NIST Workshop Improving Measurement for Smokestack Emissions

June 28-29, 2017 NIST Gaithersburg Rodney Bryant and Aaron Johnson NIST

Coal-Fired Plants: Emissions vs. Fuel Input Do they agree?

Will shutting down the **blue** plant **instead** of the **green** plant save 4,000,000 tons/year of CO₂?

S-Probe: Workhorse for EPA protocols for stack flow measurements

Cannot Determine Pitch Component of Velocity

Goals...

To Answer the Following Questions

- 1. Where are we now? What is the uncertainty of the Sprobe RATA? NIST's results indicate accuracy ranging from 5% - 10%
- 2. Where do we need to be? What accuracy is needed in the field?

3. EPRI set an accuracy target accuracy of 1 % ... NIST efforts are designed to support this level of accuracy, if needed.

What Has NIST Done?

- Attended stack conferences to better understand the problem
- Established cooperative relationships with stakeholders (EPRI, CEESI, NIM, KRISS)
- Held workshops to exchange ideas and keep you informed of our progress
- Invested in 4 Special Measurement Facilities
 - Wind Tunnel
 - Scale-Model Smokestack Simulator (SMSS)
 - National Fire Research Laboratory (NFRL)
 - Long Wavelength Acoustic Flow Meter (LWAF)

1. Wind Tunnel

• Function

- o generates well-defined airspeeds to calibrate anemometers
- \circ calibrate ΔP probes as function of: air speed, pitch & yaw angles, turbulence

• Results

- S-Probe has large pitch angle dependence (10 % effect)
- **3-D probes accurately measure velocity** (Reynolds number and turbulence dependence should be characterized)
- High accuracy, non-nulling methods have been developed for 3-D probes

2. Scale-Model Smokestack Simulator (SMSS)

• Function

- \odot Generates a known flow (± 0.7 % uncertainty) in 4ft test section
- Establishes Smokestack-like flows (*i.e.*, skewed, swirling, turbulent)
- \circ Evaluates complex flow effects on ΔP probes and CEMS flow meters
- o Characterizes novel flow measurement concepts

• Results

- Typical *S-Probe RATA overestimates* Flue Gas Flows by about 6%.
- \circ 3-D probe RATAs measure flow to accuracies of 1% 3%,
- X-pattern ultrasonic flow meter (USM) compensated for swirl and had errors of less than 1 % for flow velocities from 20 ft/s to 85 ft/s
- Single path USM had absolute errors ranging from 5 % to 17 %

3. The National Fire Research Laboratory (NFRL)

• Function

• Experimental facility for the study of fire behavior and the structural response to fire

• Results

- Added an independent flow confirmation measurement, the tracer gas dilution method
- Demonstrated mass balance of CO₂ emissions using measurements from CEMS and the Fuel Input

What NIST has done is only part of the Story

- All NIST measurements made in labs not stacks
 - How do these measurements translate to the field?
 - o What field test should be done to validate NIST findings?
 - What is the next round of testing NIST should do?
 - What's the best way to use NIST measurements to benefit stack measurement community?

• During this workshop we hope to

- candidly discuss challenges and limitations of accurately measuring stack emissions in the field
- exchange ideas and experiences,
- identify best practices that improve measurements at a reasonable cost

Desired outcome of this workshop

- Gauge the industry's interest toward reducing the spread between Fuel Input vs. CEMS CO₂ measurements
- Identify the best way to transfer NIST research results into practical solutions (products, services, best practice guidelines, etc.)
- Identify the significant technical roadblocks (What makes the industry collectively scratch their head? Where does the industry need help?)
- Obtain the industry's perspective on the best course of future NIST research