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Abstract 
This report summarizes and evaluates several common score-level biometric fusion techniques. The literature 
contains numerous proposals for score-level biometric fusion algorithms. Selecting the most effective fusion 
techniques depends on operational issues such as accuracy requirements, availability of training data, and the 
validity of simplifying assumptions. Of the techniques evaluated, product of likelihood ratios and logistic 
regression were found to be highly effective. 
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1 Introduction 
In the course of this study, several score-level fusion techniques were implemented and applied to a 
variety of multi-biometric problems. This paper discusses what techniques were investigated, why those 
techniques were selected, and evaluates how the techniques compare in terms of accuracy. The paper also 
offers guidance for selecting among those techniques, as they are not all equally suited to different 
problems. Techniques for modeling score distributions are discussed in Appendix E. The set of 
techniques discussed are not fully representative of the breadth of alternatives, but are varied and 
instructive.   

The purpose of this paper is to convey how common biometric fusion strategies compare with respect to 
performance, real-world applicability, and ease of implementation to persons selecting, designing or 
calibrating fusion algorithms. 

2 Previous Work 
One finds in the literature a plethora of techniques for fusing biometric scores.  One also finds other 
communities of researchers solving similar problems in dissimilar ways: much of the growing body of 
research that supports data fusion is not specifically targeted to the narrow application area of biometric 
score fusion and its special needs.   The biometric community has done a great deal of work in adapting 
techniques from a variety of specialized fields (e.g., statistics, pattern recognition, artificial intelligence, 
medicine) for biometric-specific purposes, but this is still a fertile area for further work. 

A strong theoretical basis exists for biometric fusion (e.g., [Kittler-98; Verlinde-00; Poh-05d]).  Many 
researchers have demonstrated that fusion is effective in the sense that the fused scores provide much 
better discrimination than the individual scores (e.g., [Ben-Yacoub-99; Dass-05; Fierrez-03; Griffin-05; 
Grother-02; Indovina-03; Jain-99b; Korves-05; Ross-01; Snelick-05; Wang-03]).  Such results have been 
achieved using a variety of fusion techniques.  

Several recent papers have compared various techniques on empirical data. Selections of recent results 
that help define “conventional wisdom” include: 

• Kittler et al [Kittler-98] evaluated several classifier combination rules on frontal face, face profile, 
and voice biometrics (using a database of 37 subjects). They found that the “sum of a posteriori 
probabilities” rule outperformed the product, min, max, median, and majority of a posteriori 
probability rules (at EER) due to its resilience to errors in the estimation of the densities.  

• Ben-Yacoub et al [Ben-Yacoub-99] evaluated five binary classifiers on combinations of three face 
and voice modalities (database of 295 subjects). They found that (a) a support vector machine and 
Bayesian classifier achieved almost the same performances; and (b) both outperformed Fisher’s 
linear discriminant, a C4.5 decision tree, and a multilayer perceptron.  

• Fierrez-Aguilar et al [Fierrez-03] found that a support vector machine outperformed (at EER) the 
sum of normalized scores when fusing face, fingerprint and signature biometrics (database of 100 
subjects and 50 chimeras1).  

• Jain et al [Jain-05] applied the sum of scores, max-score, and min-score fusion methods to 
normalized scores of face, fingerprint and hand geometry biometrics (database of 100 users, 
based on a fixed TAR). The normalized scores were obtained by using one of the following 

                                                 
1 Chimeras are composites of data representing virtual “subjects” that combine biometrics from multiple 
individuals. 
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techniques: simple distance-to-similarity transformation with no change in scale (STrans), min–
max, z-score, median-MAD, double sigmoid, tanh, and Parzen. They found that (a) the min–max, 
z-score, and tanh normalization schemes followed by a simple sum of scores outperformed other 
methods; (b) tanh is better than min-max and z-score when densities are unknown; and (c) 
optimizing the weighting of each biometric on a user-by-user basis outperforms generic 
weightings of biometrics.  

• Snelick et al [Snelick-05] compared combinations of z-score, min-max, tanh and adaptive (two-
quadrics, logistic and quadric-line-quadric) normalization methods and simple sum, min score, 
max score, matcher weighting, and user weighting fusion methods (database of about 1000 users, 
at a fixed FAR). They found that (a) fusing COTS fingerprint and face biometrics does outperform 
unimodal COTS systems, but the high performance of unimodal COTS systems limits the 
magnitude of the performance gain; (b) for open-population applications (e.g., airports) with 
unknown posterior densities, min-max normalization and simple-sum fusion are effective; (c) for 
closed-population applications (e.g. an office), where repeated user samples and their statistics 
can be accumulated, QLQ adaptive normalization and user weighting fusion methods are 
effective.  

• Korves et al compared various parametric techniques on the BSSR1 dataset [Korves-05]. That 
study showed that the Best Linear technique performed consistently well, in sharp contrast to 
many alternative parametric techniques, including simple sum of z-scores, Fisher’s linear 
discriminant analysis, and an implementation of sum of probabilities based on a normal 
(Gaussian) assumption. 

These studies are illuminating, but many suffer from limited available data: the datasets are too small to 
evaluate performance  at low FAR, and often are not representative of operational data. Some of these 
studies also suffer from other problems: 

• Conclusions are based on simplifying assumptions, such as independence or normal score 
distributions, often with no investigation into the validity of those assumptions. 

• Techniques are often not fully defined, so that it is not clear if results are due to the underlying 
concept behind an algorithm or the decisions made in the implementation. In general, 
comparisons of techniques are in fact comparisons of implementations of those techniques, so 
that negative results could be the result either of the underlying technique or an imperfect 
implementation — this is compounded if the details are not fully defined. 

• The performance of many techniques depends upon information that must be supplied but may 
not be available, such as prior probabilities or score distributions.  The results of the evaluation 
may hinge on the validity of assumptions (or equivalently, the quality of available information 
and the accuracy with which it is modeled). 

• Confidence intervals on results are not discussed (and often large). Several papers discuss the 
computation of confidence intervals on ROCS [Wayman; Bolle-00b; Macskassy-04; Scott-06; 
Micheals-03] 

• Some studies are based on approaches to classification that seek to minimize the probability of 
error or expected Bayes’ cost (see [Scott-06]).  Such approaches may have limited applicability in 
biometrics. 

Thus, despite the progress that has been made in this field, there remains a clear need for large-scale 
empirical comparisons of fusion techniques. There is also a need for guidance on the implementation and 
selection of techniques. 
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3 Fusion Techniques Evaluated 
We selected eight techniques based on performance in previous work. We implemented and 
systematically compared these techniques on a wide range of fusion problems, involving different 
matchers, modalities and instances.  Table 1 briefly describes each technique.   
Technique Description Rationale for Choice 
Simple Sum of Raw 
Scores 

Matcher scores are simply added, with no 
prior normalization.  Scores are neither 
rescaled, nor weighted to account for 
differences in matcher accuracy. 

Included largely to demonstrate its 
limited applicability, which includes 
situations where scores have 
comparable distributions, such as 
two fingers scored by one matcher, 
as in the NIST 2-finger SDK 
evaluations [SDK2]. 

Simple Sum of Z-
normalized Scores 

1. The mean and standard deviation of the 
imposter score distribution is estimated 
from sample data. 
2. Scores are normalized by subtracting 
the mean of the imposter distribution, then 
dividing by the standard deviation of the 
imposter distribution. 
3. The normalized scores are simply 
added without weighting. 

Simple linear fusion technique. 

Best Linear Linear fusion (weighted sum), with an 
optimal slope (hyperplane) determined 
empirically on joint sample distributions.  
Solution entails iteratively rotating decision 
boundary and evaluating TAR at a fixed 
FAR. 

Many linear techniques are 
discussed in the literature, but each 
determines slope from prior 
distributional assumptions.  
Previously identified as a top 
performer [Korves-05], Best Linear 
is often far superior to alternative 
linear techniques. 

Product of Likelihood 
Ratios 

1. Probability density functions are 
separately modeled for each genuine and 
impostor distribution, using variable 
bandwidth kernels, log-linear tail tapering, 
and spike handling. 
2.  Likelihood ratios are computed from 
these models for each matcher. 
3. Scores are normalized by 
transformation to their likelihood ratios 
4. Normalized scores are simply multiplied 

This multi-stage modeling process 
attempts to estimate, very directly, 
the information required for 
application of the (theoretically 
optimal) Neyman-Pearson Lemma, 
with minimal simplifying modeling 
assumptions. 

Logistic Regression 1. The log of the density ratio is modeled 
(e.g. as a low-order polynomial function), 
then estimated from the training data by 
principal of maximum likelihood 
2. Density ratios were modeled 
independently for each matcher; fusion 
was performed by adding the normalized 
scores (log densities). 
 
Alternatively, the joint density ratio may be 
modeled directly, in which case 
normalization and fusion are not distinct 
steps. 

A standard statistical technique that 
closely approximates the 
theoretically optimal Neyman-
Pearson Lemma. 
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Technique Description Rationale for Choice 
Product of FARs 1. Scores are transformed to the estimated 

right-tail integral of the imposter density 
distribution.  
2. Distribution modeling is identical to that 
used for product of likelihood ratios (but 
only for the imposter distribution). 

Fusion technique proposed in 
[Griffin-04b] for use with the BioAPI 
standard. The estimation technique 
as implemented was developed 
here.  FAR normalization is a 
practical alternative to ratio 
normalization when little is known 
about the genuine distribution. 

Min of FARs 
 
Max of FARs 

1. Scores are transformed to FAR, as with 
product of FARs. 
2. As implied by the names, simply the 
minimum (or maximum) of the unfused 
FARs. 
 
Min and max are decision-level fusion 
techniques, but calibration requires 
knowledge of score distributions. 

Fusion techniques proposed in 
[Griffin-04b] for use with the BioAPI 
standard. 
 
 

Table 1: Selected Techniques, as implemented in this study 

The ROC-based evaluation used here emphasizes tradeoffs between FAR and FRR.  The error trade-off 
approach to evaluation was championed by J. Neyman and E. S. Pearson; the Neyman-Pearson Lemma 
[Neyman-33] defines a criterion under which the ROC can be optimized.2  Recently, several authors have 
noted the merits of Neyman-Pearson optimization for this type of evaluation (e.g., [Scott-05], [Griffin-05], 
[Pepe-05]).  As noted by Griffin, 

“One good way of defining optimization of biometric fusion for the purposes of verification is to find the 
combination of signals from each biometric such that for a given False-class acceptance rate (FAR) the True-
class rejection rate (TRR) is minimized.   The solution to this problem was given […] by Neyman and Pearson. 
The Neyman-Pearson theorem simply states that this optimization is satisfied by using decision boundaries in 
the total sample or probability density space such that the ratio of genuine over impostor probability densities 
are held constant at the boundary. Therefore, the problem at hand is to implement in a simple way this meaning 
of optimal fusion.” [Griffin-05] 

The product of likelihood ratios technique described in this paper represents a direct approach at 
estimating distribution densities from sample data for the purpose of Neyman-Pearson optimization.  
Logistic regression is a standard statistical technique for modeling these ratios directly.  Much of the 
fundamental theory and implementation issues relating these techniques are summarized in other papers 
in this series (see Parts V, VI, and VII). This paper focuses on empirical observations and practical 
guidance derived from our experience. 

The techniques tested are a small subset of those proposed in the literature. We include techniques 
expected to be appropriate in only a few circumstances (simple sum of raw scores and z-normalized 
scores), techniques expected to do well in general (product of likelihood ratios and logistic regression), 

                                                 
2 The Neyman-Pearson Lemma states that optimal decision boundaries are defined by equal likelihood 
contours. These can be visualized as analogous to elevation contour lines on a topographic map. If you 1) 
take an X,Y scatterplot of genuine and imposter scores,  2) replace each point in the scatterplot with the 
ratio of genuines to imposters at that point, and 3) plot those ratios in the Z dimension, then the Neyman-
Pearson Lemma states that the topological contours that follow a given “altitude” (a fixed likelihood 
ratio) correspond to optimal decision boundaries. 
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and some “reasonable” techniques known to practitioners (Best Linear, FAR-based methods). Many of 
the techniques in the literature are variations on similar concepts; many of the more effective techniques 
are based on likelihood ratios [Sedgwick][Dass-05]. Several techniques were not evaluated due to limited 
resources that might be considered for future work, such as the use of support vector machines.  

Our use of FAR-based techniques was influenced by the BioAPI specification [BioAPI], and the ANSI 
Fusion Information Format [FIF] which use estimates of FAR as a means of making scores interoperable. 

Evaluation of the techniques included comparisons of the full ROCs, some of which are reproduced here. 
Summary results are measured at FAR=10-4: this specific operating point was selected for its 
comparability with FpVTE results, computational feasibility, as an appropriate baseline for use in 
identification systems. 

Note that for most of these techniques, almost all of the work (and complexity) lies in modeling the 
univariate (pre-fusion) score distributions. In other words, if we distinguish between normalization 
(univariate) and fusion (multivariate), these techniques are successful because of painstaking 
normalization, and fusion is merely the sum or product of the normalized scores.  

4 Comparative Performance Results 
Figure 1 provides a summary comparison of the eight techniques on 2-way fusion problems constructed 
from the following score sets: Face matchers A, B, and C; Fingerprint matchers H, I, and Q for right index 
(RI) and left index (LI) fingers. The charts on the following pages show greater detail. 
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Unfused Data

 
Figure 1: Eight selected techniques compared at FAR=10-4 on a variety of fusion tasks. Product of 
Likelihood Ratios performs consistently well. 
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This chart supports several key results: 
• Product of likelihood ratios, logistic regression, product of FARs, Best Linear and max of FAR 

perform well consistently. 
• Simple sum of raw scores performs well when the scores are of the same type (the same matcher 

on corresponding fingers).  In other cases, z-normalization of the scores often helps, but results 
remain variable. 

• Min of FAR is not effective. 

 

Additionally, it should be noted that 
• The probabilistic techniques are often sensitive to accurate modeling of the score distributions 

and implementation details (as discussed in TBD Vb and Vc).  This may be a significant 
consideration when selecting a technique for a specific application (See Section 5).  

• Max and min implement decision-level fusion, not score-level fusion (Max combines decisions 
with AND; Min with OR).3 The findings of this study disprove the oft-repeated canard that 
decision-level fusion is ineffective: decision-level fusion was found to be highly effective, but not 
as effective as score-level fusion. Theoretically, Max of Likelihood Ratios (not implemented) 
should perform better than Max of FARs but not as well as the product of likelihood ratios. This 
was not verified empirically. 

Figure 2 to Figure 5 provide sets of complete ROCs to show how the various techniques compare across 
the range of operating thresholds. 

                                                 
3 Note that although fusion is performed at the decision level, the matchers must first be set to operate at 
a common decision threshold in order to maximize TAR.  Calibration may utilize score-level information.  
The example ROCs represent the range of operating points achievable by varying this common decision 
threshold. 
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Figure 2: The result of fusing two different fingers using the same matcher. This is the least 
challenging type of fusion, so many techniques do well. 

 
Figure 3: The result of fusing a face score and a finger score.  Score distributions differ significantly, so 
benefits of better fusion techniques are more significant. The Face and Min of FAR lines are 
superimposed. 
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Figure 4: The result of fusing two different fingers (using the same matcher) with a face score. 

 
Figure 5: The result of fusing different matchers on the same source data (left little fingers). Although 
the scores are highly dependent, fusion still yields a benefit. 
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5 Guidance on Selecting Techniques 
As seen in the preceding section, several fusion techniques perform well, but even among the most 
accurate techniques there are performance differences.  One of the key considerations when selecting a 
technique should be what resources are available for training the algorithm.  This includes many factors 
such as availability of training data, modeling tools and expertise, target operational settings, integrity of 
(possibly multiple) databases, and reliability of ground-truth information for training data.  Of central 
concern is the training data itself and any other knowledge of the score distributions: 

• Quantity of training data (separate counts of genuines and imposters) 
• Quality of training data (e.g. representativeness of operational data, accuracy of ground-truth 

information) 
• Design information (e.g. range of possible scores, whether scores represent similarity measures or 

probabilities, the meaning of special score values such as for FTEs, how multiple processing 
stages influence score distributions) 

• Joint distributions (i.e., the training data includes multiple scores for each subject comparison)  

Table 2 summarizes for each technique several factors that might influence the selection decision.  These 
include simplifying theoretical assumptions (failure to satisfy these may substantially degrade 
performance); information required to implement the technique; observations on the difficulty of 
implementation and on the sensitivity of the technique to certain data characteristics; and how well the 
technique performed in this study. Note that this table is merely a summary: the companion papers in 
this series discuss the conceptual and implementation issues for these techniques. 

Simple Sum of Scores 
Requires no training data. Assumes inputs have comparable scale and Assumptions strength. 

Implementation Trivial: simple addition of scores. 
Inconsistent and often quite bad, but good for fusion of corresponding fingers Accuracy using the same matcher. 

Simple Sum of Z-Scores 
Requires small, univariate sample distribution (imposters only). Assumes 
Gaussian distributions, comparable strength of inputs. Highly sensitive to Assumptions assumption of comparable strength: the weaker input can pull results down.  
Not as sensitive to Gaussian assumption. 

Implementation Simple: Only requires normalization by standard deviation.  
Accuracy Inconsistent.  

Best Linear 
Requires joint sample distributions. Assumes size of dataset is large enough to 
measure target FAR accurately, but solution generally was not highly sensitive Assumptions to FAR.  Does not assume fused scores are independent. Requires selection 
of appropriate target FAR. Insensitive to magnitude of outliers. 
Conceptually simple, but automated solution requires a special-purpose Implementation algorithm to determine the optimal weights for a given FAR.  

Accuracy Consistently near top 
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Product of Likelihood Ratios 
Assumes knowledge of univariate density distributions, for both genuine and 

Assumptions imposter scores. Assumes fused scores are independent, but apparently not 
very sensitive to this assumption. 
Successful implementation requires accurate curve fitting of genuine and 
imposter density distributions, potentially a painstaking process requiring 

Implementation advanced statistics capabilities. Variable bandwidth kernel estimates yielded a 
good initial fit, but special care was required to achieve reasonable fits to tails 
and bounded distributions. 

Accuracy Consistently top.  
Logistic Regression 

Generally requires joint sample distributions (does not assume independence).  
Assumptions In this analysis, however, independence assumption was highly effective, so 

models relied exclusively on univariate distributions. 
Successful implementation requires accurate curve fitting of density 
distributions, which is requires statistical expertise, but is supported by 

Implementation standard statistical packages. Care must be taken to select appropriate 
modeling terms: low-order polynomial terms were found to suffice.  Sensitive 
to outliers, but special values (e.g., spikes, FTEs) can be handled explicitly.   

Accuracy Consistently near top 
Product of FARs 

Assumes knowledge of univariate probability distribution (impostors only).  
Assumptions Appears to be a reasonable heuristic and does not require genuine data, but 

lacks a solid theoretical underpinning. Assumes fused scores are independent. 
Successful implementation requires accurate curve fitting of imposter density 

Implementation distributions, which is a painstaking process akin to Product of Likelihood 
Ratios. 

Accuracy Consistently near top 
Min of FARs 

See Product of FARs.  Note that score-level information is needed only to Assumptions calibrate the decision thresholds, not during operations. 
Implementation See Product of FARs. 

Accuracy Consistently poor performer 
Max of FARs 

See Product of FARs. Note that score-level information is needed only to Assumptions calibrate the decision thresholds, not during operations. 
Implementation See Product of FARs. 

Accuracy Usually near top (inconsistent) 

Table 2: Guidance on Selected Techniques 

6 Conclusions 
Several score-level fusion techniques were evaluated and compared in this study. There are several 
highly and consistently effective score-level fusion techniques to choose from.  An important 
consideration when making a selection is what tools and information are available for modeling the score 
distributions. 

• As implemented, the product of likelihood ratios was the most sophisticated and most accurate 
method. This technique requires careful modeling of the score distributions. 
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• Logistic regression is highly effective, and relies on standard statistical tools. 
• Best linear is a conceptually simple technique.  This technique requires joint sample distributions 

(training data).  Implementation is relatively easy for 2-way fusion. It might be an appropriate 
choice for some evaluations, benchmarks, prototypes, etc., where highly optimal accuracy is not 
required. 

• Product of FARs is most appropriate when no information on the genuine distribution is 
available; careful modeling of the imposter distribution is required. 

Many proposed techniques are based on simplifying assumptions.  While any of these techniques might 
be valid in a specific situation, they are not reliable for general-purpose use and often perform poorly. 

• Simple sum of raw or z-normalized scores is not generally appropriate, but may be effective for 
combining multiple samples or instances from one matcher.  

• Examples of other such techniques include density estimation based on a normal (Gaussian) 
distribution assumption (or any parametric distribution). 
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