Agent-Based Test Beds for the Integrated Study of Transmission-Distribution Operations

Auswin Thomas
Leigh Tesfatsion
lowa State University

Proposed Talk

Transactive Energy Challenge Preparatory Workshop, March 24-25, 2015
NIST, Gaithersburg, Maryland

Presentation Outline

■ Integrated Retail and Wholesale (IRW) Power System Test Bed

IRW Project Homepage

www.econ.iastate.edu/tesfatsi/IRWProjectHome.htm

- HPC Implementation of Case Study
 - IRW feedback loop arising from the Introduction of smart price-responsive A/C controllers for residential households
- Extended IRW Test Bed
 - On-line integration with GridLAB-D to realistically model the distribution system

Integrated Retail and Wholesale (IRW) Power System Test Bed

5-Bus 1-Feeder Example

AMES Test Bed

Distribution Test Feeders

AMES Wholesale Power Market Test Bed

AMES Homepage:

http://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm

IRW Test Bed Models the DAM/RTM Two-Settlement System

00:00 Day-Ahead Market ISO collects energy bids & offers from LSEs & GenCos. 11:00 Real-Time ISO conducts SCUC/SCED Market to determine commitment, dispatch, & LMP schedule (SCED) for each hour of next day D. 16:00 ISO posts schedule for each hour of next day D. Real-time 23:00 settlement Day-ahead settlement

IRW Test Bed Keeps Track of Profits and Losses for Wholesale/Retail Participants

HPC Implementation of IRW Case Study

Choice of Programming Language for A/C Module

- Approximate Simulation Time (12 compute nodes)
 - 1 feeder/1 day \rightarrow 600 houses \rightarrow 0.196*30 = 5.88 sec
 - 48 feeders/1 day \rightarrow 4 feeders/node \rightarrow 5.88 * 4 = 23.52 sec
 - 48 feeders/100 days → 100 * 23.52 = ~ 39.2 mins

	Flatioiiii	Watiab	(NumPy)		(Armadillo)	(with OpenMP)	(Armadillo with OpenMP)
20 houses	Simulation Time (sec)	2.477	1.905	1.234	1.101	0.221	0.196
	~Total Simulation Time (min)	495.4	381.0	246.8	220.2	44.2	39.2

IRW Feedback Loop for IRW Case Study

Smart A/C Controller for IRW Case Study

A. Thomas, P. Jahangiri, D. Wu, C. Cai, H. Zhao, D. Aliprantis, and L. Tesfatsion, *IEEE Trans. Smart Grid*, Vol. 3, No. 4, 2012, 2240-2251

Retail Price (DAM Price + Markup)

Weather

Household A/C Preference Attributes (α setting, set-point temperature, time at home, ...)

House Structural Attributes
(Btu rating, COP, dimensions, ...)

Resident away from home 8am - 5pm

Higher α = Higher concern for cost; Bliss temp = 74°F

From single-household load to aggregated bus load

Case Study Specifications ... Continued

- Exogenously given state vector for each day
 - Weather conditions
 - Outside air temperature
 - Other environmental forcing terms
 - Background (BG) conventional load profile (not responsive to price changes)
- LSE DAM demand bid method
- Household comfort/cost preference parameters α
 - Set at random (uniformly distributed) values unless otherwise indicated.

Preliminary Results:

RTM price at feeder bus (peak hour 18) under varied forcing-term and retail-price conditions

RTM price at feeder bus (peak hour 18)

LSE Forecast: Case 1

GridLAB-D Online Simulation

Ongoing Research

- Further investigation of IRW feedback loop
 - AMES-GridLAB-D online simulation

- More realistic case studies
 - Use of a High Performance Computer (HPC) cluster to simulate multiple distribution feeders
 - Improved LSE load forecasting methods

On-Line Resources

- □ IRW Project Homepage <u>www.econ.iastate.edu/tesfatsi/IRWProjectHome.htm</u>
- □ AMES Test Bed Homepage (Code/Manuals/Publications)
 www.econ.iastate.edu/tesfatsi/AMESMarketHome.htm
- □ Agent-Based Electricity Market Research www.econ.iastate.edu/tesfatsi/aelect.htm
- □ Open Source Software for Electricity Market Research, Teaching, and Training

www.econ.iastate.edu/tesfatsi/electricoss.htm