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Overview:

1. An Introduction to Cold Neutron Scattering and the Related Data
2. An Examination of the Current Data Needs Facing Users
3. A Summary of the Progress Towards a Solution

4. The Next Steps
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Inverse Fourier Transform of Convoluted Data with Noise
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Each cold neutron instrument’s unique
specifications allow for the study of
different sections of the material’s
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The study of dynamics using neutron scattering
has a variety of applications for both research and
industry purposes
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Structure and Mobility of PEO/LiClO,4 Solid Polymer Electrolytes Filled with ALO;

Nanoparticles

Susan K. Fullerton-Shirey” and Janna K. Maranas®
Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
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The mechanism for improved ionic conductivity in nanoparticle-filled solid polymer electrolytes containing
polyethylene oxide [PEO], LiCI0,, and AlO, is investigated using differential scanning calorimetry [DSC,
dielectric spectroscopy, small-angle neutron scattering [SANS], and quasi-elastic neutron scattering [QENS].
We measure samples with ether oxygen to lithium ratios ranging from 14:1 to 81 and AlO; nanoparticle
concentrations ranging from 5 to 25 wt %. The T, and pure PEQ crystal fraction are unaffected by nanoparticle
addition, and SANS reveals nanoparticle aggregation, with the extent of aggregation similar in all samples
regardless of LiC10, or Al,O; concentration. Despite the similarity between samples, nanoparticles improve
conductivity at all temperatures, but only at the eutectic concentration (ether oxygen to lithium ratio of 10:1).
Our QENS results indicate that a rotation is present in both filled and unfilled samples at all concentrations
and is consistent with the rotation of (PEQ)gLiCI0y, a channel-like structure that is more conductive than the
amorphous eguivalent. The rotation becomes more restricted in the presence of nanoparticles.
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The Inverse Fourier Transform converts the data
into a form suitable for directly visualizing the
dynamics




The current processing algorithms contained
within DAVE were used to test the new way of
processing data.
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Continuous Inverse Fourier Transform:

The primary difference

between DAVE and the code () = = [7 Fw)e'do
used for this project is the

treatment of the Inverse

Fourier Transform
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Using code, simulated data mimic the real data in
order to investigate the reasoning behind the

SM(Q, E) is the convolution of a material dynamics and

mismatched curves
M the instrumental resolution
57 (Q.E)

5”{{?. E) with Random Noise and Background

Intensity

Intensity

Delta E

s¥(Q. E) with Random Noise

\/ e
10 '

Intensity

Celta E



Intensity

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

M (Q. E) with Random Noise and Background

Take the Inverse Fourier Transform

Delta E

Inverse Fourier Transform of S™(Q, E)

l «—s |nverse Fourier Transform of Convoluted Data with Noise

50

100 150
Time

SM(Q, E) is the convolution of a material dynamics
and the instrumental resolution

I(Q, T) is the function describing the material dynamics
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hrough the manipulation of simulated data, the
potential for additional unforeseen instrumental

effects was tested

1. Cutoff decreases the peak and increases oscillation
I(Q,T)

1.0}

Time

e—e means of datal

e—e means of dataz




Using code, simulated data mimic the real data in
order to investigate the reasoning behind the
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hrough the manipulation of simulated data, the
potential for additional unforeseen instrumental

effects was tested
1. Cutoff decreases the peak and increases oscillation
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2. Background again decreases the peak and increases oscillation

(Q,T)

1.0 " : :
0.8 Water confined in |
0.8} Carbon Porous Matrix (=20 A)
._ T=250 K Q=0.625 A™

O DCS
06 O HFBS T
06| =] BN E®E @& &
0.4 T
0.4}
0.2}

0.0




Q)

3. Resolution creates an offset, but there must be a significant change

In sigma
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The lack of rebinning is leading to initially

surprising results.

The Fast Fourier Transform
VS.
Trapezoidal Rule
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Next Steps:

Artificial Data

Real Data

Asymmetry in the
Errors

Add in Error Bars

Smoothing

Investigate the non-rebinned
data
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