
Synthetic Lung Tumor Data Sets for Comparison of 
Volumetric Algorithms1 

 

Adele P. Peskin,(a)(d) Karen Kafadar, (b) Alden Dima,(c) Javier Bernal,(c) and David Gilsinn(c) 

(a)National Institute of Standards and Technology, Boulder, Colorado  80305 USA 
(b)Department of Statistics and Physics, Indiana University, Bloomington, Indiana  47408 USA 

(c) National Institute of Standards and Technology, Gaithersburg, Maryland  20899 USA 
(d)Corresponding author:  peskin@boulder.nist.gov  

 

Abstract - We present a set of synthetic lung tumor data 
in which synthetic tumors of known volume are 
embedded in clinical lung computerized tomographic 
(CT) data in different background settings in the lung. 
Because the change in pulmonary nodules over time is 
an important indicator of lung tumor malignancy, it is 
important to be able to accurately measure changes in 
tumor size from measurements made at different times 
and possibly with different equipment. Standardized 
lung tumor data sets can be used to calibrate the 
differences between sets of scans as well as accurately 
compare volumetric measurement techniques. Our 
standard data sets combine the usefulness of phantom 
data with the clinical challenges of realistic CT scans. 

Keywords: image processing, segmentation, synthetic data, 
reference data.1 

 

1 Introduction 
  The change in pulmonary nodules over time is an extremely 
important indicator of tumor malignancy and rate of growth. 
Physicians base both diagnoses and treatment on perceived 
changes in size, so accurate and precise measurement of such 
changes can have significant implications for the patient. With 
current technology, tumor sizes, from which changes in size 
over time are calculated, are measured via computed 
tomography (CT), though often on different CT machines, 
with different operators, at different times of the day, and with 
patients in different physical positions relative to the CT 
equipment. Thus, a particular tumor is unlikely to be divided 
into slices at exactly the same places on two different sets of 
scans. The pixel distributions, intensity of grayscale, and 
average background values also may not be the same between 
two different sets of data. 

                                                             
1 This contribution of NIST, an agency of the U.S. 
Government, is not subject to copyright. 

Many articles have described a variety of techniques for 
calculating tumor volumes and/or the change in tumor size 
between two sets of data on the same tumor [1–6]. To 
compare these techniques, we need standardized data with 
known tumor volumes of various sizes within different levels 
of background noise. Although phantom tumor data are 
currently available and published studies [7,8] have compared 
volumetric methods on these phantom data sets, the phantom 
data settings are often not realistic, because the synthetic 
phantoms are placed in a synthetic background. A realistic 
and valid assessment of these volumetric methods needs 
realistic calibrated data sets, in which phantom ``tumors'' of 
constructed size, shape, and volume are placed within data 
collected from clinical CT scans of background (non-tumor) 
tissue. These data sets should contain data that represent the 
different types of tumors seen in more realistic data. In this 
study we present a method for generating phantom lung 
tumors in various settings: centrally located in the lung and 
free of blood vessels, centrally located in the lung in a region 
where blood vessels also are located, and attached to the 
pleural surface of the lung by a tail. We present a set of 
synthetic lung tumor data in which synthetic tumors of known 
volume are embedded in clinical lung CT data for each of 
these situations. We show the resulting pixel distributions 
from many sets of clinical lung tumor data, and how we use 
these distributions to develop algorithms to create these data 
sets. 

 

2 Objective 
 Our goal is to create sets of artificial tumors of known 
volumes embedded in real lung data, for use in comparing 
techniques that measure tumor size and growth. The data 
should include a wide variety of tumor sizes and shapes. 
Analyzing the artificial data should involve the same 
complications associated with making volume measurements 
of clinical tumors, such as those that arise due to connectivity 
to blood vessels and the pleural lining. The end result of our 
work is the creation of techniques to produce diverse types of 



embedded tumors that cover the range of tumor types seen in 
real life, in terms of sizes, shapes, and confounding features, 
as needed to perform robust tests of volumetric software. 

3 Data Description 
 To develop a method for creating standardized synthetic 
tumors, we studied the pixel distributions of many sets of 
images obtained from the Public Lung Database to Address 
Drug Response, which is funded by the Cancer Research and 
Prevention Foundation (www.via.cornell.edu/crpf.html). This 
database contains many examples of each of the types of 
tumors listed above. Figure 1a shows an example from this 
database of a single slice of data containing a tumor relatively 
free of blood vessels, and Figure 1b shows a region of the 
pixels in and around the tumor in this slice of data. To 
visualize the pixel distributions of the lung data sets, we 
discretize each individual pixel in each slice of data in the 
region of the tumor and color-code the categories accordingly. 
In this way, the clear differences in pixel intensities between 
pixels inside of lung tumors, pixels on or near the surfaces of 
lung tumors, and pixels in the surrounding lungs are apparent.  

4 Data Creation 
To create synthetic tumors embedded in CT data, we begin 

with a large, centrally located tumor, which is relatively free 
of blood vessels. The tumor is located in slices 110-150 of this 
data set, and for each slice we collect pixels in the region of 
the tumor. We are interested both in the pixel intensity 
distribution in this region as a whole, and in the sub-
distributions at the tumor center and along the tumor edges. 
Figure 1c shows a histogram of all of the pixel intensities 
within the larger bounding box of Figure 1b, and are 
representative of the data sets in general. Figure 1d shows a 
histogram of all of the pixel intensities within the smaller 
bounding box shown in Figure 1b, which correspond to the 
interior of the tumor. 

The actual edge of the tumors in CT data will not necessarily 
lie exactly along grid points, but it will lie within one pixel 
length of a grid point. Each pixel has a nominal location, but 
the intensity value at that pixel represents a volume in the 
original sample; we refer to this volume as a "voxel". The 
intensity of a pixel that is representing the edge of the tumor 
will vary with the distance between the closest pixel location 
and the actual edge. So the edge itself will not appear as a 
clear edge in the data, but rather as a blurred pixel-length 
region that represents the edge, and hence this region will 
have a distribution of pixel intensities much wider than that 
for the lung pixels. We attempt to define this distribution here. 

We isolated the pixels in regions of many lung tumors from 
the Public Lung Database, and compared the pixel intensity 
distributions. We found that the mean and standard deviation 
of these distributions vary slightly across data sets and hence 
cannot be used as standard metrics. A more consistent metric 

across data sets comes from an empirical estimate of the 
magnitude of the gradient of the pixel intensities. The mean 
and standard deviation of the gradient magnitude at the tumor 
edges are consistent across a wide range of data sets [9]. This 
makes sense, because the lung tissue is a fairly consistent 
density, the tumor is a fairly consistent density, and the 
change between tumor and lung tissue covers a consistent 
range. The distribution of pixel intensities at the edge reflects 
this overall difference. The spread of intensities at the edge is 
in part a function of the physical spacing between adjacent 
pixels. If the locations are closer to one another, the edge will 
be more clearly defined. The pixel intensity associated with 
the highest point in the gradient of the intensity field, 
however, should not depend upon the pixel spacing. 

      

 

Figure 1: a.) Section of a slice of lung CT data containing a 
lung tumor; b.) Pixel intensities  in Hounsfield units for data 
in 1a:  white:  -150 to 100,  orange:-250 to -150,  pink:-350 to 
-250, red  :-450 t0 -350, yellow:  -550 to -450, green:  -650 to 
-550, blue:  -750 to -650, purple:  -850 to -750, teal:  less than 
-850; c.) Histogram of the intensities inside the larger box of 
1b; d.) Histogram of intensities inside smaller box of 1b. 

We step back from the clinical data and use synthetic data to 
perform calibrations to determine exactly how to create our 
blurred boundary regions. Separately from the lung data, sets 
of synthetic images are created, containing spheres of sizes 



ranging from 4 to 20 pixel lengths. The pixel intensities at 
grid points in each of these grids represent the distance from 
the grid point to a central specified point in the grid. An 
isosurface within this grid at a particular value, therefore, 
represents an exact sphere with the radius of that isovalue. 
The goal is to represent a sphere of known volume with 
simulated data that has blurring at its boundary that is 
equivalent (or similar to) the blurring at edges of tumors in 
real CT scans. We compare the known analytical volumes of 
these spheres with volumes calculated from our technique to 
measure tumor volumes, described in [9], since we will use 
this measurement technique to analyze our new data. These 
results are shown in Table 1. 

Table 1. Volumes of spheres measured with our marching 
cubes algorithm 

radius Calculated 
 volume* 

Analytical  
volume* 

Percent  
error** 

4 258.267 268.082 3.66 
5 511.185 523.598 2.37 
6 890.219 904.778 1.61 
7 1420.494 1436.754 1.13 
8 2124.761 2144.659 0.93 
9 3031.675 3053.625 0.72 
10 4164.123 4188.787 0.59 
11 5547.871 5575.275 0.49 
12 7208.727 7238.223 0.41 
13 9170.843 9202.765 0.35 
14 11460.105 11494.030 0.30 
15 14099.811 14137.155 0.26 
16 17118.117 17157.270 0.23 
17 20537.883 20579.510 0.20 
18 24385.213 24429.004 0.18 
19 28684.250 28730.889 0.16 
20 33460.980 33510.293 0.15 

(*cubic pixel length)(**100(analytical-caculated)/analytical)) 

Now we create similar spheres of each size, but the edges of 
these spheres will represent the blurred edges of the clinical 
images. Instead of using distances from a central point for the 
pixel intensities in our synthetic data sets, we now use clinical 
intensities sampled from lung tumor data. All pixel intensities 
are taken from the tumor of the data set shown in Figure 1. 
Pixel intensities for pixel locations that are entirely inside of 
the sphere are chosen at random from a collection of 
intensities representing the clinical tumor data, shown in 
Figure 1d. Pixel intensities for all pixels on or near the edge 
are calculated differently. 

Each pixel location is defined as the center point of a unit 
sized voxel. The intensity of that pixel depends on the density 
not just at the pixel location, but the density throughout that 
voxel. We compute a weighted average of subsamples where 
the weight is dependent on the distance to the center of the 
voxel and the subsample points are evenly distributed through 
the voxel. We divide the voxel into 100 x 100 x 100 pieces. If 

a piece is outside of the sphere, it contributes nothing. If it is 
inside the sphere, it contributes a term that is proportional to 
the inverse of its distance from the central pixel location. In 
the case of a voxel entirely within the sphere, this sum is equal 
to 1.0. For a voxel at the edge, this sum is a fraction, f, 
between 0.0 and 1.0. The actual value of the pixel intensity for 
the center point of the voxel is then: 

               Intensity = f * (tumor mean value) +  

               (1.0-f) * (maximum background value)     (1) 

The maximum background value of pixel intensity in the 
region of the tumor is defined as a constant, k2, for a 
particular data set, as described in [9]. The images of spheres 
with blurred edges are then embedded into the slices of the 
data set. Figure 2a is a section of a slice of the resulting data. 
We then calculate the magnitude of the new gradient of the 
pixel intensity field and compare it to the gradient of the pixel 
intensity field in the region of the clinical tumor in that data 
set. For each tumor, the clinical tumor and the synthetic 
sphere, we find the average magnitude of the gradient at each 
intensity value between -800 Hounsfield units (HU) and -100 
HU. These curves are smoothed using a locally weighted 
linear smoother (using R software; see www.r-project.org), 
and presented in Figure 2b, along with a graph of the 
normalized differences in the square roots of the gradient 
magnitudes from the two tumors, Figure 2c. These figures 
  

          

 

Figure 2: a.) Section of a slice of lung data with 
embedded sphere; b.) Smoothed curves of the average 
gradient magnitude of the pixel intensity in the region of 
the clinical tumor (in black) and the synthetic sphere (in 
blue); c.) Normalized differences in the square roots of 
the curves in 2b. 



show the similarity between the gradients of the pixel 
intensity fields of the clinical tumor and the synthetic tumors. 

5 TYPES OF LUNG DATA 

Sets of synthetic spheres with blurred edges were then 
embedded into a section of the lung data where clusters of 
blood vessels reside. Where the blood vessels and sphere 
edges overlap, the edge of the sphere blends with the pixels 
representing the blood vessels. Figure 3a shows a spherical 
synthetic tumor embedded into a section of the lung 
surrounded by blood vessels. This is an example of a data set 
that could be used to evaluate methods that eliminate attached 
blood vessels from tumor volume measurements. By situating 
geometric objects of known volume into regions of lung tissue 
in areas that lead to difficult volumetric measurements, we 
can study and compare methods that deal with removing 
vascular attachments from tumor volume measurements. The 
edges of these objects will be realistic blurred edges, 
constructed to maintain the volumes associated with objects 
with precise edges. 

Attaching synthetic tumors to the pleural lining of lung tumor 
data can be done in many different ways. Most of the tumor 
data we have investigated so far has shown that the extent of 
attachment of the tumors varies over the slices containing the 
tumor. In each we have found, by looking at 3D pictures of 
these tumors and their attachments, slices in which the tumor 
pixels blend into the pixels of the lining, and neighboring 
slices in which the attachment gradually disappears. In many 
of these examples, networks of blood vessels also complicate 
the distribution of middle range edge pixel values. 

An example of a synthetic sphere that is attached to the 
pleural lining is given in Figure 3b. A geometric attachment is 
created, whose pixels are selected at random from the tumor 
in this data set, and the pixel intensities at the edges of the 
attachment are calculated according to our integration method. 
The extent of attachment of the sphere to the pleural lining 
varies in different slices containing the sphere, and tapers off 
as in seen in each example of the clinical data.  

We investigated one last example of this type of synthetic 
data, shown in Figure 3c. Micro CT data of a phantom tumor 
from the FDA, pictured in Figure 3d, is embedded into the 
lung data. As in the synthetic spherical tumors, the edges of 
the phantom tumor cover a one pixel length edge, in which the 
pixel intensities vary with the distance from the edge of the 
tumor. Table 2 gives the embedded geometries and 
placements of the various synthetic data sets we have created 
so far. 

5 Volumetric Comparisons 

Clinical lung CT data of lung tumors do not have well-defined 
edges, and the strength of a method for determining lung 
tumor volumes from these data depends on how well it 
defines those edges. We use the synthetic lung tumor data to 
begin to evaluate a variety of methods for lung tumor volume 
measurement. Estimates of the embedded sphere volumes for 
the case of a radius of 20 pixel lengths show clearly that the 
volume is highly dependent on the method of determining the 
sphere boundary. The pixel spacing within a slice is 0.57 mm, 
and 1.25 mm between slices, i.e., the sphere has a radius of 
11.4 mm and a volume of 6205.87 cubic mm. The volume 
estimate by the method described in [9] was 6196.74 cubic 
mm or approximately a 0.15 % error. The radius estimate in 
this case would be 11.39 mm.  Thus a 0.09 % radius error 
produced a 0.15 % volume error. A second method based on a 
Canny edge detection algorithm produced a volume of 
6596.88 cubic mm with a radius of 11.63 mm.  In this case a 
2 % error in radius estimate produced a 6.3 % volume error. A 
third method involving approximately the edge produced by a 
Canny edge algorithm with B-splines gave a volume of 
6626.57 cubic mm was based on a radius estimate of 11.65 
mm.  In this case a 2.2 % error estimate for the radius 
produced a 6.8 % volumetric error. We also computed a 
volume using a commercial software package using several 
accurate but very interactive methods of region selection and 
refinement. Depending upon the specific set of steps selected  

        

     

Figure 3: a.) Section of a slice of lung data with a sphere 
embedded in the location of a large blood vessel; b.) 
Section of a slice of lung data with a sphere attached to 
the pleural lining of the lung; c.) Section of a slice of 
lung data with a phantom tumor embedded; d.) 
Isosurface at 30 HU of the phantom tumor.  



for the measurement, the volumetric accuracy varied between 
1.13 % and 2.95 % error. Clearly the method to approximate a 
tumor boundary requires a great deal of accuracy to lead to 
good volume measurements. These data sets now provide a 
tool to compare different types of measurement strategies. 

Table 2. Sets of available synthetic tumor data 

geometry Sphere 
radius* 

Ellipsoid 
dimensions 

type** 

sphere 10  free 
sphere 15  free 
sphere 20  free 
sphere 15  embedded 
sphere 15  attached 
ellipsoid  20-10-10 free 
ellipsoid  10-20-10 free 
ellipsoid  10-10-20 free 
ellipsoid  10-20-10 

rotated 45 
degrees about 
slice direction 

free 

ellipsoid  10-10-20 
rotated 45 
degrees 
perpendicular 
to slice 

free 

FDA phantom   
*in pixel lengths, system variant 
**free = free of blood vessels, embedded = embedded in vessels, 
attached = attached to pleural lining 
 
 
6 Conclusions and Future Work 

We have created an initial group of synthetic lung tumor data 
sets, in which both known geometric shapes and well defined 
phantom tumors have been embedded into clinical lung tumor 
data. We have developed methods for the insertion of these 
synthetic tumors in different regions of the lung data, so that 
the synthetic tumors can be used as standardized data to test 
methods for measuring lung tumors whose edges are either 
clearly defined or partially hidden by local blood vessels in 
the lung. The methods proposed here will allow researchers to 
create their own synthetic sets, enabling a systematic 
comparison of the volumetric methods currently available to 
measure tumor size and growth. Lung tumors often grow in 
non-symmetric directions, in the shapes of spines and knobs 
growing from an original sphere-like region. Future work in 
the creation of these synthetic data sets includes plans to 
create a variety of characteristic synthetic shapes in the lung 
tumor data, and to greatly expand the sets of data we currently 
have available. 

 

ACKNOWLEDGEMENTS 
 

 Support for Dr. Kafadar from the Army Research Office, 
Grant Number W911NF-05-1-0490 awarded to the University 
of Colorado-Denver, and from the National Science 
Foundation,  Grant Number DMS0802295 awarded to Indiana 
University, is gratefully acknowledged. 

7 References 
[1]Kostis, W.J., Reeves, A.P., Yankelevitz, D.F., Henschke, 
C.I. Three-Dimensional Segmentation and Growth-Rate 
Estimation of Small Pulmonary Nodules in Helical CT 
Images. IEEE Trans. on Medical Imaging 22, No. 10, 
October 2003. 

[2]Reeves, A.P., Chan, A. B., Yankelevitz, D.F., Henschke, 
Kressler, C.I.B., Kostis, W.J. On measuring the change in size 
of pulmonary nodules. IEEE Trans. on Medical Imaging IEEE 
25(4):435-450 (2006). 

[3]Mendonca., P., Bhotika, R., Sirohey, S., Turner, W., 
Miller, J., Avila, R.S. Model-based Analysis of Local Shape 
for Lesion Detection in CT Lung Images. Proceedings of the 
International Conference on Medical Image Computing and 
Computer-Assisted Intervention (MICCAI 2005). October 
2005. 

[4]McCulloch,C.C., Kaucic, R.A., Mendonca, P.R., Walter, 
D.J., Avila, R.S. Model-based Detection of Lung Nodules in 
Computed Tomography Exams. Academic Radiology. March 
2004. 

[5]Preim, B., Bartz, D. Image Analysis for Medical 
Visualization. Visualization in Medicine 83-131, 2007.  

[6]Preim,B., Bartz, D. Exploration of Dynamic Medical 
Volume Data. Visualization in Medicine 83-131, 2007.  

[7]Das, M., Ley-Zaporozhan, J., Gietema, H.A., Czech, A., 
Nuhlenbruch, G., Mahnken, A.H., Katoh, M., Bakai, A., 
Salganicoff, M., Diederich, S., Prokop, M., Kauczor, H., 
Gunther, R.W., Wildberger, J.E. Accuracy of automated 
volumetry of pulmonary nodules across different multislice 
CT scanners.  Eur Radiol 17:1979-1984 (2007).  

[8]Ko, J.P., Rusinek, H.,Jacobs, E.L., Babb, J.S., Betke, M., 
McGuinness, G., Naidich, D.P.: Small Pulmonary Nodules: 
Volume Measurement at Chest CT-Phantom Study. Radiology 
228:864-70 (2003).   

[9]Peskin, A.P., Kafadar, K.,Santos, A.M., Haemer, G.G. 
Robust Volume Calculations of Tumors of Various Sizes. 
2009 International Conference on Image Processing, 
Computer Vision, and Pattern Recognition. 

 


