
R o b o C u p 2 0 0 4
R e s c u e R o b o t L e a g u e C o m p e t i t i o n

L i s b o n , P o r t u g a l
J u n e 2 7 – J u l y 5 , 2 0 0 4

w w w . r o b o c u p 2 0 0 4 . p t

RoboCupRescue - Robot League Team
Resquake, Iran

Ehsan Aboosaeedan1, Ali Jazayeri2
 ,Arash Kalantari3 , Siamak Kooshayee4 , Ehsan Mihankhah5 , Hesam

Semsarilar6

1 K.N.Toosi University Of Technology
Seyed Khandan Bridge, Shariati St.,

 Tehran , Iran +98 21 8600075
ehsanaboo@hotmail.com

2 K.N.Toosi University Of Technology
Seyed Khandan Bridge, Shariati St.,

 Tehran , Iran +98 21 8600075
sajazayerim@yahoo.com

3 K.N.Toosi University Of Technology
Daneshgah Bulv., Forth Square Of TehranPars,

 Tehran , Iran +98 21 8600075
Arash1362@yahoo.com

4 K.N.Toosi University Of Technology
Daneshgah Bulv., Forth Square Of TehranPars,

 Tehran , Iran +98 21 8600075
s_weasel_k@yahoo.com

5 K.N.Toosi University Of Technology
Seyed Khandan Bridge, Shariati St.,

 Tehran , Iran +98 21 8600075
ehsanmihankhah@yahoo.com

6 K.N.Toosi University Of Technology
Daneshgah Bulv., Forth Square Of TehranPars,

 Tehran , Iran +98 21 8600075
hesam2k@yahoo.com

Abstract.

mailto:ehsanaboo@hotmail.com
mailto:sajazayerim@yahoo.com
mailto:Arash1362@yahoo.com
mailto:s_weasel_k@yahoo.com
mailto:ehsanmihankhah@yahoo.com
mailto:hesam2k@yahoo.com

 Resquake is the representative of K.N.Toosi University of Technology in In-
ternational RoboCup Rescue 2004. The set consists of three Robots and three small
moving stations carrying the positioning system. This paper explains different parts of
a sample robot which is not any of the above robots but we have implemented the
main ideas we found critical for a rescue robot to have, in this robot. The final set
contains a big robot which can raise a camera about two meters and has differential
steering locomotion system which enables the robot to climb stairs and ramps. The
second robot is a very tiny robot with camera lifter and two speed gearbox and differ-
ential steering locomotion system. Both robots have camera, gas sensor, light sensor,
heat sensor, motion detection system, sound detection system, wireless LAN and
transceivers and other necessary equipments described in details later. Third robot is a
flying robot which will be only carrying a wireless camera. In this paper we will go
through the details of the sample robot and as you will see, almost all the capabilities
of the main robots are partially implemented in this sample robot.

Team Members and Their Contributions

• Ehsan Aboosaeedan Motor Drivers and Power Supply and Electrical

 Design
• Ali Jazayeri Microcontroller And Embedded System And

 Electrical Design
• Arash Kalantari Mechanical Design And Simulation
• Siamak Kooshayee Mechanical Design And Implementation
• Ehsan Mihankhah Software Development And Operator
• Hesam Semsarilar Mechanical Design And Implementation
• Dr. HemidReza Tghirad Advisor
• Nima Mokhtarzade Sponsor

1. Operator Station Set-up and Break-Down (10 minutes)

Everything is packed in a toolbox (the Operator's Laptop and printer and other
accessories such as joystick and mouse and a bunch of papers and writing tools
and …), and each robot has its own package (Three robots and a set of Positioning
system). So we need five people each to carry on box, Operator will not do any-
thing, so we have all the 6 members of the team in setup and Break-Down Time.
Each person will setup the parts in the box he is carrying. We estimate the setup
time would take 3 minutes and the Break-Down time will take 5 minutes.

 Hesam will carry the toolbox. He will plug the Laptop accessories (joystick,
mouse, printer, transceivers, USB wireless LAN card, speakers, the mobile phone
(for uploading files to the Resquake website), and he will put the papers and writ-
ing tools in a places where the operator has gotten used to while practicing before
the competition.

 Ali is carrying the positioning system. He will setup small robots which will
carry the stations to the area. (There are three robots carrying three transceivers
and make the triangulation system).

 Ehsan (Aboosaeedan) and siamak and Arash will setup the three main robots.
 Ehsan (Mihankhah) is the operator and will not do anything.
 Break-Down procedure is similar to setup procedure.

2. Communications

Communication part consists of four different parts and four different frequency
ranges (including alternative communication system).

First part is wireless LAN cards and access point of IEEE 802.11a class which are
working in 8 different switchable channels in 5.4 GHz frequency range. Wireless LAN
transmits data and video stream.

Second is the back up system for data transmission, which will be a pair of trans-
ceivers operating in 1 GHz frequency range with four switchable channels.

Third one is the video backup system, the video will be sent with a video sender
which is working in 1 GHz frequency range with four switchable channels.

Last one is the positioning system. Three transceivers are working in 1GHz fre-
quency range with four switchable channels.

Data and Video Transmission, Software Part:

 Here is the point where LAN programming may seem to be the most impor-

tant and most difficult part. Data and video transmission can be done using VB and
VC++.

First let us talk about data transmission codes in VB and VC++

Data transmission using VB:
 In VB everything can be done using WinSock control. This control lets us act

both as server and client. If we are the server we must specify the port which the con-
trol is going to listen to. Let us name the server Winsock Control "ServerSock".

In Form_Load subroutine the following code should be written:

Private Sub Form_Load()
 .
 .
 .

 Rem Port Number is a Long Variable which the Port
 Rem Number has been assigned to it
 ServerSock.LocalPort = PortNumber
 Rem Now The Control Should Wait For a Request
 ServerSock.Listen
 .
 .
 .
End Sub

 Then the control should accept the request from the client. When the client

tries to connect to this port the Connection Request event of WinSock control occurs.
In this Subroutine we should accept the coming request.

Private Sub ServerSock_ConnectionRequest(ByVal requestID As Long)

 If ServerSock.State <> sckClosed Then ServerSock.Close
 ServerSock.Accept (requestID)

End Sub

 Now the connection is established and the object can send and receive data. If

we want to send data the following code is needed:

 .
 .
 .
 Rem StringToBeSent is a String Variable which the data to be
 Rem sent has been assigned to it
 ServerSock.SendData StringToBeSent
 .
 .
 .

When data comes to the port which this control is listening to, The Data Arrival

event occurs.

Private Sub ServerSock_DataArrival(ByVal bytesTotal As Long)
Rem DataComing Is String Variable whcich the coming
Rem data will be assigned to it

 ServerSock.GetData DataComing
End Sub

 Nothing else should be done o the server. Client Part is just as simple as

Server part. Let us name the Client WinSock Control "ClientSock" .In Form_Load or
subroutine the following code should be written:

Private Sub Form_Load()
 .
 .
 .

 Rem PortNumber is a Long Variable which the Port Number has
 Rem been assigned to it
 ClientSock.RemotePort = PortNumber
 Rem ServerName is a String Variable which the Server Name
 Rem has been assigned to it
 ClientSock.RemotHost = ServerName
 Rem Now The Control Should Ask For COnnection
 ClientSock.Connect
 .
 .
 .
End Sub

 If the server accepts the connection, this control can send and receive data.

The code is exactly the same as the code which has been described above for the
ServerSock control.

 The Operator Interface can be either the client or the server and it makes no

difference to choose any computer (the operator's computer or the one on the robot) as
server.

 Now let's see the code needed for doing the same thing in VC++.

Data transmission using VC++:
 If we want to create a data transmitting program in VC++ first we have to ac-

tivate the "Use Windows Sockets" option in the application wizard. Let's create a MFC
Application (EXE) Dialog Based type project.

 First we should drive a class from CAsyncSocket Class. Lets Call it "CSock-
etDriven" .

 Then we should identify the window which is going to use Windows Sockets
Service. So we add the following function to this Class

// pMyWnd is a pointer to the window which is using Win
// dows Socket Service
void CSocketDriven::SetParent(CDialog *pWnd)
{

 pMyWnd = pWnd;
}

The following Private Virtual Void functions should be added to this Class to re-

spond to the class events

//CMultipleSocketsDlg is the name of the Dialog Control which is
using

//the Socket Service
void CSocketDriven::OnAccept(int nErrorCode)
{

 ((CMultipleSocketsDlg*)pMyWnd)->OnAccept();
}

void CSocketDriven::OnConnect(int nErrorCode)
{

 ((CMultipleSocketsDlg*)pMyWnd)->OnConnect();
}

void CSocketDriven::OnSend(int nErrorCode)
{

 ((CMultipleSocketsDlg*)pMyWnd)->OnSend();
}

void CSocketDriven::OnClose(int nErrorCode)
{

 ((CMultipleSocketsDlg*)pMyWnd)->OnClose();
}

void CSocketDriven::OnReceive(int nErrorCode)
{

 ((CMultipleSocketsDlg*)pMyWnd)->OnReceive();

}

 Now, the Class is ready. We need to define Server Socket and Client Socket

of this Class type. Let's name the Client object "Connect1" and the Server object "Lis-
ten1" .In the InIt function of the Dialog we should do the initializations. The following
function should be added to the dialog class.

void CMultipleSocketsDlg::SetInitialValues()
{

// m_Name1 is a CString Variable which keeps the IP address of
the

//Server And m_Port1 is a long Variable which
//keeps the number of communication Port

 m_Name1 = "169.254.145.141";
 m_Port1 = 3000;
 Listen1.SetParent(this);
 Connect1.SetParent(this);

}

The following functions trigger the events of the CDrivenSocket objects:

void CMultipleSocketsDlg::OnAccept()
{

 Listen1.Accept(Connect1);
}

void CMultipleSocketsDlg::OnConnect()
{
}

void CMultipleSocketsDlg::OnClose()
{

 }
void CMultipleSocketsDlg::OnSend()

 {
}

void CMultipleSocketsDlg::OnReceive()
{

 char *pBuf = new char[1025];
 int iBufSize = 1024;
 int SocketErr;
 CString MyData;
 SocketErr = Connect1.Receive(pBuf,iBufSize);
 if (SocketErr == SOCKET_ERROR)
 AfxMessageBox("Error Receiving");
 pBuf[SocketErr] = NULL;
 MyData = pBuf;

}

 Some of the above functions are not doing anything but we have to define

them because in the CSocketDriven Class we have called them.
 Now, we can choose between being the Client and the Server. The following

function prepares the program for being either a client or a server.

void CMultipleSocketsDlg::ClientOrServer()
{

 // m_Client is a int variable which selects the
// program to be either a Client or a Server

 if (m_Client1 == 0)
 {
 Connect1.Create();

 Connect1.Connect(m_Name1,m_Port1);
 }
 else
 {
 Listen1.Create(m_Port1);
 Listen1.Listen();
 }

}

Now, Regardless of being Client or Server we can send data using the following

function"

void CMultipleSocketsDlg::SendData()
{

 CString Dummy;
 // m_Message is a CString Variable which contains the

//data which is to be sent
 Dummy.Format("%s Port: %d",m_Message,m_Port1);
 if(Connect1.Send(LPCTSTR(Dummy),Dummy.GetLength()) ==

SOCKET_ERROR)
 AfxMessageBox(Dummy);

}

Receive method is clarified in the Socket events.
 After making an interface we can run two copies of this program and set one

of them Client and the other one Server to send and receive data.

 After Talking about data transmission we take a look at Video transmission.

Because of using an ActiveX in programs to send video stream and receive it with the
same ActiveX control, there will not be much difference between VB and VC++ pro-
grams, as we have the same functions available in both environments. So Lets see the
VB program keeping in mind that the VC++ program is almost the same. For sending
video we need a camera with AV output and a Capture Card (AV signal should be
changed to digital ,so we can work with it) or we can use a Camera with USB output(
like a Web Cam).The method will actually make no difference in programming, so we
tried both systems and result was excellent in both cases. We also need an ActiveX
control .We have used VideoCapX Control to send stream and receive frames on the
receiver computer.

Video Transmission in VB :
 The following Code sends Video on the LAN:

Private Sub Form_Load()
 Rem VideoCapX1 is the name of the VideoCapX Control
 Rem which is being used on the form

 VideoCapX1.Connected = True
 VideoCapX1.SetVideoFormat 640,480
 VideoCapX1.Preview = True
 VideoCapX1.ServerMode = True

End Sub

 On the receiver we need to get frames from the LAN in short intervals using a
timer and assign the received value to the picture property of a PictureBox. The fol-
lowing code shows the solution:

Private Sub Timer1_Timer()

Rem HostName is a String Variable which keeps the IP
Rem Address of the Host and ClientVideoCapX is the name
Rem of the VideoCapX Control which is used to receive the

 Rem frames sent by the Host
 Picture1.Picture = ClientVideo_

CapX.ReceiveFrame(HostName)
End Sub

 We may also need to take a picture of victim or take picture from an impor-

tant part of the arenas, so we should be able to capture a picture from the video. To
capture a picture from video stream the following code is needed:

Picture1.Picture = VideoCapX.GrabFrame

 Then we will be able to save the picture on hard disk (and as you will see

later, we can right it on a CD as a part of report) using SavePicture function :

 SavePicture Picture1.Picture,PhysicalMemoryAddress$

 There is nothing left to do with video stream. The above codes can be simi-

larly written in VC++ and the result will be significantly faster.
There is a subtle point in sending video streams on the LAN. When we

increase the resolution we loose more frames in video transmission. To avoid
this, we can send frames with lower resolution but higher quality and stretch
the received frame in the receiver, doing this we will loose less frames in video
transmission.

Resquake Operator Interface now has everything it needs to send
data and receive data and video, as far as we are using the default communi-
cation system (LAN), but if any problem occurs in the way that we would not
be able to get data from robot through LAN or can not send data through LAN,
we should be able to switch to backup system. Video backup system will not
make any change to the program; the PictureBox should change its input from
LAN to Capture Card and do exactly the same thing it was doing before (AV
signal comes to the Capture Card with video waves). But data input is a com-
pletely different signal coming from the transceiver. Transceiver has serial
output and we can get data from serial port using RS232 standard. Data
transmission through serial port can be similarly implemented in VB and VC++
as we are taking advantage of Microsoft Comm. Control. To make a serial port
ready to transmit data we need to specify the serial port through which the
program is going to transmit, then set the baud rate and parity and number of
bits and other settings needed for initializing a serial port. Then we open the
port and we will be able to send or receive data from port. So, in the
Form_Load subroutine we write the following code:

Private Sub Form_Load()

 .
 .
 .

 Rem : PortNumber is an integer variable
 MSComm1.CommPort = PortNumber

 Rem: Set Baud rate to 1200 , No parity , 8 bit data , 1
 Rem : stop bit
 MSComm1.Settings = "1200,N,8,1"
 MSComm1.PortOpen = True
 .
 .
 .
End Sub

Then, by the time we want to send a bit (or a string) the following code can be used:

MSComm1.Output = MyChar$

And if we want to receive the data coming, the following code solves the problem:

 Rem : Setting InputLen property to 0 means we want to get
 Rem :the whole string

MSComm1.InputLen = 0
If MSComm1.InBufferCount Then

MyString$ = MSComm1.Input
End If

The backup system can now be handled as well as the main system.

3. Control Method and Human-Robot Interface

We have tried to reduce the operator's responsibilities taking advantage of our po-
sitioning system and sonar (Ultrasonic sensors). We have one operator who will con-
trol the robots with the joystick and keyboard. Robot is sending data gathered from the
sensors to the operator in short intervals and whenever there is a suspicious condition
like motion detection (VideoCapX control has a powerful motion detection system
which will announce it and the operator finds the sign of life) .Heat and gas sensors are
good sensors which we can rely on them when the amount of CO2 increases or a sus-
picious change in heat is detected. Sonar makes the robot control much easier as it
will not let the robot get closer to the surroundings. Taking advantage of sonar let us
have the distance from the objects around in the software and gives the operator a
better feeling the place where the robot is located.

The operator starts the mission with moving the small positioning station to three
different places around the arena. Then the largest robot will go and stay in a place
with a widest view and the camera lifter system raises the camera about two meters
and gives the operator a general view of the arena then the smaller robots start explor-
ing the arena using the right hand method not to explore a place twice and whenever
there is a need up climbing stairs or climb a ramp the big robot lowers the camera and
goes to the scene to complete the mission. If there would be the possibility of taking a
picture of the arena from top with a flying robot we will do it and the operator will
have a picture with low opacity having a grid on it to correct and make needed changes
instead of drawing on a plane paper with no reference. This helps a lot in the final map
generation.

One part of Resquake software is called Resquake User Interface which is a simple
handy environment for the operator to control all the robots (their motors and actua-
tors) and send commands to the robots and of course gather the data coming from
sensors and preview video stream. Below the Graphical interface is presented.

Resquake User Interface at this phase is working with keyboard and mouse,
but the final program will also have a joystick.

Figure 1

Camera position can be controlled by the following tools:

Figure 2

 Shortcut keys enable the operator to switch between arrows and sliders and
knobs.

Data transmission mode and Video transmission mode can be switched between by the
following tools:

Figure 3

Illumination system can be switched between Automatic and Manual. In
Automatic mode the lights will turn on whenever the environment light is less than the
threshold value.

Figure 4

 Speed and Direction of the robot can be controlled by the following tools:

Figure 5

 Operator can choose what information he needs to receive from robot by the
following tools:

Figure 6

 Operator can see the video coming from all robots and can see the large video
screen by double clicking on each of small videos.

Figure 7

 Operator can switch between robots by pressing F1 or F2 or F3 and can see

the large video coming from each robot by pressing Ctrl+F1 or Ctrl+F2 or Ctrl+F3.

 The code of the main form interface and the relation of the objects and their

properties are given below:

VERSION 6.00
Object = "{912FB004-DD9A-11D3-BD8D-DAAFCB8D9378}#1.0#0"; "video-

capx.ocx"
Object = "{648A5603-2C6E-101B-82B6-000000000014}#1.1#0"; "MSCOMM32.OCX

"
Object = "{248DD890-BB45-11CF-9ABC-0080C7E7B78D}#1.0#0"; "MSWINSCK.OCX

"
Object = "{F07C23E0-0CF6-11D0-80E9-444553540000}#1.0#0"; "Joy-

sticks.ocx"
Object = "{831FDD16-0C5C-11D2-A9FC-0000F8754DA1}#2.0#0"; "MSCOMCTL.OCX

"
Object = "{66D3CBC4-D446-4BAA-B8B2-AF97BC09A7D2}#1.0#0"; "AudioCon-

trol.ocx"
Begin VB.Form Main
 BackColor = &H00000000&
 Caption = "Automatic"
 ClientHeight = 9315
 ClientLeft = 60
 ClientTop = 630
 ClientWidth = 14760
 LinkTopic = "Form1"
 ScaleHeight = 621
 ScaleMode = 3 'Pixel
 ScaleWidth = 984
 StartUpPosition = 2 'CenterScreen
 Begin MSComctlLib.ImageList ImageList2
 Left = 4200
 Top = 6600

_ ExtentX = 1005
_ ExtentY = 1005
 BackColor = -2147483643

 ImageWidth = 160
 ImageHeight = 120
 MaskColor = 12632256
_ Version = 393216

 BeginProperty Images {2C247F25-8591-11D1-B16A-00C0F0283628 {
 NumListImages = 1
 BeginProperty ListImage1 {2C247F27-8591-11D1-B16A-

00C0F0283628 {
 Picture = "Main.frx":0000
 Key"" =

 EndProperty
 EndProperty
 End
 Begin MSComctlLib.ImageList ImageList1
 Left = 4200
 Top = 6000
_ ExtentX = 1005
_ ExtentY = 1005
 BackColor = -2147483643
 ImageWidth = 32
 ImageHeight = 32
 MaskColor = 12632256
_ Version = 393216
 BeginProperty Images {2C247F25-8591-11D1-B16A-00C0F0283628 {
 NumListImages = 6
 BeginProperty ListImage1 {2C247F27-8591-11D1-B16A-

00C0F0283628 {
 Picture = "Main.frx":5A7B
 Key"" =
 EndProperty
 BeginProperty ListImage2 {2C247F27-8591-11D1-B16A-

00C0F0283628 {
 Picture = "Main.frx":5ECD
 Key"" =
 EndProperty
 BeginProperty ListImage3 {2C247F27-8591-11D1-B16A-

00C0F0283628 {
 Picture = "Main.frx":631F
 Key"" =
 EndProperty
 BeginProperty ListImage4 {2C247F27-8591-11D1-B16A-

00C0F0283628 {
 Picture = "Main.frx":6771
 Key"" =
 EndProperty
 BeginProperty ListImage5 {2C247F27-8591-11D1-B16A-

00C0F0283628 {
 Picture = "Main.frx":6BC3
 Key"" =
 EndProperty
 BeginProperty ListImage6 {2C247F27-8591-11D1-B16A-

00C0F0283628 {
 Picture = "Main.frx":7015
 Key"" =
 EndProperty
 EndProperty
 End
 Begin JOYSTICKLib.Joystick Joystick1
 Height = 420
 Left = 4320
 TabIndex = 57
 Top = 3120
 Visible = 0 'False

 Width = 420
_ Version = 65536
_ ExtentX = 741
_ ExtentY = 741
_ StockProps = 1
 m_button = 1243687
 End
 Begin VB.Frame Frame6
 BorderStyle = 0 'None
 Caption = "Frame1"
 Height = 6855
 Left = 240
 TabIndex = 26
 Top = 360
 Width = 3855
 Begin VB.Frame Frame8
 BackColor = &H00000000&
 BorderStyle = 0 'None
 Caption = "Frame7"
 Height = 615
 Left = 480
 TabIndex = 65
 Top = 4560
 Width = 3015
 Begin VB.OptionButton CameraRotationMode
 Caption = "Use Knobes"
 Height = 495
 Index = 1
 Left = 1680
 Style = 1 'Graphical
 TabIndex = 67
 Top = 0
 Width = 1215
 End
 Begin VB.OptionButton CameraRotationMode
 Caption = "Use Arrows"
 Height = 495
 Index = 0
 Left = 0
 Style = 1 'Graphical
 TabIndex = 66
 Top = 0
 Value = -1 'True
 Width = 1215
 End
 End
 Begin VB.Frame CameraRotationKnobesFrame
 BackColor = &H00000000&
 BorderStyle = 0 'None
 Enabled = 0 'False
 Height = 1215
 Left = 2040
 TabIndex = 59
 Top = 5160
 Width = 1455
 Begin AUDIOCONTROLLib.Knob CameraRotationKnobeVertical
 Height = 735
 Left = 0
 TabIndex = 68
 Top = 360
 Width = 735
_ Version = 65536
_ ExtentX = 1296

_ ExtentY = 1296
_ StockProps = 0
 Min = -180
 Max = 180

 End
 Begin AUDIOCONTROLLib.Knob CameraRotationKnobeHorizontal
 Height = 735
 Left = 720
 TabIndex = 69
 Top = 360
 Width = 615
_ Version = 65536
_ ExtentX = 1085
_ ExtentY = 1296
_ StockProps = 0
 Min = -180
 Max = 180
 End
 Begin VB.Label Label18
 AutoSize = -1 'True
 BackStyle = 0 'Transparent
 Caption = "Vertical"
 ForeColor = &H00FF8080&
 Height = 195
 Left = 0
 TabIndex = 61
 Top = 120
 Width = 525
 End
 Begin VB.Label Label19
 AutoSize = -1 'True
 BackStyle = 0 'Transparent
 Caption = "Horizontal"

 ForeColor = &H00FF8080&
 Height = 195
 Left = 720
 TabIndex = 60
 Top = 120
 Width = 705
 End
 End
 Begin VB.CommandButton CameraRotationRight
 Height = 495
 Left = 1320
 Picture = "Main.frx":732F
 Style = 1 'Graphical
 TabIndex = 32
 Top = 5520
 Width = 495
 End
 Begin VB.CommandButton CameraRotationLeft
 Height = 495
 Left = 360
 Picture = "Main.frx":7771
 Style = 1 'Graphical
 TabIndex = 31
 Top = 5520
 Width = 495
 End
 Begin VB.CommandButton CameraRotationDownward
 Height = 495
 Left = 840
 Picture = "Main.frx":7BB3

 Style = 1 'Graphical
 TabIndex = 30
 Top = 5760
 Width = 495
 End
 Begin VB.CommandButton CameraRotationUpward

 Height = 495
 Left = 840
 Picture = "Main.frx":7FF5
 Style = 1 'Graphical
 TabIndex = 29
 Top = 5280
 Width = 495
 End
 Begin VB.CommandButton CameraHeightDecrease
 Height = 495
 Left = 840
 Picture = "Main.frx":8437
 Style = 1 'Graphical
 TabIndex = 28
 Top = 2640
 Width = 495
 End
 Begin VB.CommandButton CameraHeightIncrease
 Height = 495
 Left = 840
 Picture = "Main.frx":8879
 Style = 1 'Graphical
 TabIndex = 27
 Top = 2040
 Width = 495
 End
 Begin VB.PictureBox Picture5
 BackColor = &H80000007&
 Height = 6855
 Left = 0
 ScaleHeight = 6795
 ScaleWidth = 3795
 TabIndex = 33
 Top = 0
 Width = 3855
 Begin VB.Frame Frame7
 BackColor = &H00000000&
 BorderStyle = 0 'None
 Caption = "Frame7"
 Height = 735
 Left = 360
 TabIndex = 62
 Top = 960
 Width = 3135

 Begin VB.OptionButton CameraHeightMode
 Caption = "Use Slider"
 Height = 495
 Index = 1
 Left = 1800
 Style = 1 'Graphical
 TabIndex = 64
 Top = 120
 Width = 1215
 End
 Begin VB.OptionButton CameraHeightMode
 Caption = "Use Arrows"
 Height = 495

 Index = 0
 Left = 120
 Style = 1 'Graphical
 TabIndex = 63
 Top = 120
 Value = -1 'True
 Width = 1215
 End
 End
 Begin VB.Frame CameraHeightSliderFrame
 BorderStyle = 0 'None
 Enabled = 0 'False
 Height = 1935

 Left = 2280
 TabIndex = 58
 Top = 1680
 Width = 735
 Begin AUDIOCONTROLLib.LevelSlider CameraHeightSlider
 Height = 1935

 Left = 0
 TabIndex = 70
 Top = 0
 Width = 735
_ Version = 65536
_ ExtentX = 1296
_ ExtentY = 3413
_ StockProps = 0
 Max = 100
 End
 End
 Begin VB.Label Label15
 AutoSize = -1 'True
 BackStyle = 0 'Transparent
 Caption = "Height"
 ForeColor = &H00FF8080&
 Height = 195
 Left = 1560
 TabIndex = 41
 Top = 720
 Width = 465
 End

 Begin VB.Shape Shape5
 BorderColor = &H00FF8080&
 BorderStyle = 6 'Inside Solid
 BorderWidth = 5
 Height = 2535
 Left = 120
 Shape = 4 'Rounded Rectangle
 Top = 4080
 Width = 3495
 End
 Begin VB.Label Label17
 AutoSize = -1 'True
 BackStyle = 0 'Transparent
 Caption = "Rotation"
 ForeColor = &H00FF8080&
 Height = 195
 Left = 1560
 TabIndex = 43
 Top = 4200
 Width = 600

 End
 Begin VB.Label Label16

 Alignment = 2 'Center
 AutoSize = -1 'True
 BackStyle = 0 'Transparent
 Caption = "Camera Position"
 ForeColor = &H00FF8080&
 Height = 195
 Left = 1200
 TabIndex = 42
 Top = 120
 Width = 1155
 End
 Begin VB.Shape Shape4
 BorderColor = &H00FF8080&
 BorderStyle = 6 'Inside Solid
 BorderWidth = 5
 Height = 3375
 Left = 120
 Shape = 4 'Rounded Rectangle
 Top = 480
 Width = 3495
 End
 End
 End
 Begin VB.Frame Frame5
 BorderStyle = 0 'None
 Caption = "Frame1"
 Height = 3615
 Left = 4920
 TabIndex = 19
 Top = 3000
 Width = 5535
 Begin VB.CommandButton Command2
 Caption = "Turn Right"
 Height = 495
 Left = 3840
 Style = 1 'Graphical
 TabIndex = 25
 Top = 1440
 Width = 1215
 End
 Begin VB.CommandButton Command1
 Caption = "Turn Left"
 Height = 495
 Left = 3840
 Style = 1 'Graphical
 TabIndex = 24
 Top = 2040
 Width = 1215
 End
 Begin VB.OptionButton DirectionMode
 Caption = "Backward"
 Height = 495
 Index = 1
 Left = 2040
 Style = 1 'Graphical
 TabIndex = 23
 Top = 2040
 Width = 1215
 End
 Begin VB.OptionButton DirectionMode
 Caption = "Forward"
 Height = 495
 Index = 0

 Left = 2040
 Style = 1 'Graphical
 TabIndex = 22
 Top = 1440
 Value = -1 'True
 Width = 1215
 End
 Begin VB.PictureBox Picture8
 BackColor = &H80000007&
 Height = 3615
 Left = 0
 ScaleHeight = 3555
 ScaleWidth = 5475
 TabIndex = 36
 Top = 0
 Width = 5535
 Begin AUDIOCONTROLLib.LevelSlider LevelSlider2
 Height = 2175

 Left = 480
 TabIndex = 71
 Top = 960
 Width = 855
_ Version = 65536
_ ExtentX = 1508
_ ExtentY = 3836

 _ StockProps = 0
 Max = 100
 End
 Begin VB.Label Label11
 AutoSize = -1 'True
 BackStyle = 0 'Transparent
 Caption = "Robot Speed"
 ForeColor = &H00FF8080&
 Height = 195
 Left = 360
 TabIndex = 47
 Top = 600
 Width = 945
 End
 Begin VB.Label Label12

 Alignment = 2 'Center
 AutoSize = -1 'True
 BackStyle = 0 'Transparent
 Caption = "Speed And Direction Control"
 ForeColor = &H00FF8080&
 Height = 195
 Left = 1800
 TabIndex = 46
 Top = 120
 Width = 2025
 End
 Begin VB.Shape Shape1
 BorderColor = &H00FF8080&

 BorderStyle = 6 'Inside Solid
 BorderWidth = 5
 Height = 1815
 Left = 3600
 Shape = 4 'Rounded Rectangle
 Top = 960
 Width = 1695
 End
 Begin VB.Label Label13
 AutoSize = -1 'True

 BackStyle = 0 'Transparent
 Caption = "Rotation"
 ForeColor = &H00FF8080&

 Height = 195
 Left = 3840
 TabIndex = 45
 Top = 1080
 Width = 600
 End
 Begin VB.Shape Shape2
 BorderColor = &H00FF8080&
 BorderStyle = 6 'Inside Solid
 BorderWidth = 5
 Height = 1815
 Left = 1800
 Shape = 4 'Rounded Rectangle
 Top = 960

 Width = 1695
 End
 Begin VB.Label Label14
 AutoSize = -1 'True
 BackStyle = 0 'Transparent

 Caption = "Direction"
 ForeColor = &H00FF8080&
 Height = 195
 Left = 2040
 TabIndex = 44
 Top = 1080
 Width = 630
 End
 Begin VB.Shape Shape3
 BorderColor = &H00FF8080&
 BorderStyle = 6 'Inside Solid
 BorderWidth = 5
 Height = 3015
 Left = 240
 Shape = 4 'Rounded Rectangle
 Top = 360
 Width = 1335
 End
 End
 End
 Begin VB.Frame Frame4
 BorderStyle = 0 'None
 Caption = "Frame4"
 Height = 3255
 Left = 11280
 TabIndex = 15
 Top = 3840
 Width = 3255
 Begin VB.CheckBox Sound
 Caption = "Sound"
 Height = 495
 Left = 240
 Style = 1 'Graphical
 TabIndex = 18
 Top = 600
 Value = 1 'Checked
 Width = 1215
 End
 Begin VB.CheckBox Heat
 Caption = "Heat"

 Height = 495
 Left = 240
 Style = 1 'Graphical
 TabIndex = 17
 Top = 1320
 Value = 1 'Checked
 Width = 1215
 End
 Begin VB.CheckBox Position
 Caption = "Position"
 Height = 495
 Left = 240
 Style = 1 'Graphical
 TabIndex = 16
 Top = 2040
 Width = 1215
 End
 Begin VB.PictureBox Picture10
 BackColor = &H80000007&
 Height = 3255
 Left = 0
 ScaleHeight = 3195
 ScaleWidth = 3195
 TabIndex = 38
 Top = 0
 Width = 3255
 Begin VB.Label Label8
 Alignment = 2 'Center
 BackStyle = 0 'Transparent
 BorderStyle = 1 'Fixed Single
 Caption = "Heat"

 ForeColor = &H00FF8080&
 Height = 495
 Left = 1920
 TabIndex = 53
 Top = 1320
 Width = 1215
 End
 Begin VB.Label Label7
 Alignment = 2 'Center
 BackStyle = 0 'Transparent
 Caption = "Y":
 ForeColor = &H00FF8080&
 Height = 255
 Left = 1080

 TabIndex = 52
 Top = 2760
 Width = 1215
 End
 Begin VB.Label Label6
 Alignment = 2 'Center
 BackStyle = 0 'Transparent
 BorderStyle = 1 'Fixed Single
 Caption = "X Pos"
 ForeColor = &H00FF8080&
 Height = 255
 Left = 1920
 TabIndex = 51
 Top = 2400
 Width = 1215
 End
 Begin VB.Label Label5
 Alignment = 2 'Center

 BackStyle = 0 'Transparent
 BorderStyle = 1 'Fixed Single
 Caption = "YPos"
 ForeColor = &H00FF8080&
 Height = 255
 Left = 1920
 TabIndex = 50
 Top = 2760
 Width = 1215
 End

 Begin VB.Label Label4
 Alignment = 2 'Center
 BackStyle = 0 'Transparent
 Caption = "X":
 ForeColor = &H00FF8080&
 Height = 255
 Left = 1080
 TabIndex = 49
 Top = 2400
 Width = 1215
 End
 Begin VB.Label Label3
 AutoSize = -1 'True
 BackStyle = 0 'Transparent
 Caption = "Data Coming From Robots"
 ForeColor = &H00FF8080&
 Height = 195
 Left = 600
 TabIndex = 48
 Top = 240

 Width = 1860
 End
 End
 Begin VB.Image Image3
 BorderStyle = 1 'Fixed Single
 Height = 3225
 Left = 0
 Stretch = -1 'True
 Top = 0
 Width = 3225
 End
 End
 Begin VB.Frame Frame3
 BorderStyle = 0 'None
 Caption = "Frame1"
 Height = 3255
 Left = 11280
 TabIndex = 12
 Top = 360
 Width = 3255
 Begin VB.OptionButton LightMode
 Caption = "Manual"
 Height = 495
 Index = 1
 Left = 480
 Style = 1 'Graphical
 TabIndex = 14
 Top = 2280
 Width = 1215
 End
 Begin VB.OptionButton LightMode
 Caption = "Automatic"
 Height = 495

 Index = 0
 Left = 480
 Style = 1 'Graphical
 TabIndex = 13
 Top = 720
 Value = -1 'True
 Width = 1215
 End
 Begin VB.PictureBox Picture9
 BackColor = &H80000007&
 Height = 3255
 Left = 0
 ScaleHeight = 3195
 ScaleWidth = 3195
 TabIndex = 37
 Top = 0

 Width = 3255
 Begin VB.TextBox TheresholdValue
 Height = 405
 Left = 1320
 TabIndex = 54
 Text = "100"
 Top = 1560
 Width = 1575
 End
 Begin VB.Label Label9
 Alignment = 2 'Center
 AutoSize = -1 'True
 BackStyle = 0 'Transparent
 Caption = "Illumination System"
 ForeColor = &H00FF8080&
 Height = 195
 Left = 855
 TabIndex = 56
 Top = 240
 Width = 1365
 End

 Begin VB.Label Label10
 AutoSize = -1 'True
 BackStyle = 0 'Transparent
 Caption = "Threshold Value"
 ForeColor = &H00FF8080&
 Height = 195

 Left = 1320
 TabIndex = 55
 Top = 1320
 Width = 1155
 End
 End
 Begin VB.Image Image2
 BorderStyle = 1 'Fixed Single
 Height = 3240
 Left = 0
 Stretch = -1 'True
 Top = 0
 Width = 3240
 End
 End
 Begin VB.Frame Frame2
 BorderStyle = 0 'None
 Caption = "Frame2"
 Height = 1815
 Left = 4320

 TabIndex = 9
 Top = 840
 Width = 3255
 Begin VB.OptionButton DataTransmissionMode
 Caption = "Wireless Lan"

 Height = 495
 Index = 0
 Left = 960
 Style = 1 'Graphical
 TabIndex = 11
 Top = 480
 Value = -1 'True
 Width = 1215
 End
 Begin VB.OptionButton DataTransmissionMode
 Caption = "Transceivers"
 Height = 495
 Index = 1
 Left = 960
 Style = 1 'Graphical
 TabIndex = 10
 Top = 1080
 Width = 1215
 End
 Begin VB.PictureBox Picture6
 BackColor = &H80000007&
 Height = 1815
 Left = 0
 ScaleHeight = 1755
 ScaleWidth = 3195
 TabIndex = 34
 Top = 0
 Width = 3255
 Begin VB.Label Label2
 AutoSize = -1 'True
 BackStyle = 0 'Transparent
 Caption = "Data Transmission Mode"
 ForeColor = &H00FF8080&
 Height = 195
 Left = 720
 TabIndex = 39
 Top = 120
 Width = 1755
 End
 End
 End
 Begin MSCommLib.MSComm MSComm1
 Left = 4200
 Top = 5400
_ ExtentX = 1005
_ ExtentY = 1005
_ Version = 393216
 DTREnable = -1 'True
 End
 Begin MSWinsockLib.Winsock Winsock1
 Left = 4320
 Top = 3600
_ ExtentX = 741
_ ExtentY = 741
_ Version = 393216
 End
 Begin VB.CheckBox VideoPreview
 Height = 525

 Index = 1
 Left = 6960
 Style = 1 'Graphical
 TabIndex = 7
 Top = 7920
 Width = 525
 End
 Begin VB.CheckBox VideoPreview
 Height = 525
 Index = 2
 Left = 10560
 Style = 1 'Graphical
 TabIndex = 6
 Top = 7920
 Width = 525
 End
 Begin VB.CheckBox VideoPreview
 Height = 525
 Index = 0
 Left = 3360
 Style = 1 'Graphical
 TabIndex = 5
 Top = 7920
 Width = 525
 End
 Begin VIDEOCAPXLib.VideoCapX VideoCapX2
 Height = 615
 Left = 4200
 TabIndex = 4
 Top = 4680
 Visible = 0 'False
 Width = 615
_ Version = 131072
_ ExtentX = 1085
_ ExtentY = 1085
_ StockProps = 0
 End
 Begin VB.PictureBox Videos
 Height = 1800
 Index = 1
 Left = 7800

 Picture = "Main.frx":8CBB
 ScaleHeight = 1740
 ScaleWidth = 2340
 TabIndex = 3
 Top = 7320
 Width = 2400
 End
 Begin VB.PictureBox Videos
 Height = 1800
 Index = 2
 Left = 11400
 Picture = "Main.frx":90FD
 ScaleHeight = 1740
 ScaleWidth = 2340
 TabIndex = 2
 Top = 7320
 Width = 2400
 End
 Begin VB.Timer Timer1
 Interval = 1
 Left = 4320
 Top = 4080

 End
 Begin VB.PictureBox Videos
 Height = 1800
 Index = 0
 Left = 4200

 Picture = "Main.frx":953F
 ScaleHeight = 1740
 ScaleWidth = 2340
 TabIndex = 1
 Top = 7320
 Width = 2400
 End
 Begin VIDEOCAPXLib.VideoCapX VideoCapX1
 Height = 1800
 Left = 600
 TabIndex = 0
 Top = 7320
 Width = 2400
_ Version = 131072
_ ExtentX = 4233
_ ExtentY = 3175
_ StockProps = 0
 End
 Begin VB.Frame Frame1
 BorderStyle = 0 'None
 Caption = "Frame1"
 Height = 1815
 Left = 7800
 TabIndex = 8
 Top = 840
 Width = 3255
 Begin VB.OptionButton VideoTransmissionMode
 Caption = "Video Waves"
 Height = 495
 Index = 1
 Left = 960
 Style = 1 'Graphical
 TabIndex = 21
 Top = 1080
 Width = 1215
 End
 Begin VB.OptionButton VideoTransmissionMode
 Caption = "Wireless Lan"
 Height = 495
 Index = 0
 Left = 960

 Style = 1 'Graphical
 TabIndex = 20
 Top = 480
 Value = -1 'True
 Width = 1215
 End
 Begin VB.PictureBox Picture7

 BackColor = &H80000007&
 Height = 1815
 Left = 0
 ScaleHeight = 1755
 ScaleWidth = 3195
 TabIndex = 35
 Top = 0
 Width = 3255
 Begin VB.Label Label1
 AutoSize = -1 'True

 BackStyle = 0 'Transparent
 Caption = "Video Transmission Mode"
 ForeColor = &H00FF8080&
 Height = 195
 Left = 600
 TabIndex = 40
 Top = 120
 Width = 1815
 End
 End
 Begin VB.Image Image1
 BorderStyle = 1 'Fixed Single
 Height = 1800
 Left = 0
 Stretch = -1 'True
 Top = 0
 Width = 3240
 End
 End
 Begin VB.Menu FileMenu
 Caption = "&File"
 Begin VB.Menu ExitMenu
 Caption = "E&xit"
 Shortcut = ^X
 End
 End
 Begin VB.Menu GenerateMenu
 Caption = "&Generate"
 Begin VB.Menu BurnCDMenu
 Caption = "&Burn CD"

 Shortcut = ^D
 End
 Begin VB.Menu PrintableReportMenu
 Caption = "Printable &Report"
 Shortcut = ^E
 End
 Begin VB.Menu WebPublishMenu
 Caption = "&Publish On The Web"

 Shortcut = ^W
 End
 Begin VB.Menu Seperator2
 Caption " = -"
 End
 Begin VB.Menu GenerateAllMenu
 Caption = "&Generate All"
 Shortcut = ^G
 End
 End
 Begin VB.Menu RobotMenu
 Caption = "&Robot"
 Begin VB.Menu RobotChooserMenu
 Caption = "Robot &1"
 Checked = -1 'True
 Index = 0
 Shortcut = {F1{
 End
 Begin VB.Menu RobotChooserMenu
 Caption = "Robot &2"
 Enabled = 0 'False
 Index = 1
 Shortcut = {F2{
 End
 Begin VB.Menu RobotChooserMenu

 Caption = "Robot &3"
 Enabled = 0 'False
 Index = 2
 Shortcut = {F3{
 End
 End
 Begin VB.Menu CamreraPositionMenu
 Caption = "Camera &Position"
 Begin VB.Menu HeightMenu
 Caption = "Height"
 Begin VB.Menu CameraHeightModeMenu
 Caption = "Use &Arrows"
 Checked = -1 'True
 Index = 0
 Shortcut = ^A
 End
 Begin VB.Menu CameraHeightModeMenu
 Caption = "Use &Slider"
 Index = 1
 Shortcut = ^S
 End
 End
 Begin VB.Menu Seperator1
 Caption " = -"
 End
 Begin VB.Menu RotationMenu
 Caption = "Rotation"
 Begin VB.Menu CameraRotationModeMenu
 Caption = "Use A&rrows"
 Checked = -1 'True
 Index = 0
 Shortcut = ^R
 End
 Begin VB.Menu CameraRotationModeMenu
 Caption = "Use &Knobes"
 Index = 1
 Shortcut = ^K
 End
 End
 End
 Begin VB.Menu DataTransmissionModeMenu

 Caption = "&Data Transmission"
 Begin VB.Menu DataMode
 Caption = "Wireless &Lan"
 Checked = -1 'True
 Index = 0
 Shortcut = ^L
 End
 Begin VB.Menu DataMode
 Caption = "&Transceivers"
 Index = 1
 Shortcut = ^T
 End
 End
 Begin VB.Menu VideoTransmissionModeMenu
 Caption = "&Video Transmission"
 Begin VB.Menu VideoModeMenu
 Caption = "Wireless &Lan"
 Checked = -1 'True
 Index = 0
 Shortcut = ^N
 End
 Begin VB.Menu VideoModeMenu

 Caption = "Video &Waves"
 Index = 1
 Shortcut = ^V
 End
 End
 Begin VB.Menu VideoChannelMenu
 Caption = "Video &Channel"
 Begin VB.Menu VideoChannelsMenu
 Caption = "Channel &1"
 Index = 0

 Shortcut = ^{F1{
 End
 Begin VB.Menu VideoChannelsMenu
 Caption = "Channel &2"
 Index = 1
 Shortcut = ^{F2{
 End
 Begin VB.Menu VideoChannelsMenu
 Caption = "Channel &3"
 Index = 2
 Shortcut = ^{F3{
 End
 End
 Begin VB.Menu DirectionMenu
 Caption = "Direc&tion"
 Begin VB.Menu DirectionModeMenu
 Caption = "&Forward"
 Checked = -1 'True
 Index = 0
 Shortcut = ^F
 End
 Begin VB.Menu DirectionModeMenu
 Caption = "&Backward"
 Index = 1
 Shortcut = ^B

 End
 End
 Begin VB.Menu LightennigSystemMenu
 Caption = "&Lights"
 Begin VB.Menu LightenningModeMenu
 Caption = "&Automatic"
 Checked = -1 'True
 Index = 0
 Shortcut = ^U
 End
 Begin VB.Menu LightenningModeMenu
 Caption = "&Manual"
 Index = 1
 Shortcut = ^M
 End
 End
 Begin VB.Menu SensorsMenu
 Caption = "Sensors"
 Begin VB.Menu SoundMenu
 Caption = "&Sound"
 Checked = -1 'True
 Shortcut = ^O
 End
 Begin VB.Menu HeatMenu
 Caption = "&Heat"
 Checked = -1 'True
 Shortcut = ^H
 End

 Begin VB.Menu PositionMenu
 Caption = "&Position"
 Shortcut = ^P
 End
 End
End
Attribute VB_Name = "Main"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

Private Sub CameraHeightMode_Click(Index As Integer(
 If Index = 0 Then
 CameraHeightDecrease.Enabled = True
 CameraHeightIncrease.Enabled = True
 CameraHeightSliderFrame.Enabled = False
 CameraHeightModeMenu(0).Checked = True
 CameraHeightMode(0).Value = True
 CameraHeightModeMenu(1).Checked = False
 CameraHeightMode(1).Value = False
 Else
 CameraHeightDecrease.Enabled = False
 CameraHeightIncrease.Enabled = False
 CameraHeightSliderFrame.Enabled = True
 CameraHeightModeMenu(1).Checked = True
 CameraHeightMode(1).Value = True
 CameraHeightModeMenu(0).Checked = False
 CameraHeightMode(0).Value = False
 End If
End Sub

Private Sub CameraHeightModeMenu_Click(Index As Integer(
 CameraHeightMode_Click (Index(
End Sub

Private Sub CameraRotationMode_Click(Index As Integer(
 If Index = 0 Then
 CameraRotationDownward.Enabled = True
 CameraRotationLeft.Enabled = True
 CameraRotationRight.Enabled = True
 CameraRotationUpward.Enabled = True
 CameraRotationKnobesFrame.Enabled = False
 CameraRotationModeMenu(0).Checked = True
 CameraRotationMode(0).Value = True
 CameraRotationModeMenu(1).Checked = False
 CameraRotationMode(1).Value = False
 Else
 CameraRotationDownward.Enabled = False
 CameraRotationLeft.Enabled = False
 CameraRotationRight.Enabled = False
 CameraRotationUpward.Enabled = False
 CameraRotationKnobesFrame.Enabled = True
 CameraRotationModeMenu(1).Checked = True
 CameraRotationMode(1).Value = True
 CameraRotationModeMenu(0).Checked = False
 CameraRotationMode(0).Value = False
 End If
End Sub

Private Sub CameraRotationModeMenu_Click(Index As Integer(
 CameraRotationMode_Click (Index(
End Sub

Private Sub Check5_Click()

End Sub

Private Sub DataMode_Click(Index As Integer(
 DataTransmissionMode_Click (Index(
End Sub

Private Sub DataTransmissionMode_Click(Index As Integer(
 If Index = 0 Then
 DataMode(0).Checked = True
 DataTransmissionMode(0).Value = True
 DataMode(1).Checked = False
 DataTransmissionMode(1).Value = False
 Else
 DataMode(1).Checked = True
 DataTransmissionMode(1).Value = True
 DataMode(0).Checked = False
 DataTransmissionMode(0).Value = False
 End If
End Sub

Private Sub DirectionMode_Click(Index As Integer(
 If Index = 0 Then
 DirectionModeMenu(0).Checked = True
 DirectionMode(0).Value = True
 DirectionModeMenu(1).Checked = False
 DirectionMode(1).Value = False
 Else
 DirectionModeMenu(1).Checked = True

 DirectionMode(1).Value = True
 DirectionModeMenu(0).Checked = False
 DirectionMode(0).Value = False
 End If
End Sub

Private Sub DirectionModeMenu_Click(Index As Integer(
 DirectionMode_Click (Index(
End Sub

Private Sub ExitMenu_Click()
 End
End Sub

Private Sub Form_Load()
 VideoCapX1.Connected = True
 VideoCapX1.SetVideoFormat 160, 120
 VideoCapX1.Preview = True
 VideoCapX1.ServerMode = True
 Videos(0).Picture = ImageList2.ListImages(1).Picture
 Videos(1).Picture = ImageList2.ListImages(1).Picture
 Videos(2).Picture = ImageList2.ListImages(1).Picture
End Sub

Private Sub Heat_Click()
 If Heat.Value Then
 HeatMenu.Checked = True

 Heat.Value = 1
 Else
 HeatMenu.Checked = False

 Heat.Value = 0
 End If
End Sub

Private Sub HeatMenu_Click()
 If Heat.Value Then
 HeatMenu.Checked = False
 Heat.Value = 0
 Else
 HeatMenu.Checked = True
 Heat.Value = 1
 End If
End Sub

Private Sub LightenningModeMenu_Click(Index As Integer(
 LightMode_Click (Index(
End Sub

Private Sub LightMode_Click(Index As Integer(
 If Index = 0 Then
 TheresholdValue.Enabled = True
 LightenningModeMenu(0).Checked = True
 LightMode(0).Value = True
 LightenningModeMenu(1).Checked = False
 LightMode(1).Value = False
 Else
 TheresholdValue.Enabled = False
 LightenningModeMenu(1).Checked = True
 LightMode(1).Value = True
 LightenningModeMenu(0).Checked = False
 LightMode(0).Value = False
 End If
End Sub

Private Sub Position_Click()
 If Position.Value Then
 PositionMenu.Checked = True
 Position.Value = 1
 Else
 PositionMenu.Checked = False
 Position.Value = 0
 End If
End Sub

Private Sub PositionMenu_Click()
 If Position.Value Then
 PositionMenu.Checked = False
 Position.Value = 0

 Else
 PositionMenu.Checked = True
 Position.Value = 1
 End If
End Sub

Private Sub Sound_Click()
 If Sound.Value Then
 SoundMenu.Checked = True
 Sound.Value = 1
 Else
 SoundMenu.Checked = False
 Sound.Value = 0
 End If

End Sub

Private Sub SoundMenu_Click()
 If Sound.Value Then
 SoundMenu.Checked = False
 Sound.Value = 0
 Else
 SoundMenu.Checked = True
 Sound.Value = 1
 End If
End Sub

Private Sub Timer1_Timer()
If Check2.Value Then Picture1.Picture = Video-

CapX2.ReceiveFrame("localhost("
If Check3.Value Then Picture2.Picture = Video-

CapX2.ReceiveFrame("localhost("
If Check4.Value Then Picture3.Picture = Video-

CapX2.ReceiveFrame("localhost("
End Sub

Private Sub VideoChannelsMenu_Click(Index As Integer(
 Videos_DblClick (Index(
End Sub

Private Sub VideoModeMenu_Click(Index As Integer(
 VideoTransmissionMode_Click (Index(
End Sub

Private Sub VideoPreview_Click(Index As Integer(
 If VideoPreview(Index) Then
 VideoPreview(Index).Picture = ImageList1.ListImages(1).Picture
 Else
 VideoPreview(Index).Picture = ImageList1.ListImages(6).Picture
 Videos(Index).Picture = ImageList2.ListImages(1).Picture
 End If
End Sub

Private Sub Videos_DblClick(Index As Integer(
 Dim counter As Byte
 For counter = 0 To 2
 VideoChannelsMenu(counter).Checked = False
 Next counter
 VideoChannelsMenu(Index).Checked = True
 VideoChoice = Index
 VideoProjector.Show
 VideoProjector.Timer1.Enabled = True
End Sub

Private Sub VideoTransmissionMode_Click(Index As Integer(
 If Index = 0 Then
 VideoModeMenu(0).Checked = True
 VideoTransmissionMode(0).Value = True
 VideoModeMenu(1).Checked = False
 VideoTransmissionMode(1).Value = False
 Else
 VideoModeMenu(1).Checked = True
 VideoTransmissionMode(1).Value = True
 VideoModeMenu(0).Checked = False
 VideoTransmissionMode(0).Value = False
 End If

End Sub

The operator will command the robots and whenever a victim is detected a form re-
lated to a victim will be in the screen with some of the fields pre-filled having the data
coming from sensors and the related pictures (and other attachments such as a short
video and a short music file for CD Report and Web Published report), the operator
fills the rest of the fields and checks the other automatically filled fields for being
correct. He also helps the software to generate the final map (As we are taking advan-
tage of positioning system, the software can generate some parts of the map automati-
cally). The program will generate the report (all three reports) automatically after the
mission by pressing "Generate All" menu. The reports will be described later.

4. Map generation/printing

Immediately after each mission we must give a map containing the location of
the victims and the obstacles which may help finding the victims or increasing the
accuracy of the victim location. As we have seen the films of previous competi-
tions in the previous years, it always has been the operator's responsibility to see a
video stream and draw something on a plane sheet of paper, but Resquake claims
to have a better way of map generating and reduce the pressure on the operator
during the mission. If it will be possible, a flying robot may take a picture of the
whole arena and the map will be generated on a paper having grids and this taken
picture with low opacity as the background. This way the map looks more accu-
rate. If taking the picture would not be possible, we do the rest of the work on the
paper with grids on it.

The other measurement being taken is using the data coming from the posi-
tioning system. The positioning system is telling us the exact position of each ro-
bot with reasonable accuracy -always and real time- so the location of the victim
can be estimated with more accuracy, also the path in which the robot is exploring
the arena, can be sketched having known the place of the robot in each second, so
this part of map will be generated automatically. Thus, we are awaiting a very
clean and accurate map counting on our reliable positioning system.

Sonar can also help us having the distance of robot from the objects around
and can help generating a better map. We may put as many sonars as possible
around the robot or put one sonar turning around with a stepper motor. We try to
have a map without any line being drawn on it by the operator and operator should
only help the software to generate a better map, the more accurate and successful
positioning system, the more accurate and clean map generation. We will talk
more about our positioning system later.

5. Sensors for Navigation and Localization

We are applying two techniques for localization, first the positioning system and
second the sonar sensors. At the beginning of competition three stations will be setup
in three corners of the arena. Three small robots will carry transceivers and the first job
of operator is directing these three robots to the best place. Our positioning technique
is triangulation. If we know the distance of robot from three constant stations, we can
determine the exact position of robot.

Position of stations does not affect positioning system, because after placing three
stations in their places, we can find position of each robot at the beginning of the com-
petition. And positioning will be done considering the first position of robots.

The system can find the position of the robot in less than a millisecond. So, we can
claim that we have the position of robot in all the moments of area exploring continu-
ously. We measure the distance using FPGA technology which means to increase the
accuracy of measurement due to the high frequency clock pulse we can apply to the
FPGA chips.

We can find distance between a station and robot with high accuracy by measuring
data transmission time. Robot must get a signal and send a reply. Circuits have con-
stant delay that is measurable and can not make any trouble for us.

If we want to find the position of a robot with triangulation system we have to send
an electromagnetic wave and receive the reply. By measuring the time (we know the
electromagnetic waves travel with the light speed), we can have the distance from one
station, all we know is a distance from a single reference which is the geometrical
position of the points on a circle around a reference. By getting the distance from the
second station we have another circle and the robot will be somewhere on the intersec-
tion of these two circles which are two points. The distance from the third station will
give us a single point which is the position of the robot.

Figure 8

The following picture is the FPGA circuit which measures the distance. When

the signal in sent, a counter starts counting and by the time the replication signal
comes, the counter stops counting. The distance can be measured using this measured
time.

Figure 9

The IC datasheet can be found at Xilinx website. (IC name is XC9572XL

which is a high performance CPLD).
http://direct.xilinx.com/bvdocs/publications/ds052.pdf
Sonar let us have the distance from the objects around. We can have number of sonars
around the robot or use single sonar and turn it around with a stepper motor.

Distance measurement with ultrasonic waves is just the same as the above
technique. We should send an ultra sonic wave (of about 40 KHz frequency) and wait
to receive the reflection. A counter counts from the starting point of sending the wave
until getting the reflection. Ultra sonic waves travel with sound speed and we can
easily calculate the distance having speed and time.

6. Sensors for Victim Identification

1. Thermal Sensor Circuit

In this section we describe our thermal sensor which can determine temperature of
victim's body. The temperature of live victim's skin is about 30˚C.

Our sensor can determine temperature using infra red radiation and without contact.
It can also measure its own surface temperature and we can apply this temperature to
find the measurement error. The temperature range of the sensor-element is between -
40 to 100˚C. Output of the sensor-element is a voltage proportional to radiation of IR
and generated by thermoelectric effect.

Complete datasheet of the sensor element can be found in the manufacturer website:
http://www.smartec.nl/infrared_sensor.htm
We have designed a circuit that can amplify the signal and prepare it for entering

analog to digital converter stage. Figure below shows how we have used Op-Amp in
our circuit:

Figure 10 – Schematic diagram of Thermal Sensor

In the first stage, output voltage of sensor-element are multiplied my 1000 and in

the second stage differences between reference voltage and output of first stage are
multiplied by 1000 again. Output voltage is proportional to temperature of skin of the
nearest object and can be directly connected to A/D input pin of AVR Microcontroller
(PORTA.0 pin 40).

http://www.smartec.nl/infrared_sensor.htm

2. Light Sensor

The robot can measure light intensity of the environment and send a feed back for
operator. Operator can visit the light status near the robot and turn off or turn on the
lights (Illumination system). Light sensor-element is only a photo-resistor and our
circuit is very simple as can be seen in below figure:

 VCC

R1

R_Sen
sor

Figure 11

Our Sensor Resistance is 1KΩ in regular light and 30 KΩ in dark environments. Plac-

ing a 10KΩ resistor as R1 leaves
1
11

Vcc or
3
4

Vcc for output voltage. The output of

this circuit can be directly connected to A/D input pin of AVR Microcontroller
(PORTA.1 pin 39). Notice that this voltage is not proportional to resistance of the
sensor. It is corrected by the software. In other words, in microcontroller we can assign
a new value to each A/D value by regression or taking a table of data bytes in ROM
and refer to it.

3 .Gas Sensor:

We take advantage of a gas sensor as well. The sensor has a probe and takes in an
amount of air and gives the amount of CO2 as an electrical signal. The signal will be
analyzed with an ADC and the operator can see the amount of CO2 in Resquake Op-
erator Interface.

If the amount of CO2 exceeds a threshold value, the operator will be prompted to be
aware of the surroundings because their might be a victim around which may not be
easily seen in the first look.

4.Motion Detection:

The video sent to the operator will be analyzed using VideoCapX control and if the
any motion would be detected the operator will be prompted.

5.Sound Detection:

Video and sound will be sent at the same time on the LAN and are separately de-
tectable in the software using VideoCapX control. Because of having a lot of noise in
the area , there is no threshold value for the sound power and if there would be a sound
which could be recognized as the victim's sound, the operator will understand.

7. Robot Locomotion

Robot locomotion is a very important point in exploring the arenas as we should
be ready to tackle any possible obstacle. Resquake is working on three robots with
different locomotion methods, but until the March 1st, a mixture of what we are think-
ing to get to is ready and successfully implemented. Here we go through the details of
the system:

Differential steering is the type of locomotion chosen for the robot. In each side of
the robot, wheels are connected with a timing belt. In this type of locomotion, spinning
on the robot’s axis is accomplished by moving one wheel in one direction and the
other in the opposite direction. A sharp turn is accomplished by stopping one wheel
while moving the other and a shallower turn is also accessible by moving one wheel at
a lower speed making the robot to turn in the direction of the slower wheel.

Figure 12 - How the differential steering acts

The timing belts, in addition to be a part of differential steering, help the robot

climb blocks easie

Power Transmission: Two speed gearbox
As described above, the type of locomotion is differential steering. Two mo-

tors mounted on two sides of robot and between the wheels, apply the power to the
wheels.

Figure 13. Motor is connected to the back wheel with a two speed gearbox

Kinetic design of gearbox:
Motor specifications:

Speed = 2000 rpm in 20 volts
Diameter of wheels = 94 mm

Required output speeds= 800 mm/s & 400 mm/s

Figure 14. Limits for length of the gearbox

What limits the length of the gears train is the distance between the shaft of
the motor and the shaft of the back wheel. This distance should have the minimum
length of 85 mm.
 The speed of the robot is a function of the rotational speed and the diameter of
the wheels. Equation 1 shows this relationship, where v is the velocity of the robot, d
is the diameter of the driven wheels and N is the rotational speed of the wheels:

v = πdN (1)

So, to determine the required rotational speed of the wheel, equation 1 is
solved for N, which is shown in equation 2.

rpmrpsN

D
vN

1627.2
094.0

8.0
≡==

=

π

π
(2)

So, the gear ratio of the gearbox train should be:

35.12
162
2000

2

1

==

=

G

G

m

N
Nm

(3)

Figure 15. High speed Gear train

Module selected = 0.8

The number of teeth of gears is as follow:

G1 = 14 T
G2 = 38 T
G3 = 26 T

It should be noted that, as gears are going to be constructed by milling

method, it’s better that number of teeth be an even number.
As it is shown, the first step of transmission is done with two pulleys. The

next steps are carried out by gears.
So, the gear ratio of this train of gears will be:

56.11
38
26

14
38

14
38

2.10
4.23mG =×××=

According to Equ.1 and Equ.3by applying this ratio the speed of robot will be:

rpsrpmN

N
NmG

88.2173
56.11

2000
2

2

1

≡==

=

v = πDN

v= π × 0.094 × 2.88 = 0.85 m/s

Thus, by applying this set, the speed of robot will be 0.85 m/s and it’s close to

the required speed.
To reach to the other required speed, the following set of gears will act:

Figure 16. Low speed Gear train

The gear ratio of this train of gears will be:

7.24
26
38

14
38

14
38

2.10
4.23mG =×××=

According to Equ.1 and Equ.3by applying this ratio the speed of robot will be:

rps35.1rpm97.80
7.24

2000N

N
Nm

2

2

1
G

≡==

=

v = πDN

v= π × 0.094 ×1.35 = 0.4 m/s

By applying this set, the speed of robot will be 0.4 m/s and this speed is as required.

Figure 17. Sketches showing the two speed gearbox

This power is transmitted to the wheels by two gearboxes.
In order to change the speed of the robot it is needed to have a linear actuator,

which pulls shaft of G2 and G3 out and in. This actuator can act on both sides of robot.

Stress designation of gears
The most critic gear is the one on the shaft of the wheel with 26 teeth. Failure

can be checked by applying the Lewis bending equation.
According to Lewis bending equation:

V
t

tV

K
FmYW

FmY
WK

′
σ

=⇒

′
=σ

(4)

Where the face width F and the module are both in millimeters, Wt in New-
tons and then the resultant stress will be in MegaPascals.

Gears are made of AISI 1030 Steel:

σy = 648 Mpa

Y is the Lewis factor which for a gear with 26 teeth is equal to 0.346:

Y = 0.347

The velocity factor, K’v is:

03.1
1.6

2.01.6K

s
m2.0

60
dNV

1.6
V1.6K

V

V

=
+

=′

=
π

=

+
=′

(5)

Thus:

N522
03.1

346.08.03648Wt =
×××

=

The max power that can be transferred with this gear will be:

watts48.1042.0522
VWP t

=×=
×=

(6)

The max power of motor in his system can be 40 watts, so:

6.2
40

48.104.S.F ==

Shafts Designation

The most critic shaft in gearbox is the last one, to which the back wheel is
connected.

The max torque of motor:

m.N2.0

60
22000

40

P

=
π

×
=

ω
=τ

(7)

When gearbox is working with the low speed, the torque acting on the 38

teeth gear will be:

τ = 0.2 * 24.7 = 4.7 N.m

N11020tan31.0W

N310
4.038
27.4W

rW

n

t

t

=×=

=
×

×
=

=τ

According to the ASME code for rotating shafts:

3
2

T
2

m
p

)T.C()M.C(.S.F16d +
πτ

=

(7)

Where Cm = 1.5 and CT = 1.

τP = Min(0.3 Sy & 0.18 Su)

Shafts are made of CK45 steel with :

Su = 650 Mpa Sy = 430 Mpa

So:

τP = 117 Mpa

FB

6.5

 Wn = 110

Wt = 310

2)0065.0310()0065.0110(M 22 =×+×=
T = 4.7 N.m

mm1)7.4()13.25.1(
117

416d 3
22 =+×

×π
×

=

It is very hard to work with a 1 mm diameter shaft. S

shafts with 5mm diameter in whole parts of gearbox and wheel

Frame of Gearbox
F'B
m.N13.

(7)

o, we decided to apply
s.

All the gearbox parts, wheels, and motor are connected to a plate (P1). This
plate is built from an aluminum sheet with 5 mm diameter. The drawing of this plate is
added to the report. Another plate (P2) also fixes the parts on this place.

Figure 18. Plates holding part of gearbox and wheels

It should be noted that all the shafts are connected to the plate with ball bear-
ing.

So, the assembly of one side of robot will look like below:

Figure 19. The assembly of gearbox, motor, and the wheels of one side of robot

Suspension System

In order to give the robot more flexibility and reliability to work in scattered
areas, we got to the point that the robot needs a suspension system. So, we decided to
place four springs in the plates and connect the whole body of robot to these springs.

Figure 20. Place of springs on one side of robot

Shafts with 4 mm diameter will be placed in these places and a pin, designed
to hold the body will be placed on the spring.

Figure 21. Pin loaded on spring passing through 4mm shaft

There are springs on four sides and the body is screwed to the pins.
Shafts are also fixed to the plate and are placed in its slot with screws on top and

bottom of them.

Construction Techniques
After talking about the design, we describe the techniques used in construc-

tion of the robot.
It should be noted that all Mechanical parts (including gears, plates, wheels,

body, and cover and …) are constructed and machined by the members of the group.

Gears:

All Gears are constructed with milling method. In this method gear teeth are
cut with a form milling cutter shaped to conform to the tooth space. With this method
it is theoretically necessary to use a different cutter for each gear. Because a gear hav-
ing 25 teeth, for example, will have a different-shaped tooth space from one having,
say, 24 teeth. Actually the change in space is not too great, and it has been found that
eight cutters may be used to cut with reasonable accuracy any gear in the range of 12
teeth to a rack. A separate set of cutters is, of course, required for each pitch.

In order to mill the gears, first it is needed to machine disks with diameter of
outside of gear and with the same face width of gear.

Plates:

Plates are cut from 5 mm width aluminum sheet as mentioned before. All the
holes and slots are then made.

Wheels:

Wheels are constructed by machining a cylinder and shaped as required. The
drawings of wheels are attached to the end of the report.

Body:

Body is also constructed by cutting and shaping 3mm width aluminum sheet.

Cover:

Cover is made of 5 mm width Plexiglas sheet. This sheet is first cut out and
then heated and formed as required.

8. Other Mechanisms

a) Mechanical Part

Geometrical Design

After reviewing the configuration of the arenas, team members started laying
out the conceptual design of the robot and this was done by sketching out what the
robot will look like. In this step we tried to keep the center of gravity of robot as low
as possible to prohibit the possible turn over of the body.

What if the robot fall upside-down with all this? This was one of the ques-
tions we tried to find an answer for. After thinking about Mechanical mechanisms that
could return the robot to the operating state, a physical solution was found to help the
robot in this situation.

Figure 22. The first approaches in geometrical design

As it is shown in Fig1, the cover of robot and the wheels, along with each
other, form a cylinder. So when the robot turns over, this cylindrical shape and low
Center of gravity make it easy for robot to roll and fall on wheels again.

Figure 23. Sketches showing what the robot will look like

After clarifying what the robot will look like, the size of the wheels was de-
termined. As the robot is going to work in a scattered place, with blocks of unknown
size, the bigger the size of the wheels, the more passable the blocks will be. In this
robot the wheels are designed to have 9 cm diameter.

Camera lifter and turner
In order to capture better scenes from the field, the robot is able to raise the

camera up and also spin it in two directions. This capability enhances the view of the
arena.

Figure 24. Parts of camera raiser

Camera is loaded on top of antennas. Two flexible wires pass through pulleys

and go inside antennas. When the motor (and consequently shafts and pulleys) rotate,
the wire will be sent into the antennas and will raise them. The mechanism for taking
the camera down is just the same.

Figure 25. Shafts are connected with gears and one of them are actuated with

motor

Construction Techniques

After talking about the design, we describe the techniques used in construc-
tion of the robot.

It should be noted that all Mechanical parts (including gears, plates, wheels,
body, and cover and …) are constructed and machined by the members of the group.

Gears:

All Gears are constructed with milling method. In this method gear teeth are
cut with a form milling cutter shaped to conform to the tooth space. With this method
it is theoretically necessary to use a different cutter for each gear. Because a gear hav-
ing 25 teeth, for example, will have a different-shaped tooth space from one having,
say, 24 teeth. Actually the change in space is not too great, and it has been found that
eight cutters may be used to cut with reasonable accuracy any gear in the range of 12
teeth to a rack. A separate set of cutters is, of course, required for each pitch.

In order to mill the gears, first it is needed to machine disks with diameter of
outside of gear and with the same face width of gear.

Plates:

Plates are cut from 5 mm width aluminum sheet as mentioned before. All the
holes and slots are then made.

Wheels:

Wheels are constructed by machining a cylinder and shaped as required. The
drawings of wheels are attached to the end of the report.

Body:

Body is also constructed by cutting and shaping 3mm width aluminum sheet.

Cover:

Cover is made of 5 mm width Plexiglas sheet. This sheet is first cut out and
then heated and formed as required.

b) Electrical Part

Microcontroller duties
Motor Drivers
Illumination
Serial Port Interface Circuit
Battery checking System
Microcontroller Software

Microcontroller duties:

Microcontroller can translate computer commands for motors, generate PWM for
them, get analog data from sensors, convert it to digital signals and send it to computer
using serial port. Omitting Microcontroller imposes numerous extra ICs on the board
which make it larger and more expensive.

In our last robot (Championship of Iranian Intelligent Mice competitions of No-
vember 2003 in which our team achieved the first place) we used 89C51 and 89C52,
but in this robot we are using AVR Microcontrollers because of numerous advantages
over 89C51:

1. AVR Microcontrollers are In-System Programmable. This relieves us from taking

the chip out of the main board each time we want to program it. These microcontrol-
lers do not need a programmer set.

2. AVR Microcontrollers have internal components that make the board smaller.

Using these peripheral features we can cancel external ICs. For example if we had
used 8051 family ICs, we would have to use an ADC chip for Analog to Digital Con-
version and a separate PWM chip for generating PWM pulses for all motors.

3. AVR Microcontrollers can drive up to 40mA in both Source and Sink modes that

can drive a LED without any external buffers. This can be an advantage over 8051
family Microcontrollers that need to be buffered before connecting to LED.

4. AVR Microcontrollers are much faster than other Microcontrollers. In AVR one

instruction can be executed in a clock cycle, but in 8051 family Microcontrollers one
instruction needs at least twelve clock cycles to be executed.

5. AVR Microcontroller has six sleep modes. Chip can enter one of these sleep

modes. In the sleep modes power consumption of Microcontroller are very low, but
timers, interrupts and other important jobs of CPU are functioning. Using sleep mode
we can save power. When our robot is not working for a long time chip enters the
sleep mode and wakes up when operator sends it a command. So the robot does not
have an ON-OFF key.

6. Very fast three wire communication between up to 127 microcontrollers or other
devices. This technology called Serial Peripheral Interface (SPI). AVR microcontrol-
lers can transfer data in Full-Duplex Synchronous mode. One microcontroller could be
Master and the others are Slave.

7. AVR Microcontrollers can automatically restart the chip when CPU does not

work (Watchdog Timer).

8. These Microcontrollers are very cheap. ATMega8535L costs only about three

times an 89C51.

So, we have chosen ATMega8535L; its datasheet can be found in Atmel Website:
http://www.atmel.com/dyn/resources/prod_documents/doc2502.pdf

Serial Port Interface Circuit

Microcontroller must send sensor data to computer on the robot and must receive
commands and send them to motors. So it must communicate with computer. There are
several ways of connecting a Microcontroller to a computer, for example we can use
parallel port or USB port communication. But serial port is very reliable and efficient.
Parallel port wastes lots of the port pins of microcontroller. For connecting a computer
to a Microcontroller using serial port, we need an interface to convert RS232 standard
to standard TTL. Some circuits and ICs do this, and in our robot we are using
ADM232. Complete datasheet can be found in Analog Device Corporation web site.

In our robot we have omitted hand shaking. Schematic diagram of our two wire se-

rial communication, TxD and RxD, is shown in the following figure:

http://www.atmel.com/dyn/resources/prod_documents/doc2502.pdf

Figure 26

Illumination

The robot has some lights which can automatically or manually be turned on and
off. Lights are some white LED’s with significant brightness and very low power
consumption. These LEDs are biased in 3.7 volts and sinks 20mA. For illumination
system of our robot we need only 24 LEDs. An interesting point is their very low
price. The figure below shows the LED effect in dark room:

Figure 27

Figure 28

AVR microcontroller could drive up to 40mA, so, it can drive only two LEDs when
LEDs are connected directly. We have to buffer them and we have chosen 74HC541
as buffer. The buffer circuit of illumination system is shown below:

Figure 29

Battery checking System

Our robot has 24 Lithium-Ion Batteries in 6*4 packages. Each battery supplies 3.7
volts and 1.8 A, and weights only 60 grams. If a battery voltage drops under 3.5 volts,
it may be harmful. Thus, a feedback from the battery voltage is sent to the microcon-
troller. Operator can check voltage of each battery and when it drops down the critical
threshold a warning will be shown. At this situation the batteries are charged simply
by plugging to 110 or 220 volt.

Motor Drivers

Our robot has five motors. Two of them are used for driving the wheels and the oth-
ers are for the camera lifter,

In below table we have summarized the electrical characteristics of motors:

Table 1

Number Name Voltage Free Run-
ning Current

Rotor
Locked Current

1 Left wheel 20V 0.3A 2A

2 Right wheel 20V 0.3A 2A

3 Lifter 12V 0.2A 1 A

4 H Turner 5 V 0.1A 0.3A

5 V Turner 5 V 0.1A 0.3A

It is important to control the current of driving motors so a separate IC is used to
generate PWM with limited current. In our design we have used LMD14245.

This IC has several advantages:
First, it generates a PWM using four logic input signal and allows us produce 16

different speeds for motors. The second advantage is the ability to determine the motor
current and telling us whether it is higher or lower than the input reference current.
And finally it is cheap. Figure shown below is the schematic circuit of these two motor
drivers:

Figure 30

In this circuit, we have used 6 opto-isolators to ensure that current of motors does
not harm the microcontroller. So, we have taken separate power supplies. Opto-
isolation is one of the best ways to reduce noises.

For turner motors we have used L293 as shown below:

Figure 31

Microcontroller Software

In the previous sections we described hardware parts and circuits dealing with mi-
crocontroller. Now we explain the software of microcontroller. Let’s take a brief look
at all the responsibilities of microcontroller:

Table 2

 Responsibility pin
1 Receiving Command and Data from Computer RxD
2 Sending Data to Computer TxD
3 Scanning A/D for Thermal Sensor A/D bit0
4 Scanning A/D for Light Sensor A/D bit1
5 Scanning A/D for Battery Situation A/D bit 2
6 Generating PWM for three motors 3 I/O pins
7 Applying Motor Command to Motor of wheels 2*6 I/O pins
8 Monitoring Data on a LCD 7 I/O pins
9 Receive distance from second microcontroller and send it

to computer
8 I/O pins

As you can see in the table, we do not have any interrupts. Computer of our robot is
Master and microcontroller is Slave. When computer wants to change the speed of
motor, it sends a message to microcontroller and ask microcontroller to do it. When
computer asks for sensor situation, it sends a request message and then the microcon-
troller sends back sensor status. This configuration is quite ideal because when the
microcontroller chip resets, it can start its work without any problem. The general
flowchart of the software of microcontroller is shown here:

st

new command

Y
es

N
o

Execute command
(Send or ReceiveData)

Figure 32

The computer on robot receives commands from the operator’s system and sends
them to its serial port. Operator’s interface software and microcontroller must have
same commands with same concepts:

Table 3 – 'R means Receive and T means Transmit

Com-
mand Byte

Description Argument

1 Turn on lifter motor None
2 Turn off lifter motor None
3 Direction of lifter motor: Clock Wise None
4 Direction of lifter motor: Counter Clock

Wise
None

5 Speed of lift motor R(amount of speed)
6 Change left wheel motor status R(new command)
7 Change right wheel motor status R(new command)
8 Turn on lights None
9 Turn off lights None

10 Change display of LCD R(position,Data)
11 Send temperature T (Temp.)

12 Send light sensor value T (Value)
13 Send battery status R (Battery Number)

T(Status)
14 Send distance from walls R(Angle)

T(distance)

We wrote our program in C language and compiled it with CodeVisionAVR:
http://www.hpinfotech.ro/
Now see the code:

http://www.hpinfotech.ro/

/***
© Copyright 1998-2003 HP InfoTech s.r.l.
http://www.hpinfotech.ro
e-mail:office@hpinfotech.ro

Project :
Version :
Date : 2/26/2004
Author : Freeware, for non-commercial use only
Company :
Comments:

Chip type : ATmega8535L
Program type : Application
Clock frequency : 4.433600 MHz
Memory model : Small
External SRAM size : 0
Data Stack size : 128
***/

#include <mega8535.h>

// Alphanumeric LCD Module functions
#asm
 .equ __lcd_port=0x15
#endasm
#include <lcd.h>

// Standard Input/Output functions
#include <stdio.h>

// Declare your global variables here
char k;
void TurnOnMotor3(void);
void TurnOffMotor3(void);
void CWMotor3 (void);
void CCWMotor3 (void);
void ChangeMotor1(void);
void ChangeMotor2(void);
void TurnOnLED (void);
void TurnOffLED (void);
void ChangeLCD(void);
void Temperature (void);
void Light_Intensity(void);

void main(void)
{
// Declare your local variables here

// Input/Output Ports initialization
// Port A initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In

Func6=In Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T

State6=T State7=T
PORTA=0x00;
DDRA=0x00;

// Port B initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In

Func6=In Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T

State6=T State7=T
PORTB=0x00;
DDRB=0x00;

// Port C initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In

Func6=In Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T

State6=T State7=T
PORTC=0x00;
DDRC=0x00;

// Port D initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In

Func6=In Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T

State6=T State7=T
PORTD=0x00;
DDRD=0x00;

// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=FFh
// OC0 output: Disconnected
TCCR0=0x00;
TCNT0=0x00;
OCR0=0x00;

// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer 1 Stopped
// Mode: Normal top=FFFFh
// OC1A output: Discon.
// OC1B output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge

TCCR1A=0x00;
TCCR1B=0x00;
TCNT1H=0x00;
TCNT1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;

// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer 2 Stopped
// Mode: Normal top=FFh
// OC2 output: Disconnected
ASSR=0x00;
TCCR2=0x00;
TCNT2=0x00;
OCR2=0x00;

// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
MCUCR=0x00;
MCUCSR=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x00;

// USART initialization
// Communication Parameters: 8 Data, 1 Stop, No Parity
// USART Receiver: On
// USART Transmitter: On
// USART Mode: Asynchronous
// USART Baud rate: 1200 (Double Speed Mode)
UCSRA=0x02;
UCSRB=0x18;
UCSRC=0x86;
UBRRH=0x01;
UBRRL=0xCD;

// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1:

Off
// Analog Comparator Output: Off
ACSR=0x80;
SFIOR=0x00;

// LCD module initialization

lcd_init(16);
lcd_clear();
lcd_putsf("Initializing...");
while (1)
 {
 // Place your code here
 k=getchar();
 putchar(k);

 switch (k)
 {
 case 1: TurnOnMotor3(); break;
 case 2: TurnOffMotor3(); break;
 case 3: CWMotor3(); break;
 case 4: CCWMotor3(); break;
// case 5: ChangePWMMotor3(); break;
 case 6: ChangeMotor1();
 case 7: ChangeMotor2();
 case 8: TurnOnLED();
 case 9: TurnOffLED();
 case 10: ChangeLCD();
 case 11: Temperature();
 case 12: Light_Intensity();
 }

 };
}

void TurnOnMotor3(void)
{

lcd_gotoxy(0,1);
lcd_putsf("Motor3: ON ");
putsf("M3: On");
PORTB.4 = 1; // Pin 5
}

void TurnOffMotor3(void)
{
lcd_gotoxy(0,1);
lcd_putsf("Motor3: OFF");
putsf("M3: Off");
PORTB.4 = 0; // Pin 5
}

void CWMotor3 (void)
{
lcd_gotoxy(0,1);
lcd_putsf("Motor3: CW ");
putsf("M3: Clock Wise ");

PORTC.3 = 0; // pin 25
PORTA.2 = 1; // pin 38
}

void CCWMotor3 (void)
{
lcd_gotoxy(0,1);
lcd_putsf("Motor3: CCW ");
putsf("M3: Counter Clock Wise");
PORTC.3 = 1; // pin 25
PORTA.2 = 0; // pin 38

}

/*
void ChangePWMMotor3(void)
(
char data_in1;
lcd_gotoxy(0,1);
lcd_putsf("Motor3: PWM ");
putsf("M3: PWM");
data_in1=getchar();
)
*/

void ChangeMotor1(void)
{
char data_in1;
lcd_gotoxy(0,1);
lcd_putsf("Motor1: ");
putsf("M1");
data_in1=getchar();
lcd_putsf("");
}

void ChangeMotor2(void)
{
char data_in1;
lcd_gotoxy(0,1);
lcd_putsf("Motor2: ");
putsf("M2");
data_in1=getchar();
data_in1=data_in1 & 0b00011111 ;
PORTA.4 = ((data_in1 & (1<<0))== (1<<0)); // pin 36
PORTA.5 = ((data_in1 & (1<<1))== (1<<1)); // pin 35
PORTA.6 = ((data_in1 & (1<<2))== (1<<2)); // pin 34
PORTA.7 = ((data_in1 & (1<<3))== (1<<3)); // pin 33
PORTD.7 = ((data_in1 & (1<<4))== (1<<4)); // pin 21
}

void TurnOnLED (void)
{
lcd_gotoxy(0,1);
lcd_putsf("LED: ON ");
putsf("LED: ON");
PORTA.3 = 1; // pin 37
}

void TurnOffLED (void)
{
lcd_gotoxy(0,1);
lcd_putsf("LED: OFF ");
putsf("LED: OFF");
PORTA.3 = 0; // pin 37
}

void ChangeLCD(void)
{
char position,data;
lcd_gotoxy(0,1);
lcd_putsf("LCD:Wait...");
putsf("LCD:Wait.. ");
position = getchar();
data = getchar();
lcd_gotoxy(position,0);
lcd_putchar(data);
}

void Temperature (void)
{
lcd_gotoxy(0,1);
lcd_putsf("Sensor: ");
putchar('a');

}

void Light_Intensity(void)
{

lcd_gotoxy(0,1);
lcd_putsf("Light Int.: ");
putchar('a');

}

The code has three major parts. First, we set register value. Second we write main
loop and finally we define some small functions that must be executed when related
command is received.

We can not go through register description thoroughly as it is a vast subject. Further
discussion is available in the IC datasheet at:

http://www.atmel.com/dyn/resources/prod_documents/doc2502.pdf
Our main loop is running without any interrupt. At the beginning of the loop, pro-

gram waits to receive commands from operator’s computer. Then according to the
received command, related function is done and then it comes back to the first com-
mand line of loop and it goes on.

Operator’s
Computer

Mother board
of Robot

Microcontroller

Wireless
LAN

Transceiver
(Alternative)

Serial
Port

Figure 33

http://www.atmel.com/dyn/resources/prod_documents/doc2502.pdf

c. Software part
Resquake Robot Station:
Resquake Robot Station will be setup on each robot and receives commands from

operator and sends video and data to the operator through wireless LAN (or with the
backup system). It uses the same subroutines described in Resquake Operator Interface
as it is working with sockets and serial port. Here we have serial communication with
transceivers and microcontroller. This program does not need a graphical interface and
is preferably designed in VC++. This part is still under construction.

Resquake Report Reader:
Right after the end of each mission, Resquake Operator Interface generates three

outputs automatically.
First one is a complete report of what has happened during the mission and what

has been found in each arena with lots of pictures and all the available data coming
from sensors during the mission and also the map is partially generated by the software
(as we are taking advantage of positioning system the software can learn many things
using the data coming from the positioning system. Of course the operator helps the
software to generate a better map at last).

Second report will be burnt on CD and will be handed to the judge. This CD con-
tains all the data in the printed report in addition to some mp3 and mpg files which are
recorded whenever an important event occurs in each arena. The CD contains a pro-
gram which is able to open our file type. This program is called Resquake Report
Reader and most part of it is already done using database (mdb files and Microsoft Jet
Engine), but it is still under construction as we are not completely done with the other
robots. This software will be designed using VB.

We try to publish a third report on Internet so the report would be available for a
committee or organization who are making a complete rescue team and possibly are
not in the disaster scene in the real case of earthquake.

9. Team Training for Operation (Human Factors)

Resquake has tried to build a very simple set using whatever the team members
could learn and implement. The devices are going to be plug and play and there should
be no complicated training needed for the user. Resquake Operator Interface has the
least possible objects in the best and easily accessible places and may need something
about 10 minutes to describe what an operator should do to control the system. It is
also very easy to setup Hardware parts, and we do our best to finalize the system in the
way they only would need power supply and no other setup.

For team member training, as we were all involved with the implementation proce-
dure no training will be needed. But of course we need to practice several times before
the main competition. We try to make a similar field in the university and practice.

For getting to this point and building this robot all the members has learnt many
things and has read many books. What we really learnt during these months is not
comparable to any part of life of any one of us.

10. Possibility for Practical Application to Real Disaster
Site

Resquake has done his best to make a robust system practical for the real disas-
ters. There are some new ideas for working in real disaster, but also there are some
limitations at least until the end of the competition.

New idea is publishing the report on Internet which makes the data available for the
ones who are not present at the scene yet, but should do something for the victims or
send commands to the rescuers.

The limitation is the wireless LAN which solves the problem in small areas but not
in the real site. It means we are to improve the communication system for operation in
longer distances.

11. System Cost

These are the costs of each robot (all in US Dollars)

Table 4

 Part Name Qty. Total Price
Motors 5 60
Gear box 5 80
Structure 1 100 Mechanical Part

Other Mechanical costs 1 100
Wireless Camera 1 50
Data Transceiver 2 80
Positioning System 1 100 Electronic Part

Other Electronic boards 1 85
Mother board 1 500
Wireless LAN and Ac-
cess point

2 200

AV to USB adaptor 1 60
Computer Part

Laptop 1 1000
Sum 2415

References

1. Shigley, Joseph Edward: Mechanical Engineering Design, 6th edn. , McGraw-Hill
2. Martin George Henry: Kinematics and Dynamics of Machines
3. McComb, Gordon: The Robot Builders Bonanza, McGraw-Hill, 2000
4. Oberg, Erik: Machinery Handbook, 26th edn. , Industrial Press, 2000

 5. MSDN Library, Microsoft Corporations

Appendix 1: Mechanical Drawings

Figure 34

Figure 35

Figure 36

Figure 37

Appendix 2: Photo Gallery

Figure 38

Figure 39

Figure 40

Figure 41

Figure 42

Figure 43

Figure 44

Figure 45

Figure 46

Figure 47

Figure 48

Figure 49

Figure 50

Figure 51

Figure 52

Figure 53

Figure 54

Figure 55

Figure 56

Figure 57

Figure 58

Figure 59

Figure 60

Figure 61

Figure 62

Figure 63

Figure 64

Figure 65

Figure 66

Figure 67

Figure 68

Figure 69

Figure 70

	1. Thermal Sensor Circuit
	2. Light Sensor
	3 .Gas Sensor:
	4.Motion Detection:
	5.Sound Detection:
	Microcontroller duties:
	Serial Port Interface Circuit
	Illumination
	Battery checking System
	Motor Drivers
	Microcontroller Software

