

An Interoperability Test Bed for Distributed
Healthcare Applications

Robert Snelick
National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
robert.snelick@nist.gov

Abstract. Standards provide the foundation for ensuring interoperability, but if they are not
implemented correctly or consistently their value is diminished leading to problematic
installations and higher costs. Conformance and Interoperability testing is essential for
ensuring standards are implementable and implemented correctly; however, limited budgets
often preclude adequate attention to this testing during the product development life cycle.
Automated testing can help on both fronts. We propose an Internet-based interoperability
test bed that extends a testing infrastructure and conformance testing framework. The
operational aspects of the architecture are presented against the backdrop of distributed
health information technology applications and a representative case study. Although the
concepts and methods are applied to the healthcare domain, they have broad applicability.

Keywords: conformance, data communication standards, healthcare, interoperability,
messaging systems, testing

1 Introduction

A major challenge for the healthcare industry is achieving interoperability among
proprietary applications marketed by different vendors. Each healthcare entity
may have to use multiple applications to capture and share administrative and
clinical data. Seamless and reliable exchange of information is difficult to attain.
Recent mandates in the United States have ignited a renewed push towards
interoperable healthcare information systems based on standards. Specification and
wide-spread use of standards provide the foundation for ensuring system
capabilities and the ability to exchange information reliably; however, standards
alone are not enough. Testing and certification programs are necessary to assess
implementations for conformance and interoperability. In prior work [1,2,3], we
presented the testing infrastructure and testing tools we developed for conducting
conformance testing. These tools have been used extensively in the US as part of

2 R. Snelick

the health information technology (HIT) certification program related to
meaningful use of electronic health record (EHR) systems [4,5,6]; internationally
at the Integrating the Healthcare Enterprises (IHE) testing events [7,8]; and at
production sites. We now present an extension of this work by describing the
fundamental components of the testing infrastructure and operational facets of an
interoperability test bed (ITB). A case study for patient identification cross-
referencing is employed to describe a representative use case and to aid in
explaining the ITB capabilities and operation. An overview of the applications
involved, the roles the applications play, and the interactions between the
applications is presented. We then describe how the interactions are tested in the
operational environment. Central to the design of the ITB is that it must provide
Internet-based, on-line, continual access to conformance and interoperability
testing services.

The Health Level Seven (HL7) Version 2 messaging standard [9] is the focus
for discussing the aspects of the ITB. HL7 is a data exchange standard for
transmitting clinical and administrative information between healthcare
applications [9]. Typical HL7 messages include admitting a patient to a hospital or
requesting a laboratory order for a blood test. Conformance message profiles are
used to constrain the set of data that is exchanged between applications that
support the HL7 standard; these message profiles are the source of the
conformance requirements that verify correct data exchange [2].

2 Testing Infrastructure

The central design principle behind the construction of a test system is a modular
and flexible approach afforded by a testing infrastructure. The testing infrastructure
provides reusable components with well-defined interfaces that can be utilized in a
test system as needed. The obvious advantage of this approach is that the user can
combine the components of the test system into whatever configuration is most
suitable for solving the problem at hand. The system is also easily extensible since
each test system component runs independently, and adding new services to the
test system can be accomplished readily. The test systems described and referenced
in this work, including the ITB, adopt this approach.

The testing infrastructure is composed of three types of high-level components:
the services, the test harness (services composition), and network functions.
Additionally a test management system may be employed, but it is not central to
the test infrastructure—it is likely a separate system. Services provide the testing
functionality. It is apparent that for this model to be used effectively in conducting
testing, it will be necessary to facilitate the interactions between the user and the
supported testing services. A test harness is necessary to orchestrate the services to
conduct a test. A network is utilized to route messages and may include logging
and proxy capabilities. A test management system (e.g., IHE Gazelle [11]) can be
used to assign, manage, and track each set of tests. A certification testing lab may
utilize such a system in their process.

Services provide a portfolio of testing-related capabilities that are specified to
perform unique functions within the testing infrastructure. Each service has well-

 An Interoperability Test Bed for Distributed Healthcare Applications 3

defined responsibilities and authority, and they work together in collaboration with
other services to support the execution of test cases. The generation service creates
a message instance based on a message profile (template) and a data set. The
validation service evaluates a message instance against requirements stated in the
standard. Data content also can be evaluated to support application functional
testing. Test agents (also referred to as simulators) are implementations of actors
(or applications) that support the functionality of the underlying specification of
the actor and need only support the functionality of the actor to support testing of
applications. The resource repository contains the artifacts necessary for
conducting tests and facilitating test execution processing. Artifacts that support
test case execution typically include the test execution script, test case descriptions,
test data specifications, test data, and test specifications (e.g., conformance
profiles). The testing infrastructure is not bound to a defined set of services; rather,
the set is determined by the objectives of the testing goals and system.

3 Test Environments

Recognizing that testing is a complex, multidimensional, and often incremental
process leads us to consider the use of multiple environments for conducting
testing. In an earlier work [12], we identified three distinct environments and
described the testing activities that can be performed within each environment.
These environments include the data instance test environment (not discussed
here), the isolated system test environment, and the peer-to-peer system test
environment. The delineation of environments and their testing capacity is
intended to facilitate a more structured approach to testing in which the
relationship between test requirements and testing, along with an understanding of
the capabilities and limitations of testing tools, is more clearly defined.

In the isolated system testing environment a test is conducted with the SUT and
a test tool. Conformance testing, including data exchange and functional behavior,
is the main objective in using this model. Functional behavior assessment is
achieved with a test scenario in which a sequence of orchestrated transactions is
composed to probe certain requirements. The test tool includes functionality of an
application (i.e., test agents) that an SUT would typically interact with in an
operational environment. Isolated system testing typically accounts for the majority
of testing that is conducted. Once a system has successfully undergone
conformance testing, interoperability testing usually proceeds more easily.

Peer-to-peer system testing is designed to test interoperability among one or
more systems and is the focus of the ITB. The peer-to-peer system testing
environment poses different and significant challenges in testing from that of
isolated system testing. In this environment, data exchange occurs among a group
of systems, and the testing tool no longer has direct interaction with the systems
under test. Here an intermediary or a proxy can be employed to intercept, log, and
route messages to their intended destination. Peer-to-peer system testing may
include some or all of the conformance testing described for isolated system
testing. When conformance testing is conducted in advance, peer-to-peer testing
specifically targets both syntactic interoperability and semantic interoperability

4 R. Snelick

testing. The conformance test cases that were developed for isolated system testing
can be leveraged in peer-to-peer testing. The abstract test cases could be identical;
however, execution of the test steps, configuration requirements, and assertion
assessment will differ. By ascertaining that the conformance requirements are now
met in an environment where the SUTs are interacting, we can make a declaration
of the interoperability capabilities of the systems.

IHE testing involves a number of incremental testing steps. First, vendors
conduct conformance testing of their products. This task involves testing in
isolation to determine if the system implements the requirements specified in the
standard. These tests are labeled pre-connectathon tests and correspond to the
isolated system test environment. The NIST IHE Patient Identification Cross-
referencing (PIX)/Patient Demographics Query (PDQ) [7,8] and Patient Care
Devices (PCD) pre-connectathon test tools are examples of production
implementations of the isolated system test environment. Interoperability testing
(peer-to-peer testing) is conducted at an event called a connectathon in which
scores of vendors bring their products to a central site and live-monitored tests are
performed over a period of a week [10]. Such concentrated events are useful as
vendors can interact with many other vendors in a short period of time; however,
connectathons occur infrequently (once a year in the United States and Europe) and
are costly. One objective of the ITB is to provide an intermediate format in the
form of an on-line virtual connectathon in which interoperability testing is always
available. In the virtual connectathon environment, participants indicate what they
want to test and publish their availability. Once testing partners reach agreement,
their systems are configured in the test bed and they can proceed with testing. The
ITB leverages the testing infrastructure and implements the peer-to-peer testing
environment.

The ITB isn’t fundamentally that different from the test system for the pre-
connectathon isolated test environment. The main divergent point is testing
multiple real systems instead of one, i.e., replacing some or all of the test agents in
the isolated system environment with vendor products. This difference does,
however, present noteworthy technical challenges including the scheduling of
participants, sequencing of events and notification to the participants, and
capturing/forwarding messages and then mapping the messages to the
corresponding test case interaction.

4 Case Study: Patient Identification Cross-referencing

In this section, we describe an example case study and associated workflow that
demonstrates typical transactions among disparate healthcare information
technology systems. IHE publishes integration profiles that describe many
healthcare workflows [7]. We describe a typical workflow of cooperating patient
identifier and document management systems. The data exchange standard
involved in this use case is HL7 V2. For the purposes of demonstrating the test
execution of the ITB the scenario focuses on the HL7 V2 messaging PIX aspects.

Our example examines a healthcare system made up of a Patient Identifier
Cross-referencing (PIX) Domain and a Cross-Enterprise Document Sharing (XDS)

 An Interoperability Test Bed for Distributed Healthcare Applications 5

system. We examine a typical PIX domain made up of three disparate actors: a PIX
Source, a PIX Manager, and a PIX Consumer. A PIX Source is used for adding
and modifying patient demographic data; a PIX Manager is used for managing and
cross referencing patient identifiers from different domains; and a PIX Consumer
is used for querying a PIX Manager for patient identifiers. All communications
among the actors are accomplished through the exchange of HL7 V2 messages. An
XDS system supports registering and retrieving documents across enterprises
within an administrative domain.

Fig. 4.1. Patient Identification Cross-referencing Workflow

Healthcare systems can be divided into various administrative domains, each
responsible for managing a set of patient information. Patients may require
services provided in different healthcare domains. When this situation occurs,
different electronic health records for the same patient may exist in more than one
domain. It is clearly desirable to be able to recognize when multiple records exist
belonging to the same patient. IHE has addressed this problem by delegating the
responsibility for determining when two patient identifiers belong to the same
patient, and hence there are two records belonging to the same patient, to the PIX
Manager actor. Our case study (Figure 4.1) examines some of the data points the
PIX Manager must consider; for example, when it is determined that two patients
are actually the same patient, how will the information be propagated throughout
the healthcare continuum? The resolution is important since a single patient
identifier is typically used to retrieve documents about a patient from a repository.

The scenario (workflow) is predicated on a family doctor at Practice Y seeking
pertinent medical documents for patient Donna Bee. Practice Y relies on Hospital
X’s patient management and document repository systems; however, before the
doctor can retrieve the documents from the repository he must obtain the patient
identifier used by Hospital X’s document repository. Practice Y acting as a PIX
Consumer queries (via HL7 V2 message) the PIX Manager using its patient
identifier for Donna Bee (PY-3322) and requests the master patient identifier in
Hospital X’s domain. The PIX Manager returns an HL7 response message

6 R. Snelick

containing the patient identifier (HX-5924). Once the patient identifier is acquired,
it can be used to query for available documents in the registry and retrieve these
documents from the repository. This scenario assumes that the relevant documents
have already been uploaded into the repository via a document source actor.

The three steps below show a test case derived from the above scenario.
Although the test case is simple, it provides a representative set of applications and
steps that have to be accounted for in testing and supported by the ITB constituent
components. One patient (Donna Bee) is registered in different domains. The
registration messages are sent to a PIX Manager. A query is sent to resolve a
reference to patient Donna Bee who is expected to be found.

Step 1: Hospital X PIX Source sends a registration message (ADT^A04) to

register patient Donna Bee in domain HOSP-X. Patient ID is HX-5924. The PIX
Manager shall register the patient and send an Acknowledgement (ACK) message
back the PIX Source.

Step 2: Practice Y PIX Source sends a registration message (ADT^A04) to
register patient Donna Bee in domain PRAC-Y. Patient ID is PY-3322. The PIX
Manager shall register the patient and send an ACK message back to the PIX
Source.

Step 3: Practice Y PIX Consumer sends a query message (QBP^Q23) to ask
for Donna Bee's ID in domain HOSP-X using their ID PY-3322 in domain PRAC-
Y. The PIX Manager is expected to respond to the query with Donna Bee's ID HX-
5924 in domain HOSP-X.

Successful completion of the case study requires that each application involved in
the process correctly performs certain tasks that can be measured based on the
application's externally observable behavior. The requirements on the application's
external behavior can be formulated as a set of conformance and interoperability
testing requirements. Although no explicit interoperability requirements have been
defined, successful completion of all of the steps in the workflow provides a prima
facie demonstration of interoperability among the systems.

5 Interoperability Test Bed

The interoperability test bed supports the peer-to-peer testing environment that
targets multiple systems under-test. Figure 5.1 depicts a scaled-down design of the
architecture that employs a set of fundamental components and operating
procedures necessary to conduct testing. A description of each component and its
capability is described followed by an abbreviated step-by-step test flow.

5.1 Operational Functions

The interoperability test bed has a number of logical operational divisions. A
scheduling system is required to coordinate the vendors and match up interest in
test selection, actors, and time availability. Vendors input their testing interest and
capabilities along with time availability, and the scheduler will pair up common

 An Interoperability Test Bed for Distributed Healthcare Applications 7

requests and will notify the participants. The configuration utility records the
connection and addressing information required for communicating with each
participant. This information is necessary for the ITB to prime the proxy to handle
intercepting and forwarding messages. Test setup includes informing each of the
participants of the test instructions associated with the test case. These include their
roles, actions required, data requirements, and system configuration (e.g., loading
test data in the data base). The test manager controls the overall operation of the
ITB. These activities include managing simultaneous test executions and initiating
test case instance executions.

Fig. 5.1. Interoperability Test Bed Architecture

The test management system relies on a test orchestration component to organize
and coordinate the collective activities of the vendors and the test system.
Information (e.g., instructions and status) is disseminated through a common
shared user interface and a participant-perspective user interface. A test script
encapsulates the choreographed steps and participant actions. The test engine is a
workflow management tool that directs the execution of defined test cases through
the orchestration of testing services. The test execution operates at a level below
(within) the test orchestration and coordinates the measurement aspects (e.g.,
message validation) of the test case instance. The test execution is independent of
the test orchestration since its scope is coupled to the test case. Therefore the same
test execution script is applicable to isolated system testing. For each task that is
performed either by the test system or participant, a status update is broadcast
(served pages) to the participants. This includes a human test manager observing

8 R. Snelick

the execution of the test instance from a test management dashboard. As messages
progress through the system they are captured, stored, analyzed, and forwarded.
The proxy, message database, and validation provide these capabilities. For each
interaction (message), the test execution assembles the various artifacts and
submits them to the validation service for evaluation. A machine-processable
report is returned and rendered to the participants. A test case instance consists of
numerous steps for the applications being tested and creates many individual
validation reports. A test analyzer is necessary to make a collective determination
of the test results. The test analyzer can use the test script for navigating, linking,
and analyzing the array of validation reports. Upon completion of the test instance
execution, the test results are stored for analysis and auditing purposes.

The ITB includes the capability to supply a vendor system(s) when not all the
participant systems needed are available or not available at the desired time. These
features include message generation and test agent services. Having one SUT and
all test agents is essentially equivalent to isolated system testing provided by the
pre-connectathon testing tools. The ITB encapsulates this model.

5.2 Test Flow

The test flow describes each of the actions required by the ITB and participants to
perform our test case instance. The test case calls for four applications or
application modules. There are two PIX sources (PS-1 and PS-2), a PIX Manager
(PM-3), and a PIX Consumer (PC-4). Our focus is on the operational aspects of the
test instance. Figure 5.2 illustrates the events as they progress through the ITB for
the transaction 1, interaction1 described below.

Fig. 5.2. Test Flow for Transaction 1, Interaction 1

ITB Actions: PS-1 is provided a test data specification that includes data (e.g.,
patient name and DOB) associated with the test story and consists of typically
available information in the administrative and clinical setting. Together, the test
story and the test data specification provide sufficient information to be entered
into the SUT for a particular test case such that a message can be generated.

 An Interoperability Test Bed for Distributed Healthcare Applications 9

PS-1Actions: PS-1 loads the test data provided in the test data specification;
typically, loading is a manual process performed using the user interface (UI)
capabilities of the SUT. Once all relevant test data are loaded into the PS-1, a
message is generated and sent. Based on the configuration, the message (intended
for the PM-3) is sent to the ITB proxy. PS-1, via the dashboard indicates that it has
sent the message; this controlled execution eases the test instance navigation for
the test execution engine.

ITB Actions: The ITB proxy captures and stores the message in the message
repository along with pertinent message meta-data sufficient for mapping the
message to the interaction. The ITB test engine retrieves the message from the
message repository and the conformance validation artifacts from the resource
repository and invokes the validation service to validate the message. The ITB test
analyzer evaluates the interaction along with validation results to determine if any
errors detected would prevent the test from continuing. Note that inconsequential
conformance issues are not pertinent at this point; the focus is on the delivery of
the message and key data elements that might prevent other participants from
completing their tasks. If a severe fault is detected, the test orchestration notifies all
participants accordingly via the common shared display capability and then ends
the test instance. The ITB proxy forwards the message to the PM-3. The test
orchestration reports that interaction 1 is completed and the common user interface
display is updated accordingly. The validation report for the interaction is made
available to the participants. The ITB now instructs PS-2 to begin interaction 2.
Note that the ITB also updates the status at intermediate events, for example, when
the message is received by the proxy or forwarded.

Upon completion of the test case instance, the test analyzer evaluates the collective
results and determines the outcome of the test instance. This information, along
with the individual interaction validation reports, is provided to the participants.
The vendors can use these test results, as well as logging information and the
observed behavior of their system to further assess the performance of their
product. A test manager can review the reports to make an assessment of the test
instance. All related test instance data are stored in the test management system for
auditing purposes if desired.

Although we have presented here a simplified portrayal of the architecture and
case study, it is still evident that the ITB provides the capabilities to conduct
conformance and interoperability testing in support of distributed healthcare
applications for a broad assortment of test cases essential for comprehensive
testing. For example, an interoperability test may stipulate incorporation and
display of laboratory results into an EHR. In this case, completely automated black
box testing is unattainable; however, an inspection document based on the test data
is dynamically created and provided for this test step. Screen shots of the vendor’s
display and/or data base can be captured and submitted to the test system for visual
evaluation by a monitor. A monitor will use the inspection document to verify
expected behavior.

10 R. Snelick

6 Conclusion

Interoperability between disparate applications can be achieved better through the
use of standardized interfaces. Even if the same standard is implemented in the
applications, interoperability is not assured due to two primary reasons: (1) the
same sets of options allowed by the standard are not implemented by the
developers, a problem that can be addressed with conformance provisions offered
by the standard; (2) the standard is implemented incorrectly in the applications.
These issues are addressed through conformance testing. Applying conformance
processes and successfully conducting conformance testing will not ensure
interoperability, but these actions will increase the likelihood of applications
interoperating. Beyond conformance testing, interoperability testing is employed.
Interoperability testing has been challenging because assembling even a minimum
number of application vendors in one place at the same time to conduct this type of
testing is difficult. For years, the IHE connectathon has provided an invaluable
venue for massive interoperability testing; however, this event occurs only once a
year. The proposed always-available Internet-based interoperability test bed seeks
to fill this gap and complement connectathon events.

7 References

[1] A Framework for testing Distributed Healthcare Applications. R. Snelick, L. Gebase,
G. O’Brien. 2009 Software Engineering Research and Practice (SERP09),
WORLDCOMP’09 July 13-16, 2009, Las Vegas, NV.

[2] Towards Interoperable Healthcare Information Systems: The HL7 Conformance
Profile Approach. R. Snelick, P. Rontey, L. Gebase, L. Carnahan. Enterprise
Interoperability II: New Challenges and Approaches. Springer-Verlag, London
Limited 2007 pp. 659-670.

[3] NIST Laboratory Results Interface (LRI) EHR Meaningful Use Conformance Testing
Tool; http://hl7v2-lab-testing.nist.gov/mu-lab/

[4] NIST Resources and Tools in Support of Health IT Standards and the ONC
Meaningful Use certification program. http://healthcare.nist.gov/

[5] Centers for Medicare & Medicaid Services (CMS) EHR Incentive
Program http://www.cms.gov/Regulations-and-
Guidance/Legislation/EHRIncentivePrograms/index.html

[6] ONC Certification Programs; http://www.healthit.gov/providers-professionals
[7] Integrating the Healthcare Enterprises Technical Framework; http://www.ihe.net
[8] NIST PIX/PDQ Pre-connectathon Conformance Testing

Tool; http://pixpdqtests.nist.gov:8080/
[9] Health Level 7 (HL7) Standard Version 2.7, January, 2011; http://www.hl7.org.
[10] IHE Connectathon; http://www.ihe.net/Connectathon/
[11] Gazelle Test Management Framework; http://gazelle.ihe.net/
[12] “Testing Environments for Assessing Conformance and Interoperability” L. Gebase

and R. Snelick. 2010 Software Engineering Research and Practice (SERP10),
WORLDCOMP’10 July 12-15, 2010, Las Vegas, NV.

http://hl7v2-lab-testing.nist.gov/mu-lab/
http://healthcare.nist.gov/
http://www.cms.gov/Regulations-and-Guidance/Legislation/EHRIncentivePrograms/index.html
http://www.cms.gov/Regulations-and-Guidance/Legislation/EHRIncentivePrograms/index.html
http://www.healthit.gov/providers-professionals
http://www.ihe.net/
http://pixpdqtests.nist.gov:8080/
http://www.hl7.org/
http://www.ihe.net/Connectathon/
http://gazelle.ihe.net/

	An Interoperability Test Bed for Distributed Healthcare Applications
	1 Introduction
	2 Testing Infrastructure
	3 Test Environments
	4 Case Study: Patient Identification Cross-referencing
	5 Interoperability Test Bed
	5.1 Operational Functions
	5.2 Test Flow

	6 Conclusion
	7 References

