

Markov Chain Analysis for
Large-Scale Grid Systems

Christopher Dabrowski
Fern Hunt

NISTIR 7566

 2

 3

NISTIR 7566

Markov Chain Analysis for
Large-Scale Grid Systems

Christopher Dabrowski
Software and Systems Division

Information Technology Laboratory
National Institute of Standards and Technology

Gaithersburg, MD 20899-8530

Fern Hunt
Mathematical and Computational Sciences Division

National Institute of Standards and Technology
Gaithersburg, MD 20899-8530

April 2009

U.S. Department of Commerce
Gary Locke, Secretary

National Institute of Standards and Technology

Patrick Gallagher, Acting Director

 4

 5

Markov Chain Analysis for Large-Scale Grid Systems

Christopher Dabrowski and Fern Hunt

Abstract: In large-scale grid systems with decentralized control, the interactions of many
service providers and consumers will likely lead to emergent global system behaviors that
result in unpredictable, often detrimental, outcomes. This possibility argues for
developing analytical tools to allow understanding, and prediction, of complex system
behavior in order to ensure availability and reliability of grid computing services. This
paper presents an approach for using piece-wise homogeneous Discrete Time Markov
chains to provide rapid, potentially scalable, simulation of large-scale grid systems. This
approach, previously used in other domains, is used here to model dynamics of large-
scale grid systems. A Markov chain model of a grid system is first represented in a
reduced, compact form. This model can then be perturbed to produce alternative system
execution paths and identify scenarios in which system performance is likely to degrade
or anomalous behaviors occur. The expeditious generation of these scenarios allows
prediction of how a larger system will react to failures or high stress conditions. Though
computational effort increases in proportion to the number of paths modelled, this cost is
shown to be far less than the cost of using detailed simulation or testbeds. Moreover, cost
is unaffected by size of system being modelled, expressed in terms of workload and
number of computational resources, and is adaptable to systems that are non-homogenous
with respect to time. The paper provides detailed examples of the application of this
approach and discusses future work.

 6

 7

Table of Contents

1. Introduction ... 9
2. Related Previous Work ... 10
3. Questions to be Answered Through Perturbation of Markov Chains. 12
4. The Markov Chain Model ... 13
5. Method of Perturbation ... 18
6. Comparing Perturbations of the Markov Chain and Large-Scale Simulation 21
7. Conclusions ... 33
8. References .. 34
APPENDIX A. Decomposition of Selected States ... 39
APPENDIX B. Five Time-Period Transition Matrices .. 43
APPENDIX C. Algorithm to Perturb Row of Transition Probability Matrix................... 45
APPENDIX D. Details of Perturbation Combinations ... 49

 8

 9

1. Introduction

The long-term continued commercial success of grid technology will likely depend on the
emergence of large-scale, decentralized grid systems in which large numbers of service
providers and consumer clients enter into service-level agreements (SLAs) [Andr2007] to
allocate grid resources. Here, as in other large-scale systems with decentralized control,
the interactions of many consumers and providers, can lead to emergent global system
behaviors that result in unpredictable, often detrimental, outcomes [Mill2006]. The
movement toward realization of large-scale grid systems is evident in developments such
as commercial cloud computing, in which mass computing services are being made
available for sale. Clouds and other commercially-related developments likely
foreshadow eventual creation of grid compute economies that operate on market
principles. Having in place analytical tools to allow understanding, and prediction, of
complex system behavior will be necessary to ensure availability and reliability of grid
computing services in economic settings.

For these reasons, the development of analytical tools that take into account complex
systems behaviors is even now seen as a priority. In particular, tools that can predict the
impact on overall system performance of changes to key system parameters are of
particular importance. Previous researchers have used simulation to study behavior of
grid systems that utilize different economic strategies [Chun2002], [Yeo2005],
[Mill2008]. Studies of failure scenarios in grid system such as [Mills2006] have shown
that small variations in key variables can lead to alternative execution paths that yield
large differences in overall system performance. Although more practical than using
operational grid systems as testbeds, detailed, large-scale simulation that attempts to
accurately reproduce system structure and component behavior is often a computationally
expensive proposition when large numbers of alternative execution paths must be
considered. Moreover, computational expense increases dramatically with increase in
model size, a critical factor for analysis of large-scale grid systems which, even now, can
exceed 105 computing resources [Carr2006, Raff2006].

To remedy this situation, this paper presents an approach in which discrete time
Markov chain analysis is combined with a form of rapid, scalable, simulation. This
approach, previously used in other areas, is used here to model dynamics of large-scale
grid systems. In this approach, a state model of the system is first derived by observing
system operation and then converted into a succinct Markov chain representation in
which model scale is reduced by taking advantage of the stochastic characteristics of this
model. The resulting model is expressed as a set of transition probability matrices
(TPMs) that succinctly summarize system dynamics over different time periods. The
TPMs represent an execution path that can be changed by altering, or perturbing, the
values of individual transition probabilities in the TPM. By systematically perturbing
combinations of transition probabilities, it is possible to model alternative execution
paths, each of which lead to a different evolution of a grid system over time. Among
these are execution paths where failure to meet fundamental guarantees of service causes
system performance to significantly degrade.

The approach presented in this paper allows expeditious investigation of a large
number of alternative system execution paths and identification of paths, or scenarios, in

 10

which failure to meet service guarantees adversely affects overall system performance. In
this way, the Markov chain analysis can be used to predict how a larger system will react
when key service guarantees are not met. Though computational effort increases in
proportion to the number of paths modeled, the cost of using Markov chains is far less
than the cost of searching the same problem space through detailed simulation or use of
testbeds. Moreover, computational cost is unaffected by size of system being modeled,
where size is expressed in terms of workload and number of computational resources.
The approach can also be adapted for cases in which transition probabilities change with
(e.g. are non-homogenous with respect to) time and workload. The paper concludes with
thoughts on evolving this approach to serve as a concrete tool for analysis of system
complexity in large-scale grid systems.

The plan of this paper is as follows. Section 2 summarizes previous work on using
Markov chain analysis and related techniques in distributed computer systems. Section 3
more precisely describes the problem being investigated through Markov chain analysis.
The section defines fundamental guarantees of service that large-scale grid systems will
need to provide to their customer base and which are the basis for analysis in this paper.
Section 4 describes the process of creating a state model of a grid system, extending this
model to be a Markov chain model, and its use in modeling system evolution. This
section describes how the model is reduced in size and adapted for situations where the
Markov chain is non-homogenous with respect to time. Section 5 describes the method of
perturbing the Markov chain TPM to simulate alternative execution paths that violate
service guarantees defined in section 3. Section 6 presents results of using the methods
described in sections 4 and 5 to predict system evolution and compares these results with
those produced by more detailed simulation. Section 7 presents conclusions and future
work.

2. Related Previous Work

Markov Chain analysis is well established analytical tool for understanding dynamic
systems behavior [Keme1976]. This section briefly reviews work on use of Markov
chains, focusing on two outstanding problems relevant to a Markov model of a grid
system: methods to reduce model size and perturbation analysis techniques that reduce
perturbation space size.

Discrete Time Markov Chains (DTMCs) have been applied to a variety of practical
problems in real-world domains. Markov chain analysis has long been used in
manufacturing [Dall1992] for problems such as transient analysis of dependability of
manufacturing systems [Nara1994], [Zaka1997] and deadlock analysis [Nara1990]. Li et
al. [Li2008] describes recent uses of Markov chains to model split and merge production
line processes [Helb2000], [Tan2000], [Helb2003], [Li2005], [Diam2006], [Liu2008].
Similarly, Li describes use of Markov chains to model part quality defects [Kim2005],
[Coll2005a], [Coll2005b]. In communications networks, [Cass1990] has used Markov
approaches to model mean time to failure of network components, while [Bala1994] used
Markov chain analysis to model link reliability. Markov chains have been used for multi-
processor computer architectures to examine fault-tolerance [Aupp1991] and
performance [Chio1993], in parallel systems to investigate performance in queuing
networks [Jonk1994], in real-time process control systems to model fault tolerance and

 11

performance [Triv2004], and software systems reliability measurement [Lapr1992]
[Gose2001]. In grid computing, Markov chains have been used to model workload for
scheduling [Song2004] and load balancing [Akio2003]. However, unlike these efforts or
those that quantitatively estimate performance or reliability, this work uses Markov chain
modelling to understand alternative system behaviors that may occur as a consequence of
significant system-wide events or decisions: in this case, the failure to meet fundamental
service guarantees for grid systems.

The combinatorial increase of the number of states in DTMC models for large
problems has long been widely recognized as a barrier to practical use of Markov Chain
analysis. To solve this problem, the concept of lumping states with similar characteristics
into larger aggregated units was first introduced by Kemeny and Snell [Keme1976]. The
problem has been worked on extensively since. [Sieg1992] and [Nico2004] surveyed
lumping approaches that rely on model structure symmetry that can be exploited to
reduce size. Among these, [Buch1992] [Buch1995] reduced size by exploiting state
hierarchies in Markov models to combine states. Model structure was also leveraged to
reduce Markov chain size by using group-theoretic concepts [Aupp1991], Stochastic
Activity Nets [Sand1991], stochastic colored nets [Chio1993], generation of lumped
models that approximate Markov properties [Bala1994], and by using a reward variable
structure to identify symmetries that can lead to generation of models of reduced size
[Obal2001]. In [Jaco2007], a method is proposed for using equivalence classes of
eigenvectors to partition a Markov state space into lumps. Work on this problem
continues. Fortunately, in the model we present, the number of states is readily reducible
using the stochastic characteristics of Markov chains or the basic theorem provided in
[Keme1976] that is described in section 4. While the number of states in our model did
not prove to be a barrier, the size of the perturbation analysis problem did.

Perturbation analysis of discrete time Markov chains has been the topic of theoretical
work in the last three decades [Schw1968]. Like the problem of model size, the size of a
typical perturbation space may quickly become computationally intractable, if there are
many combinations of alternative system variable values to consider. To attack this
problem, [Ho1985], [Suri1987] [Suri1989] [Ho1991] and others advanced the idea of
perturbation analysis of discrete event systems by calculating system performance
gradients based on key decision parameters. This approach estimated the sensitivity of
changes to decision parameters in order to optimize system performance. Gradient-based
approaches had the potential to reduce the perturbation space because they needed to
observe as few as one execution path of a system. This approach was adapted for Markov
chains in [Ho1988] by estimating gradients for alternative execution paths. However, this
method still required some way of determining performance estimate vectors
(performance potentials) for state spaces in various problem domains, which usually
necessitate extensive sampling and data gathering. In addition, questions remained about
the computational complexity of gradient calculation algorithms [Suri1989].

Methods for estimating performance gradients on the basis of limited sample system
executions that are applicable to subsets of Markov chain that use control policies were
also explored by [Cao1998][Baxt2001], and others. In [Baxt2001], a brief summary of
some of these works is provided. Most recently in Cao [Cao2005] [Cao2008], the
gradient-based approach was extended to reduce problem size in Markov chain models
by grouping state transitions on the basis of events to evaluate control policies. In this

 12

event-based approach, gradients were calculated by aggregating estimates of performance
for alternative execution paths taken under different policies. The gradients could then be
used to evaluate different control policies. The approach was thought to scale with the
number of events and system size, but the issues of determining performance vectors and
efficient gradient calculation still remained, and, in addition, policy iteration algorithms
need to be developed. Further, not all problems were reducible to a form which allowed
tractable calculation of gradients for individual policies. In sum, while gradient-based
perturbation algorithms have the potential of reducing the state space, they also introduce
not inconsiderable computational issues and apparently are not applicable to all Markov
problems. In other words, the “no free lunch” theorem applies [Wolp1997]. Moreover,
the gradient-based approach appears more immediately applicable to specifically-defined
optimization problems that depend on relatively few system parameters, rather than the
more general problem of assessing alternative execution paths. Yet, the potential of
gradient-based approach cannot be completely ruled out and may be a factor in future
work.

Instead, the approach presented in this paper avoids the computational difficulties of
gradient-based methods to allow examination. The potential problem of size in Markov
models of grid system dynamics is mitigated through a straightforward, readily lumpable
problem representation and an intuitive, limited search strategy. While this approach does
not completely solve the issue of problem size (e.g., there is no free lunch), the resulting
analysis yields comparable results to more detailed simulation at a small fraction of the
computational cost. It therefore constitutes a viable analytical tool for study of large-scale
dynamic systems.

3. Questions to be Answered Through Perturbation of Markov Chains.

It is convenient to organize analysis of grid computing systems on the basis of certain
guarantees of service that grid systems must provide to their users in order to successfully
support economic activity. These guarantees constitute basic requirements for grid
computing systems, which if not met, would render a grid system useless. The extent to
which a grid system fulfills, or does not fulfill, these guarantees impacts system
performance. The ability of Markov chain analysis to accurately model and predict how
the system behaves if these guarantees are not met is an interesting and relevant question.
Three guarantees may be described.

• First, a grid system must guarantee that current information about what grid
computing services exist is available to users. In grid systems, this guarantee is
fulfilled through service discovery mechanisms that locate needed services and
make information about them available to users. The service discovery guarantee
refers to the ability of a grid system to provide necessary information about grid
computing services, including relevant updates, which users require to make
decisions.

• Second, if a user has found a needed service, the service is available (not reserved
for other tasks), and the user is qualified to use the service, then the grid system
should allow the user to engage that service. This is referred to as the service
engagement guarantee. To be qualified, the user must possess security and

 13

administrative access, and must also have the economic means to afford the
service. The service engagement guarantee is meant to ensure that users and
providers of services who should logically cooperate, in fact do so. In most cases,
engagement of a service is signified by the formation of a service level agreement
(SLA), which reserves the service for the user and specifies a fee to be paid.

• The third guarantee is the service fulfillment guarantee, which simply states that
once a user has engaged a service, e.g. and SLA has been formed, the terms of the
related agreement should be fulfilled by both provider and user.

Understanding and predicting the consequences of not fulfilling these guarantees is an
important analysis problem. Particularly important is understanding of how performance
of a grid compute economy degrades as the extent of guarantee fulfillment decreases
incrementally. Administrators of grid systems as well as providers and users need to
understand how a different level of non-fulfillment of each guarantee is likely to affect a
system. At what point of incremental increase does system performance begin to degrade
rapidly? What specific actions by providers or consumers affect non-fulfillment of a
particular guarantee? Answering questions like these by taking an actual production
system offline to use as a testbed is impractical for obvious reasons. Simulation is a
plausible alternative, and has been used successfully to estimate impacts of failure
scenarios in grid systems [Mill2006, Mill2008]. However, simulation may require
executing many repetitions using a detailed compute-intensive model. If there are a
substantial number of system parameters to vary, then analysis may either take
considerable time, be limited to a restricted number of alternative execution paths, or
both. Both testbeds and simulation thus have limitations in answering these questions.
Markov chain analysis provides a viable alternative for obtaining more detailed
understanding of effects of not fulfilling grid service guarantees. The remainder of the
paper illustrates the basic approach and shows preliminary results.

4. The Markov Chain Model

The behavior of a large-scale grid system can be modeled in terms of the computing tasks
executing in the system at any time. Each task progresses through a life cycle in which it
is first submitted by a user, service providers are discovered to run the task, an SLA is
negotiated with selected provider(s), and the task is either executed to completion or fails
to complete. The state of the grid system can be described by the states of all the tasks
that are in the system at some particular time. This section first describes the state
transition model for an individual task and then shows how the aggregate of many tasks
states are represented in a Markov chain model. This potentially very large model can be
compacted, or lumped, into a more concise representation in which the dynamics of the
grid system can be studied in a meaningful way.

4.1 Representing the Lifecycle of a Task as a State Model

The lifecycle of an individual task can be represented in seven states, shown in Figure 1.
This model is derived from a large-scale model of a grid system [Mill2008, Dabr2008]
that simulates the system operation over an 8-hour day. Three of these states in this

 14

model—Discovering, Negotiating, and Monitoring, or the task execution phase—can be
further decomposed into sub-states. These decompositions constitute a hierarchy of 27
additional states, for total of 34 states. The interested reader is referred to Appendix A for
a description of the larger model and its logical correspondence to the seven-state model.
Appendix A also provides a brief analysis of this decomposition and suggests some
directions for future work. Because the 34-state model directly corresponds to, and can be
transformed to and from, to the simpler seven-state model, the latter is retained for the
remainder of the paper.

Figure 1. State model of grid compute economy simulation model described in [Mill2008].

The high-level model representation may be described as follows. In the Initial state, a

task has not yet entered the grid system. Each task is assigned an arrival time and
deadline from exponential distributions [Mill2008]. At the arrival time, the task
automatically transitions to a Discovering state. In Discovering, the task client attempts to
discover eligible providers with sufficient computing resources to execute the task. After
discovery actions conclude, the task may either transition to Negotiating or Waiting.
Tasks enter the Negotiating state at regular intervals. A task that has completed
Discovering and found at least one provider enters Negotiating if the interval has elapsed;
otherwise it goes into the Waiting state. In Negotiating, clients order discovered providers
they are qualified to use, e.g., can afford, on the basis of anticipated cost. They contact
each provider, one at a time, and offer an SLA to execute the task for a fee. Once a
provider accepts, negotiation ceases and the task enters the Monitoring state, during
which the task is either blocked on an execution queue or executing. If negotiations fail
(i.e., no provider can be found to accept an SLA), the task goes from the Negotiating state
to either Discovering or Waiting. As in Negotiating, a task enters Discovering at regular
intervals. If negotiations fail, a task transitions from Negotiating to Discovering if the
start time has arrived. Otherwise it transitions to Waiting and remains until the next
Discovering, or Negotiating, start time.

Negotiating

Task Failed

Task Completed
Waiting

[t=next discovery
start time]

[t=next negotiation
start time]

Offer
Accepted? [Yes]

[No]

MonitoringDiscovering

Initial State

t=next discovery
start time?

[No]
[Yes]

t=next negotiation
start time

[Yes]

[No]

 15

A task that has obtained an SLA and transitioned from Negotiating to Monitoring
enters the Completed state, if task execution is successful. If execution fails, the task falls
re-enters the Negotiating state. Tasks may also transition into the Failed terminal state
from either the Negotiating or Waiting states. This occurs when it becomes impossible to
complete the task by its deadline, as explained in [Mill2008, Dabr2008]. Both Completed
and Failed are terminal states from which tasks cannot leave once they enter.

4.2 Evolving the State Model to a Markov Chain Model

A Markov chain has the property that the probability of transition between any two states
depends entirely on circumstances in the state from which the transition originates and
not on the previous history of the process. More formally, given a sequence of states X1,
X2, …… Xn, the Markov Property is given as:

 (1)

The state model depicted in Figure 1 satisfies the Markov property. Careful review of the
preceding description shows that the decision to transition to another state depends only
on circumstances of the state the task is currently in. These circumstances include
whether a time interval has elapsed, an SLA has been secured, task execution has
succeeded or failed, etc.
 In a Markov chain, probabilities are associated with transitions between states. To
calculate state-to-state transition probabilities, transition frequencies are first summed
over a simulated eight-hour day using the model described in [Mill2008, Dabr2008]. This
is done by determining where state transitions occur in executing model code and
inserting counters at those places. In our experiments, frequencies were summed for all
state transitions over 50 repetitions at a 75% load level over 36000 s (10 hours: 8 hours +
two extra hours for late tasks). State transition probabilities were derived as follows.
Given states si, sj, i, j = 1…n where n=7, pij, is the probability of transitioning for state i
to state j, written as si  sj. This probability is estimated by calculating the frequency of
si  sj, or fij, divided by the sum of the frequencies of si to all other states sk, or

∑ ≤≤

= n

nk ik

ij
ij f

f
p

1

 (2)

Here i and j may be equal, to allow for transition of a state to itself, or self-transition. A
self-transition occurs when a task remains in a state longer than a specified interval (equal
to a Markov simulation discrete time step, dts, described below). The resulting TPM is a 7
× 7 stochastic matrix, shown in Figure 2. Here rows stand for the state the transition
originates from, or from state, and columns represent states the transition goes to, or to
state. Each cell in a TPM represents a pij, where i and j are from and to states,
respectively. As in any stochastic TPM, the transition values of all columns in a row must
sum to 1.0. The only exception to this procedure involved arrival times of tasks into the
grid system, described above. Here, the Markov chain process was altered to reproduce
exactly the exponential arrival times of the large-scale simulation.

() ()nnnnnn xXxXxXxXxX ====== ++ |Pr,,|Pr 1111 

 16

Figure 2. Summary stochastic transition probability matrix (TPM). This is a summary TPM that is weighted
average on the basis of separate TPMs for five equal time period divisions over the 36000 s duration.
Individual pij for each of the five time periods are weighted on the basis of relative number of transitions in
their respective periods. Matrices for the five time periods appear in Appendix B.

The Markov chain and related TPM can be further classified. Careful analysis of the
description of the state model in section 4.1 and the structure of the matrix in Figure 2
shows that tasks can enter the Discovering, Waiting, Negotiating, and Monitoring states
multiple times, but always remain temporarily. At some point they enter either the
Completed or Failed state, where they remain permanently, or are absorbed (These states
are considered absorbing states, in which only self-transitions are possible). A Markov
chain with these characteristics is called an absorbing chain [Keme1976] that can be
divided into a transient part (the Discovering, Waiting, Negotiating, and Monitoring
states), and an absorbing part (with two absorbing states, Completed and Failed). This
characterization is born out in the Markov chain simulation described below while the
summary TPM in Figure 2 is useful for illustrating concepts and for certain analytical
studies of the system, it requires further elaboration to model non-homogeneity.

4.3 Reducing Problem Size and Handling Time Non-Homogeneity

In the large-scale simulation [Mill2008, Dabr2008] loaded at 75%, there are typically
over 400 tasks, each of which progresses through the seven states. If all are modeled
simultaneously, this means there are 7400+ possible combinations of states for all the
tasks. This number is clearly too large for easy analysis. However, the stochastic nature
of Markov Chains allows one to consider the distribution of the 400+ tasks among the
seven states. It is easy to see that a system-wide state can be represented in terms of the
proportion of the 400+ tasks allotted to particular states. In this way, it is possible to
represent the system state as a seven-element vector in which the value of each vector
element represents the proportion of tasks {0, 1.0} in one of the seven states. This
method of representing the system state is a simplification that can be performed in
addition to combining 34 states into seven, described in Section 4.1 and Appendix A.

In the large-scale simulation [Mill2008, Dabr2008], task submission times varied
exponentially over the simulated day, with mean task start time at t=3600 s (end of the
first hour). This distribution resulted in different workload levels at different times in the

1.0000000Fail

01.000000Comp

00.00800.99170.0003000Mon

0.000100.19610.28820.01820.49740Ngt

0000.29310.67140.03550Disc

0.0046000.09180.06730.83630Waiting

00000.0303 00.9697Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.00800.99170.0003000Mon

0.000100.19610.28820.01820.49740Ngt

0000.29310.67140.03550Disc

0.0046000.09180.06730.83630Waiting

00000.0303 00.9697Initial

FailCompMonNgtDiscWaitInitial

 17

day and caused transition probabilities over the 36000s-period to vary. Therefore,
different TPMs were actually in force at different times, making the system non-
homogenous with respect to time. For this reason, more accurate simulation results for
the transient behavior of the system were obtained by creating time-period partitions and
computing a separate TPM for each period. In this experiment, frequencies were summed
separately for five time periods of 7200 s each1. These matrices, shown in Appendix B,
allow a representation of our model as a piece-wise homogenous Markov chain having a
bounded number of pieces [Rose2004] corresponding to the time periods. The individual
transition probabilities in the TPMs for these five periods can be weight averaged on
basis of relative transition frequencies in each period to reproduce the summary
stochastic TPM, shown in Figure 2. In the summary matrix, each probability of transition,

nper
ij

nper
iijiijiij pwpwpwp2211 ++=

, is computed as follows:

 (3)

in which each wl

i represents the weight for a row i in time period l, l ∈ {1.. nper}where
nper=5. Each wl

i is computed by

 ∑ ∑∑ ≤≤ ≤≤≤≤
= npertp nj

tp
ijnj

l
ij

l
i ffw 1 11 (4)

where each ftp

ij is the frequency of transition from state i to state j in time period tp and n
is the dimension of the matrix (n = 7). While this summary matrix is useful for illustrative
purposes and for computing certain theorems, the Markov simulations described below
used the five time period matrices.

4.4 Using A Sequence of Markov Chain TPMs to Simulate a Dynamic System

A well-known use of stochastic TPMs in a Discrete Time Markov Chain is to describe
how a dynamic system changes over time in discrete time steps each, where each step
represents a fixed amount of time. In this experiment, a discrete time step is chosen to
represent 85 s, or dts = 85 (which also determines length of time for identifying frequency
of self-transitions above)2. Hence, if a time period covers a duration of dperiod = 7200 s,
each of the five time-period matrices represent S= dperiod /h steps or 85 steps.

As indicated above, the system state can be summarized in a vector v having seven
elements, where each element represents the proportion of tasks in one of the seven
states. Using equation (5), a vector , which represents the system state at time step m, is
multiplied by the TPM for the applicable time period tp to produce a new system state
+1

 (5)

, to evolve the system over a single discrete time step.

1 Different numbers of time periods were attempted, including three, 10, and 15; however, five provided the
most accurate results. Devising a method of selecting an optimal number of time periods is a problem left
for future work.
2 Different values for dts were tried, ranging from 50s to 100s, with dts= 85 s providing the best results. As
with the number of time periods, devising a method of selecting dts is left for future work.

(Qtp)T * vm= vm+1, where tp = integral value (m/S) + 1

 18

where T indicates a matrix transpose. Starting with v0, which represents a system state
with a value of 1.0 for the Initial state and 0 for all others, equation (3) is repeated for
339 time steps (representing 28,800 s or a simulated 8-hour day). This results in a system
state vector, v339, in which the sum of the proportion of tasks in the Completed and Failed
states approaches 1, while other states are at 0. A goal of Markov chain analysis is to
execute this procedure with a set of time period TPMs derived from a real-world system
(or, in this case, the large-scale simulation) in order to approximate the operation of that
system. Figure 3 compares the proportion of tasks in the Completed and Failed states
after executing the large-scale simulation in [Mill2008, Dabr2008] for 28,800 s with the
values for these states in the Markov chain simulation over 339 steps (28,800 s).
This paper argues that a piecewise homogenous Markov chain can approximate the
transient behavior of a real-world grid system (for which the large-scale simulation is a
proxy). By applying (5) to a set of perturbed TPMs to simulate alternative evolutions of a
grid system, one can model, or predict, the effects of changed system capabilities,
undesirable behaviors, and events of interest. In this study, we are interested in perturbing
selected rows of the TPM set to represent changes in the ability of the system to fulfill the
three grid system guarantees described in section 3, and then to predict the impact of
these changes on the final system state (proportion of tasks in Completed or Failed states.

Figure 3. Comparison of system evolution of Completed and Failed states over time for the large-scale
and Markov chain simulations. TPMs for 5 time periods in Appendix B were used.

5. Method of Perturbation

The algorithm for incrementally perturbing selected rows is intended to predict broad
trends rather than precise outcomes. It is a limited, brute-force search that is restricted in
order to conserve resources, while exploring a reasonable range of alternatives. The
algorithm permits simultaneous perturbation of combinations of two rows in order to
capture situations where inter-row dependencies exist. In each perturbed row, each row
element, corresponding to a column, with a probability of transition greater than zero is

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
op

or
tio

n

Time Step

Comparison of Tasks Transitioning to Task Complete and Failed
States in Simulation and Markov Chain Execution

Tasks complete (large-scale simulation)

Tasks complete (Markov simulation)

Tasks failed (large-scale simulation)

Tasks failed (Markov simulation)

 19

selected in turn for incremental increase. At the same time, the transition probabilities of
one or more other row elements with non-zero values are decreased by a total equal to the
increase, so that all elements in the perturbed row continue to sum to one. For a set of
time-period matrices, these changes are applied to each matrix in the set. Each
combination of altered transition probabilities represents a different execution path that
the system may take.

The algorithm requires that a user first select a primary row, r, to perturb. The
secondary rows, s, to be perturbed are then automatically determined, as described below.
The user also must select a perturbation limit L, on how far transition probabilities can be
perturbed and also select the incremental amounts by which primary and secondary rows
will be perturbed. These decisions define the extent and granularity of the perturbation
that will take place. An overview of the procedure is provided below. For more detail, see
Appendix C which describes the algorithm in detail and provides a summary table of
term definitions. This section also discusses the computational effort required to apply
the perturbation algorithm to the Markov chain simulation. This effort is a small fraction
of what would be necessary to explore the same set of alternative behaviors using the
large-scale simulation. The next section, Section 6, then presents results of applying the
perturbation algorithm and compares these results with those produced by the large-scale
simulation.

5.1 Overview of Perturbation Algorithm

In the primary row, starting from numerically lowest row element, each element having a
positive transition probability is used in turn to determine as the primary increase
column, c↑. In this column, the transition probability is raised by a gradually increasing
amount, mprim up to the limit L. These increases occur in increments defined by a primary
increase amount, vprim. At the same time, the other elements in the primary row are
reduced by proportions of mprim determined by weight factors, as follows. Each non-
increase column in turn is selected as the primary column to decrement, termed a primary
sink column, c↓. For the primary sink column, a sink weight, w, is selected from a
predetermined set of sink weights called the sinkWeightSet. In the experiments reported
here, the sinkWeightSet consisted of {0.2, 0.4, 0.6, 0.8, 1.0}. The probability of transition
for c↓ is reduced by the amount w ⋅ mprim. The remainder of the weighted reduction, or
(1.0 – w)⋅ mprim, is distributed to the other non-sink columns. A perturbation of primary
row r may be summarized by

 (6)

for p(old)
rj > 0 where [a]+=a if a>0 and [a]+=0 otherwise. Similarly perturbation of the

primary increase column c↑ ceases if the perturbed value would exceed 1.0. Of course, if
w is 1.0, or if the primary increase column c↑ and primary sink column c↓ are the only

[]













=⋅−

=+

=
↓+

↑

cjmwp

cjmp

p prim
old

rj

prim
old

rj

new
rj

)(

)(

)(

↓↑

↓↑≠

≠⋅−−
∑

ccj
p

p
mwp

cck
rk

old
rj

prim
old

rj ,)1(
,

)(
)(

+










 20

columns with non-zero transition probabilities, the primary sink column bears the entire
reduction. (Please see Appendix C for further details.)

The secondary row s can be selected on the basis of either: (a) the numeric value of the
primary increase column c↑, if it is not equal to the number of the primary row, or c↑ ≠ s
(otherwise no secondary row is selected); and (b) by strength of association, using the
total value of transition probabilities between the two states the rows represent and (if
known) the number of transitions that occur between these states. The default method is
(a); and this was used for the results reported below. Thus in the primary row r, as each
primary increase column, c↑, is selected, a different secondary row is also selected. As in
the primary row r, each positive row element in the secondary row, s, is selected in turn
for increase, and the corresponding column is designated as the secondary increase
column, d↑. However, in the secondary row, the perturbation is simpler--the transition
probability of a secondary increase column, d↑, is raised by a secondary increment
amount, , in 5 equal steps to produce successively perturbation amounts,

 (7)

Each combination of variable assignments for the primary increase column, primary
sink column, and sink weight in the primary row and the secondary increase column and
secondary increase amount in the secondary row (if any) is considered a unique
perturbation combination, labelled {r, c

, up to L. As in
the primary row r, transition probabilities in the remaining columns of the secondary row
are decreased by an equal amount; though here the amount of decrease for each column is
assigned in proportion to the relative value of its transition probability (similar to non-
sink columns in the primary row). To summarize,

↑, c↓, w, s, d↑, }. For each perturbation
combination, a separate perturbation sequence of [L/] steps is carried out in the primary
row. In each element of the perturbation sequence, the value of the primary increase
column, c↑, is successively raised by while the primary sink column, c↓, and non-sink
columns, if any, are decremented as described above. For a set of time period matrices,
this perturbation sequence is applied simultaneously in each matrix in the set. For each
assignment of incremental values in the perturbation sequence, the Markov chain
simulation procedure described in section 4.4 is carried out for a time-period matrix set.
Each such execution represents a potentially different execution path for the system. The
incremental increases in the perturbation sequence continue until the transition
probability in the primary increase column, c↑, reaches L or 1.0 in each time-period
matrix. Thus if L=0.25 and











≠













−

=+

=
↑

+

↑≠

↑

∑
dj

p
p

mp

djmp

p

dk
sk

old
sjold

sj

old
sj

new
sj

)(

sec
)(

sec
)(

)(

 = 0.01, there are 25 Markov chain simulations in a
perturbation sequence for each perturbation combination of column assignments in the
primary and secondary rows.

 21

5.2 Implementing this Approach to Perturb the TPM

In this way, the effects of a reasonably wide range of perturbation combinations can be
explored. Carrying out the sequence of perturbations for each perturbation combination
can yield potentially interesting alternative behaviors, though only a subset can be
relevant. The perturbation method was used to predict the result of failing to fulfill the
three service guarantees described in section 3. To do this, we used the time-period
matrix set in Appendix B (summarized by the weight-averaged matrix in Figure 2),
together with the default method (a) for secondary row selection. The sink weight set and
parameters values for L, vprim, and vsec described above were also used. Applying the
perturbation method resulted in generation of 2805 perturbation combinations and
perturbation sequences consisting of 89,750 simulations, which required 3354 s (56
minutes) of computation time using an Intel Xeon MP processor. This is a substantial
amount, but less than 0.5% of the time (205 hours) that the large-scale simulation needed
to show behaviors described below in which the service guarantees were violated. Table
1 shows the total number of perturbation combinations for the rows of this matrix set.
Details of perturbation combinations are provided in Appendix D. Analysis of the results
of these Markov chain simulations and the execution of corresponding perturbations in
the large-scale simulation is provided in the next section.

Table 1. CPU resources used for perturbing of rows of the Markov chain matrix, with secondary row
selected using method (a). Primary rows perturbed to maximum value in increments as specified.
Secondary rows perturbed to a maximum value of 0.25 in 0.0625 increments. The details of calculating the
number of perturbation combinations and perturbation sequences is provided in Appendix D. Actual
number of perturbation sequences carried out is in parenthesis.

6. Comparing Perturbations of the Markov Chain and Large-Scale Simulation

This section presents the results of using the perturbation method described in the
previous section to predict system performance when the service guarantees described in
section 3 are violated. The section provides a detailed analytic comparison of these
results with the results produced by the large-scale simulation.

The systematic perturbation of the TPMs revealed a wide range of behaviors. A subset
of these behaviors, corresponding to a subset of the total perturbation combinations
discussed above show what might occur if the service guarantees were violated. These
perturbation combinations correspond to service guarantee violation scenarios of interest.

5

4

3

2

1

Primary
Row

0.25 / 0.01

0.25 / 0.01
and
0.5 / 0.01

0.25 / 0.01

0.25 / 0.01

0.031 / 0.001

L / vprim

82.39 s2480803

260.15 s

789.17 s

1480.46 s

369.69 s

373.44 s

CPU
time
used

67502704

19625

39250

785

785

2, 3

2, 3

115004602, 4

10625 4253, 4

Number
Perturbation
sequences

Number
perturbation
combinations

Secondary
Rows

5

4

3

2

1

Primary
Row

0.25 / 0.01

0.25 / 0.01
and
0.5 / 0.01

0.25 / 0.01

0.25 / 0.01

0.031 / 0.001

L / vprim

82.39 s2480803

260.15 s

789.17 s

1480.46 s

369.69 s

373.44 s

CPU
time
used

67502704

19625

39250

785

785

2, 3

2, 3

115004602, 4

10625 4253, 4

Number
Perturbation
sequences

Number
perturbation
combinations

Secondary
Rows

 22

In the Markov chain model, violation of the Discovery Guarantee corresponded to a
subset of perturbation combinations for rows 1-4 of the TPMs in which tasks were
prevented from transitioning to the Discovering state. Two of these combinations are
presented here.

Failure to fulfil the Service Engagement Guarantee was enacted by reducing
probability of transition from the Negotiating state to the Monitoring state in row 4.
Perturbation combinations that reduced this probability represented a violation scenario
in which SLAs were not granted even though users and providers might be eligible for,
and should be able to enter into, agreements. Violation of the Service Fulfilment
Guarantee was enacted by reducing the probability of transition from the Monitoring state
to the Completed state in row 5, while increasing the probability of transitioning from
Monitoring to another state. This violation scenario corresponded to aborting a task that
was either executing, or in a waiting queue. The results of these perturbations of the
Markov chain are shown in graphs of perturbation sequences for relevant perturbation
combinations.

To compare the results of the perturbations to the Markov chain with similar changes
to the behavior of the large-scale simulation, the original model [Mill2008] was altered to
simulate the effects of not fulfilling the three service guarantees. These changes to the
large-scale model are described below and their effect on performance is also graphed. In
what follows, the results of perturbing both the Markov chain and large-scale simulation
to emulate violation of the three service guarantees are described. These results are
compared in terms of how well the Markov chain simulation predicts the result of the
large-scale simulation and the relative computational effort required by each method.

6.1. Discovery Guarantee

The Discovery guarantee is violated when discovery of information about grid resources
is prevented by such events as widespread network transmission failures or directory
malfunctions. The effects of not fulfilling the Discovery guarantee can be emulated by
lowering the transition probability values from the Initial State to the Discovering state
(row 1), from the Waiting state (row 2) to the Discovering state, from the Negotiating
state to the Discovering state (row 4), and by increasing the probability of self-transition
to the Discovering state (row 3). These perturbations constitute four separate scenarios
for violating the Discovery guarantee. We examine each in turn.

6.1.1 Perturbation of Transition to the Discovery state in Row 1

Row 1, column 3 of the unperturbed weight-averaged matrix shows the probability of
transition from the Initial state to the Discovering state. The five-period matrix set in the
Appendix shows this transition occurs entirely in the first time period of the simulated
day. The transition from Initial to Discovering marks the arrival of a task in the grid
system and is followed immediately by an attempt to discover providers to execute the
task. This case describes a situation where, for instance, incoming tasks are prevented
from executing the initial discovery phase due to network attack, outage, or similar such
reason. Although relatively straightforward, the case is included to show the

 23

correspondence of the Markov simulation to the large-scale simulation over a larger set
of cases.

Figure 4 shows the effect of systematically lowering the probability of the transition
from Initial to Discovering in the Markov chain simulation and the equivalent operation
in the large-scale simulation3

Figure 4. Proportion tasks complete in large-scale and Markov chain simulations in response to reduction in
the probability of transition from Initial to Discovering (column 3 of row 1 is the sink column), while
raising self-transition of Initial (column 1). Because values could not be obtained for all data points, a two-
percent moving average trend line was generated using Microsoft Excel to draw the curve for proportion of
tasks complete for the large-scale simulation.

In the large-scale simulation, the equivalent of reducing the probability of transition to

the Discovering state was achieved by systematically increasing the amount of time each
task remains in the Initial state, thus in effect delaying arrival of tasks into the grid
system. This perturbation had the effect of right-shifting the arrival time distribution
described above (Mills and Dabrowski 2008) and caused tasks to fail to meet their
deadlines. When column 1 of row 1 was selected as the primary increase column in the
Markov chain simulation, the same right shift was simulated, because recall that the
Markov chain process was modified to allow task arrival to take place using the
distribution derived from the large-scale simulation (Section 4.1). Right-shifting this
distribution delayed transition from the Initial to Discovering state, producing the same
result.

. To perturb the Markov chain simulation, column 1 of row
1 is selected as the primary increase column, while column 3, Discovering, is designated
as the primary sink column. Since there are no other columns in row 1 that have
transition probabilities greater than 0, the sink weight is 1.0. Using the default secondary
column selection method, no secondary row is perturbed, since the number of the primary
row and increase column are the same.

3 Please note that in Figure 4 and some subsequent figures, decreasing values are used on the horizontal
axis. This is done to show the impact of lowering probability of transition on proportion of tasks complete.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
op

or
tio

n
Ta

sk
s

C
om

pl
et

e

Decrease in Probability of Transition from Initial to Discovery

Large-scale simulation

Markov chain simulation

 24

In Figure 4, curves for both large-scale and Markov chain simulations show that
proportion of tasks complete decreases relatively little as the probability of transition
from Initial to Discovering state is reduced from 0.03 to 0.01. Below 0.01, the proportion
complete drops sharply in both cases. This reflects the effect of increasing delay of tasks
leaving the Initial state to progress through the Discovering, Negotiating, and Monitoring
states, so that they do not have sufficient time to execute and reach Completed. Although
the Markov chain curve declines more steeply, it is similar to the curve for the large-scale
simulation. Both show that performance will decline little until the probability of
transition to Discovering falls below 0.01. In our experiments, the Markov chain
simulation completely perturbed row 1 in 82.39 s, while, the large-scale simulation
required 21.18 hours to capture the similar guarantee violation behavior.

6.1.2. Perturbation of Transition to the Discovery state in Rows 2, 3, and 4

In row 2 the probability of transition from the Waiting state to the Discovering state is
shown in column 3, while in row 4, the probability of transition from Negotiating to
Discovering, which occurs less frequently in the large-scale simulation, is also shown in
column 3. These state transitions reflect subsequent attempts to initiate discovery
operations by task clients after the first round of discovery which occurs when a task first
arrives. Failure to initiate subsequent rounds of discovery constitutes violation of the
Discovery guarantee which, as before, reflects events such as faults in service discovery
directories or communications failures. Row 3, column 3 shows the probability of self-
transition to Discovering, which if increased, indicates that tasks remain in the
Discovering state for longer periods for reasons such as those listed above. This could
result in prolonging the discovery state to a degree that constitutes a violation scenario for
the Discovery guarantee.

In the Markov chain simulation, the first violation scenario was produced by reducing
the probability of transition from Waiting to Discovering (selecting column 3 as the
primary sink column with a primary sink weight of 1) while raising the probability of
transition from Waiting to Negotiating (selecting column 4 as the primary increase
column). In this case, row 4 (Negotiating) was perturbed as the secondary row since the
Negotiating state corresponds to column 4. Equivalent behavioral changes were made to
the large-scale simulation by altering the code to prevent the task client from initiating
subsequent rounds of discovery. The large-scale model was iteratively executed. On each
iteration, the probability of delaying the start of a subsequent discovery phase was
incrementally raised. TPMs were generated for this perturbed behavior and compared
with the Markov chain process.

Figure 5 shows the impact of these alterations on the large-scale simulation together
with the Markov chain perturbation sequences for 15 perturbation combinations of row 2
that best captured this violation scenario. Exploring all 425 perturbation combinations for
row 2 required 373.44 s of computational time, while the large-scale simulation required
12.17 hours to capture the perturbed behavior.

Figure 5 shows the proportion of tasks complete for both the Markov chain and large-
scale simulations as the probability of transition from the Waiting to the Discovery state--
e.g., initiation of subsequent discovery actions--decreases along the horizontal axis. In
Figure 5, both the curves for the Markov chain and large-scale simulation show

 25

essentially no reduction in task completion as the probability of initiating subsequent
discovery actions goes to zero. In the large-scale simulation, failing to initiate subsequent
discovery does not affect task completion, because the discovery process is sufficiently
efficient so that all eligible providers are found on the first discovery attempt (see Section
6.1.1). Hence, subsequent discovery actions are not actually needed, and the absence of
these actions does not impact performance. The curves for the related Markov chain
perturbation combinations shown in Figure 5 agree well with the large-scale simulation.
If the Markov chain curves were used to make predictions, they would accurately predict
the result of the large-scale simulation with relatively minor differences in value of tasks
completed.

Figure 5. Proportion tasks complete in the large-scale and Markov chain simulations (shown using linear
trend lines) in response to reduction in the probability of transition from Waiting to Discovering (column 3
of row 2 is the primary sink column) while raising the transition probability of Waiting to Negotiating
(column 4 is the primary increase column). A linear trend line is used to draw the curve for proportion of
tasks complete for the large-scale simulation.

The second of the three violation scenarios involves row 4. Here, a similar set of

perturbations also may be performed to predict the result of reducing the probability of
transition from Negotiating to Discovering (column 3) while raising the probabilities of
transitioning from Negotiating to Waiting (column 2), Negotiating to Monitoring (column
5), and Negotiating self-transition (column 4). Secondary row perturbations are applied
to row 2 Waiting, row 3 Discovery, and row 6 Monitoring to produce additional
perturbation combinations that capture this violation scenario. In this case, as in the
preceding case, Markov chain simulation also agrees with the large-scale simulation.
Performance is not impacted by reducing probability of transition to Discovering, for the
same reasons given above. A similar graph to Figure 5 showing this could be provided

0.5

0.6

0.7

0.8

0.9

1

Pr
op

or
tio

n
Ta

ks
 C

om
pl

et
e

Decrease in Probability of Transition from Waiting to Discovery

Large-scale simulation
Secondary perturbation of Negotiating to Monitoring
increase of 0.063
increase of 0.125
increase of 0.188
increase of 0.25

Secondary perturbation of Negotiating self-transition
increase of 0.063
increase of 0.125
increase of 0.188
increase of 0.25

Secondary perturbation of Negotiating to Waiting
increase of 0.063
increase of 0.125
increase of 0.188
increase of 0.25

 26

but is omitted, because the probability of transition from Negotiating to Discovery is very
low (see five time-period matrix set in Appendix B). Perturbing such low values to 0
involved no more than 3 steps.

In the third violation scenario involving perturbation of row 3, Figure 6 shows that the
Markov chain also predicts that increasing the probability of self-transition to the
Discovering state (making column 3 the primary increase column) will have little impact
on the number of tasks completed. The Markov chain predicts this result regardless of
whether increases in self-transition to Discovering are offset by decreasing probability of
transition to either the Waiting or Negotiating states (i.e., making either the primary sink
column) and regardless of what sink weight is assigned. In these perturbation
combinations, no secondary row perturbation occurs since the row number (3) and
primary increase column number (3) are the same. In the large-scale simulation, the
increase of the probability of self-transition to Discovering is emulated by artificially
delaying the times when task clients conclude discovery operations.

`

Figure 6. Proportion tasks complete in the large-scale and Markov chain simulations in response to
increasing the probability of self-transition in row 3 of the Discovering state (column 3 becomes the
primary increase column) while decreasing in probability of transition to Waiting and Negotiating states
(columns 2 and 4 become sink columns with sink weights of 1.0). A linear trend line is used to draw the
curve for proportion of tasks complete for the large-scale simulation.

Figure 6 shows the curves for the perturbation sequences of two Markov chain
perturbation combinations for row 3. Figure 6 shows the impact on tasks complete of
increasing the probability of Discovery self-transition and the resulting prolongation of
the Discovery state that may occur as a result of faults. In these two perturbation
sequences, the probability of transition from Discovering to Waiting (column 2) and from
Discovering to Negotiating (column 4) is decreased. In the first sequence, sink weights of
0.4 and 0.6 are assigned to the two columns, while in the second sequence, weights of 0.6
and 0.4 are assigned (though other values were equally predictive). Again, the Markov

0.5

0.6

0.7

0.8

0.9

1

Pr
oo

po
rt

io
n

C
om

pl
et

e

Increase in Probability of Discovery State Self-transition

Large-scale simulation

Markov chain simulation (Sink column=Waiting)

Markov chain simulation (Sink column = Negotiating)

 27

chain and large-scale simulation agree. Regardless of which perturbation combination is
chosen or which perturbation sequence is carried out, the proportion tasks complete
remains at a high level. This again is because all necessary providers have already
discovered in the initial round of discovery. The perturbed Markov chain simulation were
accomplished in 369.69 s, while the large-scale simulation required 8.3 hours.

6.2. Service Engagement Guarantee

The act of engaging a service to execute a task is represented in the Markov chain by the
transition from the Negotiating state to the Monitoring state. In row 4 of the TPM, the
effects of non-fulfilment of the Service Engagement Guarantee can be illustrated by
reducing the probability of transition. This perturbation is meant to predict the effect of
reducing acceptance of agreements because users or providers fail to conclude SLAs they
should enter into. Such failures could occur because either users or providers employ
poor decision algorithms or communications failures. Along with decreasing the
probability of transition from Negotiating to Monitoring (making column 5 of row 4 the
sink column), the time-period TPM set is perturbed by increasing the probability of
transition from Negotiating to either Waiting, Discovering, or Negotiating, i.e., choosing
columns 2, 3, or 4 of row 3 as the primary increase columns. Choosing columns 2 or 3
involves selecting corresponding rows (rows 2 and 3) for secondary perturbation.

Figure 7. Proportion of tasks complete in the large-scale and Markov chain simulations in response to reducing
the probability of transition from Negotiating to Monitoring (column 5 of row 4 is the primary sink column)
while the transition probability to Waiting increases (column 2 is the primary increase column). A two-percent
moving average trend line is used to draw the curve for proportion of large-scale simulation tasks complete.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
op

or
tio

n
Ta

sk
s

C
om

pl
et

e

Decrease in Probability of Transition from Negotiating to Monitoring

increase of 0.25

Large

- scale Simulation
Secondary row perturbation of Waiting self

- transition
increase of 0.063

increase of 0.125

increase of 0.188

increase of 0.25

Secondary row perturbation of Waiting to Discovery

increase of 0.063

increase of 0.125

increase of 0.188

increase of 0.25

Secondary row perturbation of Waiting to Negotiating

increase of 0.063

increase of 0.125

increase of 0.188

 28

Figure 7 shows curves for perturbation sequences of 15 relevant perturbation
combinations for row 4 (out the 785 total) in which the probability of transition from
Negotiating to Waiting is raised (column 2 is the primary increase column) while the
transition probability from Negotiating to Monitoring is lowered (column 5 is the sink
column, with a sink weight of 1). Row 2, Waiting, is chosen for secondary perturbation.
In the large-scale simulation, the equivalent perturbation was accomplished by
systematically increasing the probability that a provider rejects an agreement, the result
of which is also shown in Figure 7. This figure shows that the perturbation of the Markov
chain simulation is generally predictive of the large-scale simulation result. The Markov
chain curves correctly predict that as the probability of transition to Monitoring falls to
zero, i.e., users and providers fail to conclude SLAs, the proportion of tasks completed
also falls to zero.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
op

or
tio

n
Ta

sk
s

C
om

pl
et

e

Decrease in Probability of transition from Negotiating to Monitoring

Large-scale simulation
Secondary row perturbation of Discovery to Waiting
increase of 0.063
increase of 0.125
increase of 0.188
increase of 0.25

Secondary row perturbation of Discovery self-transition
increase of 0.063
increase of 0.125
increase of 0.188
increase of 0.25

Secondary row perturbation of Negotiating to Discovery
increase of 0.063
increase of 0.125
increase of 0.188
increase of 0.25

Figure 8. Proportion tasks complete in the large-scale and Markov chain simulations in response to
reduction in the probability of transition from the Negotiating to the Monitoring state (column 5 in row 4 is
the sink column with a sink weight of 1) while the transition probability to Discovery increases (column 3
is the primary increase column). A two-percent moving average trend line is used to draw the curve for
proportion of tasks complete for the large-scale simulation.

In the case where secondary row perturbation of row 2 increased Waiting self-
transition and simulated still more delay, the Markov chain curves in Figure 7 show that
system performance would degrade still further. When secondary row perturbations of
row 2 increased the probability of going from Waiting to Negotiating rather than
increasing Waiting self-transition or Waiting to Discovering, the Markov chain process
predicted improved system performance. This is so because, logically, transitioning to
Negotiating increases the chances of then transitioning to Monitoring and then
completing (i.e., the Negotiating state is a more direct path to completion than is Waiting

 29

or Discovering). Here secondary row perturbations also affected predictions because
values of transition probabilities in row 2 of the unperturbed TPMs were close to 0 or 1,
i.e. they were near extreme limits (see Figure 2 or Appendix B).

In two additional instances of this violation scenario, Markov chain perturbations of
row 4, while also being generally predictive, proved to be less accurate predictors of
large-scale simulation behavior—for reasons explained below. In the first, the Markov
chain simulation predicts decline in tasks completed if a decrease in the probability of
transitioning from Negotiating to Monitoring is offset by an increase in the transition
probability from Negotiating to Discovering, rather than Waiting. This is shown in Figure
8. Here, column 3 of row 4 (Discovering) is made the primary increase column while
column 5 (Monitoring) remains the sink column. While the Markov chain family of
curves exhibits a lower task completion percentage than the large-scale simulation as
probability of transition to Negotiating falls from 0.13 and 0.01, there is again a distinct
downward trend to zero tasks completed in both cases. Here, the Markov chain curve
predicts lower task completion percentage because, unlike the large scale simulation, it
increases the probability of transition to Discovering. The immediate transition to
Discovering simulates delay of subsequent negotiation attempts which also delayed
transition to Monitoring and decreased chances of task completion (i.e., transition to
Discovering is on a less direct path to completion than is transition to Negotiating).
Further, additional rounds of discovery do not improve chances of task completion,
because, as discussed in section 6.1.2, clients generally discover all providers on the first
round of negotiation. Hence, increasing transition to Discovering either through primary
row or secondary row perturbation does not improve performance.

In the second version of this violation scenario, the Markov chain is perturbed to
decrease in the probability of transitioning from Negotiating to Monitoring and increase
in probability of Negotiating self-transition (i.e. column 4 in row 4 is made the primary
increase column). In this case, the Markov chain simulation also predicts a performance
decline in Figure 9. Like the previous case, this violation scenario is less accurate with
respect to the behavior of the large-scale simulation. As in the previous case, the Markov
chain simulation shows a reduced level of performance in comparison to the large-scale
simulation. This is again because the Markov chain simulation simulates prolonging the
task in the Negotiating state with no progress to Monitoring and Completed states.

The cases shown in figures 8 and 9 illustrate situations where the accuracy of the
Markov chain simulation is reduced because the choice of secondary row perturbations
does not accurately model the behavior of the large-scale simulation. These cases show
the importance of choosing perturbation combinations that closely correspond to the
behavior of the target system. The predictiveness of the Markov chain approach is
improved by focusing on the perturbation combinations known to be most accurate, if
that knowledge is available. Such information may prove useful for developing a
methodology of Markov chains in which the number of perturbations is kept to a
minimum. Nevertheless, in all three cases discussed above, in which the probability of
transition from Negotiating to Monitoring is decreased in the Markov chain simulation,
the Markov chain predicts a performance decline.

The computational cost for the entire 785 perturbation combinations required to
perturb all of row 4 in the Markov chain simulation was 789.17 s. Raising the
perturbation limit, L, to 0.5 to obtain a additional perturbation sequences needed to

 30

increase range in this case required another 1480.46 s. Here, the large-scale simulation
required 41.57 hours.

Figure 9. Proportion of tasks complete in the large-scale and Markov chain simulations in response to
reduction in the probability of transition from the Negotiating to the Monitoring state (column 5 in row 4 is
the sink column with a sink weight of 1) while the probability of Negotiating self-transition increases
(column 4 is the primary increase column). Since there is no secondary row perturbation, only one curve is
shown. A two-percent moving average trend line is used to draw the curve for proportion of tasks complete
for the large-scale simulation.

6.3. Agreement Fulfillment Guarantee

The Monitoring state is entered once an SLA is concluded. Failure to fulfill an SLA can
occur for many reasons: widespread network communications failures, network-wide
cyber attacks and viruses, faults or failures of computing resources that are executing user
tasks, of crashes of host operating system software. In the Markov chain, failure to fulfill
an agreement may be modeled by increasing the probability of transition from
Monitoring to states other than the Completed state; namely, either increasing the
probability of transition to the Negotiating state (representing a task abort) or increasing
the probability of self-transition in the Monitoring state (representing an extended delay).
In the former violation scenario, a task that transitions from Monitoring to Negotiating
(aborts) may recover from this setback by later obtaining another SLA, returning to the
Monitoring state, and then completing. In this section, this violation scenario is simulated
in the Markov chain by making Negotiating, column 4 of row 5, the primary increase
column, while making Completed, column 6, the sink column. In the resulting
perturbation combinations, secondary row perturbation is applied to the Negotiating row
(row 4). In the large-scale simulation, the equivalent behavior change was enabled by
systematically increasing the rate at which a provider aborts a queued or executing task.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
op

or
tio

n
C

om
pl

et
e

Decrease in Probability of transition from Negotiating to Monitoring

Markovchain simulation

Large-scale simulation

 31

As before, the large-scale simulation iterated, with the abort rate increasing on each
iteration.

Figure 10. Proportion tasks complete in large-scale and Markov chain simulation in response to reduction
in the probability of transition from Monitoring to Completed (row 5, column 6 is the sink column) while
increasing the probability of transition from Monitoring to Negotiating (column 4 is the primary increase
column). A two-percent moving average trend line is used to draw the curve for proportion of tasks
complete for the large-scale simulation.

Figure 10 shows the resulting curves for Markov chain perturbation sequences in
which the probability of transition to the Negotiating state is raised (i.e., column 4 is the
primary increase column) as the probability of transition to Completed (sink column 5)
falls from a weighted average of 0.008 to zero. The figure shows that this perturbation
causes the proportion of tasks completed to fall dramatically. This figure shows 20 of the
most relevant perturbation combinations (out of a total of 270) for the case where the
Completed state has a sink weight of 0.2. Alternative perturbations using Monitoring as
the sink column (not shown) produce a similar result. In all cases, the Markov chain
curves show a pronounced reduction in proportion of tasks completed that is substantially
predictive of the curve for the large-scale simulation, also shown in Figure 10. The figure
shows that 5 of the 20 curves represent accurate approximations of the large-scale
simulation result. The remainder show the distinct downward trend in tasks completed,
though at markedly different slopes. In the 5 curves closest to the large-scale simulation
result, the secondary row, Negotiating (row 4), is perturbed to raise the probability of
transition to the Monitoring state (column 5). This effectively models a situation where
tasks that fail to transition from Monitoring to Completed (abort) are later able to
negotiate new SLAs, return to the Monitoring state, and complete—as might be expected
in the real world. While only a relatively small proportion of the curves produced through
Markov chain simulation are this accurate, all curves predict that if the probability of
transition from Monitoring to Negotiating is raised sufficiently (i.e., the probability of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pr

op
or

tio
n

Ta
sk

s
C

om
pl

et
e

Increase in Probability of Transition from Monitoring to Negotiating

Large-scale simulation
Secondary perturbation of Negotiating to Waiting
Increase of 0.063
Increase of 0.125
Increase of 0.188
Increase of 0.250
Secondary perturbation of Negotiating to Discovering
Increase of 0.063
Increase of 0.125
Increase of 0.188
Increase of 0.250
Secondary perturbation of Negotiating self-transition
Increase of 0.063
Increase of 0.125
Increase of 0.188
Increase of 0.250
Secondary perturbation of Negotiating to Monitoring
Increase of 0.063
Increase of 0.125
Increase of 0.188
Increase of 0.250

 32

task abort is high enough), system performance will drastically degrade. The Markov
chain simulation required 260.2 s of execution time to process the 270 perturbation
combinations for row 5. The large-scale simulation required a lengthy 122.6 hours to
carry out the equivalent perturbation behavior, because repeated task aborts entailed
extensive delays.

6.4 Summary of Analysis and Outstanding Issues

The preceding sections showed that perturbation of TPMs carried out through application
of the method described in sections 4 and 5 does indeed generally predict how the large-
scale grid system will perform when key service guarantees are violated. In the case of
the Discovery guarantee, the Markov chain was found to accurately correspond to the
large-scale simulation in both cases shown. For the Engagement guarantee, perturbations
of the Markov chain were found to generally correspond to the results produced by the
large-scale simulation in one violation scenario shown here. For the violation of the
Service Fulfillment Guarantee, the perturbation of the Markov chain accurately captured
the behavior exhibited in the large-scale simulation. Thus perturbation of the Markov
chain was shown to be an effective predictor for all cases shown in this paper. In no case,
did the Markov chain simulation produce results that contradicted the large-scale
simulation. Moreover, as we have seen, the Markov chain approach achieved these
results at less than 0.5% of the computational cost of the large-scale simulation. If the
required data was obtained from a real-world system to create a Markov model and
related TPMs, it is reasonable to believe that comparable results could be achieved.

Despite this success, important issues still remain to be resolved. The most important is
scalability, which has three aspects. First is whether the approach scales with respect to
the size of the system being modelled, as expressed in terms of such variables as number
of entities being modelled, number of transitions taken, and workload. As section 4 has
shown, the method of counting state transitions and generating transition probabilities is a
straightforward arithmetic process that clearly does not depend on number of transitions.
Here, scale does not hinder analysis. Second, there is the all-important issue of the size of
the state model, that is, the number of states and the corresponding size of the TPM.
Here, further work incorporating lumping techniques described in Section 2 will be
needed. Finally, it is important to consider scalability with respect to the number of
perturbations, or alternative execution paths, investigated. Despite the dramatic reduction
in execution time seen for Markov chain method (< 1% of the execution time used by
large-scale simulation), scalability may not be good for very large matrices or if many
perturbations are needed. Follow-on research will be needed to examine this issue and to
develop a methodology for systematic perturbation of Markov chains. Here, there is the
possibility of extending non-linear algebra techniques and matrix methods (Stewart and
Sun 1990) to generate eigensystems that can be analysed to determine what parts of the
matrix are most sensitive to perturbation and thus where investigation should be focused.
Despite these issues, use of the Markov chain approach entails dramatically less
computational effort than large-scale simulation.

 33

7. Conclusions

Section 6 showed that perturbation of TPMs and Markov chain simulation was generally
predictive of changes to performance arising from failure to fulfill basic service
guarantees provided by grid computing systems. While Markov chain analysis did not
reproduce the exact performance curves generated by a detailed simulation, a carefully
limited brute-force perturbation of TPMs produced a family of related curves which
approximated the impact of not fulfilling service guarantees. Perturbed TPMs produced
by Markov chain analysis were predictive both in cases where changes to the behavior of
the large-scale simulation resulted in severe performance degradation as well as cases
where changes to the large-scale simulation did not significantly impact results. Thus, it
is possible to conclude that the approach to perturbing Markov chains described in this
paper did indeed answer the questions posed in section 3; namely, how non-fulfillment of
the three service guarantees affects performance of a large scale grid system. Moreover,
the Markov chain procedure was able to perform the analysis necessary to answer this
question using a small fraction of the computational resources (less than 1%, or two
orders of magnitude) that was necessary for the large-scale simulation. If, instead of the
large-scale simulation, a real-world system could be used as a testbed in which conditions
are sufficiently controlled to allow execution of repeated trials, the contrast in time (and
resource) expenditure could be much greater. The study thus shows that Markov chain
analysis is a valuable tool for understanding complex system behavior in large-scale grid
systems and can be used to predict performance changes that result when fundamental
guarantees of service are not met.

 34

8. References

[Akio2003] S. Akioka and Y. Muraoka. The Markov Model Based Algorithm to Predict
Networking Load on the Computational Grid. Journal of Mathematical Modelling and
Algorithms, 2, (2003), 251–261.

[Andr2007] A. Andrieux, K. Czajkowski, A. Dan, K. Keakey, H. Ludwig, T. Nakata, J.
Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web Services Agreement Specification (WS-
Agreement). GFD.107, Open Grid Forum (May 2007).

[Aupp1991] B. Aupperle and J. Meyer. State space generation for degradable
multiprocessor systems. Twenty-First International Symposium on Fault-Tolerant
Computing (FTCS-21), Digest of Papers, (June 1991), 308-315.

[Bala1994] M. Balakrishnan and A. Reibman. Reliability models for fault-tolerant private
network applications. IEEE Transactions on Computers, 43, 9, (September 1994), 1039-
1053.

[Baxt2001] J. Baxter and P. Bartlett. Infinite-Horizon Policy-Gradient Estimation.
Journal of Artificial Intelligence Research, 15, (November 2001), 319-350.

[Buch1995] P. Buchholz. Hierarchical Markovian Models: Symmetries and Reduction.
Performance Evaluation, 22, 1, (1995), 93-100.

[Cao1998] Cao, X. and Wan, Y. Algorithms for Sensitivity Analysis of Markov Systems
Through Potentials and Perturbation Realization. IEEE Transactions on Control Systems
Technology. vol. 6, no. 4, July 1998.

[Cao2005] X. Cao. Basic Ideas for Event-Based Optimization of Markov Systems.
Discrete Event Dynamic Systems: Theory and Applications, 15, (2005), 169–197.

[Cao2008] X. Cao, J. Zhang. Event-Based Optimization of Markov Systems. IEEE
Transactions on Automatic Control, 53, 4, (May 2008), 1076-1082.

[Carr2006] D. Carr. How Google Works. Baseline Magazine
http://www.baselinemag.com, July 6, 2006.

[Cass1990] C. Cassandras, J. Lee, and Y. Ho. Efficient parametric analysis of
performance measures for communication networks. IEEE Journal on Selected Areas in
Communications, 8, 9, (December 1990), 1709-1722.

[Chio1993] G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad. Stochastic Well-
Formed Colored Nets and Symmetric Modeling Applications. IEEE Transactions on
Computers, 42, 11, (November 1993), 1343-1360.

http://www.baselinemag.com/�

 35

[Chun2002] B. Chun and E. Culler. User-centric performance analysis of market-based
cluster batch schedulers. Proceedings of the 2nd IEEE International Symposium on
Cluster Computing and the Grid, (2002).

[Coll2005a] M. Colledani and T. Tolio. Impact of statistical process control (SPC) on the
performance of production systems—Part 1 (small systems). 5th international conference
on analysis of manufacturing systems—production management. Zakynthos Island,
Greece, (May 2005).

[Coll2005b] M. Colledani and T. Tolio. Impact of statistical process control (SPC) on the
performance of production systems—Part 2 (large systems). 5th international conference
on analysis of manufacturing systems—production management. Zakynthos Island,
Greece, (May 2005).

[Dall1992] Y. Dallery, S. Gershwin. Manufacturing flow line systems: A review of
models and analytical results. Queuing Systems Theory and Applications, 12, (1992), 3–
94.

[Deri2003] S. Derisavi, H. Hermanns, and W. Sanders. Optimal state-space lumping in
Markov chains. Information Processing Letters, 87, 6, (September 2003), 309-315.

[Diam2006] A. Diamantidis and C. Papadopoulos. Markovian analysis of a discrete
material manufacturing system with merge operations, operation-dependent and idleness
failures. Computers & Industrial Engineering. 50, (2006), 466–487.

[Glob2008] The Globus Toolkit. http://www.globus.org/toolkit/.

[Gose2001] K. Goseva-Popstojanova and K. Trivedi. Architecture-based approach to
reliability assessment of software systems. Performance Evaluation, 45, 2-3, (2001), 179-
204.

[Helb1997] S. Helber. Decomposition of unreliable assembly/disassembly networks with
limited buffer capacity and random processing times. European Journal of Operational
Research, 109, 1, (August 1998), 24-42.

[Helb2000] S. Helber. Approximate analysis of unreliable transfer lines with splits in the
flow of material. Annals of Operations Research. 93, (2000), 217–243.

[Helb2003] S. Helber and N. Mehrtens. Exact analysis of a continuous material merge
system with limited buffer capacity and three stations. In S. Gershwin, Y. Dallery, C.
Papadopoulos, and J. Smith (eds.). Analysis and Modeling of Manufacturing Systems.
Kluwer Academic, Dordrecht, (2003), 85–121.

[Ho1985] Y. Ho. A Survey of the Perturbation Analysis of Discrete Event Dynamic
Systems. Annals of Operations Research, 3, 1985, 393-402.

http://www.globus.org/toolkit/�

 36

[Ho1988] Y. Ho and S. Li. Extensions of infinitesimal perturbation analysis. IEEE
Transactions on Automation Control, AC-33, 5, (1988), 427-438.

[Ho1991] Y. Ho. Perturbation Analysis of Discrete Event Systems, Kluwer Academic
Publishers, Boston, MA, (1991).

[Ho1997] Y. Ho and C. Cassandras. Perturbation analysis for control and optimization of
queueing systems: An overview and the state of art. In J. Dshalalow (ed.). Frontiers in
Queueing: Models and Applications in Science and Engineering, CRC Press, (1997),
395-420.

[Jaco2007] M. Jacobi and O. Gornerup. A Dual Eigenvector Condition for Strong
Lumpability of Markov Chains. Submitted to Arxiv preprint arXiv:0710.1986.
http://arxiv.org/abs/0710.1986, (2007).

[Jonk1994] H. Jonkers. Queueing models of parallel applications: the Glamis
methodology. Lecture Notes in Computer Science, 794, 123-138.

[Keme1976] J. Kemeny and J. Snell. Finite Markov Chains. Springer, New York, (1976).

[Kim2005] J. Kim, S. Gershwin. Integrated quality and quantity model of a production
line. OR Spectrum, 27, (2005), 287–314.

[Lapr1992] Laprie, J, Kanoun, K. X-ware reliability and availability modeling. IEEE
Transactions on Software Engineering. vol.18, no.2, February 1992. pp.130-147.

[Li2005] J. Li and N. Huang. Modeling and analysis of a multiple product manufacturing
system with split and merge. Proceedings of the 2004 IEEE International Conference on
Robotics and Automation (ICRA '04), New Orleans, LA, (April 2004) 2261-2266.

[Li2008] J. Li, D. Blumenfeld, N. Huang, and J. Alden. Throughput analysis of
production systems: recent advances and future topics. International Journal of
Production Research. To appear, (2008).

[Liu2008] Y, Liu and J. Li. Modeling and Analysis of Bernoulli Production Systems with
Split and Merge. 2008 IEEE International Conference on Robotics and Automation,
Pasadena, CA, (May 2008), 3618-3623.

[Mill2006] K. Mills, C. Dabrowski. Investigating Global Behavior in Computing Grids.
Lecture Notes in Computer Science, 4124, 120-136.

[Mill2008] K. Mills, C. Dabrowski. Can Economics-based Resource Allocation Prove Effective
in a Computation Marketplace? Journal o f Grid Computing, 6, 3, 291-311.

[Nara1990] Y. Narahari, N. Viswanadham, and K. Krishna Prasad. Markovian Models
for Deadlock Analysis in Auto Manufacturing Systems. SZdhanii, 15, 4 & 5, (December
1990), 343-353.

http://arxiv.org/abs/0710.1986�

 37

[Nara1994] Y. Narahari and N. Viswanadham. Transient Analysis of Manufacturing
Systems Performance. IEEE Transactions on Robotics and Automation, 10, 2, (April
1994), 230-244.

[Nico2004] D. Nicol, W. Sanders, and K. Trivedi. Model-based evaluation: from
dependability to security. IEEE Transactions on Dependable and Secure Computing.
1, 1, (January 2004), 48 – 65.

[Obal2001] W. Obal and W. Sanders. Measure-adaptive state-space construction.
Performance Evaluation, 44, 1-4, (April 2001), 237-258.

[Raff2006] D. Raffo. Grid, redundancy, and home-cooked management help site survive.
Byte and Switch, (November 22, 2006).

[Rose2004] D. Rosenberg, E. Solan, and N. Vielle. (2004): Approximating A Sequence
of Observations By A Simple Process. The Annals of Statistics 32 (6), (2004), 2742-2775.

[Sand1991] W. Sanders and J. Meyer. Reduced base model construction methods for
stochastic activity networks. IEEE Journal on Selected Areas in Communications, special
issue on Computer-Aided Modeling Analysis, and Design of Communication Networks, 9,
1, (1991), 25–36.

[Schw1968] P. Schweitzer. Perturbation Theory and Finite Markov Chains. Journal of
Applied Probability. 5, 2, (August 1968), 401-413.

[Sieg1992] M. Siegle. On Efficient Markovian Modelling. Proceedings of the QMIPS
 Workshop on Stochastic Petri Nets, Sophia Antipolis, France, 213-225.

[Song2004] B. Song, C. Ernemann and R. Yahyapour. Parallel Computer Workload
Modeling with Markov Chains. Lecture Notes in Computer Science, 3277, (2004), 47-62.

[Suri1987] R. Suri. Infinitesimal perturbation analysis for general discrete event systems.
Journal of the ACM, 34, 3, 686-717.

[Suri1989] R. Suri. Perturbation Analysis: The State of the Art and Research Issues
Explained via the GI/G/l Queue. Proceedings of the IEEE, 77, 1, (January, 1989), 114-
138.

[Tan2000] B. Tan and S. Karabati. Modelling and Scheduling of an Asynchronous Cyclic
Production Line with Multiple Parts. The Journal of the Operational Research Society,
51, 11, (November 2000), 1296-1308.

[Triv2004] K. Trivedi, S. Ramani, and R. Fricks. Recent advances in modeling response-
time distributions in real-time systems. Proceedings of the IEEE, 91, 7, (July 2003),
1023-1037.

 38

[Wolp1997] D. Wolpert and W. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1, 1, 67–82.

[Yeo2005] C. Yeo and R. Buyya Service level agreement based allocation of cluster
resources: handling penalty to enhance utility. Proceedings of the 7th IEEE International
Conference on Cluster Computing. Boston, MA, USA, (2005).

[Zaka1997] A. Zakarian and A. Kusiak. Modeling manufacturing dependability. IEEE
Transactions on Robotics and Automation, 13, 2, (April 1997), 161-168.

 39

APPENDIX A. Decomposition of Selected States

This appendix is provided for readers who want to obtain additional detail about the state
model. Future work may entail investigating the effects of perturbing lower-level Markov
chain models for these three states. This appendix describes the decomposition of the
Discovering, Negotiating, and Monitoring states into lower-level substates and shows the
related substate decomposition diagrams. The decomposition of these three states is
strictly hierarchical. In each case, transition into the containing higher-level state denotes
simultaneous transition in the related substate decomposition diagram from the initial
state to another substate. Similarly, in each decomposition diagram, transition to the
terminal state denotes simultaneous transition out of the containing higher-level state. In
each case, particular substates that are shaded identify states in which errors occur or
tasks complete either properly or improperly. These substates provide a basis for
diagnosing errant behaviors. All three substate diagrams have the Markov property for
which stochastic TPMs can be formed. Similarly, as in the case of the higher-level state
Markov chain, a global system state vector representing the lumped states of all tasks in
the system can be created for each substate Markov chain. A brief analysis of the
decomposition concludes the section.

A.1 Decomposition of the Discovering State

These substates describe in detail the discovery process by which a set of grid service
providers are located that have the potential to execute a user task. The process described
here follows the Globus Monitoring and Discovery System (MDS) [Glob2008]. In this
process, a transition is taken from the initial state to the Processing GIIS state. In this
state, the user first queries a Grid Index Information Service (GIIS) to obtain addresses of
any Grid Resource Information Services (GRIS) that may have information about service
providers which are capable of executing the user task. The Processing GIIS state
encompasses the activities involved in querying one or more GIIS and processing the
related responses. Inability to obtain a response from a GIIS results in transition to a
Failed GIIS State in which the failure is recorded. A negative response from a GIIS
results in transition to the Discarding GRIS state in which all service provider
information in the GRIS is discarded and no longer available. A GIIS may return
information about one or more GRIS that can be queried to obtain information about
relevant service providers. In this case, a transition is taken to the Processing GRIS state.
Here, as in the case of the GIIS, attempts to contact GRIS directories may also fail or
produce perceived irrelevant responses. If a GRIS returns information about service
providers that are potentially capable of running the user task, the Storing Discovery state
is entered to record the discovery. Once all GRIS are queried and discoveries are
recorded, the Processing GRIS substate, and the containing Discovery state, are exited
simultaneously. This process is illustrated in Figure A.1. In this figure (and in subsequent
figures in this appendix), yellow shading signifies a state that has been added to the
diagram to allow tracking of failure conditions.

Two states may be further decomposed. The Processing GIIS state consists of four
substates detailing elementary steps for sending queries to the GIIS and processing

 40

responses. The Processing GRIS state may be similarly decomposed into three more
detailed states for querying GRIS. Both decompositions are strictly hierarchical. In total,
the Discovering state consists of 14 substates in two lower-level hierarchical
decompositions.

Actions complete

[t >= task deadline - task length
] / DeadlineExceeded=TRUE

Timeout Timeout

Actions complete

Failed GIIS State

Actions complete

Failed GRIS State

Actions complete

Discarding Discovery

Discard Record

Discarding GRIS

Actions complete

Discard Record

Processing GIIS Processing GRIS
GRIS to query

Storing Discovery

Discovery Found

Actions complete

Figure A.1. Decomposition of the Discovering state into a substate diagram. Black circles without rings
refer to initial states or entry points. Black circles with rings refer to termination or end points.

A.2 Decomposition of the Negotiating State

The substates shown in Figure A.2 identify critical aspects of the negotiation process.
This process is executed independently by a client user for each service provider that was
discovered during the Discovering phase. Upon entry into the containing Negotiating
state, the Processing SLA Offer substate is simultaneously entered. In this substate, the
client user carries out the actions involved in preparing an SLA offer to a provider,
sending the offer, and awaiting the response. The substate may be further decomposed
into another five straightforward, procedural states. These actions follow the SLA
negotiation protocol required by the WS-Agreement standard specification [Andr2007].

More importantly perhaps, the remaining three states in Figure A.2 are intended to
facilitate understanding behavior of the grid system as a whole. The Failed Negotiation
State indicates that either the provider rejected the SLA offer or the negotiation process
could not be completed due to error. The Record Provider Rejection state indicates the
client user decided that the provider was inappropriate and terminated the procedure. The
SLA Accepted state indicates an agreement was reached. If included in a system state
vector using the procedure described in section 4.2, these three substates could be used to
diagnose causes of degradation in system performance in the more detailed model. In

 41

total, the Negotiating state consists of 9 substates, including the further decomposition of
the Processing SLA Offer substate.

 Figure A.2. Decomposition of the Negotiating state into a substate diagram.

A.3 Decomposition of the Monitoring State

From the point of view of the user, the Monitoring state decomposes into four states that
describe substates that are entered once an SLA for the task has been agreed to and the
task has been submitted to the provider for execution. This is shown in figure A.3 on the
next page. In this figure, none of these states are further decomposed. The first,
Requesting Registration, represents a request by the user to be notified of changes to the
status of the user’s task, or job. This is followed by transition to a local Waiting state
specific to the Monitoring state machine (not to be confused with the Waiting state in the
high-level state diagram in figure 1), duringwhich self-transitions may be taken when
either notice of registration decision arrives. If the registration is accepted, the task
returns to the Waiting state, where it remains until the task has begun execution. If the
task completes, a transition occurs from the Waiting state to the Completion Actions state
(which signifies transition to the Task Completed state in the high-level state diagram in
figure 1). If the task is aborted or the registration request is rejected, a transition to the
Task Aborted state occurs (which signifies transition to the Task Failed state in the high-
level state diagram).

Provider Rejected Offer accepted

[t=object lifetime
expiration]

Failed Negotiation State

Offer rejected

Timeout

Actions complete

Record Provider Rejection

Actions complete

Processing SLA Offer

SLA Accepted State

 42

Figure A.3. Decomposition of the Monitoring state into a substate diagram.

A.4 Analysis of Decomposition of High-Level Model

As shown above, three states in the high-level model can be further decomposed into 27
states. There are 14 states in the decomposition of Discovering, nine in the decomposition
of Negotiating, and four in the decomposition of Monitoring. Each of these constitutes a
hierarchy of states. Discovering decomposes directly into seven states with two states
(Processing GIIS and Processing GIIS) decomposing into 3 and 4 states respectively. If
flattened, this becomes a single diagram with 12 states. Negotiating decomposes into four
states, one of which (Processing Offer) decomposes into five. If flattened, this yields
eight states. Monitoring decomposes simply into four states, none of which are further
decomposed. If the entire 34-state structure (seven at the high level and 27 at the lower
levels) were flattened, it would yield a single 28-state model. Detailed analysis of the
larger model and the individual substate Markov chains may be a direction for future
work. This would have two areas of interest. First, a number of more detailed states
describe error situations, which if entered into by a high proportion of tasks in the system,
could be predictive drastic changes at the system level. Second, the larger 28-state model
could be converted into a larger TPM and used to test the scalability of methods
described in this paper.

Requesting Registration

Waiting

Actions complete

Task completes
Completion Actions

Actions complete

Task Aborted State
Actions complete

Task execution started

Task aborted notification

Registration rejected

Registration accepted

Registration
decision

 43

APPENDIX B. Five Time-Period Transition Matrices

These matrices, referred to in section 4, allow a representation of the model as a piece-
wise homogenous Markov chain having a bounded number of pieces [Rose2004], where
each piece corresponds to a different time period. The five matrices, shown below, were
used as a basis for the perturbation experiments described in section 6. The summary
matrix shown in figure 2 was produced by weight averaging these matrices on the basis
of number of transitions in each time period.

Time Period 1, 0-7200 s

 Time Period 2, 7201-14400 s

0000000Fail

01.000000Comp

00.00390.99610000Mon

000.34420.29200.01320.35060Ngt

0000.33560.60130.06310Disc

0000.13780.05500.80720Waiting

00000.0303 00.9697Initial

FailCompMonNgtDiscWaitInitial

0000000Fail

01.000000Comp

00.00390.99610000Mon

000.34420.29200.01320.35060Ngt

0000.33560.60130.06310Disc

0000.13780.05500.80720Waiting

00000.0303 00.9697Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.00710.99280.0001000Mon

000.04480.37700.03160.54660Ngt

0000.50120.498800Disc

0.0002000.07490.07220.85270Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.00710.99280.0001000Mon

000.04480.37700.03160.54660Ngt

0000.50120.498800Disc

0.0002000.07490.07220.85270Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

 44

 Time Period 3, 14401-21600s

 Time Period 4, 21601-28800s

 Time Period 5, 28801-36000s

1.0000000Fail

01.000000Comp

00.01620.98280.0010000Mon

0.000100.01570.18540.01430.78450Ngt

0000.35930.640700Disc

0.0074000.07020.07300.84940Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.01620.98280.0010000Mon

0.000100.01570.18540.01430.78450Ngt

0000.35930.640700Disc

0.0074000.07020.07300.84940Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.0670.93170.0013000Mon

0.010100000.98990Ngt

0000.00090.999100Disc

0.0249000.06890.07220.83400Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.0670.93170.0013000Mon

0.010100000.98990Ngt

0000.00090.999100Disc

0.0249000.06890.07220.83400Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

0.06700.93170.0013000Mon

0.010100000.98990Ngt

0.00090.999100Disc

0.0435000.07340.07200.81110Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

0.06700.93170.0013000Mon

0.010100000.98990Ngt

0.00090.999100Disc

0.0435000.07340.07200.81110Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

 45

APPENDIX C. Algorithm to Perturb Row of Transition Probability Matrix

This section provides pseudo-code for the perturbation algorithm overviewed in section 5.1. The
main algorithm on the next page details the steps in determining perturbation combinations, while
subsequent pseudo-code procedures describe (1) the default method of selecting secondary rows,
(2) the method for evaluating perturbation sequences, and (3) the steps in multiplying matrices to
carry out the Markov chain simulation. Table C.1 defines the major variables used in these
procedures and discussed in the main body of this report.

Table C.1. List of term used to describe perturbation algorithm

Term Symbol
(if any)

Definition

Non-sink column --- The column in the primary row in which pij values are decreased by an amount proportional
to 1 – (w * vprim,), where w is the sink weight. See Appendix C for further details.

Primary increase
amount

vprim The amount by which the value of pij in the primary row is successively raised during a
perturbation sequence.

Primary increase
column

c↑ The column in the primary row in which pij values are increased by an amount vprim..

Primary row r The TPM row selected by the analyst in which columns in the transient portion of the
matrix will be perturbed.

Primary sink
column

c↓ The column in the primary row in which pij values are decreased by an amount equal to w *
vprim,, where w is the sink weight.

Perturbation
combination

--- A combination of value assignments for a primary increase column, primary sink column,
and sink weight in the primary row and a secondary increase column and secondary
perturbation amount in the secondary row (if any).

Perturbation
Limit

L The maximum amount by which the pij values of primary and increase columns can be
raised by.

Perturbation
sequence

--- A sequence carried out for a single perturbation combination in which the value of the
primary row, increase column is successively raised by vprim while the sink column and
non-sink columns, if any, are decremented.

Secondary
increase column

d↑ The column in the primary row in which pij values are increased by an amount vprim..

Secondary
increase amount

vsec A value, 0 ≤ 1.0, by which the secondary increase column is incrementally increased.

Secondary row s The TPM row in which column for which pij values are perturbed in addition to the primary
row. By default, the secondary row is the number of the increase column.

Sink weight w The variable w whose value, 0 ≤ 1.0, determines the amount, w * vprim,, that the primary
sink column pij should be reduced by.

Sink weight set --- A set of sink weights, w, iteratively used to produce alternative values by which the primary
sink column is reduced by in a perturbation combination.

 46

Procedure Determine Perturbation Combinations
// Initially,
• Let np be the number of time periods in a non-homogenous Markov chain.
• Let Q = {Q1….Qnp} as unperturbed set of np n × n TPMs for np time periods, where qtp

ij is
the probability of transition from state i to state j in time period tp, 1 ≤ tp ≤ np.

• Let P be the set of np matrices to be perturbed.
• Let perturbable be an n × n Boolean matrix where perturbable (i, j) = TRUE if for any Qtp in

Q, qtp
ij > 0. If perturbable (i, j) = TRUE, the jth column in row i can be perturbed.

• Select row, r, as primary row to perturb in all matrices in Q, where r corresponds to a
transient state in the Markov chain

• Select range and granularity of perturbation
o Set perturbation limit L (ex. L = 0.25)
o Set primary row perturbation increment amount vp (ex. vprim = L/25 = 0.01
o Set primary row sinkWeightSet, e.g.{0.2, 0.4, 0.6, 0.8, 1.0}
o Set secondary row perturbation increment amount vsec (ex. vsec = L/5 = 0.625)
o Set numSteps equal to number of discrete steps to execute Markov chain (ex. 339)

BEGIN // Define perturbation combinations and evaluate perturbation sequence for each
FOR each column x in row r, where perturbable (r, x):

1. Set primary increase column c↑= x.
2. FOR each column y in row r, y ≠ c↑ and perturbable (r, y):

a. Set sink column c↓= y. // This is the primary sink column
b. Set secondary row s = DetermineSecondaryRow (r, c↑) // Find secondary row
c. FOR each sink weight w in sinkWeightSet

DO
 // Check if there is secondary perturbation. If not evaluate immediately,
 // otherwise iterate through secondary perturbation combinations and evaluate each.

IF s = NULL //
THEN EvaluatePerturbationSequence (P, r, c↑, c↓, w, L, vprim, numSteps)
ELSE for each column d in secondary row s, s.t. perturbable (s, d):

i. Set d↑ = d. // Vary and iterate over columns of secondary row
ii. Set msec = 0

iii. Reset P = Q,
iv. WHILE msec ≤ L, // Vary and iterate over different values of msec

a. Set msec = msec + vsec`
b. FOR Ptp in P, 1 ≤ tp ≤ np // Perturb matrices ptp in P
 DO // according to equation (7)

1. Set ptp
sd

↑ = qtp
sd

↑+ msec.
2. IF ptp

sd
↑ ≥ 1.0, CONTINUE.

3. FOR each column c in row s, s.t. c ≠ d↑,
 DO

 ptp
sc = qtp

sc- msec • for each column j in row s

 c. EvaluatePerturbationSequence (P, r, c↑, c↓, w, L, vprim, numSteps)

END

∑
↑≠ds

tp
sj

tp
sc

q
q

 47

Procedure DetermineSecondaryRow (r, c↑)
// Accepts primary row r, and primary column c↑. Uses default method described in Section 5 to determine
if there is secondary row to perturb
BEGIN
IF r= c↑ RETURN NULL
ELSE RETURN c↑
END

Procedure EvaluatePerturbationSequence (P, r, c↑, c↓, w, L, vprim, numSteps)
// Accepts a defined perturbation combination including primary row r, primary increase
// column c↑, primary sink row c↓, primary sink weight w, and secondary row perturbation
// if any embedded in P. Iterates through perturbation sequence in P, perturbing P by
// incrementing mprim on every iteration according to equation (6) and executes Markov
// chain for each. The matrix Q assumes the role of P(old) in equation (6). The procedure
// also contains detail on border conditions not described in main body of report.
BEGIN
1. Set primary increment amount mp = 0
2. Set Q = P, // To be reset on each iteration
3. WHILE mp ≤ L // Execute perturbation sequence up to L

DO // Increment perturbed value, perturb matrix
a. Set mprim = mprim + vprim. // Set and do one execution of Markov chain
b. Reset P = Q
c. FOR Ptp in P, 1 ≤ tp ≤ np, // Perturb matrix set by next mp

DO
1. IF (qtp

rc
↑ + mprim) > 1, CONTINUE // Go to next matrix if perturbed value ≥ 1

2. Set ptp
rc

↑ = qtp
rc

↑ + mprim // Otherwise, set primary increase column

 // Border condition #1! If no non-sink columns in this time period matrix,
 // set Let sink column bear the entire decrease. Otherwise, re-distribute

3. IF NOT (∃ c, s.t. qtp
rc > 0, and c ≠ c↑, c ≠ c↓)

THEN ptp
rc

↓ = qtp
rc

↓ – mprim
 ELSE

i. Set ptp
rc

↓ = qtp
rc

↓ – w • mprim // Decrease primary sink column
ii. FOR each column c in row r, c ≠ c↑, c↓ // Distribute 1-w to non-sink columns

DO
 ptp

rc = ptp
rc – (1-w) • mprim •

 for columns j in row r

 // Border condition #2! Check for pij values that may have been driven below zero. If
 // found, redistribute difference proportionally to sink and non-sink columns with pij >0

iii. FOR each column c in row r, c ≠ c↑
IF ptp

rc
 < 0,

 THEN
1. Set redistDiff = | 0 - ptp

rc |
2. Set ptp

rc=0.
3. FOR each column d in row r, d ≠ c↑

DO
 IF ptp

rd > 0
 THEN ptp

rd = ptp
rd - redistDiff •

 for columns j in row r
d. ExecuteMarkovChain (P, numSteps).

END

∑
↑≠cj

tp
rj

tp
rd

q
q

∑
↓↑≠ ccc

tp
rc

tp
rc

q
q

,

 48

ExecuteMarkovChain (P, numSteps)
// Executes Markov chain for numSteps with perturbed matrix P using procedure in section 4.4.
BEGIN
 Set state vector v to initial state
 StepsInPeriod= dperiod / dts // Assume dperiod is the duration of a time period while
 dts is the duration of time step. //

FOR step = 1 to numSteps
 k = trunc (step / StepsInPeriod) + 1
 v = Pk • v

 Write results (v)
END

 49

APPENDIX D. Details of Perturbation Combinations

This appendix shows the result of the method of perturbation, applied to rows 1 through 5
of the summary TPM in figure 2. The summary TPM is used because it records all
transition probabilities greater than 0. The description of the application of the method
results in the following perturbation combinations, of which a subset corresponds to the
violation scenarios of interest. These perturbation combinations were used in the
experiments described in section 6.

In row 1, there are 2 combinations of primary increase columns and sink columns.
When column 1 is the increase column, there are 5 sink weights and no secondary row.
Therefore, there are only 5 combinations to consider. When column 3 is the increase
column, row 3 is the secondary row with 15 secondary row perturbations (three
secondary increase rows times five secondary increase amounts). Column 3 as the
increase column thus entails 5 x 15 = 75 perturbation combinations. The total number of
perturbation combinations for row 3 is 5 + 75 = 80. If =0.25 and L = 0.25, each
perturbation combination has a perturbation sequence consisting of a maximum of 25
Markov chain simulations. Thus, there would be a maximum of 80 x 25, or 2000
simulations. However, to get more precise results that better corresponded to the actual
observed values in row 1,

• When column 2 is the increase column, columns 3 and 4 are sink columns. No
secondary row may be selected, because the number of the primary and secondary
rows would be the same. Since columns 3 and 4 entail five sink weights each,
there are 10 combinations to consider.

 was changed to 0.001 and L was changed to 0.031. This
meant that each of the 80 perturbation sequences now had 31 simulations. This yielded
80 × 31, or 2480 simulations in 82.39 s.

In row 2, there are 9 combinations of increase columns and sink columns alone for
columns 2, 3, 4, and 8. Column 8 is discounted as a sink column because of its already
low value. There were a total of 425 perturbation combinations with secondary row
perturbation.

• When column 3 is the increase column, columns 2 and 4 are sink columns with
row 3 selected as the secondary row. Columns 2 and 4 entail five sink weights
each. Row 3 has three possible secondary increase columns, each with five
possible secondary increase amounts. Thus there are 2 sink columns × 5 sink
weights × 3 secondary increase columns × 5 secondary increase amounts = 150
perturbation combinations.

• When column 4 is the increase column, columns 3 and 4 are sink columns with
row 4 selected as the secondary row. Columns 3 and 4 again entail five sink
weights each. As a secondary row, row 4 has five possible increase columns, each
with five possible increase amounts. Thus there are 2 sink columns × 5 sink
weights × 5 secondary increase columns × 5 secondary increase amounts = 250
perturbation combinations when column 4 is the increase column.

• When column 8 is the increase column, columns 2, 3 and 4 are sink columns. No
secondary row may be selected, because this column is not in the transient portion
of the matrix. Since columns 2, 3 and 4 entail five sink weights each, there are 15
combinations to consider.

 50

Thus for all selections on increase columns for row 2, there are 10 + 150 + 250 + 15 =
425 perturbation combinations. If vprim=0.25 and L = 0.25, each perturbation
combination has a maximum of 25 Markov chain simulations for a total of 10625, which
took 373.44 s to execute.

In row 3, there are also 6 combinations for increase columns and sink columns in the
primary row. There were a total of 460 perturbation combinations with secondary row
perturbation.

• When column 2 is the increase column, columns 3 and 4 are sink columns with
row 2 selected as the secondary row. Columns 3 and 4 entail five sink weights
each. As a secondary row, row 2 has four possible secondary increase columns,
each with five possible secondary increase amounts. Thus there are 2 sink
columns × 5 sink weights × 4 secondary increase columns × 5 secondary increase
amounts = 200 perturbation combinations.

• When column 3 is the increase column, columns 2 and 4 are sink columns and no
secondary row may be selected. Since columns 3 and 4 entail five sink weights
each, there are 10 combinations to consider.

• When column 4 is the increase column, columns 2 and 3 are sink columns with
row 4 selected as the secondary row. Columns 2 and 3 again entail five sink
weights each. Row 4 has five possible increase columns, each with five possible
increase amounts. Thus there are 2 sink columns × 5 sink weights × 5 secondary
increase columns × 5 secondary increase amounts = 250 perturbation
combinations when column 4 is the increase column.

Thus for all selections on increase columns in row 3, there are 10 + 200 + 250 = 460
perturbation combinations. If vprim=0.25 and L = 0.25, each perturbation combination has
a maximum of 25 Markov chain simulations for a total of 11500, which took 369.69 s to
execute.

In row 4, there are also 16 combinations of increase columns and sink columns alone
for columns 2-5 and 8. Again column 8 is discounted as a sink column because of its
already low value. There were a total of 785 perturbation combinations with secondary
row perturbation.

• When column 2 is the increase column, columns 3, 4 and 5 are sink columns with
row 2 selected as the secondary row. Columns 3, 4, and 5 entail five sink weights
each. As a secondary row, row 2 has four possible secondary increase columns,
each with five possible secondary increase amounts. Thus there are 3 sink
columns × 5 sink weights × 4 secondary increase columns × 5 secondary increase
amounts = 300 perturbation combinations.

• When column 3 is the increase column, columns 2, 4, and 5 are sink columns with
row 3 selected as the secondary row. Columns 2, 4, and 5 entail five sink weights
each. Row 3 has three possible secondary increase columns, each with five
possible secondary increase amounts. Thus there are 3 sink columns × 5 sink
weights × 3 secondary increase columns × 5 secondary increase amounts = 225
perturbation combinations.

 51

• When column 4 is the increase column, columns 2, 4, and 5 are sink columns and
no secondary row may be selected. Since columns 2, 4, and 5 entail five sink
weights each, there are 15 combinations to consider.

• When column 5 is the increase column, columns 3, 4, and 5 are sink columns with
row 3 selected as the secondary row. Columns 3, 4, and 5 entail five sink weights
each. Row 5 has three possible secondary increase columns, each with five
possible secondary increase amounts. Thus there are 3 sink columns × 5 sink
weights × 3 secondary increase columns × 5 secondary increase amounts = 225
perturbation combinations.

• When column 8 is the increase column, columns 2-5 are sink columns. No
secondary row may be selected, because this column is not in the transient portion
of the matrix. Since columns 2-5 entail five sink weights each, there are 20
combinations to consider.

Thus for all selections on increase columns in row 4, there are 1300 + 225 + 15 + 225 +
20 = 785 perturbation combinations. If vprim=0.25 and L = 0.25, each perturbation
combination has a maximum of 25 Markov chain simulations for a total of 19625, which
took 789.16 s to execute. Subsequently, to provide greater range of the perturbation, L
was increased to 0.5 and a perturbation sequence of 39250 simulations was carried out.
This took 1480.46 s to execute.

In row 5, there are thus 6 combinations of increase columns and sink columns for
columns 4-6. There were a total of 270 perturbation combinations with secondary row
perturbation.

• When column 4 is the increase column, columns 5 and 6 are sink columns with
row 4 selected as the secondary row. Columns 5 and 6 entail five sink weights
each. As a secondary row, row 4 has five possible increase columns, each with
five possible increase amounts. Thus there are 2 sink columns × 5 sink weights ×
5 secondary increase columns × 5 secondary increase amounts = 250 perturbation
combinations when column 4 is the increase column.

• When column 5 is the increase column, columns 4 and 6 are sink columns and no
secondary row may be selected. Since columns 4 and 6 entail five sink weights
each, there are 10 combinations to consider.

• When column 6 is the increase column, columns 5 and 6 are sink columns. Here
again no secondary row may be selected because column 6 is outside the transient
portion of the matrix. Since columns 5 and 6 entail five sink weights each, there
are 10 combinations to consider.

Thus for all selections on increase columns in row 5, there are 150 + 10 + 10 = 270
perturbation combinations. If vprim=0.25 and L = 0.25, each perturbation combination has
a maximum of 25 Markov chain simulations for a total of 6750 possible, which took
260.15 s to execute. The approximately 84230 perturbation sequences for these
perturbation combinations are executed in about 56 minutes. To execute the equivalent of
these sequences with the simulation program would require in excess of 1 week,
conservatively.

	Markov Chain Analysis for
	Large-Scale Grid Systems
	Markov Chain Analysis for
	Large-Scale Grid Systems
	1. Introduction
	2. Related Previous Work
	3. Questions to be Answered Through Perturbation of Markov Chains.
	4. The Markov Chain Model
	5. Method of Perturbation
	6. Comparing Perturbations of the Markov Chain and Large-Scale Simulation
	7. Conclusions
	8. References
	APPENDIX A. Decomposition of Selected States
	APPENDIX B. Five Time-Period Transition Matrices
	APPENDIX C. Algorithm to Perturb Row of Transition Probability Matrix
	APPENDIX D. Details of Perturbation Combinations

