

Towards Sound Analysis of Computer Evidence Imani Palmer

Professor Roy Campbell University of Illinois at Urbana-Champaign Department of Computer Science **Boris Gelfand, PhD** Los Alamos National Laboratory Advanced Research in Cyber Systems

Case Study

Observe Evidence

Hyperlink-Induced Topic Search (HITS)

- Authority: a node that hubs link to
- **Hub::** a node that links to many authorities

Observe

- Relationship from Node A to Node B is a vote for Node B cast by Node A
- Votes cast by nodes that are important weigh more heavily
- Numeric value that represents the importance of a node present on a graph

Node	PageRank
212.150.164.203:80	0.1431
explorer.exe	0.1246
VMwareUser.exe	0.1026
VMwareTray.exe	0.1026
firefox.exe	0.1026
127.0.0.1:1169	0.0891
127.0.0.1:1168	0.0891
AcroRd32.exe	0.0891
66.249.91.104:80	0.0891 *
1660	0.0673 *

Observe

Formulate Hypotheses

- Determine that hypothesis *H* is supported by a chain of evidence
- Graph traversal
- **Hypothesis**: X downloaded a file that made a network connection

Evaluate Hypotheses

- Test abductive reasoning
- Reason about hypotheses
- Uncertainty
- Probabilistic approaches

Bayesian Network

Bayes' Theorem

• A method to calculate the probability of a hypothesis

P(H): prior probability of hypothesis H
likelihood ratio
P(E): prior probability of evidence Eposterior probability x normalizing constantP(H|E): probability of H given E
P(E|H): probability of E given Hhypothesis prior probability

P(H|E) = P(H) P(E|H) / P(E)

Building the Model

°_

■ H: User X downloaded a malicious file onto their computer

Node	State	P(H)
	Yes	0.333
Н	No	0.333
	Uncertain	0.333

Determine Informative Prior Probabilities

Previous approaches have relied on uninformative priors

- An investigator can determine priors
- Informative prior
 - Survey investigators to inform the priors
 - Probability mass function

Informative Priors

Degree distribution

Probability mass function

0						
Degree	Degree Distribution	Probability				
1	7	0.7				
2	1	0.1				
4	1	0.1				
5	1	0.1				

Evaluate Hypotheses

212.150.164.203:80

Bank Server

Degree	Degree Distribution	Probability	Node	Probability
1	2	0.4	explorer.exe	0.4
2	3	0.6	firefox.exe	0.6
			AcroRd32.exe	0.6

0.6

0.6

Report Results

Conclusion

- Digital forensic analysis is need of a reliable method
- Benefit from structure of mathematics, statistics & probability
- Computer science research can assist the digital forensics community

Backup Slides

Degree Distribution

- Degree of a node in a graph is the number of connections it has to other nodes
- Degree distribution is the probability distribution of these degrees over the graph
- Degree distribution P(k) of a graph is then defined to be the fraction of nodes in the graph with degree k
- If there are n nodes in total in a graph and n_k of them have degree k, we have $P(k)=n_k/n$

Probabilistic Mass Function

A function that gives the probability that a discrete random variable is exactly equal to some value
Primary means of defining a discrete distribution

Bayesian Network

- Probabilistic graphical model that represents a set of random variables and their conditional dependencies via a directed acyclic graph
- Edges represent conditional dependencies
- Nodes that are not connected represent variables that are conditionally independent of each other
- Each node is associated with a probability function that takes a set of values for the node's parent variables and gives the probability of variables represented by the node
- Attempt to alleviate the subjectivity in assigning prior probabilities through the probabilistic mass function

Normalizing Constant

- Reduce any probability function to a probability density function with total probability of one
- A constant by which an everywhere non-negative function must be multiplied so the area under its graph is 1