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Abstract 
This report discusses lessons learned in the course of developing models of score distributions from large 
samples of data using kernel density estimation techniques. The methods detailed here were used in the 
implementation of the Product of Likelihood Ratios and FAR-based fusion techniques. 
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Appendix E  Modeling Score Distributions 

1 Introduction 
Accurate modeling of score distributions is the key to optimizing score-level fusion [Neyman-33; Griffin-
05; Scott-05].  This paper discusses procedures for modeling score distributions that were explored in the 
course of this study.  It compares the effectiveness of some alternatives and provides examples of how 
they can fail.  It summarizes how the modeling steps were combined to implement several of the 
techniques evaluated in Part IV, including the Product of Likelihood Ratios that was the basis for 
quantitative results in Parts VIII and IX, and discusses limitations of this implementation. 

The remainder of Section 1 discusses relevant characteristics of the sample data (see also Part III) and the 
visual tools used to see those characteristics.  Section 2 discusses variations on the basic modeling 
procedures and the sensitivity of the final fused results to specific types of imprecision in the models.  
Section 3 defines the standard modeling procedure used throughout this series, and discusses known 
limitations, robustness and validity.  Section 4 defines a simple linear fusion technique that is also based 
on sample score distributions and was evaluated (Part IV) and applied (Parts VIII and IX) in this series. 

1.1 Examples of score distributions 
When fusing scores from multiple sources, there are two score distributions of interest:  the mate 
distribution (genuines) and non-mate distribution (impostors).  These distributions exist in an M-
dimensional space, as each comparison of two subjects results in M individual biometric scores, one for 
each matcher, instance, sample or mode to be fused. 

It is common practice to assume that these distributions are parametric (conform to some known, 
parameterized family of distributions), either to facilitate the use of theoretical results or simply for lack 
of sufficient data to construct a more precise model.  It is clear from large sample distributions that this is 
rarely a valid assumption.  However it is not evident a priori how sensitive fusion results are to such 
simplifying assumptions. 

Figure 1 shows histograms of the mate and non-mate scores for one matcher.  Notice that both 
distributions are heavy-tailed in the primary region of score overlap, and that both distributions have a 
“spike” at Score = 0 (i.e., a relatively high density at this singular score value). 
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Figure 1: Histograms of non-mate scores (red) and mate scores (black); smoothed density estimates of 
non-mates (blue) and mates (green); and the ratio of the density estimates (unitless, scaled to chart). 

Figure 2 shows a selection of 2-score (bivariate) scatterplots from the NBDF06 dataset to illustrate the 
wide range of joint score distributions with which a fusion algorithm must cope.  Generally, any 
simplifying assumptions made by an algorithm about the nature of the score distributions will lead to 
suboptimal fusion performance on at least some datasets. 

Notice, for instance, that the C-I scores are inherently separated well by a linear boundary, but those of A-
C are not so well separated by that technique.  These data reveal numerous patterns that violate common 
simplifying assumptions:  dissimilarity of distributions across multiple matchers (e.g., B-C), 
discontinuous distributions (e.g., Q nonmates – low scores), censored distributions (e.g., Q mates – high 
scores), and spikes (e.g., A mates – low scores).  Another important characteristic of this data (indicated, 
but not fully evident in these charts) is the great differences in matcher strength (e.g., C-H). 
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Figure 2: Joint score distributions for each possible pair of six raw score sets. Non-mates are shown in 
red; mates in black. Each axis covers the full score range, which differs widely by matcher; scales were 
omitted to focus attention on the distributions. Each plot is constructed from the same set of 3000 
randomly selected, mated subjects and 3000 non-mated subjects. 

As discussed in Part III, the NBDF06 dataset includes face and fingerprint scores for 64,867 pairs of mated 
subjects (genuines) and 122,000 non-mates (impostors). The large size of this dataset makes good density 
estimates possible. 

2 Density Estimation 
This section addresses the problem of estimating probability densities from random samples of biometric 
score data.  As we have seen, these score distributions are not well described by parametric models (i.e., 
those having a fixed form, such as Gaussian or exponential). 

The histograms shown in Figure 1 belong to the class of non-parametric solutions. Histograms reveal the 
shape of the distributions effectively, but the result is not smooth, and depends on the width and end 
points of the bins. 
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Kernel density estimation is a general method for obtaining smooth, non-parametric estimators from 
sample data.  In this method, a kernel function is centered at each data point, and a probability density 
estimate for the entire sample is obtained by summing over these functions.  Selecting a smooth kernel 
function produces an estimator that is also smooth.  The Parzen window method, which uses kernel of 
fixed width, has been proposed for modeling biometric score distributions (e.g., [Jain-00], [Dass-05], [Jain-
05]).  Parzen windows address several of the modeling problems identified above. 

In this study, kernel density estimation was used as a basis for developing estimators, but several further 
refinements were made.  This paper discusses those refinements in detail. 

The following steps outline the general modeling procedure.  They are explained in detail in the 
following subsections.  Each univariate score distribution is first modeled separately, then combined as a 
product to form the joint estimate: 

1. Manually identify “spikes” in the data 
2. Kernel fit the remaining data (excluding spikes) 
3. Adjust the initial kernel fit: 

a. Adjust limits of bounded distributions using flat linear extension (Gaussian kernels do not fit 
well) 

b. Log-linearly extend non-mate right tail to maximum score 
4. Compute FAR = non-mate right tail integral (probability estimator) 
5. Model the joint density of each distribution (mates and nonmates) as a product of independent 

distributions 

2.1 Density Estimation: Variable Bandwidth Kernels 
In kernel density estimation, bandwidth selection is critical.  If the kernel is too large, oversmoothing and 
bias result.  If it is too small, the model preserves patterns of sample noise.  By varying the bandwidth as 
a function of the matcher score, it is possible to model regions of high sample data density precisely with 
a narrow bandwidth, and regions of low sample density smoothly with a high bandwidth. 

High performance at very low FAR requires modeling the right tail of the non-mate distribution 
accurately, even though training data in the tail is sparse. The standard Parzen method of kernel density 
estimation – using fixed bandwidth kernels - does not work well in this case; in particular, standard 
Parzen fits, using default bandwidth parameters, produce far too much variance in the tails. For typical 
heavy-tailed, non-mate distributions, it was found that increasing the bandwidth produced unacceptable 
bias (flattening of the curve) before smoothing the tails. 

Variable bandwidth kernels provide a means of addressing this problem.  The following example (using 
data from FpVTE MST) shows results obtained using the KernSec function of R (available in the GenKern 
library).1

Figure 3 shows a histogram of the score distributions.  The red curve is a standard Parzen fit using a 
default bandwidth (approx 16.5).  Note that some variance (lack of smoothness) is evident for scores near 
1000.  The green curve represents an attempt at greater smoothing by increasing the bandwidth to 50.  
Notice how this results in increased bias, especially in the left tail.  The black curve was obtained using a 
variable bandwidth (described below).  Notice how this results in a tight fit (similar to the red line), but 
with less variance. 

                                                 
1 A spike at score=0 (12.5% of the data) was excluded from this histogram, per step 2. 
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Figure 3. Histogram and several kernel density estimates 

Figure 4 shows a detail of Figure 3, revealing unacceptable variance in the right tail of both the default 
(red) and smoother (green) Parzen fits. 

 
Figure 4. Kernel density estimates (Detail: y-scale) 
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Figure 5 shows a better way to view the variance:  density on a logarithmic scale.  Note on this chart that 
the variable bandwidth kernel method (black) is very well-behaved, with minimal bias relative to the 
default (red) and very smooth (low variance) over the entire range. Note that starting at 4800, where the 
variable kernel method begins to suffer from excessive variance, the fit is extended to the maximum score 
using a log-linear taper (see section 2.2). 

 
Figure 5. Kernel density estimates (logarithmic y-scale). Black is variable bandwidth (up to score = 
4800, after which the fit is extended  to the maximum score using a log-linear extension). Red and 
green are fixed bandwidth. 

Figure 6 contrasts the performance resulting from variable bandwidth and fixed bandwidth kernels. In 
summary, although the fixed bandwidth Parzen technique is much simpler to use, it performs too poorly 
in general for low FAR biometric systems. Variable bandwidth kernels provide better modeling control, 
and facilitated tapering (see next section) to improve the tail fit. 
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Figure 6: ROC curves for training and evaluation datasets for variable bandwidth and fixed 
bandwidth density estimation techniques.  Fixed bandwidth kernel estimation overfits at low FAR. 

2.2 Density Estimation: Tapered Tails 
Properly modeling the right tail of the non-mate density is critical when maximizing TAR at very low 
FAR.  We tried two methods: linear and log-linear tapering. The log-linear taper was implemented as a 
log-linear descent from FAR=5*10-5 to max(mates). The linear taper is a linear descent over the same 
interval. Figure 5 shows an example of a log-linear taper beginning at Score = 4800. 

Figure 7 and Figure 8 below show the differences in results between the two methods. Log-linear 
tapering is clearly more effective. In fact, with linear tapering, we found that the Product of Likelihood 
Ratios deteriorated below FAR=10-3  and that Product of FARs deteriorated below FAR=10-2. We also 
observed that a rough approximation to log-linear works quite well, e.g., a small number of points with 
linear interpolation. 
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Figure 7: Performance using log-linear tapering. 

 
Figure 8: Performance using linear tapering. 
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2.3 Density Estimation: Visualizing the Fit 
A standard set of four charts (see Figure 9) was used to visualize the density models during the fitting 
process.  Such charts were very helpful in developing an understanding of the score distributions, and of 
bias and variance in the estimators. 

Each chart presents the same basic set of information with varying range and scale2.  The top two charts 
present the data on a linear y-scale; the bottom charts use a logarithmic y-scale.  The two charts on the left 
limit the x-axis to the region of non-mate scores (99.9% of the non-mate sample data); the charts on the 
right show the entire range of scores.3

 

Figure 9: A “4-chart” showing mate and non-mate score distributions for face matcher A, showing 
density estimates and ratio of density estimates.  Goodness of fit is reviewed visually using the 
histograms as a reference. 

 

                                                 
2 The red and black circles in the lower charts represent the height of histogram columns.  This stylistic 
difference is the unfortunate result of technical difficulties with the plotting software.  
3 Some details of the actual models are not fully represented in these charts, e.g., fitting to the spikes and 
special handling of the extremes of the distributions.   
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2.4 Density Estimation: Gaussians 
This section demonstrates the effects of modeling distributions as normal curves.  Although clearly the 
distributions are not normal, it is not obvious a priori how much effect this simplification has on the ROC 
curves.  Several researchers have assumed normal distributions, if only because they lacked sufficient 
data for a more accurate model. 

An example is shown based on fusing Matcher H right index finger scores with Matcher A face scores.  
Figure 10 and Figure 11 show the normal fits to the score distributions.  Figure 12 and Figure 13 compare 
the results of using variable bandwidth density estimation and normal densities respectively.  Product of 
Likelihood Ratios and Product of FARs both perform better at FAR = 10-4 using accurate density 
estimates.  Note that in both methods of density estimation, spikes were handled discretely. 

Comparison of a representative set of 12 scatterplots and ROCs for Kernel vs. Normal fits of two 
biometrics revealed that normal-based ROCs tend to show slightly lower slopes than Kernel ROCs, i.e., 
the TAR reduces over the entire range of FAR. Occasionally, the normal assumption causes a severe drop 
in TAR at very low FAR. 

 

 
Figure 10: Density ratio modeling based on normal fits (fingerprint matcher H).  Refer to Section 2.3 
for information on how to read these charts. 
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Figure 11: A: Density ratio modeling based on normal fits (face matcher A).  Refer to Section 2.3 for 
information on how to read these charts. 
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Figure 12: ROC curves for a face and right index fusion problem using variable bandwidth kernel 
density estimation. 

 
Figure 13: ROC curves for a face and right index fusion problem using normals for density estimation. 
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2.5 Density Estimation: Spikes 
The Neyman-Pearson based Product of Likelihood Ratios method as implemented in this study is similar 
to that presented in [Dass-05].  One key difference is that those authors use a global bandwidth for the 
kernel density estimator, whereas this study used a variable bandwidth.  Dass, et al note that “some parts 
of the score distributions can be discrete in nature. As a result, estimating the densities using continuous 
density functions can be inappropriate.”  They propose separate handling of each discrete component of 
the distribution.  In this study, that advice was followed by removing spikes prior to density estimation, 
and handling those singular points discretely.  Surprisingly, minimal benefit was derived from this 
special handling of spikes.  This result was attributed to the very narrow bandwidths that were possible 
with such large samples, and the fact that the spikes occur at the extremes of the score ranges. 

Figure 14 below compares the performance of the Product of Likelihood Ratios fusion method on various 
combinations of face (matchers A,B,C) and finger (matchers H,I,Q) data using four variant methods of 
density estimation: 

• “Standard” refers to Product of Likelihood Ratios fusion, with density estimation based on 
variable bandwidth kernels, log-linear tail tapering and spike handling 

• “No spikes” is the same as “Standard,” except without spike handling 
• “Linear Taper” is the same as “Standard,” except a linear taper was used instead of log-linear  
• “Normal” refers to Product of Likelihood Ratios fusion, with density estimation based simply on 

Gaussian models of the distributions; and spike handling. 

As seen in the figure, handling spikes had very little effect on TAR when the distributions were otherwise 
well-fit using the kernel method.  Proper fitting of the tail is important, as demonstrated by comparing 
the linear and log-linear fits.  Modeling the densities as normal distributions, even with proper handling 
of spikes, will sometimes greatly reduce the benefits of fusion. 
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Curve Fitting Details
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Figure 14: Explicit handling of spikes does not significantly improve performance. FRR is measured at 
FAR = 10-4. RI and LI refer to right and left index fingers; A, B, and C refer to face matchers; H, I, and Q 
refer to fingerprint matchers. 

Several factors may account for the lack of sensitivity to handling spikes: 
• When distributions are modeled with high bias (e.g., normal distribution, or wide kernel 

bandwidth), the effects of the spikes are very broad, i.e., much of the estimated distribution is 
affected.  This might be more likely to occur when modeling distributions based on small sample 
datasets.  This study involved large datasets and the kernel bandwidth was controlled to limit 
bias. 

• Spikes commonly occur at score extremes, away from the region of interest (e.g., the density 
cross-over point, or some specific low FAR).  This tends to limit their effect on the decision 
boundaries. 

• As density estimation was implemented in this study, score extremes routinely received special 
handling. 
o Kernel modeling does not automatically handle bounded distributions well.  In this 

implementation, the kernel density estimates were sometimes computed to points near the 
extreme of each score distribution, then linearly extrapolated to the extreme.4 

o The initial kernel density model was adjusted by enforcing a log-linear taper of the right tail 
of non-mate distributions (from FAR=0.00005 to the right). 

• These empirical findings are based on only one dataset and six matchers.  This data is not fully 
representative of score distributions encountered in score-level biometric fusion. 

                                                 
4 An alternative approach might have been to reflect the sample data across each extreme before fitting 
the curve. 
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Under different circumstances, spike handling may matter more. The impact of spikes should depend on 
several factors: 

• The magnitude and distribution of spikes in the score distributions. 
• The region of interest, i.e., the system operating point. 
• The type of fusion technique: 

o Parametric techniques such as linear combinations do not involve density estimation. 
o Product of FARs is affected only by the non-mate right-tail integral of the density estimate.  

Spikes are not common in this tail region (i.e., at low FAR) 
o Likelihood ratios are affected by poor density estimates in a region of interest. 

• The size of the dataset:  higher bias is generally required to model smaller datasets; this 
exacerbates the problem of spikes for density estimation. 

• On small training datasets, there is a risk of overfitting the density estimates at the spikes.  In 
such cases, it might be beneficial not to handle spikes discretely. 

3 Standard Modeling Procedure 
This section summarizes the modeling procedure used in the Product of Likelihood Ratios, Product of 
FARs, Max of FARs, and Min of FARs techniques.  The FAR techniques differ from the Ratios only in the 
computation of an integral (by trapezoidal approximation).  Effectiveness of these techniques is sensitive 
to some of these modeling decisions. 

3.1 Outline of Steps 
This section describes the standard modeling procedure that was used throughout these papers to obtain 
the quantitative results.  The modeling process was performed in two steps:  first, the parameters of Table 
1 were determined manually; the remainder of the process was fully automated. 

1. Spikes were manually identified.  Decisions are recorded in Table 1.  There were no firm criteria, 
but in most cases spikes were distinctive anomalies.5 The spike densities noted in the table are the 
best explanation of why they were selected.  Some data is highly discrete and much of the non-
mate score range could have been handled as spikes.  

2. Kernel fitting.  As shown in Table 1, very simple bandwidth functions were selected, partly to 
avoid overfitting concerns.  The selection procedure was ad hoc, but the objective was to select 
functions that produced satisfying results in the “4-charts” (introduced in Figure 9).  

3. Horizontal extension.  As kernel fits do not model bounded distributions well, the kernel method 
was used over less than the entire range of the data.  R’s KernSec function (GenKern library) 
supports fitting to a range of the distribution (“Fit Range” in Table 1).  All scores except spikes 
were provided to that function.  This initial fit was simply extended horizontally at each end to 
the True Range.  Although not the best approach, this proved sufficient and was readily 
automated. 

   

                                                 
5 [Dass-05] provides a criterion, but it is implicitly based on their sample size. 
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Dataset Mating Bandwidth function Spikes Spike Density True range Fit range 

H index NonMate ((x + 40)/35)2 – 1 0 
9999 

0.9842787 
0 

0 
215 

1 
139 

H index Mate min(350, 2 + (5000 - 
abs(x - 5000))/2) 

0 
9999 

0.00554691 
0.1939107 

0 
9999 

2 
9960 

I index NonMate 5 + x1.5/450 0 
2000 

0.00135246 
0 

-1 
962 

9 
728 

I index Mate min(65, 20 + x/10, 
510 - x/4) 

0 
2000 

0.00147918 
0.8452874 

0 
2000 

20 
1929 

Q index NonMate min(0.05, 0.002 + x/3) -1 
0 
1 

0.00019672 
0.9948852 
0 

-1 
0.55 

0.01 
.12 

Q index Mate min(0.07, 0.01 + x/3, 
1.01 - x) 

-1 
0 
1 

0.00020030 
0.01838184 
0.9331597 

-1 
1 

0.02 
0.98 

A NonMate max(0.25,  
2*x - 0.2)/100 

0 0.01520492 0 
0.719831 

0 
1 

A Mate max(0.5, x + 0.3)/100 0 0.04235682 0 
1 

0 
1 

B NonMate min(2, x*0.05 + 0.02) 0 
.105334 

0.2153607 
0.04598361 

-1.173e-16 
4.65605 

-1.173e-16 
3.723024 

B Mate min(x*0.03 + 0.03, 2.5) 0 
.105334 

0.02026163 
0.0030970 

0 
179.693 

0 
179.693 

C NonMate (x*0.045) - 0.7   12.1152 
83.4224 

12.1152 
79.15603 

C Mate 0.7   12.7615 
100.004 

12.7615 
100.004 

Table 1: Parameters used for curve fitting to match score distributions 

4. Log-linear tapering [section 2.2].  This procedure was automated by extending non-mate 
distributions from the right end of Fit Range based on the slope just approaching that region. 

5. FAR.  The kernel density estimate, tabular in representation, was integrated by trapezoidal 
approximation.  Spikes were worked back into the integral as a separate step. 

6. Joint density estimates.  These were modeled simply as the product of the univariate estimates. 

3.2 Known Deficiencies 
Several deficiencies of these procedures and the resulting models are recognized.  These are summarized 
in Table 2. 
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Modeling Step Concern Response 
Product 
(independence 
assumption) 

In general, the scores are not strictly 
independent (see chapters VI and VII).  
For algorithm fusion and instance 
fusion, the scoresets are clearly 
correlated.  The independence 
assumption was often less appropriate 
at higher accuracies. 

Removing this assumption might produce 
better fusion results: this analysis 
demonstrates what can be achieved with this 
simplifying assumption. 
Experience with two techniques, logistic 
regression and Best Linear, suggest (but do 
not prove) that this assumption did not 
substantially hurt performance. 

Tail modeling Limited sample data precludes precise 
and confident modeling in the most 
critical regions of difficult 
discrimination.  Incorrect modeling at 
low FAR might lead to poor operational 
results at low FAR. 

The log-linear extension seems to fit the 
sample data well as seen in the “4-charts,” but 
this modeling assumption clearly goes well 
beyond the supporting data.  Instance fusion 
is not expected to be very sensitive to this 
assumption because the multiple distributions 
are produced by the same matcher. 
This is a potential source of severe modeling 
inaccuracies particularly in cases where 
operational decisions will be made at very low 
FAR (relative to size of training data) or where 
the benefits of fusion are marginal (e.g., 
algorithm fusion).  

Overfitting The kernel method and spike handling 
both invite overfitting, as does separate 
fitting of each distribution (vs. modeling 
the ratio directly).  In general, the entire 
training set was used for both fitting 
and evaluation. 

The full sets of scores were used to study the 
benefits of fusion at very low FAR.   
Overfitting occurs when the scale parameters 
for kernels are too small, or the degree of the 
fitted polynomial is too high.  Because of the 
large volume of data, coupled with a strong 
belief in the inherent smoothness of the 
distributions (apart from spikes), overfitting is 
unlikely for this application. 
With the kernel method, the “4-charts” were 
used during the modeling process to visually 
assess variance and bias, and limit the risk of 
overfitting.  Similar performance of the kernel 
fits and logistic regression suggest that 
overfitting was not a great concern. 
Separate validation runs were performed in 
which data was partitioned into training and 
evaluation sets [see section 3.4]. 

Table 2: Known modeling deficiencies 

3.3 Tail Fitting Lesson 
When the FRR gain tables were generated for algorithm fusion (Part IX), one instance occurred where the 
TAR actually decreased when two algorithms were fused.  This was for Right Index fingers of Matchers 
H and Q.  Closer examination revealed that several other ROCs — Best Linear, Sum of Ratios, Max of 
FARs -- were superior to the Product of Ratios in this case.  Similar underperformance, though less 
severe, was noted for H and Q Left Index fingers.6

                                                 
6 The Best Linear technique correctly classified 148 more Right Index finger mates than did the Product of 
Ratios at FAR = 10-4 (TAR = .98573 vs. .98345).  This corresponds to an FRR gain of 8 (rather than -7). 
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The underlying problem was determined to be a poor fit to the tail of the Q non-mate distribution.  In this 
study, the curve fitting process was largely automated.  At least two curve fits were manually inspected 
for each matcher (typically the index finger and thumb) to determine the manually specified parameters 
(Table 1).   Inspection was performed using the “4-charts.”  Curve fits for most of the other fingers were 
not inspected. 

The problem was corrected simply by changing the slope of the log-linear extension used to model the 
tail.  Specifically, Q had too much influence at low FAR, so the rate of descent of the tail was decreased. 
The best results were obtained through trial-and-error.  After a few trials accuracy approximated that of 
Best Linear.  When making these final manual adjustments, it was not directly apparent how to optimize.  
The original fits looked reasonable on the “4-charts.” 

Lessons learned: 
• Further improvements to the reported TARs are still possible simply by tuning the curve fits of 

the non-mate tails. 
• Theoretical guidance is needed to optimize these curve fits. 

3.4 Cross-validation 
In general, the results of this study are based on measurements using the full sets of scores.  That is, all of 
the data was used for both training and evaluation.  This raises an important concern about the validity of 
the results, namely, the risk of overestimating the benefits of one or more fusion techniques due to 
overfitting the sample data.  This section addresses that concern, and provides evidence that such 
overfitting did not significantly influence the results. 

In general, overfitting is a concern when the model contains a large number of parameters relative to the 
size of the dataset.  Despite the large size of the NBDF06 dataset, this problem might manifest in either of 
two ways: overfitting might occur specifically in the critical region of discrimination at low FAR where 
there is relatively little data; and the kernel method in particular might define a highly complex boundary 
that overfits the data. 

Logistic Regression: as implemented and described in Part V, this method retains from the training 
process only a low-order polynomial description of the log odds.  The method of maximum likelihood 
estimation implements a global fit to the log odds.  It is not specifically tuned to the region of low FAR, 
but the use of higher order polynomial fits can largely overcome this limitation. 

Best Linear:  this method retains only one parameter from the training process (the slope), but it is trained 
to a specific FAR.  As discussed in Section 4 (and shown in Figure 17), the value of this parameter is not 
highly sensitive to the choice of FAR, nor is performance (TAR) highly sensitive to errors in its estimation. 

Kernel fits:  the various methods that rely on kernel fits are subject to overfitting.  As discussed in section 
2, care was taken to control variance to guard against overfitting.  Preventative steps included monitoring 
variance and bias, modeling the tail of the non-mate distribution as log-linear, and specifying a limited 
number of spikes.  Modeling decision boundaries as products of independent variables further limits the 
opportunity to overfit. 

In order to directly measure any overfitting associated with the Product of Likelihood Ratios technique, 
cross-validation runs were performed.  For these runs, the mate and non-mate data were each randomly 
partitioned into two equal sized sets.  Density ratios were modeled on the first set, and performance was 
evaluated on the second set.  This process was fully automated using the tuning parameters given in 
Table 1.  Figure 15 shows the results of one set of ten runs.  At least one pairwise validation was 
performed involving each matcher.  No evidence of significant training bias was observed. 

20 July 2006  20/24 



Appendix E  Modeling Score Distributions 

 
Figure 15: Example cross-validation results. 

 
These reports contain further evidence that overfitting is not a great concern: 

• consistently similar results across techniques 
• consistent results across face, finger positions, and matchers 
• a comparative example showing effects of overfitting using Parzen technique (Figure 6) 
• ROCs that are “well-behaved” (smooth, roughly log-linear to a low FAR) 

 
It is also worth noting the context in which the overfitting concern arises.  First, these empirical results are 
strongly influenced by the source of the biometric data and the matching algorithms.  Thus many of the 
absolute measures will differ from those of any specific operational system.  Second, many of the 
comparative results are based on a common approach.  Thus, for those comparisons, overfitting may be 
less of a concern. 

4 Best Linear Fusion Technique 
The Product of Likelihood Ratios and FAR-based techniques require the modeling of score distributions, 
as described above. Linear methods are conceptually much easier, because they are simply the weighted 
sum of the scores to be fused. This section discusses one method of optimizing linear score fusion: the 
Best Linear method. 
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In the Best Linear fusion technique, scores from each pair of matchers are combined using a weighted 
sum, i.e., , where YXweightZ +×= X  and Y  are the raw scores from each matcher, and weight is 
selected empirically to maximize TAR at a given FAR — in this case, FAR = 10-4.  

The weighting coefficient accounts for differences in raw score scales, as well as differences in matcher 
strengths.  Thus, normalization and fusion are performed as a single operation.  For example, in Figure 
16, the “Best Linear” combination, 0.0062× A +G = A /σ A + 2.7×G /σ G , i.e., the 0.0062 multiplier is 
mathematically equivalent to z-normalizing the scores7, then applying a 1:2.7 weighting favoring the 
stronger matcher. 

The following graphs illustrate how the weighting coefficient was determined.  Figure 16 shows a 
scatterplot of z-normalized scores from two FpVTE matchers, with four parallel decision boundaries 
(corresponding to different decision thresholds). Figure 17 shows the effect of the angle of linear decision 
boundaries (x-axis) on TAR (y-axis) for various FAR values (curves). 

 
Figure 16: Joint matcher score distributions for the Avalon and Golden Finger matchers (FpVTE MST). 
Four linear decision boundaries shown (FAR=10-1,10-2,10-3,10-4), each having the “Best Linear” slope as 
determined from Figure 17. An angle of 90° (vertical) corresponds to Avalon alone; 0° (horizontal) 
corresponds to Golden Finger alone. 

                                                 
7  denotes an individual Avalon score; A Aσ  denotes the standard deviation of all non-mate Avalon 
scores.  The term for recentering scores (subtracting the mean score) is omitted because it has no effect on 
the ROC. 
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Figure 17: TAR as a function of linear weighting coefficient, based on the boundary angle from the 
scatterplot in Figure 16.  Optimal angle (20°) corresponds to decision boundary in depicted in Figure 
16. 

The weighting coefficient is simply the (negative) slope of the decision boundary back in the raw score 
domain (i.e., not z-normalized).  It is selected as that slope which maximizes the TAR at a given FAR (10-4 
in this analysis).  This chart is typical in that a minor error in estimating the optimal slope from sample 
data has only a minor detrimental effect on the TAR achieved.  It is also typical in that the optimal slope 
is not highly sensitive to the FAR8.  This implies that in most cases a large (>> 1/FAR) dataset is not 
required to obtain a good estimate of the weighting coefficient. 

5 Conclusions 
The modeling procedure described in this paper led to higher accuracy results than the alternatives to 
which it was compared (see Part-IV), but it is also quite complex.  The intent of the complexity was to 
investigate the practical importance of various modeling steps in the context of this study. 

Variable bandwidth kernel estimation is a useful technique for arriving at an accurate fit to irregular 
score distributions, but it is neither necessary nor sufficient.  The kernel estimates provide a good initial 
model that must be adjusted in subsequent steps. 

Special handling of “spikes” was — somewhat surprisingly — found to have little benefit.  Two 
explanations are offered:  spikes generally occur at the extremes of distributions, away from the region 

                                                 
8 Often, the optimal slope gradually increases or decreases as a function of FAR, but typically without a 
substantial effect on TAR.  
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where low FAR decisions are made; and the large datasets and kernel estimation techniques used in this 
study allowed very low bias estimates.  Special handling of spikes may be important in other contexts. 

Standards ([BioAPI] and [FIF]) encourage transforming raw scores to FAR for the purpose of fusion.  It 
was shown that there are alternative interpretations of FAR on discrete data, and none was consistently 
preferred. 

Accurate modeling of the right tail of the non-mate distribution is both difficult and important.  In several 
contexts, poor tail fits resulted in dramatic drops in accuracy at low FAR.  This finding raises a serious 
concern about the efficacy of fusion for systems that operate at very low FAR: if a system operates at a 
FAR setting that is orders of magnitude lower than where the training data supports modeling, then 
one can have little or no confidence in the relevant region of fit.  This may result in fused performance 
ranging anywhere from the accuracy of the weakest contributor to optimal performance. 

So what performance is likely to occur at very low FAR?  In the case of multiple algorithms, where benefits 
to fusion may be small, the risks of underperforming the better input is considerable.  In the case of 
multiple instances processed by the same algorithm, the risks are small:  optimal fusion is quite effective, 
so suboptimal performance still can be highly effective; and simply balancing the contribution of the 
multiple inputs (as with Simple Sum) may suffice to produce good results.  Operating a multi-modal 
system at very low FAR would seem to be very risky following this basic procedure if one of the modes is 
much more accurate than the other.  Perhaps a more complex fusion architecture that “locks in” definitive 
match decisions and only fuses uncertain scores could partially overcome this challenge. 
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