of implementations, each focusing greater attention on reducing
78 a different type of error (see section 2.1.2). Table 3 details the parameters of this evaluation.

79 Participants may also submit implementations that perform cropping and masking of the iris images to convert
80 them into an ISO/IEC 19794-6 compact format. Representing iris images compactly is crucial for applications
81 operating over limited-bandwidth networks. India’s Unique Identity (UID) scheme is seeking to reduce bandwidth
82 requirements for the transmission of iris data.

83 2 Evaluation Overview

84 The evaluation will be conducted offine. Offine evaluations are attractive because they allow uniform, fair, re-
85 peatable, and convenient testing. However, they do not capture all aspects of an operational system. While this
86 evaluation is designed to mimic operational reality as much as possible, it does not include a live image acquisition
87 component or any interaction with real users.

IREX IV: Concept, Evaluation Plan, and API Specifcation

3 2.1 Performance Metrics

Table 3: Application Parameters

Parameter
Class P

(Positive Identifcation System)
Class N

(Negative Identifcation System)

Application Type One-to-many open-set identifcation systems
(e.g. watchlists, de-duplication operations).

Class Description
High cost associated with false

positives
High cost associated with false

negatives

Example Applications
Biometric authentication for

restricted access to high value
information, resources, or facilities.

Watchlists for high-profle
individuals. Investigational-mode

searches.

Enrolled Database Size Anywhere from O(102) to O(107) subjects.

Prior NIST References IREX III Final Report [1]
IREX III Supplement I: Failure Analysis [2]
Multiple Biometric Evaluation (MBE) 2010 [3]

Performance Criteria Primarily accuracy and speed.
Also, memory usage, scalability, template-size, etc.

88 2.1 Performance Metrics

89 2.1.1 Accuracy

90 Accuracy will be measured for open-set applications, which means that no assumption can be made as to whether
91 the searched individual is enrolled in the database. Most real-world applications of biometrics operate in this way
92 (e.g. watchlists and de-duplication tasks). Closed-set applications, which assume that every searched individual
93 is enrolled in the database (and thus only concern themselves with which of those enrollees the searched person
94 matches best) are operationally uncommon and will not be tested.

95 Open-set biometrics systems are tasked with searching an individual against an enrollment database and returning
96 zero or more candidates. Two types of decision errors are usually considered for this type of system. The frst
97 occurs when a candidate is returned for an individual that is not enrolled in the database. This is referred to as a
98 false positive. The second occurs when the correct candidate is not returned for an individual that is enrolled in the
99 database. This is referred to as a false negative.

NIST will compute false positive statistics exclusively from non-mated searches and false negative statistics exclu-
sively from mated searches. Although this refects operational reality better than computing false positive statistics

100 from mated searches (by simply ignoring correct mates on the candidate lists), it does not cover all factors that
could affect the accuracy of a system (e.g. the position of the correct mate on the candidate list, the number of
incorrect candidates returned for a mated search).

101 This evaluation will present core matching accuracy in the form of Detection Error Tradeoff (DET) [4] and Sensitivity-
102 Reliability [5] plots, both of which show the tradeoff between the two types of error. The Application Programming
103 Interface (API) will require searches to return a fxed number of candidates but will only consider a candidate
104 viable if its dissimilarity score is below some decision threshold. Table 4 defnes how the accuracy metrics will be
105 computed.

106 In some plots, line segments will be drawn between curves to connect points of equal threshold. These line
107 segments are intended to show how error rates at specifc operating thresholds vary depending on factors such as
108 the number of entries in the enrollment database or the quality of the iris samples.

IREX IV: Concept, Evaluation Plan, and API Specifcation

4 2.1 Performance Metrics

Table 4: DET and SEL-REL accuracy metrics

Performance Plot Metric Description

Detection-error
FPIR The fraction of non-mated searches for which at least one candidate has

a distance score at or below threshold.
Tradeoff Curve FNIR The fraction of mated searches for which the correct candidate is not on

the list or has a distance score above threshold.

Selectivity-Reliability
Curve

SEL The average number of candidates for a non-mated search having a
distance score at or below threshold.

REL One minus FNIR

109 2.1.2 Cost Function Optimization

This evaluation will investigate the use of cost parameters for application-specifc algorithm optimization. The
110 goal is to determine if matching algorithms can be modifed to improve performance when the costs of errors are

known in advance. The following cost model will be used as an evaluation metric for recognition performance:

111
E[Cost(τ)] = (1 − PMated) FPIR(τ) CP + PMated FNIR(τ) CN (1)

where PMated is the a priori probability that the user of the system is mated, CP is the cost of a false positive,
CN is the cost of a false negative, FPIR(τ) is the false positive identifcation rate, FNIR(τ) is the false negative

112 identifcation rate, and τ is the operating threshold. The model estimates the expected cost per user attempt,
which could be a measure of time, workload, money, etc. The participant is tasked with minimizing the cost for a
predetermined and fxed set of cost parameters (CP, CN , and PMated).

Cost parameters are often chosen to correspond to a specifc application. Consider a biometric system that
provides bank vault access to specifc individuals. One might reasonably set the cost of a false positive to be the

113 monetary value of whatever is in the vault, and the cost of a false negative to a value that refects the amount of
inconvenience incurred from having to open the vault by some other method. Setting PMated to 0.1 assumes that
one out of every ten access attempts is by an allowed user.

NIST requires each participant to submit two implementations, each corresponding to a different set of cost
parameters. These parameters are defned in Table 5. Class P implementations penalize false positives heavily

114 and false negatives lightly. Class N implementations assign comparatively greater penalty to false negatives. For
this class of implementations, suppression of false positives is less important. Both classes will be tested over
one-eye and dual-eye tests. Participants may wish to use a different fusion rule for the two class types.

Table 5: Cost parameters for both submission types

Implementation Class CN CP Pmated

Class P 1 10 0.01
Class N 200 1 0.1

Additionally, failures to extract (FTXs) and failures to search (FTSs) will be treated differently depending on the
implementation class. For Class P implementations, both will be treated as failures in a positive recognition
system (e.g. access control). This is the way NIST has handled FTXs and FTSs in prior evaluations. For Class

115 N implementations, FTXs and FTSs be treated like failures in a negative recognition system (e.g. a watchlist).
Failures in a negative recognition system increase the FPIR when they occur for non-mated searches, but do not
increase the FNIR when they occur for mated searches. This differs from the way NIST has traditionally handled
these types of failure.

IREX IV: Concept, Evaluation Plan, and API Specifcation

5

116

2.1 Performance Metrics

The motivation for requiring participants to submit two implementations is to see if it is possible to change the
shape of a DET to reduce cost for a specifc set of cost parameters. Figure 2 plots standard DET curves for
two identifcation algorithms. The two curves cross one another, making it impossible to state which is more
accurate in any absolute sense. Since Class N implementations are penalized heavily for false negatives, and
only lightly for false positives, both algorithms are expected to achieve their lowest cost toward the right end of the
fgure, where the blue curve performs better. Conversely, Class P implementations are penalized heavily for false
positives but only lightly for false negatives. Thus, for this set of cost parameters, both algorithms are expected to
achieve their lowest cost toward the left end of the fgure, where the red curve performs better.

Figure 2: Notional DET plots demonstrating how the two classes place greater emphasis on different

regions of the DET.

117 2.1.3 JPEG 2000 Compression

India’s UID scheme will use the iris biometric for recognition tasks, and a desire has been expressed to represent
iris feature information more compactly to reduce bandwidth usage during network transfer. The ideal solution
is to store the images according to one of the compact and interoperable formats specifed in ISO/IEC 19794-6.
This evaluation seeks to further support the standard by establishing JPEG 2000 compression profles for the

118 effcient and compact storage of iris images. Toward this end, NIST will subject the images to lossy JPEG 2000
compression while tweaking various compression parameters. JPEG 2000 encoders that NIST may use include
OpenJPEG [6] and Kakadu [7]. Participants are requested to submit implementations that can convert a raw iris
image into an ISO/IEC 19794-6 Type 7 (cropped and masked) image (as shown in Figure 3). Support for this
operation is optional but encouraged.

119 2.1.4 Single-eye and Dual-eye Testing

120 NIST will evaluate performance for scenarios where:

121 • one iris sample is available per person.

122 • two samples (of opposite eyes) are available per person.

IREX IV: Concept, Evaluation Plan, and API Specifcation

6 2.1 Performance Metrics

Figure 3: An example of an ISO/IEC 19794-6 Type 7 (cropped and masked) image.

Due to the high frequency of erroneous (left/right) eye labelings in the OPS-II dataset, NIST will no longer provide
labeling information for iris samples. All samples will simply be labeled "U", indicating "Unknown". NIST suspects

123
the mislabelings are due to ambiguity with respect to whether "left" is intended to represent the subject’s left eye
(correct) or the eye on the left from the perspective of the camera operator (incorrect).

NIST will never provide more than two samples per person. Although eye labels will not be provided, it can be
124

assumed that if two samples are provided, they represent opposite eyes of the same person.

125 When testing single-eye performance, NIST will enroll left and right eyes of one person under different identifers
126 as though they came from different persons. This will allow NIST to test over larger enrollment databases. The test
127 harness will never enroll two samples of the same iris under different identifers.

128 2.1.5 Accuracy-speed Trade-off

129 NIST will perform an analysis of the trade-off between speed and accuracy. However, participants are no longer re-
130 quested to submit implementations of varying speeds. Rather, participants should submit different implementations
131 that are each optimized to a different set of cost function parameters (see Section 2.1.2).

132 2.1.6 Timing Statistics

133 NIST will report the computation time for all core functions of the implementations (e.g. feature extraction, search-
134 ing). As was done in previous IREX evaluations, search time will be plotted as a function of enrollment size with
135 a focus on whether the trend is sub-linear for any of the implementations. Batch mode processing, where more
136 than one search is conducted at a time, will not be tested. Timing estimates will be made on an unloaded machine
137 running a single process at a time. The machine’s specifcations are described in Section 2.3.0.1.

138 2.1.7 Template Sizes

139 The size of the proprietary templates generated by the implementations is relevant because it impacts storage
140 requirements and computational effciency. Therefore, NIST will report statistics on the size of enrollment and
141 identifcation templates.

142 2.1.8 Runtime Memory Usage

143 NIST will monitor runtime memory usage during one-to-many searches and report the results.

144 2.1.9 Automated Quality Assessment

145 Automated quality assessment has a number of useful applications in iris recognition (e.g. determining in real-time
146 whether a sample should be reacquired during a capture session). Automated quality assessment of iris samples
147 was the primary focus of IREX II: IQCE [8]. In IREX IV, NIST will analyze the quality scores returned by the

IREX IV: Concept, Evaluation Plan, and API Specifcation

2.2 Iris Datasets 7

148 implementations during feature extraction. Error vs. reject curves, as described in [9], will be plotted. NIST may
149 choose to perform additional analyses with an emphasis on how strongly quality scores correlate with matching
150 accuracy. Support for automated quality assessment in the submitted implementations is optional.

151 2.2 Iris Datasets

152 2.2.1 The OPS-II Dataset

The primary test dataset for this evaluation is identical to the OPS dataset used in IREX III with one notable
153 exception: The images in the current dataset were never compressed, while the vast majority of those in the

original OPS dataset had been previously compressed using JPEG at a quality setting of 75.

The OPS-II consists of several million operational images collected from 18 distinct commercial iris cameras.
Some subjects’ irides were captured by more than one camera model. Most of the iris images have a pixel res-
olution of 640x480, but some are 480x480. NIST intends to exclude the pathological 330x330 images discussed

154 in IREX III from this evaluation. Some of the non-pathological images still have poor sample quality (e.g. high
amounts of occlusion, specular refections, heavy pupillary constriction). Some were captured outside and con-
tain heavily constricted pupils. See the IREX III Supplement I [2] for more information. Search and enrollment
samples will be pulled from the same source and will therefore be of comparable quality.

155 2.2.2 Ground Truth Integrity

156 A hazard with collecting operational data is that ground truth identity labels can be incorrectly assigned due to
157 clerical error. A Type I error occurs when a person’s iris image is present under two or more identities. To correct
158 for this type of error during evaluation, NIST will estimate FPIR using search images that have been horizontally
159 fipped1 . The effect of fipping is discussed in the IREX III report. Type II errors occur when two or more persons
160 are assigned the same subject identifer, which can lead to apparent false negatives. NIST cannot correct for this
161 type of error, but analyses in IREX III and its supplement indicate that Type II errors accounted for only a small
162 fraction of the false negatives that occurred when the algorithms were tested over the OPS dataset.

163 2.3 Test Environment

164 2.3.0.1 Hardware Specifcations

165 The test machines are high-end PC-class blades, each having 4 CPUs with 4 cores per CPU. The blades are
166 labeled Dell M905, equipped with 4x Qual Core AMD Opteron 8376HE processors2 running at 2.3GHz. Each
167 CPU has 512K of cache. The bus runs at 667 MHz. Main memory consists of 192GB as 24 8GB modules.
168 Sixteen processes can run without time slicing. NIST may use some test machines that have slightly different
169 hardware specifcations, but the operating system and compilation environment will remain homogenous across
170 all blades. Furthermore, timing statistics will only be computed on machines having the aforementioned hardware
171 specifcations.

172 2.3.0.2 Operating System

173 The test machines will have CentOS 6.2 installed, which runs Linux kernel 2.6.32-220.7.1 (http://www.centos.org/).

174
An ISO image of the distribution can be downloaded from NIGOS (http://nigos.nist.gov:8080/evaluations/CentOS-
6.2-x86_64-bin-DVD1.iso).

1Using the jpegtran application provided by the Independent JPEG Group, present on most LINUX platforms.
2cat /proc/cpuinfo returns fpu vme de pse tsc msr pae mce cx8 apic mtrr pge mca cmov pat

npse36 clflush mmx fxsr sse sse2 ht syscall nx pni

IREX IV: Concept, Evaluation Plan, and API Specifcation

http://www.centos.org/
http://nigos.nist.gov:8080/evaluations/CentOS-6.2-x86_64-bin-DVD1.iso
http://nigos.nist.gov:8080/evaluations/CentOS-6.2-x86_64-bin-DVD1.iso

8 2.4 Reporting of Results

175 2.4 Reporting of Results

176 2.4.1 Final Report

177 Following completion of the testing, NIST will publish one or more Interagency Reports (IRs) on the results. NIST
178 may also use the results to publish in other academic journals or present at conferences or workshops.

179 2.4.2 Interim Reports

NIST will provide participants with "score-card" performance results prior to the release of the fnal report. These
interim reports will be sent as they become available, so participants who submit earlier are more likely to receive

180 their results sooner. NIST expects the turn-around time to be about two weeks. A participant may submit one pair
of Class P and Class N libraries followed by another pair after receipt of the interim report. To receive an interim
report, the submission must be received by June 28, 2012.

181 While the score cards can be used by the participants for arbitrary purposes, they are intended to promote develop-
182 ment and to provide the participants with a faster turnaround on how well their implementations performed. Score
183 cards will be auto-generated for each implementation and will 1) include timing, accuracy, and other performance
184 statistics, 2) include results from other participants without identifying them, 3) be expanded and modifed as addi-
185 tional analyses are performed, and 4) be released asynchronously with implementation submissions. NIST does
186 not intend to release the score cards publicly, though it may show them to U.S. government test sponsors. While
187 the score cards are not intended for wider distribution, NIST can only request that sponsoring agencies not release
188 their content.

189 3 Software Submission

190 3.1 Participation Requirements

191 Participation is open to any commercial organization or academic institution that has the ability to implement a
192 large-scale one-to-many iris identifcation algorithm. There is no charge and participation is open worldwide.

193 The following rules apply:

Participants must complete and submit the Participation Agreement
194 •

(http://biometrics.nist.gov/cs_links/iris/irexIV/IREX_IV_Application_v1.pdf).

195 • Participants must submit at least one Class P, and one Class N, implementation.

Participants are permitted to submit up to two Class N and two Class P implementations (so up to four
196 •

submissions in total are permitted).

197 • Participants must adhere to the cryptographic protection procedures when submitting their implementations
198 (see Section 3.2).

199 • All implementations must successfully validate to ensure their proper operation.

200 NIST will not perform phased testing (i.e. the submission window will close before NIST provides participants with
201 preliminary results).

202 3.2 Submission Procedure

203 All software, data, and confguration fles submitted to NIST must be signed and encrypted. Signing is performed to
204 ensure authenticity of the submission (i.e. that it actually belongs to the participant). Encryption is performed to en-

IREX IV: Concept, Evaluation Plan, and API Specifcation

http://biometrics.nist.gov/cs_links/iris/irexIV/IREX_IV_Application_v1.pdf

9 3.3 Requirements for Library Submissions

205 sure privacy. The full process is described at http://biometrics.nist.gov/cs_links/iris/irex/NIST_biometrics_crypto.pdf .

206 Note: NIST will not accept any submissions that are not signed and encrypted. NIST accepts no responsibility for
207 anything that occurs as a result of receiving fles that are not encrypted with the NIST public key.

208 Implementations shall be submitted to NIST as encrypted gpg fles. If the encrypted implementation is below 20MB,
209 it can be emailed directly to NIST at irex@nist.gov. If the encrypted implementation is above 20MB, it can either be
210 provided to NIST as a download from a webserver3 , or mailed as a CD/DVD to the following address:

211 IREX IV Test Liason (A214)
212 100 Bureau Drive
213 A214/Tech225/Stop 8940
214 NIST
215 Gaithersburg, MD 20899-8940
216 USA

217 Upon receipt, NIST will validate the implementation to ensure its correct operation. The validation process involves
218 running the implementation over a small sample of test data. This test data will be provided to the participant, who
219 must run the implementation in-house and provide NIST with the comparison results. NIST will then verify that
220 the participant’s in-house results are consistent with the output produced on the NIST blades. The test data along
221 with full instructions will be posted on the IREX IV homepage (http://www.nist.gov/itl/iad/ig/irexiv.cfm) as part of a
222 validation suite.

223 3.3 Requirements for Library Submissions

224 Participants shall provide NIST will pre-compiled and linkable libraries. Dynamic libraries are permitted, but static
225 ones are preferred. Participants shall not provide any source code. Header fles should not be necessary, but if
226 provided, should not contain intellectual property of the company nor any material that is otherwise proprietary.

227 At least one "core" library must be submitted that adheres to the API specifcation in section 4.2. This library shall
228 adhere to the naming convention described in Table 6. Additional dynamic or shared library fles may be submitted
229 that support this core library.

Table 6: Naming convention for an implementation library.

Form: libIREX_provider_class_sequence.suffx

Part: libIREX provider classes sequence suffx
Description: First part of

the name,
fxed for all
submissions

a single word name
of the main provider.
EXAMPLE: thebes

Functional class
described in
Table 5 (N or P).

A two-digit decimal
identifer starting at
00 and incrementing
any time a new
submission is sent to
NIST

Either
.so or .a

Example: libIREX_thebes_N_03.a

230 Implementation libraries must be 64-bit. This will support large memory allocations that are necessary when an
231 enrollment database contains millions of entries. To achieve faster running times, NIST expects implementations
232 will load the enrollment templates into main memory before the enrollment database is searched. It is safe to
233 assume that NIST will not build enrollment databases containing more than 10 million entries (generated from 10
234 million iris samples). This means that template sizes should not exceed ~19K on average.

235 NIST will ignore requests to alter parameters by hand (e.g. modify specifc lines in an XML confguration fle). Any
236 such adjustments must be submitted as a new implementation.

3NIST shall not be required to register or enroll in any kind of membership before downloading the implementation.

IREX IV: Concept, Evaluation Plan, and API Specifcation

http://biometrics.nist.gov/cs_links/iris/irex/NIST_biometrics_crypto.pdf
mailto:irex@nist.gov
http://www.nist.gov/itl/iad/ig/irexiv.cfm

10 3.4 Linking Requirements

237 3.4 Linking Requirements

238 NIST will link the submitted library fle(s) to our ISO 98/99 C/C++ language test drivers. Participants are required
239 to provide their libraries in a format that is linkable using gcc version 4.4.6 . The standard libraries are:

240 • /usr/lib64/libstdc++.so.6.0.13 (GLIBCXX 3.4.13)
241 • /lib/libc.so.6 -> libc-2.12.so (GLIBC 2.12)
242 • /lib/libm.so.6 -> libm-2.12.so

243 Participants may provide customized command-line linking parameters. A typical link line might be:
244 gcc -I. -Wall -m64 -o irex_main irex_main.c -L. -lirex_thebes_N_01 -lpthread

245 Participants are strongly advised to verify library-level compatibility with gcc (on an equivalent platform) prior to
246 submitting their software to NIST to avoid linkage problems (e.g. symbol name and calling convention mis-
247 matches, incorrect binary fle formats, etc.). Intel ICC is not available. Access to GPUs is not permitted.

Intel Integrated Performance Primitives (IPP) libraries are permitted if they are delivered as part of the developer-
248

supplied library package. It is the provider’s responsibility to establish proper licensing of all libraries.

249 On request, NIST will allow the use of g++ for linking, but the library must export its functions according to the C
250 linkage specifed in the API. The Standard C++ library is available.

251 Dependencies on external dynamic/shared libraries such as compiler-specifc development environment libraries
252 are discouraged. If absolutely necessary, external libraries must be provided to NIST after receiving prior approval
253 from the test liaison. Image processing libraries such as libpng and NetPbm should not be required since NIST will
254 handle image reading and decompression.

255 IMPORTANT: Windows machines will not be used for testing. Windows-compiled libraries are not permitted. All
256 software must run under LINUX.

257 3.5 Single-thread Requirement

Implementations must run in single-threaded mode. Multithreading was supported in IREX III, but all participants
258

eventually chose to submit single-threaded implementations during the latter stages of phased testing.

259 3.6 Installation Requirements

260 3.6.1 Installation Must be Simple

261 Installation shall require the simple copying of fles followed by a linking operation. There shall be no need for
262 interaction with the participant provided everything goes smoothly. It shall not require an installation program.

263 3.6.2 No License Requirements or Usage Restrictions

264 The implementation shall allow itself to be executed on any number of machines without the need for machine-
265 specifc license control procedures or activation. The implementation shall neither implement nor enforce any usage
266 controls or restrictions based on licenses, number of executions, presence of temporary fles, etc. No activation
267 dongles or other hardware shall be required. The implementations shall remain operable until at least October 31st,
268 2013.

269 3.6.3 Suffcient Documentation Must be Provided

270 Participants shall provide complete documentation of their implementations and detail any additional functionality
271 or behavior beyond those specifed here. The documentation must defne all (non-zero) vendor-defned error or

IREX IV: Concept, Evaluation Plan, and API Specifcation

https://libm-2.12.so
https://libc-2.12.so
https://usr/lib64/libstdc++.so.6.0.13

11 3.7 Runtime Behavior Requirements

272 warning return codes.

273 3.6.4 Disk-Space Limitations

274 The implementation may use confguration fles and supporting data fles. The total size of all libraries and confg-
275 uration and data fles shall be no more than a gigabyte.

276 3.7 Runtime Behavior Requirements

277 NOTE: If an implementation is buggy or does not comply with these requirements, NIST may not test or report
278 results for the implementation in publications.

279 3.7.1 No writing to Standard Error or Standard Output

280 The implementation will be tested in a non-interactive "batch" mode without terminal support. Thus, the submitted
281 library shall run quietly (i.e. it should not write messages to "standard error" or "standard output". An implementation
282 may write debugging messages to a log fle. This log fle must be declared in the documentation.

283 3.7.2 Exception Handling Should be Supported

284 The implementation should support error/exception handling so that, in the case of an unexpected error, a return
285 code is still provided to the calling application. The NIST test harness will gracefully terminate itself if it receives an
286 unexpected return code, as it usually indicates improper operation of the implementation.

287 3.7.3 No External Communication

288 Implementations running on NIST hosts shall not side-effect the runtime environment in any manner except through
289 the allocation and release of memory. Implementations shall not write any data to an external resource (e.g. a
290 server, connection, or other process). Implementations shall not attempt to read any resource other than those
291 explicitely allowed in this document. If detected, NIST reserves the right to cease evaluation of the software, notify
292 the participant, and document the activity in published reports.

293 3.7.4 Components Must be Stateless

294 All implementation components shall be "stateless" except as noted elsewhere in this document. This applies to
295 iris detection, feature extraction and matching. Thus, all functions should give identical output, for a given input,
296 independent of the runtime history. NIST will institute appropriate tests to detect stateful behavior. If detected, NIST
297 reserves the right to cease evaluation of the software, notify the participant, and document the activity in published
298 reports.

299 3.7.5 No Switches or Command-line Options

300 Each implementation must be capable of running stand-alone (i.e. no two submissions shall depend on the same
301 copies of libraries or confguration fles). Each implementation shall support only one "mode" of operation. NIST
302 will not entertain the option to "fip a switch" or modify a confguration fle to produce a new implementation. Rather,
303 the participant must submit each "mode" as a separate implementation.

304 3.7.6 Handling Large Enrollment Templates

305 Enrollment templates should not require more than 200K of persistent storage, on average, per enrolled image.
306 Participants should inform NIST if their implementations require more than 100K of persistent storage.

IREX IV: Concept, Evaluation Plan, and API Specifcation

12 4 API Specifcation

307 3.7.7 Minimum Speed Requirements

308 The implementations shall perform operations within the time constraints specifed by Table 7. These time limits
309 apply to the function call invocations defned in Section 7. Since NIST cannot regulate the maximum runtime per
310 operation, limitations are specifed as 90th percentiles (i.e. 90% of all calls to the function shall complete in less
311 time than the specifed duration). The limitations assume each template was generated from a single iris sample.

Table 7: Time limitations for specifc operations.

Operaton Timing Restriction

Creation of an enrollment template from a single 640x480 pixel image 1,000 ms

Creation of an identifcation template from a single 640x480 pixel image 1,000 ms

Finalization of a 1 million template enrollment database 7,200,000 ms

Search duration on a database of one million templates 20,000 ms

312 3.7.8 Failed Template Generations

313 When the implementation fails to produce an enrollment template, it shall still return a blank template (which can
314 be zero bytes in length). The template will be included in the manifest like all other enrollment templates, but is not
315 expected to contain any feature information.

316 4 API Specifcation

317 4.1 Overview

318 Library submissions must export and properly implement all of the functions defned in this section. The testing
319 process will proceed in two phases: (1) enrollment, followed by (2) identifcation. The order in which the test
320 harness will call the functions is outlined in Table 8.

321 The design refects the following testing objectives:

322 • Support distributed enrollment on multiple machines, with multiple processes running in parallel.

323 • Support graceful failure recovery and the ability to log the frequency of errors.

324 • Respect the black-box nature of proprietary templates.

325 • Provide fexibility and freedom to the participant to use arbitrary algorithms.

326 • Support the ability to collect timing statistics for specifc operations.

327 • Support the ability to collect statistics on template sizes.

Table 8: Program Flow

Stage

IREX IV: Concept, Evaluation Plan, and API Specifcation

Function Metrics of Interest

4.1 Overview 13

Enrollment
initialize_enrollment_session()
Allows the implementation to perform initialization procedures.
Provides the implementation with:

• advanced notice of the number of individuals and images
that will be enrolled.

• read-only access to the participant-supplied confguration
data directory.

• read-only access to the directory where the enrollment
database will reside.

convert_multiiris_to_enrollment_template()
Generates an enrollment template from one or more images of an
individual. The implementation is permitted read-only access to
the enrollment directory at this stage. The implementation must
be able to handle multiple calls to this function from multiple in-
stances of the calling application.

Statistics on template
size and generation
time.

fnalize_enrollment()
Constructs an enrollment database from the enrollment tem-
plates. Templates are provided to the function through a manifest
fle. The contents of the enrollment directory should be populated
with everything that is necessary to perform searches against
it. This function allows post-enrollment book-keeping, normal-
ization, and other statistical processing of the templates.

Pre-search initialize_feature_extraction_session()
Prepares the implementation for the generation of identifcation
templates. The implementation is allowed read-only access to
the enrollment directory during this stage.

convert_multiiris_to_identifcation_template()
Generates an identifcation template from one or more images of
an individual.

Statistics on template
size and generation
time.

Search initialize_identifcation_session()
Prepares the implementation for searches against the enrollment
database. The function may read data (e.g. templates) from the
enrollment directory and load them into memory.

identify_template()
Searches a template against the enrollment database and re-
turns a list of candidates.

Statistics on search
time and accuracy.

Compression
(optional)

convert_raster_to_cropped_and_masked()
Converts a raw image to an ISO/IEC 19794-6 Type 7 (cropped
and masked) image.

IREX IV: Concept, Evaluation Plan, and API Specifcation

14 4.2 Functions

328 4.2 Functions

329 Functions

330 • int32_t get_pid (char ∗sdk_identifer, char ∗email_address)

331 Retrieves a self-assigned identifer and contact email address for the software under test.

332 • int32_t get_max_template_sizes (uint32_t ∗max_enrollment_template_size, uint32_t ∗max_recognition_-
333 template_size)

334 Retrieves the maximum (per-image) enrollment and search template sizes.

335 • int32_t initialize_enrollment_session (const char ∗confguration_location, const char ∗enrollment_directory,
336 const uint32_t num_persons, const uint32_t num_images)

337 Initialization function, called once prior to one or more calls to convert_multiiris_to_enrollment_template().

338 • int32_t convert_multiiris_to_enrollment_template (const MULTIIRIS ∗input_irides, MULTISEGMENTATION
339 ∗output_properties, uint32_t ∗template_size, uint8_t ∗proprietary_template)

340 Generates an enrollment template from a MULTIIRIS object.

341 • int32_t fnalize_enrollment (const char ∗enrollment_directory, const char ∗edb_name, const char ∗edb_-
342 manifest_name)

343 Finalization function, used to construct an enrollment database from an EDB and its manifest.

344 • int32_t initialize_feature_extraction_session (const char ∗confguration_location, const char ∗enrollment_-
345 directory, uint64_t ∗expected_memsize)

346 Initialization function, to be called once prior to one or more calls to convert_multiiris_to_identifcation_template().

347 • int32_t convert_multiiris_to_identifcation_template (const MULTIIRIS ∗input_irides, MULTISEGMENTATIO-
348 N ∗output_properties, uint32_t ∗template_size, uint8_t ∗identifcation_template)

349 Generates an identifcation template from a MULTIIRIS object.

350 • int32_t initialize_identifcation_session (const char ∗confguration_location, const char ∗enrollment_-
351 directory)

352 Initialization function, to be called once prior to one or more calls to identify_template().

353 • int32_t identify_template (const uint8_t ∗identifcation_template, const uint32_t identifcation_template_size,
354 const uint32_t candidate_list_length, CANDIDATE ∗const ∗candidate_list, uint8_t ∗decision)

355 Searches a template against the enrollment database and returns a list of candidates.

356 • int32_t convert_raster_to_cropped_and_masked (const ONEIRIS ∗input_iris, ONEIRIS ∗output_iris)

357 Convert a raw (640x480 or 480x480) image to an ISO/IEC 19794-6 Type 7 (cropped and masked) image.

358 4.2.1 Function Documentation

359 4.2.1.1 int32_t get_pid (char ∗ sdk_identifer, char ∗ email_address)

360 Retrieves a self-assigned identifer and contact email address for the software under test.

Parameters

361

362

out sdk_identifer A hexidecimal integer stored as a null terminated ASCII string. The value can
be whatever the participant chooses, but must be unique for each implementa-
tion. 5 bytes will be pre-allocated for this.

out email_address The point of contact for the software under test, stored as a null terminated
ASCII string. 64 bytes will be pre-allocated for this.

IREX IV: Concept, Evaluation Plan, and API Specifcation

15 4.2 Functions

Returns

363 Zero indicates success. Other values indicate a vendor-defned failure.

364 4.2.1.2 int32_t get_max_template_sizes (uint32_t ∗ max_enrollment_template_size,
365 uint32_t ∗ max_recognition_template_size)

366 Retrieves the maximum (per-image) enrollment and search template sizes.

367 These values will be used by the test harness to pre-allocate space for template data. For a MULTIIRIS containing K
368 images, the test-harness will pre-allocate K times the provided value before calling convert_multiiris_to_enrollment-
369 _template() or convert_multiiris_to_identifcation_template().

Parameters

370

371

out max_enrollment-
_template_size

The maximum (per-image) size of an enrollment template in bytes.

out max_-
recognition_-

template_size

The maximum (per-image) size of a search template in bytes.

Returns

372 Zero indicates success. Other values indicate a vendor-defned failure.

373 4.2.1.3 int32_t initialize_enrollment_session (const char ∗ confguration_location,
374 const char ∗ enrollment_directory, const uint32_t num_persons, const uint32_t
375 num_images)

376 Initialization function, called once prior to one or more calls to convert_multiiris_to_enrollment_template().

377 The implementation shall tolerate execution of multiple calls to this function from different processes running on the
378 same machine. Each process may be reading and writing to the enrollment directory.

Parameters

379

380

in confguration_-
location

Path to a read-only directory containing vendor-supplied confguration param-
eters and/or runtime data fles.

in enrollment_-
directory

The directory will be initially empty, but may have been initialized and populated
by separate invocations of the enrollment process. The software may populate
this folder in any manner it sees ft.

in num_persons The number of persons who will be enrolled in the database.
in num_images The number of images, summed over all identities, that will be used to build the

enrollment database.

IREX IV: Concept, Evaluation Plan, and API Specifcation

16

398

4.2 Functions

Returns

381

382

Return Value Meaning
0 Success
2 The confguration data is missing, unreadable, or in an unexpected format.

4
An operation on the enrollment directory failed (e.g. insuffcient permissions, insuff-
cient disk-space, etc).

6 The software cannot support the number of persons or images requested
Other Vendor-defned failure

383 4.2.1.4 int32_t convert_multiiris_to_enrollment_template (const MULTIIRIS ∗
384 input_irides, MULTISEGMENTATION ∗ output_properties, uint32_t ∗
385 template_size, uint8_t ∗ proprietary_template)

386 Generates an enrollment template from a MULTIIRIS object.

In addition to handling raw OPS-II images, this function must be able to process ISO/IEC 19794-6 Type 7 (cropped
387

and masked) images.

388 If the function returns a zero exit status, the calling application will store the template in the EDB, which is later be
389 passed to fnalize_enrollment(). If the function returns a value of 8, NIST will debug. Otherwise, a non-zero return
390 value will indicate a failure to enroll. The template will still be added to the EDB and the manifest to ensure that an
391 N person enrollment database contains N entries. If the function crashes, NIST will include a zero-length template
392 in the EDB and the manifest. The fnalization process must be able to process zero-length templates.

393 IMPORTANT: The implementation shall not attempt to write to the enrollment directory (nor to other resources)
394 during this call. Data collected from the MULTIIRIS object should be stored in the template or created from the
395 templates during the fnalization step.

Parameters

396

397

in input_irides The iris samples from which to generate the template.
out output_-

properties
Segmentation and quality information for each iris sample. The NIST test har-
ness will pre-allocate the memory for the ONESEGMENTATION objects (one
per ONEIRIS object). The calling application shall NOT initialize this memory.

out template_size The size, in bytes, of the output template.
out proprietary_-

template
Template generated from the MULTIIRIS object. The template’s format is pro-
prietary and NIST will not access any part of it other than to store it in the EDB.
The memory for the template will be pre-allocated by the NIST test harness.
The implementation shall not allocate this memory.

Returns

Return Value Meaning
0 Success.
2 Elective refusal to process the MULTIIRIS.
4 Involuntary failure to extract features.
6 Elective refusal to produce a template.
8 Cannot parse the input data.
Other Vendor-defned failure.

IREX IV: Concept, Evaluation Plan, and API Specifcation

399

17

414

4.2 Functions

400 4.2.1.5 int32_t fnalize_enrollment (const char ∗ enrollment_directory, const char ∗
401 edb_name, const char ∗ edb_manifest_name)

402 Finalization function, used to construct an enrollment database from an EDB and its manifest.

403 Finalization shall be performed after all enrollment processes are complete. It should populate the contents of
404 the enrollment directory with everything that is necessary to perform searches against it. This function allows
405 post-enrollment book-keeping, normalization, and other statistical processing of the generated templates. It should
406 tolerate being called multiple times, altough subsequent calls should probably not do anything.

407 The format of the two input fles is described in the table below. The enrollment database (EDB) fle stores a
408 concatenation of the templates generated by calls to convert_multiiris_to_enrollment_template() in binary format.
409 It does not contain a header or any delimiters between templates. This fle can potentially be several gigabytes
410 in size. The EDB manifest is an ASCII fle that stores information about each template in the EDB fle. Each line
411 contains three space-delimited felds specifying the id, length, and offset of the template in the EDB fle. If the EDB
412 fle contains N templates, the manifest will contain N lines.

413 For all intents and purposes, the template id can be regarded as a person id.

Field Description Datatype Size
Template ID Non-negative decimal integer, not necessarily zero-indexed or in any

particular order.
4 bytes

Template Length Non-negative decimal integer. 4 bytes
Offset of template
in EDB fle

Non-negative decimal integer. 8 bytes

Example:
901231 1024 0
5834891 0 1024
50403 1024 1024
...

Parameters

415

416

in enrollment_-
directory

The top-level directory in which the enrollment database will reside. The imple-
mentation will have read and write access to this directory.

in edb_name The path to a single read-only fle containing the concatenated templates. -
The implementation should extract content from this fle and place it in the
enrollment directory.

in edb_manifest_-
name

The path to a single read-only fle containing the EDB manifest.

IREX IV: Concept, Evaluation Plan, and API Specifcation

18 4.2 Functions

Returns

417

418

Value Meaning
0 Success.
2 Cannot locate the input data - the input fles or names seem incorrect.
4 An operation on the enrollment directory failed.
6 One or more template fles are in an incorrect format.
Other Vendor-defned failure.

419 4.2.1.6 int32_t initialize_feature_extraction_session (const char ∗
420 confguration_location, const char ∗ enrollment_directory, uint64_t ∗
421 expected_memsize)

422 Initialization function, to be called once prior to one or more calls to convert_multiiris_to_identifcation_template().

423 The implementation shall tolerate execution of multiple calls to this function from different processes running on the
424 same machine.

Parameters

425

426

in confguration_-
location

Path to a read-only directory containing vendor-supplied confguration param-
eters and/or runtime data fles.

in enrollment_-
directory

The top-level directory in which the enrollment data was placed when fnalize-
_enrollment() was called.

in expected_-
memsize

Given the enrollment data, the implementation shall specify the expected or
peak memory size (in bytes) that will be used during searching.

Returns

427

428

Return Value Meaning
0 Success.
2 The confguration data is missing, unreadable, or in an unexpected format.
4 An operation on the enrollment directory failed.
Other Vendor-defned failure.

429 4.2.1.7 int32_t convert_multiiris_to_identifcation_template (const MULTIIRIS ∗
430 input_irides, MULTISEGMENTATION ∗ output_properties, uint32_t ∗
431 template_size, uint8_t ∗ identifcation_template)

432 Generates an identifcation template from a MULTIIRIS object.

In addition to handling raw OPS-II images, this function must be able to process ISO/IEC 19794-6 Type 7 (cropped
433

and masked) images.

434 If the function returns a zero exit status, the template will be used for matching. If the function returns a value of 8,
435 NIST will debug. Otherwise, a non-zero return value will indicate a failure to acquire and the template will not be
436 used in subsequent search operations.

Parameters

437

438

in input_irides The iris samples from which to generate the template.
out output_-

properties
Segmentation and quality information for each iris sample. The NIST test har-
ness will pre-allocate the memory for the ONESEGMENTATION objects (one
per ONEIRIS object). The implementation shall NOT initialize this memory.

IREX IV: Concept, Evaluation Plan, and API Specifcation

19 4.2 Functions

out output_-
properties

Segmentation and quality information for each iris sample. The NIST test har-
ness will pre-allocate the memory for the ONESEGMENTATION objects.

out template_size The size, in bytes, of the output template
out identifcation_-

template
Template generated from the MULTIIRIS object. The template’s format is pro-
prietary and NIST will not access any part of it other to pass it to identify_-
template() and possibly store it temporarily. The memory for the template will
be pre-allocated by the NIST test harness. The implementation shall not allo-
cate this memory.

Returns

439

440

Return Value Meaning
0 Success.
2 Elective refusal to process the MULTIIRIS.
4 Involuntary failure to extract features.
6 Elective refusal to produce a template.
8 Cannot parse the input data.
Other Vendor-defned failure.

441 If the MULTIIRIS contains multiple images, then a zero status should be returned as long as feature information
442 could be extracted from at least one of the images.

443 4.2.1.8 int32_t initialize_identifcation_session (const char ∗ confguration_location,
444 const char ∗ enrollment_directory)

445 Initialization function, to be called once prior to one or more calls to identify_template().

446 The function may read data (e.g. templates) from the enrollment directory and load them into memory.

Parameters

447

448

in confguration_-
location

Path to a read-only directory containing vendor-supplied confguration param-
eters and/or runtime data fles.

in enrollment_-
directory

The top-level directory in which the enrollment data was placed when fnalize-
_enrollment() was called.

Returns

449

450
Return Value Meaning
0 Success.
Other Vendor-defned failure.

451 4.2.1.9 int32_t identify_template (const uint8_t ∗ identifcation_template, const
452 uint32_t identifcation_template_size, const uint32_t candidate_list_length,
453 CANDIDATE ∗const ∗ candidate_list, uint8_t ∗ decision)

454 Searches a template against the enrollment database and returns a list of candidates.

455 NIST will typically set the candidate list length to operationally feasible values (e.g. 20), but may decide to extend it
456 to values that approach the size of the enrollment database.

IREX IV: Concept, Evaluation Plan, and API Specifcation

20 4.2 Functions

Parameters

457

458

in identifcation_-
template

A template generated by a call to convert_multiiris_to_identifcation_template().

in identifcation_-
template_size

The size, in bytes, of the template.

in candidate_list_-
length

The length of the candidate list array.

out

out

candidate_list

decision

An array (of length candidate_list_length) of pointers to candidates. Each can-
didate shall be populated by the implementation and shall be sorted in ascend-
ing order of distance score (e.g. the most similar entry shall appear frst). The
candidate list must be populated with sensible values. The memory for the
candidates will be pre-allocated by the NIST test harness.
A boolean decision on whether the implementation believes the top ranked
candidate matches the identifcation template (1=yes, 0=no). This decision
should attempt to minimize the cost function for the given class type (see
Section 2.1.2).

Returns

459

460

Return Value Meaning
0 Success.
2 The input template is defective.
Other Vendor-defned failure.

461 4.2.1.10 int32_t convert_raster_to_cropped_and_masked (const ONEIRIS ∗ input_iris,
462 ONEIRIS ∗ output_iris)

463 Convert a raw (640x480 or 480x480) image to an ISO/IEC 19794-6 Type 7 (cropped and masked) image.

This function shall perform the same operations that were required to generate a KIND 7 record in IREX I. This
involves cropping the image and masking the sclera and eyelids with a solid color. As described in ISO/IEC
19794-6, cropping shall provide a margin 0.6R wide on both the left and right sides of the iris. The margin above

464
and below the iris shall be 0.2R. The upper and lower eyelids shall be masked with a color of 128 while the sclera
shall be masked with a color of 200. The boundary between the sclera and eyelids shall be smoothed. See
ISO/IEC 19794-6 for further description.

Implementation of this function is optional. Implementations that do not support cropping and masking shall
return a value of 2. Otherwise, a zero exit status indicates success and the image will be used for matching. If the

465
function returns a value of 8, NIST will debug. Other return values shall indicate an error and the output image
will not be used for matching.

Parameters

466

467

in input_iris The input iris.
out output_iris The result of the masking and cropping operations. Memory for the raster

data will already have been allocated prior to the function call. The amount of
memory allocated will be equal to that of the input iris.

IREX IV: Concept, Evaluation Plan, and API Specifcation

https://4.2.1.10

21 5 Supporting Data Structures

Returns

468

469

Return Value Meaning
0 Success.
2 The implementation does not support this function.
4 Involuntary failure to localize boundaries or perform masking.
6 Elective refusal to produce the output on quality grounds.
8 Cannot parse the input data.
Other Vendor-defned failure.

470 5 Supporting Data Structures

471 This section describes the data structures used by the API.

472 5.1 CANDIDATE Struct Reference

473 Defnes a structure that holds a single candidate.

474 Public Attributes

475 • uint8_t failed

476 Indicates whether the candidate is valid (0=valid, 1-255=invalid).

477 • uint32_t template_id

478 Template identifer from the enrollment database.

479 • double distance_score

480 Measure of distance between the searched template and the candidate.

481 • double probability

482 Estimate of the probability that the biometric data and candidate belong to different persons.

483 5.1.1 Detailed Description

484 Defnes a structure that holds a single candidate.

485 5.1.2 Member Data Documentation

486 5.1.2.1 uint8_t failed

487 Indicates whether the candidate is valid (0=valid, 1-255=invalid).

488 5.1.2.2 uint32_t template_id

489 Template identifer from the enrollment database.

490 5.1.2.3 double distance_score

491 Measure of distance between the searched template and the candidate.

492 Lower scores indicate greater similarity. The distance score must be non-negative, unless the search template is
493 somehow broken, in which case it shall be set to -1.

IREX IV: Concept, Evaluation Plan, and API Specifcation

495

500

505

510

515

520

22 5.2 MULTIIRIS Struct Reference

494 5.1.2.4 double probability

Estimate of the probability that the biometric data and candidate belong to different persons.

496 Stated differently, it shall be the probability that a comparison between two randomly chosen people would produce
497 a distance score less than or equal to the distance score reported above.
498 broken, this value shall be set to -1.

499 5.2 MULTIIRIS Struct Reference

Defnes a structure that holds an array of irides for a single person.

501 Public Attributes

502 • uint32_t num

503 Number of irides.

504 • ONEIRIS ∗∗ irides

Zero-indexed array of pointers to the irides.

506 5.2.1 Detailed Description

507 Defnes a structure that holds an array of irides for a single person.

508 5.2.2 Member Data Documentation

509 5.2.2.1 uint32_t num

Number of irides.

511 5.2.2.2 ONEIRIS∗∗ irides

512 Zero-indexed array of pointers to the irides.

513 5.3 MULTISEGMENTATION Struct Reference

514 Defnes a structure that holds an array of ONESEGMENTATION objects.

Public Attributes

516 • uint32_t num

517 Number of ONESEGMENTATION objects.

518 • ONESEGMENTATION ∗∗ segs

519 Zero-indexed array of pointers to ONESEGMENTATION objects.

5.3.1 Detailed Description

521 Defnes a structure that holds an array of ONESEGMENTATION objects.

If the search template is somehow

IREX IV: Concept, Evaluation Plan, and API Specifcation

23 5.4 ONEIRIS Struct Reference

522 5.3.2 Member Data Documentation

523 5.3.2.1 uint32_t num

524 Number of ONESEGMENTATION objects.

525 5.3.2.2 ONESEGMENTATION∗∗ segs

526 Zero-indexed array of pointers to ONESEGMENTATION objects.

527 5.4 ONEIRIS Struct Reference

528 Defnes a structure that holds a single iris with corresponding attributes.

529 Public Attributes

530 • uint8_t eye

531 Eye label (subject’s left or right eye).

532 • uint16_t image_width

533 Image width in pixels.

534 • uint16_t image_height

535 Image height in pixels.

536 • uint8_t image_type

537 Image type integer code.

538 • uint16_t camera

539 The camera sensor ID.

540 • uint8_t ∗ data

541 Pointer to image raster data, 8 bits-per-pixel.

542 5.4.1 Detailed Description

543 Defnes a structure that holds a single iris with corresponding attributes.

544 5.4.2 Member Data Documentation

545 5.4.2.1 uint8_t eye

546 Eye label (subject’s left or right eye).

The eye label information for the OPS-II dataset has proven unreliable and will not be used for testing. This feld
547

will always be set to 0, indicating that it is unspecifed or unknown.
548

549 5.4.2.2 uint16_t image_width

550 Image width in pixels.

551 5.4.2.3 uint16_t image_height

552 Image height in pixels.

IREX IV: Concept, Evaluation Plan, and API Specifcation

5.5 ONESEGMENTATION Struct Reference 24

553 5.4.2.4 uint8_t image_type

554

555

Image type integer code.

This feld has different meaning in IREX IV than it did IREX III. A value of 0 indicates that the image will be
either 640x640 or 480x480 with no geometric constraints on the locations of the pupil or iris boundaries. A
value of 7 indicates an ISO/IEC 19794-6 Type 7 (cropped and masked) image, the result of a call to con-
vert_raster_to_cropped_and_masked().

556 5.4.2.5 uint16_t camera

557 The camera sensor ID.

558 This feld will always be set to 0x0000, meaning that it is either unknown or unspecifed.

559 5.4.2.6 uint8_t∗ data

560 Pointer to image raster data, 8 bits-per-pixel.

561 5.5 ONESEGMENTATION Struct Reference

562 Defnes a structure that holds segmentation and quality information for an iris sample.

563 Public Attributes

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

• double iris_radius

Iris radius in pixels.

• uint16_t iris_center_x

x coordinate of iris center.

• uint16_t iris_center_y

y coordinate of iris center.

• double pupil_radius

Pupil radius in pixels.

• uint16_t pupil_center_x

x coordinate of pupil center.

• uint16_t pupil_center_y

y coordinate of iris center.

• uint8_t quality

Assessment of iris sample quality.

• uint8_t failed

Indicates whether segmentation of the iris failed (0=success, 1=failed).

580 5.5.1 Detailed Description

581 Defnes a structure that holds segmentation and quality information for an iris sample.

582 5.5.2 Member Data Documentation

583 5.5.2.1 double iris_radius

584 Iris radius in pixels.

IREX IV: Concept, Evaluation Plan, and API Specifcation

6 References 25

585 5.5.2.2 uint16_t iris_center_x

586 x coordinate of iris center.

587 5.5.2.3 uint16_t iris_center_y

588 y coordinate of iris center.

589 5.5.2.4 double pupil_radius

590 Pupil radius in pixels.

591 5.5.2.5 uint16_t pupil_center_x

592 x coordinate of pupil center.

593 5.5.2.6 uint16_t pupil_center_y

594 y coordinate of iris center.

595 5.5.2.7 uint8_t quality

596 Assessment of iris sample quality.

597 Quality is a prediction of how well the sample will perform when matched. 254 indicates quality assessment is
598 unsupported. 255 indicates a failed attempt to assign quality. Otherwise, quality values shall range from 0 to 100,
599 with higher values indicating better quality.

600 5.5.2.8 uint8_t failed

601 Indicates whether segmentation of the iris failed (0=success, 1=failed).

602 6 References

603 [1] P. Grother, G.W. Quinn, J.R. Matey, M. Ngan, W. Salamon, G. Fiumara, and C. Watson. IREX: Performance of
604 Iris Identifcation Algorithms. Technical report, NIST, 2011. 1, 3

605 [2] G. Quinn and P. Grother. IREX III supplement I: Failure analysis. Technical report, NIST, 2011. 3, 7

606 [3] P. Grother, G.W. Quinn, and Jonathan Phillips. Report on the Evaluation of 2D Still-image Face Recognition
607 Algorithms. Technical report, NIST, 2010. 3

608 [4] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki. The DET curve in assessment of detection
609 task performance. In Proc. Eurospeech, pages 1895–1898, 1997. 3

610 [5] R. Bolle, J. Connell, S. Pankanti, N. Ratha, and A. Senior. Guide to Biometrics. Springer, 2004. 3

611 [6] H. Drolon, F. Devaux, A. Descampe, Y. Verschueren, D. Janssens, and B. Macq. OpenJPEG. http://www.
612 openjpeg.org/. 5

613 [7] David Taubman. Kakadu software. www.kakadusoftware.com. 5

614 [8] E. Tabassi, P. Grother, and W. Salamon. IREX - IQCE performance of iris image quality assessment algorithms.
615 Technical report, NIST, 2011. 6

IREX IV: Concept, Evaluation Plan, and API Specifcation

http://www.openjpeg.org/
http://www.openjpeg.org/
http://www.openjpeg.org/
www.kakadusoftware.com

26 6 References

616 [9] Patrick Grother and Elham Tabassi. Performance of biometric quality measures. IEEE Trans. Pattern Anal.
617 Mach. Intell, pages 531–543, 2007. 7

IREX IV: Concept, Evaluation Plan, and API Specifcation

	IREX IV Concepts
	Overview
	Market Drivers
	Application Scenarios

	Evaluation Overview
	Performance Metrics
	Iris Datasets
	Test Environment
	Reporting of Results

	Software Submission
	Participation Requirements
	Submission Procedure
	Requirements for Library Submissions
	Linking Requirements
	push0 g 0 GpopSingle-thread Requirementhighlightpush0 g 0 Gpoptowidthheightdepth
	Installation Requirements
	Runtime Behavior Requirements

	API Specification
	Overview
	Functions

	Supporting Data Structures
	CANDIDATE Struct Reference
	MULTIIRIS Struct Reference
	MULTISEGMENTATION Struct Reference
	ONEIRIS Struct Reference
	ONESEGMENTATION Struct Reference

	References

