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Interpretable Modeling of  Genotype-Phenotype Landscapes with State-of-the-Art Predictive Power
Approach: Interpretable genotype-phenotype modeling with LANTERN

Latent mutational effect space (z). LANTERN 
models the effect of individual mutations in a 
latent space where mutations combine additively. 
Individual mutations (i and j) are represented by 
their corresponding mutational effect vectors (z(i)
and z(j)). LANTERN computes the z position of a 
variant combining multiple mutations (g3 = {i, j}) 
through simple addition of both vectors (z(i) + z(j)).

Impact: Accurate predictions with automatic interpretability

Landscapes align with biophysics. Along z1 and z2, 
LANTERN discovers distinct modes of variation 
between EC50 and G∞ that match the impact of 
biophysical constants of an analytic model

LANTERN quantifies robustness and additivity

In a benchmark across large-scale GPL measurements, LANTERN equals or outperforms 
alternative predictive models - including deep neural networks - in ten-fold cross-validation.

Problem

LANTERN decomposes structural details of  SARS-CoV-2 ACE2 binding

LANTERN models genotype-phenotype landscapes. 
Genotype-phenotype landscapes (GPLs) measure the 
joint relationship between genetic background 
(genotype) and downstream biological function 
(phenotype). LANTERN models this data through a 
predictive relationship from genotype to phenotype 
through two key components. 

Non-linear surface: f(z). 
LANTERN models a
smooth, non-linear surface
over the latent z space to
predict the phenotype for
each variant - given it’s 
learned position in the 
latent space.

• Large-scale 
genotype-phenotype 
measurements 
(GPLs) require 
predictive modeling 
to enable design 
new sequences

• Current approaches 
make a trade-off 
between model 
interpretability and 
predictive accuracy

Prediction: LANTERN achieves unprecedented predictive power.

Predictive 
accuracy

Interpret-
ability

LacI
Mutations: 2,501
Phenotypes: EC50, Ginf
Observations: 47,462
Reference: Tack et al., 2021

SARS-CoV-2
Mutations: 4,002
Phenotypes: Kd, log MFI
Observations: 177,759
Reference: Starr et al., 2020

avGFP
Mutations: 1,879
Phenotypes: brightness
Observations: 54,025
Reference: 
Sarkisyan et al., 2015

10-fold
Cross
validation

Distribution of mutational effects. 
The distribution of single mutant
effects is enriched along a stability
axis, while a near orthogonal binding
axis is substantially less common

The joint landscape of SARS-CoV-2 binding (log Kd) and expression (Δlog MFI). Along 
the stability axis, changes in log Kd are combined with changes to Δlog MFI. Along the 
binding axis, however, the expression (Δlog MFI) stays near constant.

LANTERN discovers mechanisms of  LacI allostery

Structural association of latent dimensions. 
The strongest mutational effects along z1 are 
clustered in structural regions of known 
function: the dimer interface, ligand-binding 
pocket, and DNA-binding domain

Joint surface of LacI allostery. LANTERN learns a multidimensional surface predicting EC50 and 
G∞ as a function of z. Individual variants are shown by their predicted location in z and colored 
by their observed phenotype. Contours show the predicted posterior mean of f(z). 

Distinct mechanisms 
of disrupted ACE2 
binding. The
predicted surface 
along the stability
and binding axes 
show that decreased 
ACE2 binding can 
arise with (stability) 
or without (binding) 
decreased 
expression

Structural associations of 
each axis. Structural regions 
of the SARS-CoV-2 receptor 
binding domain (RBD) are 
enriched for mutations 
aligned with the stability
axis throughout the core 
RBD while mutations most 
strongly aligned with the 
binding axis are closer to 
the primary ACE contact 
region.

Local properties of the surface f(z) quantify important behavior of 
phenotypes. For example, the gradient (left) describes that rate of change of 
the phenotype at each z. When the gradient is near-zero, we call this 
robustness (right) because the phenotype is robust to changes in z. We also 
quantify the additivity of the landscape similarly (not shown).

• Rather than making a trade-off
between prediction accuracy and 
interpretability, LANTERN can 
provide state-of-the-art predictions
that are inherently interpretable

• LANTERN enables discovery of 
underlying mechanisms driving 
complex GPL measurements

• LANTERN scales to millions of
observations
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Inference

Dimensionality selection. 
A hierarchical prior on the variance 
of each latent dimension ensures 
LANTERN learns the dimensionality 
directly from the data

Gaussian process (GP) prior
LANTERN places a GP prior on f(z) to 
learn the non-linear surface directly 
from that data without requiring a 
predefined parametric form 

ACE2 contact

x : wild-type (origin)
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