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Algorithm 1 Ray-based fingerprinting algorithm
“ﬁe‘;} 1. Find M -projection centered at xy given r.
1o Input: «,, 1, aset P of M points on the (N — 1)-sphere
3: m 4+ 11 Rar « empty list
3: form = 1to M do
4: Find m-th ray R, o= and append it to the list Ry,
5: end for
6: Return: List of M rays Ry

Step 2. Fingerprint x, € “.g\‘ using rays in Ryg from Step 1.
i Input: Ry~ RY — §{}§ §
- 1 Fap, i;;fmp{}e‘ fist
form = 1to M do
Find the feature set Fy onm.
if Fy, o # © then “
6 §x§€§}§i§“‘x« the critical feature &7, find %?12? and
append it to the list Fy . A
7: else
8: Append U to the hst F, .
9: end if
10 end for
11: Return: The point fingerprint vector F_
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12 mV 22 mV
M Accuracy (%) A(%) Accuracy (%) A (%)
5 79.4(3.3) 87 84.4(2.1) 76
6 82.7(1.2) 84 87.4(1.6) 71
7 83.2(3.1) 81 86.4(3.4) 66
9 83.1(1.7) 76 87.1(1.4) 56
12 81.1(1.3) 68 89.8(0.9) A1
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(VPH Vf’g) ?Vre:{p NZ%MC P A=T5 P A=100 P A=f(3y)

(250, 400) 1 1 85.2 100.0 93.8
(350, 400) 6 6 74.1 95.1 95.1
(350,415) | 0 75.3 86.4 96.3
(350, 425) 1 1 55.6 86.4 85.2
(350, 450) 3 2 3.7 18.5 34.6
(400, 350) 1 1 49 69.1 93.8
(450, 350) 1 1 17.3 1.2 23.5
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(Vp,, Vpy) A=T5mV  A=100mV  A={f()
(250,400) 127025 12.2(2.0) 12.6(2.2)
(350,400)  14.0(2.4) 13.6(2.2) 135(2.3)
(350,415) 13223 14.1(2.1) 134 (2.1)
(350,425)  12.9(23) 13.92.1) 13.6(2.2)
(350,450)  11.6(2.7) 133 (2.4) 13.9(2.5)
(400,350)  13.9(23) 140 (2.2) 133(1.8)
(450,350)  145(2.6) 15.0 (2.6) 15.0 2.5)
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RAY-BASED CLASSIFIER APPARATUS AND
TUNING A DEVICE USING MACHINE
LEARNING WITH A RAY-BASED
CLASSIFICATION FRAMEWORK

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Patent Application Ser. No. 63/083,368 (filed Sep. 25,
2020), which is herein incorporated by reference in its
entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

[0002] This invention was made with United States Gov-
ernment support from the National Institute of Standards and
Technology (NIST), an agency of the United States Depart-
ment of Commerce. The Government has certain rights in
this invention.

BRIEF DESCRIPTION

[0003] Disclosed is a ray-based classifier apparatus for
tuning a device using machine learning with a ray-based
classification framework, the ray-based classifier apparatus
comprising: a machine learning module in communication
with an autotuning module and that communicates a device
state to the autotuning module, the machine learning module
comprising: a training data generator module that produces
fingerprint data; and a machine learning trainer module in
communication with the training data generator module and
that receives the fingerprint data from the training data
generator module and produces the device state; and the
autotuning module comprising: a recognition module in
communication with the machine learning trainer module
and a measurement module and that receives the device state
from the machine learning trainer module, receives ray-
based data from the measurement module, and produces
recognition data based on the device state and the ray-based
data; a comparison module in communication with the
recognition module and that receives the recognition data
from the recognition module and produces comparison data
based on comparing the recognition data with a target state
of the device; a prediction module in communication with
the comparison module and that receives the comparison
data from the comparison module and produces prediction
data for the device based on the comparison data; a gate
voltage controller in communication with the prediction
module and the device and that receives the prediction data
from the prediction module, produces controller data and
device control data based on the prediction data, controls the
device with the device control data, and communicates the
controller data to a measurement module; and the measure-
ment module in communication with the gate voltage con-
troller, the device, and the recognition module and that
receives the controller data from the gate voltage controller,
receives device data from the device, produces ray-based
data based on the controller data and the device data, and
communicates the ray-based data to the recognition module,
such that the recognition module performs recognition on
the ray-based data using the device state, wherein the
machine learning module and the autotuning module com-

Aug. 31, 2023

prise one or more of logic hardware and a non-transitory
computer readable medium storing computer executable
code.

[0004] Disclosed is a process for tuning a device using
machine learning with a ray-based classification framework
and an autotuning module, the process comprising: gener-
ating, by a training data generator module using logic
hardware, fingerprint data for the device; receiving, by a
machine learning trainer module, the fingerprint data from
the training data generator module; performing, by the
machine learning trainer module using logic hardware,
machine language training and producing a device state of
the device from the fingerprint data; receiving, by a recog-
nition module, the device state from the machine learning
trainer module; recognizing, by the recognition module
using logic hardware, the state of the device from the device
state using a trained deep neural network and producing
recognition data based on the device state; receiving, by a
comparison module, the recognition data from the recogni-
tion module; comparing, by the comparison module using
logic hardware, a target state of the device with the recog-
nition data and producing comparison data as a result of the
comparison; receiving, by a prediction module, the com-
parison data from the comparison module; producing, by the
prediction module using logic hardware, prediction data
based on the comparison data; receiving, by a gate voltage
controller, the prediction data from the prediction module;
producing, by the gate voltage controller using logic hard-
ware, controller data and device control data based on the
prediction data; receiving, by the device, the device control
data from the gate voltage controller, controlling the device
with the device control data to modify the state of the device,
and producing device data in response to controlling the
device with the device control data; receiving, by a mea-
surement module, the controller data from the gate voltage
controller and device data from the device; producing, by the
measurement module using logic hardware, ray-based data
based on the controller data and the device data; and
receiving, by the recognition module, the ray-based data
from the measurement module and performing recognition
on the ray-based data using the device state from the
machine learning trainer module.

[0005] Disclosed is a process for tuning a device using
machine learning with a ray-based classification framework
and action-based navigator module, the process comprising:
generating, by a training data generator module using logic
hardware, fingerprint data for the device; receiving, by a
machine learning trainer module, the fingerprint data from
the training data generator module; performing, by the
machine learning trainer module using logic hardware,
machine language training and producing a device state of
the device from the fingerprint data; setting, by a charging
module using logic hardware, the charging energy for each
quantum well of the device and defining a state action for
each of the quantum wells by sending charging data to the
device using logic hardware; acquiring, by a data acquisition
module using logic hardware, state data from the device for
a selected state recognizer; receiving, by a data checker
module in communication with the data acquisition module,
the state data from the data acquisition module and checking
quality of the state data; and receiving, by a state estimator
module in communication with the data checker module and
the machine learning trainer module, the state data from the
data checker module and the device state from the machine
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learning trainer module; estimating, by the state estimator
module using logic hardware, the state of the device, deter-
mining whether to tune the device based on the state data
relative to an estimation for the state of the device, and
producing charging data and tuning the device according to
the charging data based on the number of quantum dots of
the device.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The following description cannot be considered
limiting in any way. Various objectives, features, and advan-
tages of the disclosed subject matter can be more fully
appreciated with reference to the following detailed descrip-
tion of the disclosed subject matter when considered in
connection with the following drawings, in which like
reference numerals identify like elements.

[0007] FIG. 1 shows a ray-based classifier apparatus,
according to some embodiments.

[0008] FIG. 2 shows a ray-based classifier apparatus,
according to some embodiments.

[0009] FIG. 3 shows a ray-based classifier apparatus,
according to some embodiments.

[0010] FIG. 4 shows steps involved in tuning a device
using machine learning with a ray-based classification
framework, according to some embodiments.

[0011] FIG. 5 shows steps involved in tuning a device
using machine learning with a ray-based classification
framework that includes action-based double dot navigation,
according to some embodiments.

[0012] FIG. 6 shows tuning a device using machine learn-
ing with a ray-based classification framework that includes
ray-based single electron navigation, according to some
embodiments.

[0013] FIG. 7 shows a machine learning software stack,
according to some embodiments.

[0014] FIG. 8 shows a Bloch sphere indicating possible
states of a qubit as points on its surface. The arrow pointing
to a cross on the surface of the sphere represents an arbitrary
superposition of the basis states 0 and 1, according to some
embodiments.

[0015] FIG. 9 shows: (A) a quantum dot array of a
quantum processing unit before initialization in accordance
with a standard sequence for quantum computation; (B)
charge initialization of a quantum dot array of a quantum
processing unit in accordance with a standard sequence for
quantum computation; (C) spin initialization of a quantum
dot array of a quantum processing unit in accordance with a
standard sequence for quantum computation; (D) electron
spin rotation R of an electron trapped in a quantum dot of a
quantum processing unit with an ESR pulse, in accordance
with a standard sequence for quantum computation; (E)
exchange coupling J of two electron spins by exchange
interaction in two adjacent quantum dots of a quantum
processing unit in accordance with a standard sequence for
quantum computation; (F) quantum computation decom-
posed into a specific sequence of electron spin rotations R
and exchange coupling J acting on an array of qubits,
represented as horizontal wires labeled i; and (G) electron
spin readout using spin-dependent tunneling, according to
some embodiments. Top of panel G corresponds to the case
where the spin orientation of the electron does allow tun-
neling to the reservoir, and bottom of panel G corresponds
to the case where the spin orientation of the electron does not
allow tunneling to the reservoir.
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[0016] FIG. 10 shows: (A) a dual quantum dot; (B) a
cross-sectional view through a layer structure of a dual
quantum dot implementation shown in panel A; and (C) a
cross-sectional view through a layer structure of another
implementation of a quantum dot with a global accumula-
tion gate, according to some embodiments.

[0017] FIG. 11 shows (a) a ray R(xo0, xf) from xo to xfin
R?. Different colors of polytopes represent different classes.
(b) A side-view of the polytopes with two features marked
along the ray. The X-mark denotes a critical feature. (c)
Visualization of an M-projection from point xo with 6 rays
(denoted by black arrows) for two different polytopes in R>.
Note that both M-projections include a ray that does not
have a critical feature, according to Example 1.

[0018] FIG. 12 shows a 2D map generated with a quantum
dot simulator showing the different bounded and unbounded
polytopes in R? with 12 evenly distributed rays overlaid on
2D scans. (b) The average trends of the fingerprints with
M=12 rays. Fingerprints for SDL and SDR are out of phase,
as expected from the curvature of lines defining these states
and SDC is shifted by 1=4 of the period), according to
Example 1.

[0019] FIG. 13 shows classifier performance for varying
numbers of rays as a function of the total number of (a)
pixels measured and averaged over N=50 training runs for
the double-dot system and (b) voxel number averaged over
N=10 training runs for the triple-dot system. The black
dashed line in (a) represents a benchmark. The black vertical
lines in (b) represent the minimum data requirements for
CNN classifier with 3 orthogonal 2D slices (as depicted in
insert (B), dotted line), large 2D scan (dashed line), and a
full 3D CNN (solid line). Insert (A) shows the M-projection
with 6 rays. In both panels, the connecting lines are a guide
to the eye only and the 3 confidence bands, according to
Example 1.

[0020] FIG. 14 shows an exemplary algorithm for ray-
based fingerprinting, according to Example 1.

[0021] FIG. 15 shows visualization of the ray-based fin-
gerprinting framework. (a) A preview of five points in the
space of plunger gates (P1, P2) with six evenly distributed
rays overlaying a sample measurement. Different colors
represent different QD states. The inset shows the potential
landscape of the double-quantum-dot system. Gate voltages
VP1 and VP2 control the occupation of each QD. Gate
voltage VB2 controls the inter-QD tunneling. (b) The pre-
processed charge sensor (CS) signal for six evenly distrib-
uted rays measured from a point (VP1, VP2)=(0.193, 0.193)
V [the most central point in (a)] as a function of ray length.
The length resolution is 0.5 mV per pixel. In each ray, the
position of the transition line nearest to the point (VPI,
VP2)=xo—that is, the critical feature along a given ray—is
marked with a dot. (¢) The flow of the RBC framework. A
vector of critical features x is processed using a weight
function I'(x). The resulting fingerprint Fxo is processed by
a DNN classifier, retuming a probability vector p(xo) quan-
tifying the current state of the device at point xo, according
to Example 2.

[0022] FIG. 16 shows (a) classifier performance for vari-
ous weight functions y(x) and for different numbers of rays
and ray lengths using off-line experimental data (averaged
over N=20 models). The inset at the top shows the perfor-
mance on simulated data. (b) Classifier performance for
different numbers of rays as a function of the total number
of pixels measured for off-line experimental data (averaged
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over N=20 models). The dotted black horizontal line repre-
sents a benchmark, while the dashed vertical line represents
the minimum data requirement for a CNN classifier. In both
panels, the connecting lines are a guide. The error bars (a)
and bands (b) correspond to one standard deviation, accord-
ing to Example 2.

[0023] FIG. 17 shows a scatter plot showing the perfor-
mance of the ray-based classifier on live data (a) and off-line
(b) using six rays of length 22 mV (44 pixels) overlaying a
sample measured raw scan. Colors on both plots correspond
to the state predicted by the RBC. The gray points indicate
M-projections that are determined as poorly charge sensed
and thus are inappropriate for classification, according to
Example 2.

[0024] FIG. 18 shows (a) a scatter plot of the final state
obtained in off-line tuning using the RBC framework. The
tuner is set to tune to the double-quantum-dot state. We
obtain a tuning success rate of 78.7%, calculated as the
fraction of points that end up inside the green region, with
an additional 10.2% of the points landing in an area that
moderately resembles double-quantum-dot features, high-
lighted in white. (b) The three-dimensional space formed by
2D scans of the charge sensor response in the two plunger-
gates space and the middle barrier gate. The arrow sche-
matically shows the flow of the autotuner in the optimization
loop from barrier voltages with no double quantum dot to
lower voltages with a double-quantum-dot region. In both
plots, the cyan square highlights the area where the initial
points are uniformly sampled, while the green polygons
mark the target double-quantum-dot region, according to
Example 2.

[0025] FIG. 19 shows lists performance for five M-pro-
jections for rays of length 12 and 22 mV. The accuracy is
averaged over N=20 models and the data reduction A
indicates the expected reduction in the number of measured
points needed for classification compared with the CNN-
based approach, according to Example 2.

[0026] FIG. 20 shows (a) a sample polygon with 7 evenly
spaced rays based at xo, with tm denoting the distance from
xo0 to the polygon edge 3Q. (b) A depiction of a minimum
interior diameter of a face 1, the minimum exterior dihedral
angle o, and the maximum possible polytope diameter d for
a sample polytope in R?, according to Example 3.

[0027] FIG. 21 shows (a) angular span, 0 (marked with
curved arrows). (b) Ambiguity be-tween a polygon Q (solid
black) and its dual Q* (dashed gray), resolved with a single
additional intersection point marked in red, according to
Example 3.

[0028] FIG. 22 shows (a) the angular span of a face, 6, for
a sample polytope in R3. (b) A visualization of the standard
great-circle distance, according to Example 3.

[0029] FIG. 23 shows (a) a projection of a cone with cone
angle 0 min onto SN-1, creating the ball Bv (V2 6 min). (b)
The covering argument: the centers vieP of those balls of
radius % 0 min which help cover Bv (Y53 0 min) must lie
within Bv (¥4 0 min), according to Example 3.

[0030] FIG. 24 shows two of the five geometrical shapes
typical of the quantum dot dataset: a hexagon corresponding
to a double-dot state (a) and a strip contained by parallel
lines corresponding to a single-dot state. (c) Plot of the lower
bound M on the number of rays to the ratio a/w. The shaded
region corresponds to a/w ratios typical for real quantum dot
devices, according to Example 3.
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[0031] FIG. 25 shows a framework for quantum dot auto-
tuning with data quality assessment. There are two consecu-
tive machine learning modules guiding the autotuning sys-
tem: DQC is used to determine the quality of the measured
scan and DSE is used to assess the state of the device. The
autotuning loop begins with the quantum dot device shown
on the left. A 2D voltage sweep of two plunger gates (VP1,
VP2) is measured by a quantum dot charge sensor in the
upper left channel. The numerical gradients of the measure-
ments are then fed into the DQC module to determine
whether the scan is suitable for classification. Depending on
the returned quality class, the scan is passed to the DSE
module for state assessment and optimization (the high
quality class), the device is recalibrated to reduce the noise
affecting scan quality (the moderate quality class), or the
autotuning loop is terminated (the low quality class). Before
recalibration or termination, optional noise analysis could be
performed to determine what recalibration might be needed,
according to Example 4.

[0032] FIG. 26 shows (a) a sample simulated charge
stability diagrams as a function of plunger gates with
different types of noise added. Top: Simulated sensor (S)
output. Bottom: Gradient of sensor in the VP1 direction,
dS/dVP1 (arb. units). Noise magnitudes in this plot match
the best parameters except for dot jumps and Coulomb peak
which are exaggerated in B and C for visibility. (b) Box plot
showing the performance of DSE classifiers on experimental
data for models trained on noiseless data without and with
preprocessing (Aproc), data with each noise type incorpo-
rated (one at a time), and the best combination of noises (dot
jumps, sensor jumps, 1/f, and white noise). Each box plot
depicts the distribution of the performance from 20 models.
While sensor jumps, white noise, and 1/f noise each lead to
significant improvement over the noiseless data, the best
noise combination provides a large reduction in variability
as well as a slight boost in accuracy. Optimization of the
DSE model further improves the performance (Gopt),
according to Example 4.

[0033] FIG. 27 shows (a) box plots of model accuracy for
each assigned noise class for the experimental data. Inset:
Box plots of mean absolute error (MAE) for each noise
class. (b) Example data and predictions of both the simplistic
and robust models. Raw sensor data (left), gradient data
(middle), and predictions (right). We show a high quality
DD example, a moderate quality CD example, and a low
quality CD example. For the bar plot, we include the full
prediction vector for the simplistic and robust models, as
well as the ground truth label for the image, according to
Example 4.

[0034] FIG. 28 shows (a, b) full charge stability diagram
of'a double QD device. In (a), a few characteristic noises can
be seen: minor 1/f or white noise is seen in the speckling
throughout and sensor jumps are especially visible towards
the bottom of the image. Visualization of the prediction of an
average state classifier model trained on simulated data with
no noise (c, d), and the best state classifier trained on
noise-augmented simulations (e, f). The color at each point
is the average of the color of each state weighted by the
model’s prediction. Hue is averaged by angle in hue space,
e.g., blue and green are averaged to teal. (g, h) Visualization
of' the predictions of the DQC module, according to Example
4.

[0035] FIG. 29 shows (a, b) Full charge stability diagram
of'a double QD device. In (a), a few characteristic noises can
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be seen: minor 1/f or white noise is seen in the speckling
throughout and sensor jumps are especially visible towards
the bottom of the image. Visualization of the prediction of an
average state classifier model trained on simulated data with
no noise (c, d), and the best state classifier trained on
noise-augmented simulations (e, f). The color at each point
is the average of the color of each state weighted by the
model’s prediction. Hue is averaged by angle in hue space,
e.g., blue and green are averaged to teal. (g, h) Visualization
of'the predictions of the DQC module, according to Example
4.

[0036] FIG. 30 shows machine learning model architec-
tures for the noiseless DSE, noisy DSE, and DQC module,
according to Example 4.

[0037] FIG. 31 shows an autotuning loop. In Step 1, we
show a false-color scanning electron micrograph of a
Si/SixGel-x quadruple-dot device identical to the one mea-
sured. The double dot used in the experiment is highlighted
by the inset, which shows a cross section through the device
along the dashed white line and a schematic of the electric
potential of a tuned double dot. Bi (i=1, 2, 3) and Pj (j=1, 2)
are the barrier and plunger gates, respectively, used to form
dots, while SB1, SB2, and SP are gates (two barriers and a
plunger, respectively) used to control the sensing dot. In
Step 2, to assure compatibility with the CNN, the raw data
are processed and (if necessary) downsized to (30x30) pixel
size. The processed image VR is analyzed by the CNN (Step
3), resulting in a probability vector p(VR) quantifying the
current state of the device. In the optimization phase (Step
4), the algorithm decides whether the state is sufficiently
close to the desired one (termination) or whether additional
tuning steps are necessary. If the latter, the optimizer returns
the position of the consecutive scan (Step 5), according to
Example 5.

[0038] FIG. 32 shows a sample run of the autotuning
protocol. (a) The measured raw scans in the space of plunger
gates (VP1, VP2) show data available to the autotuning
protocol at a given time. (b) The change of the fitness value
as a function of time. (c¢) The change in probability of each
state over time as returned by the CNN. For an overview of
the tuning path in the space of plunger gates on a larger scan
measured once the autotuning tests are completed, according
to Example 5.

[0039] FIG. 33 shows a sample run of the autotuning
protocol in the space of plunger gates (VP1, VP2). The
arrows and the intensity of the color indicate the progress of
the autotuner, according to Example 5.

[0040] FIG. 34 shows a summary of the performance for
the experimental test runs (Ntot=14). Nexp denotes the
number of experimental runs initiated at position (VPI,
VP2) (mV), Nsuc indicates the number of successful experi-
mental runs, and PD=75(%), PD=100(%), and PD=f (50)
(%) are the success rates for the 81 test runs with optimi-
zation parameters resembling the experimental configura-
tion (fixed simplex size D=75 mV), with the initial simplex
size increased to 100 mV, and with initial simplex size
dynamically adjusted based on the fitness value of the first
scan, respectively. All test runs are performed using the new
neural network, according to Example 5.

[0041] FIG. 35 shows an “ideal” (marked with dashed
green triangle) and the “sufficiently close” (marked with
solid magenta diamond) regions used to determine the
success rate for the off-line tuning. All considered initial
regions listed in Table I are marked with squares. The
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intensities of the colors correspond to the success rate when
using dynamic simplex (a darker color denotes a higher
success rate), according to Example 5.

[0042] FIG. 36 shows a heat map of the probability of
success when tuning off-line over a set of N=4 premeasured
devices. The intensity of the colors corresponds to the
success rate, with a darker color denoting a higher success
rate, according to Example 5.

[0043] FIG. 37 shows a relationship between the simu-
lated, raw, and processed data. The top row consists of
sample scans with single-dot regions and the bottom row of
scans with double-dot regions. The left-hand column shows
the simulated data, the middle column shows the raw
acquired experimental data, and the right-hand column
shows the processed experimental data (as observed by the
CNN classifier), according to Example 5.

[0044] FIG. 38 shows a fitness function over a sample
device, according to Example 5.

[0045] FIG. 39 shows an average (standard deviation in
parentheses) number of iterations when tuning off-line for
varying configurations of the initial simplex D. In all cases,
the average is taken over N=81 test runs for points sampled
within 10 mV around each experimentally tested point given
by (VP1, VP2), according to Example 5.

DETAILED DESCRIPTION

[0046] A detailed description of one or more embodiments
is presented herein by way of exemplification and not
limitation.

[0047] Aspects of the present disclosure may be embodied
as an apparatus, system, method, or computer program
product. Accordingly, aspects of the present disclosure may
take the form of an entirely hardware embodiment, an
entirely software embodiment (including firmware, resident
software, micro-code, and the like), or an embodiment
combining software and hardware aspects that may gener-
ally be referred to herein as a “circuit.” “module,” or
“system.” Furthermore, aspects of the present disclosure
may take the form of a computer program product embodied
in one or more computer readable storage media having
computer readable program code embodied thereon.
[0048] Many of the functional units described in this
specification have been labeled as modules, to more par-
ticularly emphasize their implementation independence. For
example, a module may be implemented as a hardware
circuit including custom VLSI circuits or gate arrays, off-
the-shelf semiconductors such as logic chips, transistors, or
other discrete components. A module can be implemented in
programmable hardware devices such as field program-
mable gate arrays, programmable array logic, programmable
logic devices, or the like.

[0049] Modules also can be implemented in software for
execution by various types of processors. An identified
module of executable code may, e.g., include one or more
physical or logical blocks of computer instructions that can,
e.g., be organized as an object, procedure, or function.
Nevertheless, the executables of an identified module need
not be physically located together but can include disparate
instructions stored in different locations that, when joined
logically together, include the module and achieve the stated
purpose for the module.

[0050] Indeed, a module of executable code can be a
single instruction, or many instructions, and can be distrib-
uted over several different code segments, among different
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programs, or across several memory devices. Similarly,
operational data can be identified and illustrated herein
within modules, and can be embodied in any suitable form
and organized within any suitable type of data structure. The
operational data can be collected as a single data set or can
be distributed over different locations including over differ-
ent storage devices and can exist, at least partially, as
electronic signals on a system or network. Where a module
or portions of a module are implemented in software, the
software portions are stored on one or more computer
readable storage media. It should be appreciated that a
executable code can be implemented in logical hardware
that includes applicable circuit elements and communication
media.

[0051] Any combination of one or more computer read-
able storage media can be used. A computer readable storage
medium can be, e.g., but not limited to, an electronic,
magnetic, optical, electromagnetic, infrared, or semiconduc-
tor system, apparatus, or device, or any suitable combination
of the foregoing or elements known in the art.

[0052] Exemplary computer readable storage medium can
include the following, a portable computer diskette, a hard
disk, a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a portable compact disc read-
only memory (CD-ROM), a digital versatile disc (DVD), a
Blu-ray disc, an optical storage device, a magnetic tape, a
Bernoulli drive, a magnetic disk, a magnetic storage device,
a punch card, integrated circuits, other digital processing
apparatus memory devices, or any suitable combination of
the foregoing, but would not include propagating signals. In
the context of this document, a computer readable storage
medium can be any tangible medium that can contain or
store a program for use by or in connection with an instruc-
tion execution system, apparatus, or device.

[0053] Computer program code for carrying out opera-
tions for aspects of the present disclosure can be written in
any combination of one or more programming languages,
including an object oriented programming language such as
Java, Python. C++, or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code can execute entirely on the users computer, partly on
the user’s computer, as a stand-alone software package,
partly on the users computer and partly on a remote com-
puter or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection can be made to an external computer, e g,
through the Internet using an Internet Service Provider.

[0054] Furthermore, the described features, structures, or
characteristics of the disclosure can be combined in any
suitable manner in one or more embodiments. In the fol-
lowing description, numerous specific details are provided,
such as examples of programming, software modules, user
selections, network transactions, database queries, database
structures, hardware modules, hardware circuits, hardware
chips, and the like, to provide a thorough understanding of
embodiments of the disclosure. However, the disclosure can
be practiced without one or more of the specific details, or
with other methods, components, materials, and so forth. In
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other instances, well-known structures, materials, or opera-
tions are not shown or described in detail to avoid obscuring
aspects of the disclosure.

[0055] Aspects of the present disclosure are described
below with reference to schematic flowchart diagrams or
schematic block diagrams of methods, apparatuses, systems,
and computer program products according to embodiments
of the disclosure. It will be understood that each block of the
schematic flowchart diagrams or schematic block diagrams
and combinations of blocks in the schematic flowchart
diagrams or schematic block diagrams can be implemented
by computer program instructions. These computer program
instructions can be provided to a processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of
the computer or other programmable data processing appa-
ratus, implement the functions or acts specified in the
schematic flowchart diagrams or schematic block diagrams
block or blocks.

[0056] These computer program instructions can be stored
in a computer readable storage medium that can direct a
computer, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable storage medium
produce an article of manufacture including instructions that
implement the function or act specified in the schematic
flowchart diagrams or schematic block diagrams block or
blocks.

[0057] The computer program instructions can be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions or acts specified in
the flowchart or block diagram block or blocks.

[0058] The schematic flowchart diagrams or schematic
block diagrams in the Figures illustrate architecture, func-
tionality, and operation of possible implementations of appa-
ratuses, systems, methods, and computer program products
according to various embodiments of the present disclosure.
In this regard, each block in the schematic flowchart dia-
grams or schematic block diagrams can represent a module,
segment, or portion of code, which includes one or more
executable instructions for implementing the specified logi-
cal function(s).

[0059] It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the Figures. For example, two
blocks shown in succession can be executed substantially
concurrently, or the blocks sometimes can be executed in the
reverse order, depending upon the functionality involved.
Other steps and methods can be conceived that are equiva-
lent in function, logic, or effect to one or more blocks, or
portions thereof, of the illustrated Figures.

[0060] Although various arrow types and line types may
be employed in the flowchart or block diagrams, they are
understood not to limit the scope of the corresponding
embodiments. Indeed, some arrows or other connectors can
be used to indicate the logical flow of the depicted embodi-
ment. For instance, an arrow may indicate a waiting or
monitoring period of unspecified duration between enumer-
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ated steps of the depicted embodiment. It will also be noted
that each block of the block diagrams or flowchart diagrams,
and combinations of blocks in the block diagrams or flow-
chart diagrams, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts or combinations of special purpose hardware and
computer instructions.

[0061] A machine learning algorithm is an algorithm that
can learn based on a set of data. Embodiments of machine
learning algorithms can be designed to model high-level
abstractions within a data set. For example, image recogni-
tion algorithms can be used to determine which of several
categories to which a given input belong: regression algo-
rithms can output a numerical value given an input; and
pattern recognition algorithms can be used to generate
translated text or perform text to speech or speech recogni-
tion.

[0062] An exemplary type of machine learning algorithm
is a neural network. There are many types of neural net-
works: a simple type of neural network is a feedforward
network. A feedforward network can be implemented as an
acyclic graph in which the nodes are arranged in layers.
Typically, a feedforward network topology includes an input
layer and an output layer that are separated by at least one
hidden layer. The hidden layer transforms input received by
the input layer into a representation that is useful for
generating output in the output layer. The network nodes are
fully connected via edges to the nodes in adjacent layers, but
there are no edges between nodes within each layer. Data
received at the nodes of an input layer of a feedforward
network are propagated (i.e., fed forward) to the nodes of the
output layer via an activation function that calculates the
states of the nodes of each successive layer in the network
based on coeflicients (weights) that are respectively associ-
ated with each of the edges connecting the layers. Depend-
ing on the specific model being represented by the algorithm
being executed, the output from the neural network algo-
rithm can take various forms.

[0063] Before a machine learning algorithm can be used to
model a particular problem, the algorithm is trained using a
training data set. Training a neural network involves select-
ing a network topology, using a set of training data repre-
senting a problem being modeled by the network, and
adjusting the weights until the network model performs with
a minimal error for all instances of the training data set. For
example, during a supervised learning training process for a
neural network, the output produced by the network in
response to the input representing an instance in a training
data set is compared to the correct labeled output for that
instance, an error signal representing the difference between
the output and the labeled output is calculated, and the
weights associated with the connections are adjusted to
minimize that error as the error signal is backward propa-
gated through the layers of the network. The network is
considered trained when the errors for each of the outputs
generated from the instances of the training data set are
minimized.

[0064] The accuracy of a machine learning algorithm can
be affected significantly by the quality of the data set used
to train the algorithm. The training process can be compu-
tationally intensive and can involve a significant amount of
time on a conventional general-purpose processor Accord-
ingly, parallel processing hardware is used to train many
types of machine learning algorithms. This can be particu-
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larly useful for optimizing the training of neural networks,
as the computations performed in adjusting the coefficients
in neural networks lend themselves naturally to parallel
implementations. Specifically, many machine learning algo-
rithms and software applications have been adapted to make
use of the parallel processing hardware within general-
purpose graphics processing devices.

[0065] FIG. 7 is a diagram of machine learning software
stack 271. Machine learning application 272 can be config-
ured to train a neural network using a training dataset or to
use a trained deep neural network to implement machine
intelligence. Machine learning application 272 can include
training and inference functionality for a neural network or
specialized software that can be used to train a neural
network before deployment. Machine learning application
272 can implement any type of machine intelligence includ-
ing but not limited to image recognition, mapping and
localization, autonomous navigation, speech synthesis,
medical imaging, or language translation.

[0066] Hardware acceleration for machine learning appli-
cation 272 can be enabled via machine learning framework
273. Machine learning framework 273 can provide a library
of machine learning primitives. Machine learning primitives
are basic operations that are commonly performed by
machine learning algorithms. Without machine learning
framework 273, developers of machine learning algorithms
would be required to create and optimize the main compu-
tational logic associated with the machine learning algo-
rithm, then re-optimize the computational logic as new
parallel processors are developed. Instead, the machine
learning application can be configured to perform the nec-
essary computations using the primitives provided by
machine learning framework 273. Exemplary primitives
include tensor convolutions, activation functions, and pool-
ing, which are computational operations that are performed
while training a convolutional neural network (CNN).
Machine learning framework 273 can provide primitives to
implement basic linear algebra subprograms performed by
many machine-learning algorithms, such as matrix and
vector operations.

[0067] Machine learning framework 273 can process input
data received from machine learning application 272 and
generate the appropriate input to compute framework 274.
Compute framework 274 can abstract the underlying
instructions provided to GPGPU driver 275 to enable
machine learning framework 273 to take advantage of
hardware acceleration via GPGPU hardware 276 without
requiring machine learning framework 273 to have intimate
knowledge of the architecture of GPGPU hardware 276.
Additionally, compute framework 274 can enable hardware
acceleration for machine learning framework 273 across a
variety of types and generations of GPGPU hardware 276.
[0068] The computing architecture provided by embodi-
ments described herein can be configured to perform the
types of parallel processing that is particularly suited for
training and deploying neural networks for machine learn-
ing. A neural network can be generalized as a network of
functions having a graph relationship. A variety of types of
neural network implementations are used in machine learn-
ing. An exemplary type of neural network is the feedforward
network, as previously described.

[0069] A second exemplary type of neural network is the
Convolutional Neural Network (CNN). A CNN is a special-
ized feedforward neural network for processing data having
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a known, grid-like topology, such as image data. Accord-
ingly, CNNs are commonly used for compute vision and
image recognition applications. The nodes in the CNN input
layer can be organized into a set of filters (feature detectors
inspired by the receptive fields found in the retina), and the
output of each set of filters is propagated to nodes in
successive layers of the network. The computations for a
CNN include applying the convolution mathematical opera-
tion to each filter to produce the output of that filter.
Convolution is a specialized kind of mathematical operation
performed by two functions to produce a third function that
is a modified version of one of the two original functions. In
convolutional network terminology, the first function to the
convolution can be referred to as the input, while the second
function can be referred to as the convolution kernel. The
output can be referred to as the feature map. For example,
the input to a convolution layer can be a multidimensional
array of data that defines the various components, e.g.,
colors or contrasts, of an input image. The convolution
kernel can be a multidimensional array of parameters, where
the parameters are adapted by the training process for the
neural network.

[0070] Recurrent neural networks (RNNs) are a family of
feedforward neural networks that include feedback connec-
tions between layers. RNNs enable modeling of sequential
data by sharing parameter data across different parts of the
neural network. The architecture for a RNN includes cycles.
The cycles represent the influence of a present value of a
variable on its own value at a future time, as at least a portion
of the output data from the RNN is used as feedback for
processing subsequent input in a sequence. This feature
makes RNNs particularly useful in dynamical systems
where the state of the system changes, such as for language
processing due to the variable nature in which language data
can be composed.

[0071] The figures described below include a general
process for respectively training and deploying various types
of networks. It will be understood that these descriptions are
exemplary and non-limiting as to any specific embodiment
described herein, and the concepts illustrated can be applied
generally to deep neural networks and machine learning
techniques in general.

[0072] The exemplary neural networks described above
can be used to perform deep learning. Deep learning is
machine learning using deep neural networks. The deep
neural networks used in deep learning are artificial neural
networks composed of multiple hidden layers, as opposed to
shallow neural networks that include only a single hidden
layer. Deeper neural networks are generally more computa-
tionally intensive to train. However, the additional hidden
layers of the network enable multistep pattern recognition
that results in reduced output error relative to shallow
machine learning techniques.

[0073] Deep neural networks used in deep learning typi-
cally include a front-end network to perform feature recog-
nition coupled to a back-end network which represents a
mathematical model that can perform operations (e.g.,
object classification, speech recognition, and the like) based
on the feature representation provided to the model. Deep
learning enables machine learning to be performed without
requiring hand crafted feature engineering to be performed
for the model. Instead, deep neural networks can learn
features based on statistical structure or correlation within
the input data. The learned features can be provided to a
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mathematical model that can map detected features to an
output. The mathematical model used by the network is
generally specialized for the specific task to be performed,
and different models will be used to perform different task.
[0074] Once the neural network is structured, a learning
model can be applied to the network to train the network to
perform specific tasks. The learning model describes how to
adjust the weights within the model to reduce the output
error of the network. Backpropagation of errors is a common
method used to train neural networks. An input vector is
presented to the network for processing. The output of the
network is compared to the desired output using a loss
function and an error value is calculated for each of the
neurons in the output layer. The error values are then
propagated backwards until each neuron has an associated
error value which roughly represents its contribution to the
original output. The network can then learn from those
errors using an algorithm, such as the stochastic gradient
descent algorithm, to update the weights of the of the neural
network.

[0075] In some embodiments, a device is tuned to form
quantum dots having a selected electron occupancy. Such a
device with selectively tailorable arrangements of quantum
dots that are addressed via gate electrodes under control of
individual gate electrodes potentials can be used in quantum
computing. In quantum computing, there is a need for means
for controlling and coupling of single charges and spins, for
which processes and articles described herein provide.
[0076] For encoding and manipulation of quantum infor-
mation, what is required is confinement of single electrons.
The spin degree of freedom of the electron provides a natural
two-level quantum system to encode the information in the
form of a quantum bit (qubit), the fundamental unit of
quantum information. In this case, the qubit includes a spin
up state (state 0), a spin down state (state 1), and interim
states that are a superposition of both the spin up and spin
down states at the same time. The states of a qubit can be
represented as points on the surface of a sphere (the Bloch
sphere) as shown in FIG. 8.

[0077] Of the variety of approaches to confining electron
spins, confinement of a single electron spin in solid-state is
sought with the goal of integration with solid-state (micro-)
electronics. A quantum dot (QD) provides such confinement
by using, in some implementations, electric control gates on
a semiconductor substrate. Frequently used substrates
include silicon (Si), aluminum gallium arsenide heterostruc-
tures (AlGaAs/GaAs), silicon germanium heterostructures
(S1/SiGe), and indium arsenide (InAs).

[0078] Quantum computation can be performed with spin
qubits from a plurality of quantum dots. Quantum compu-
tation is generally represented as a sequence of operations
involving precise functionalities from a physical circuit. A
sequence is represented in FIG. 9 for a circuit that includes
single electron spin qubits with quantum dots.

[0079] An array of quantum dots (QDs) is used, and in
some implementations their reservoir (R), like in FIG. 9a.
Then, each quantum dot is initialized with one electron from
its reservoir as in FIG. 95. Detecting the charge occupation
of the QD can be achieved by counting electrons with a
proximal charge sensor, e.g., quantum point contacts, single
electron transistors (SET), or capacitively coupled elec-
trodes.

[0080] The next part is initializing qubits to a known state.
It is performed in some implementations by applying an
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external magnetic field to polarize the spins, as in FIG. 9c¢.
Once spins are initialized, an actual computation can begin.
A computation can be executed by an adequate combination
of single spin rotations (R) and exchange coupling between
neighboring spins (J) (FIG. 9f). Arbitrary single spin rota-
tions are generally realized with the application of electron
spin resonance (ESR) pulses (FIG. 9d). Being a very short
range interaction, the exchange coupling is turned on and off
by modulating the tunnel barrier between adjacent quantum
dots (FIG. 9e).

[0081] A readout of some or all of the qubits determines
the result of a quantum calculation. In some implementa-
tions, this can be obtained by spin dependent tunneling to the
reservoir, where the electron occupation in the dot remains
one if the spin is up, and becomes zero if the spin is down.
The change in occupation is detected by charge sensing
(FIG. 92).

[0082] Control of coherent electron spin states in quantum
dots can be limited by short coherence times due to a short
stability of the superposition state. In this sense, qubits are
fragile entities. The challenge is to protect the state of a qubit
from the surrounding environment long enough to achieve a
sufficient number of logic operations on the quantum state
for useful calculations. In order to achieve this feat, the
surrounding environment is controlled. Isotopically
enriched *®Si substrates can provide sufficiently long coher-
ence times for robust quantum computing with spin qubits in
quantum dots.

[0083] Architectures for quantum dots include arena
designs and local accumulation designs. Arena designs rely
on electrostatic gates to deplete regions of a two-dimen-
sional electron gas (2DEG), formed by an heterostructure or
by a global accumulation gate. FIG. 10A is an exemplary
configuration for electrostatic gates (dashed structures) that
define two quantum dots, QD1 and QD2, that are tunnel
coupled to each other and to reservoirs R1 and R2. A nearby
single electron transistor (SET) formed by reservoir R3,
QD3 and reservoir R4 is used as a charge sensor of the
Double-Quantum-Dot (DQD). Barrier gates 277, 278, and
279 control the tunnel barriers between the reservoirs and
the dots, represented by the double arrows. Barrier gates 278
and 280 control the tunnel barrier between the dots, also
represented by arrows. Confinement gates 281 and 284
define the size of quantum dots. Plunger gates 282 and 283
set QD1 and QD2 charge states. Gate 285 sets the tunnel
barriers and the charge state of the SET. The region labeled
2DEG represents electrons not confined by the gates. The
scale bar indicates typical structure dimension in GaAs
devices.

[0084] FIG. 10B shows a cross section of the arena device
in FIG. 10A, following a section along the points A and B
in FIG. 10A. The 2DEG is formed in the quantum well layer
286 of the heterostructure 287. The depletion gates, such as
285, 281, and 284, deplete regions of the 2DEG to form the
quantum dots QD3, QD1 and QD2. FIG. 10C shows a cross
section of a device employing a global top gate 288 to create
the 2DEG. The depletion gate layout is similar to the one of
the device in FIG. 10A. A dielectric layer 289 isolates the
depletion gates such as 285, 281, and 284, from the global
top gate. Layer 290 is the gate oxide that isolates the 2DEG
from the gates.

[0085] In local accumulation designs, dots or reservoirs
can be formed directly by local accumulation gates instead
of a combination of a global accumulation gate and elec-
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trostatic gate areas. Additional gates increase the confine-
ment of accumulated regions and control the tunnel barriers.
Here, the quantum dot well can be provided using an
accumulation gate, while the reservoir can be provided using
a depletion mode tunnel barrier gate and confinement in the
well is enhanced using various depletion mode gates.
[0086] It has been discovered that ray-based classifier
apparatus and tuning a device using machine learning with
a ray-based classification framework provide a machine
learning algorithm trained on a dataset of simulated mea-
surements of the device that includes a plurality of quantum
dot can tune the device to operate for single- and few-
electron configurations. In this respect, a deep neural net-
work-based classification framework uses a minimal collec-
tion of one-dimensional measurements, referred to as rays,
initiated at a given point to make a fingerprint of the device’s
state. The ray-based classifier apparatus and tuning the
device substantially reduce the time and number of mea-
surements to characterize the state’s device when compared
to conventional two-dimensional scans. In an aspect, the
training dataset is generated using a selected physical model
to create qualitative agreement. The physical model can be
a Thomas-Fermi based electron density model. By varying
the defining physical parameters in this model, a range of
possible experimental configurations and realizations is
sampled, making the classifier device agnostic. This trained
system is then used to identify and tune real-world devices.
[0087] The ray-based classifier apparatus and tuning use a
framework for assessing the state of multi-parameter devices
that combine reduced measurements (i.e., ray-based mea-
surements) with artificial intelligence (Al). The state recog-
nition framework is based on a deep neural network trained
on geometric information extracted from the ray-based
measurements and simulations of the target physical system.
This information, in combination with an optimization algo-
rithm, allows us to tune the device state to specified, useful
parameter regimes.

[0088] For quantum dot-based devices, measurements of
QD states can be represented visually as various shapes in
the N-dimensional space, where the response variable peaks
at the boundaries of the shapes (corresponding to changes in
the occupation of the QDs). Here, N is the number of
electrostatic gates that define the QDs. The specific geom-
etry of these shapes corresponds to the number of populated
QDs, which is valuable information in the process of tuning
a QD system. For the simple case of double QD devices, the
states are characterized by a series of parallel lines of certain
angularity (when only a single dot is formed), honeycomb-
like shapes (when two coupled dots are formed), or a lack of
regular curvatures (when no dot is formed). For devices with
more dots, the states are characterized by different bounded
and unbounded polytopes in the N-dimensional space. As
used herein, “dot” refers to a quantum dot, and an isolated
island of electron density is provided by each quantum dot.
[0089] A conventional calibration process for QD devices
involves a series of measurements that involve sweeping one
or more voltages on electrostatic gates that control various
device parameters, including the number and occupation of
QDs, while monitoring a single response variable. For
physical construction of systems with N>>3 electrostatic
gates used to create a large number of dots necessary for
quantum computing, it is imperative to have a reliable
automated method to find a stable, desirable electron con-
figuration in an array of quantum dots.
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[0090] As the number of gates increases, heuristic classi-
fication and tuning of the system becomes increasingly
difficult, as does the time it takes to fully explore the voltage
space of all relevant gates. Rather than using dense, multi-
dimensional data, the ray-based classifier apparatus and
tuning process described herein includes a DNN classifica-
tion framework that uses a minimal collection of rays as
one-dimensional representations to construct the fingerprint
of the structure. The ray-based classifier apparatus and
tuning process sample a small set of one-dimensional lines
to determine volumetric information about the high dimen-
sional space.

[0091] Ray-based classifier apparatus 200 tunes device
217 using machine learning with a ray-based classification
framework. In an embodiment, with reference to FIG. 1,
ray-based classifier apparatus 200 includes: machine learn-
ing module 201 in communication with autotuning module
202 that communicates device state 206 to autotuning mod-
ule 202, machine learning module 201 including: training
data generator module 203 that produces fingerprint data
204; and machine learning trainer module 205 in commu-
nication with training data generator module 203 and that
receives fingerprint data 204 from training data generator
module 203 and produces device state 206; and autotuning
module 202 including: recognition module 207 in commu-
nication with machine learning trainer module 205 and
measurement module 215 and that receives device state 206
from machine learning trainer module 205, receives ray-
based data 219 from measurement module 215, and pro-
duces recognition data 208 based on device state 206 and
ray-based data 219; comparison module 209 in communi-
cation with recognition module 207 and that receives rec-
ognition data 208 from recognition module 207 and pro-
duces comparison data 210 based on comparing recognition
data 208 with a target state of device 217; prediction module
211 in communication with comparison module 209 and that
receives comparison data 210 from comparison module 209
and produces prediction data 212 for device 217 based on
comparison data 210; gate voltage controller 213 in com-
munication with prediction module 211 and device 217 and
that receives prediction data 212 from prediction module
211, produces controller data 214 and device control data
216 based on prediction data 212, controls device 217 with
the device control data 216, and communicates controller
data 214 to measurement module 215; and measurement
module 215 in communication with gate voltage controller
213, device 217, and recognition module 207 and that
receives controller data 214 from gate voltage controller
213, receives device data 218 from the device 217, produces
ray-based data 219 based on controller data 214 and device
data 218, and communicates ray-based data 219 to recog-
nition module 207, such that recognition module 207 per-
forms recognition on ray-based data 219 using device state
206, wherein machine learning module 201 and autotuning
module 202 include one or more of logic hardware and a
non-transitory computer readable medium storing computer
executable code. In an embodiment, ray-based classifier
apparatus 200 includes device 217. In an embodiment,
device 217 includes a plurality of gate electrodes that control
formation of quantum dots 229 in device 217, such that
when quantum dot 229 is formed, quantum dot 229 is in
electrical communication with one of the gate electrodes that
controls the electrical properties of quantum dot 229, and
each quantum dot 229 provides quantum well 230 with an
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electron occupation determined by a gate electrode potential
that is controlled by device control data 216. In an embodi-
ment, fingerprint data 204 include fingerprint vectors that
includes distances between a selected point 233 in state
space 220 of device 217 and the two nearest transition lines
231 that bound shape 232 that encloses the selected point
233 in state space 220. In an embodiment, device state 206
includes information as to a number of quantum dots 229 of
device 217.

[0092] In an embodiment for action-based automated
double dot navigation, with reference to FIG. 2 and FIG. 3,
ray-based classifier apparatus 200 tunes device 217 using
machine learning with a ray-based classification framework
and includes: machine learning module 201 in communica-
tion with action-based navigator module 221 and commu-
nicates device state 206 to action-based navigator module
221, machine learning module 201 including: training data
generator module 203 that produces fingerprint data 204;
and machine learning trainer module 205 in communication
with training data generator module 203 and that receives
fingerprint data 204 from training data generator module 203
and produces device state 206; and action-based navigator
module 221 in communication with device 217 and that
includes: charging module 222 in communication with
device 217 and that sets the charging energy for each
quantum well of device 217 and defines a state action for
each of the quantum wells by sending charging data 224 to
device 217; data acquisition module 223 in communication
with device 217 and that acquires state data 225 from device
217 for a selected state recognizer; data checker module 226
in communication with data acquisition module 223 and that
receives state data 225 from data acquisition module 223
and checks quality of state data 225; and state estimator
module 228 in communication with data checker module
226 and that receives state data 225 from data checker
module 226, estimates the state of device 217, determines
whether to tune device 217 based on state data 225 relative
to an estimation for the state of device 217, and produces
charging data 224 and tunes device 217 according to charg-
ing data 224 based on the number of quantum dots of device
217, wherein machine learning module 201 and action-
based navigator module 221 include one or more of logic
hardware and a non-transitory computer readable medium
storing computer executable code. In an embodiment, ray-
based classifier apparatus 200 includes device 217. In an
embodiment, device 217 includes a plurality of gate elec-
trodes that control formation of quantum dots 229 in device
217, such that when quantum dot 229 is formed, quantum
dot 229 is in electrical communication with one of the gate
electrodes that controls the electrical properties of quantum
dot 229, and each quantum dot 229 provides quantum well
230 with an electron occupation determined by a gate
electrode potential that is controlled by action-based navi-
gator module 221. In an embodiment, fingerprint data 204
can include fingerprint vectors that include distances
between a selected point 233 in state space 220 of device
217 and the two nearest transition lines 231 that bound shape
232 that encloses the selected point 233 in state space 220.
In an embodiment, device state 206 includes information as
to a number of quantum dots 229 of device 217. It is
contemplated that the foregoing can be used for ray-based
single electron navigation. Here, in an embodiment, ray-
based classifier apparatus 200 further includes single-elec-
tron navigation module 235 in communication with action-
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based navigator module 221 and device 217, single-electron
navigation module 235 including: transition line emptier
module 236 in communication with data checker module
226 of action-based navigator module 221 and that receives
state data 225 from data checker module 226, and navigates
along rays emanating from a selected point in state space
220 to decrease electron occupancy in quantum dots 229 of
device 217, and transition line loader module 237 in com-
munication with transition line emptier module 236 and
device 217 and that identifies rays in state space 220,
determines whether any transition lines are present along
rays emanating from the selected point in state space 220,
and ensures single electron occupancy in quantum dots 229
of device 217, wherein single-electron navigation module
235 includes one or more of logic hardware and a non-
transitory computer readable medium storing computer
executable code.

[0093] In an embodiment, with reference to FIG. 4 in
accordance with steps 242, 243, 244, 245, 246, 247, and 248,
process 241 for tuning device 217 using machine learning
with a ray-based classification framework and an autotuning
module 202 includes: generating, by training data generator
module 203 using logic hardware, fingerprint data 204 for
device 217; receiving, by machine learning trainer module
205, fingerprint data 204 from training data generator mod-
ule 203; performing, by machine learning trainer module
205 using logic hardware, machine language training and
producing device state 206 of device 217 from fingerprint
data 204; receiving, by recognition module 207, device state
206 from machine learning trainer module 205; recognizing,
by recognition module 207 using logic hardware, the state of
device 217 from device state 206 using a trained deep neural
network and producing recognition data 208 based on device
state 206; receiving, by comparison module 209, recognition
data 208 from recognition module 207; comparing, by
comparison module 209 using logic hardware, a target state
of device 217 with recognition data 208 and producing
comparison data 210 as a result of the comparison; receiv-
ing, by prediction module 211, comparison data 210 from
comparison module 209; producing, by prediction module
211 using logic hardware, prediction data 212 based on
comparison data 210; receiving, by gate voltage controller
213, prediction data 212 from prediction module 211; pro-
ducing, by gate voltage controller 213 using logic hardware,
controller data 214 and device control data 216 based on
prediction data 212; receiving, by device 217, device control
data 216 from gate voltage controller 213, controlling device
217 with device control data 216 to modify the state of
device 217, and producing device data 218 in response to
controlling device 217 with device control data 216; receiv-
ing, by measurement module 215, controller data 214 from
gate voltage controller 213 and device data 218 from device
217; producing, by measurement module 215 using logic
hardware, ray-based data 219 based on controller data 214
and device data 218; and receiving, by recognition module
207, ray-based data 219 from measurement module 215 and
performing recognition on ray-based data 219 using device
state 206 from machine learning trainer module 205. In an
embodiment, fingerprint data 204 includes fingerprint vec-
tors including distances between a selected point 233 in state
space 220 of device 217 and the two nearest transition lines
231 that bound shape 232 that encloses the selected point
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233 in state space 220. In an embodiment, device state 206
includes information as to a number of quantum dots 229 of
device 217.

[0094] Inanembodiment, with reference to FIG. 5 accord-
ing to steps 242, 243, 250, 251, 252, 253, 254, 255, 256, and
257, process 249 for tuning device 217 using machine
learning with a ray-based classification framework and
action-based navigator module 221 includes: generating, by
training data generator module 203 using logic hardware,
fingerprint data 204 for device 217, receiving, by machine
learning trainer module 205, fingerprint data 204 from
training data generator module 203; performing, by machine
learning trainer module 205 using logic hardware, machine
language training and producing device state 206 of device
217 from fingerprint data 204; setting, by charging module
222 using logic hardware, the charging energy for each
quantum well of device 217 and defining a state action for
each of the quantum wells by sending charging data 224 to
device 217 using logic hardware; acquiring, by data acqui-
sition module 223 using logic hardware, state data 225 from
device 217 for a selected state recognizer, receiving, by data
checker module 226 in communication with data acquisition
module 223, state data 225 from data acquisition module
223 and checking quality of state data 225; and receiving, by
state estimator module 228 in communication with data
checker module 226 and machine learning trainer module
205, state data 225 from data checker module 226 and
device state 206 from machine learning trainer module 205;
estimating, by state estimator module 228 using logic hard-
ware, the state of device 217, determining whether to tune
device 217 based on state data 225 relative to an estimation
for the state of device 217, and producing charging data 224
and tuning device 217 according to charging data 224 based
on the number of quantum dots of device 217. In an
embodiment, the process further includes retuning device
217 if data checker module 226 determines that the quality
of state data 225 is not acceptable. In an embodiment,
process 249 further includes changing the state of device
217 from a weighted average of per-state actions and a state
prediction in response to state estimator module 228 deter-
mining that the amount of target state is acceptable. In an
embodiment for process 258 of ray-based single electron
navigation, with reference to FIG. 6 according to steps 259,
260, 261, 262, 263, 264, 265, 266, 267, 268, 269, and 270,
process 249 further includes: receiving, by transition line
emptier module 236 of single-electron navigation module
235, state data 225 from data checker module 226; navigat-
ing, by transition line emptier module 236 using logic
hardware, along rays emanating from a selected point in
state space 220 to decrease electron occupancy in quantum
dots 229 of device 217; identifying, by transition line loader
module 237 using logic hardware, rays in state space 220,
determining whether any transition lines are present along
rays emanating from the selected point in state space 220,
and ensuring single electron occupancy in the quantum dots
229 of device 217. In an embodiment, process 258 further
includes performing an initial scan of state space 220 for
quality estimation of state data 225 before decreasing the
electron occupancy in quantum dots 229 of device 217; and
retuning device 217 if state data 225 from the initial scan
fails the quality estimation.

[0095] FIG. 11a shows a ray from point x,, to x,when N=3.
Different colors of polytopes represent different classes. In
FIG. 115, a side-view of the polytopes with two crossing of
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the shape boundaries marked along the ray is shown. The
X-mark denotes a feature defining boundary for the volume
enclosing point x, to be classified. Visualization of the
rays-based measurement for two sample polytopes is shown
in FIG. 11c.

[0096] In an embodiment, device 217 can include double
quantum dots. Here, double QD devices were analyzed
using a physics-based simulator developed to mimic the
behavior of actual experimental systems. A dataset of over
27 k fingerprints were generated over 20 different simulated
devices. Specifically, devices were defined with five elec-
trostatic gates (two plunger gates designed for QD forma-
tion, separated by three barrier gates controlling the move-
ment of electrons, which can operate in one of five possible
configurations: no dot (i.e., no island of electron density), a
single dot primarily coupled to either the right or the left
plunger gate or a single central dot (single island of electron
density formed over the right or left plunger or centrally,
respectively), and double dot (two islands of electron den-
sity).

[0097] A fully connected DNN can identify the state of the
device. This trained network can be used to make predic-
tions on data the DNN never encountered before. The
ray-based classifier decreases computational cost and the
amount of data needed as compared with conventional
technology. The trained network can be combined with
numerical optimization routines to identify and tune a series
of devices into a pre-desired regime of operation.

[0098] Tuning device 217 using machine learning with the
ray-based classification framework can include generating a
simulated dataset of experimental results, training a neural
network to learn certain characteristics from this dataset and
then using the trained neural network to tune an physical
device into proper regimes of operation. Tuning device 217
relies on existence of a good-quality dataset or simulation
that can qualitatively mimic the device under operation.
Training of the machine learning algorithm and its perfor-
mance on real device data is dependent on whether the
physical model that has gone into simulating the dataset has
the right assumptions connecting it with real operation of
device 217. Moreover, with an increasing number of quan-
tum dots, simulation of the dataset can become prohibitively
expensive, and there is a need to develop different
approaches for dataset generation that ray-based classifier
apparatus 200 and tuning described here provides. Advan-
tageously, tuning a device using machine learning with a
ray-based classification framework reduces the experimental
and simulation time and data cost. Finally, tuning a device
using machine learning with a ray-based classification
framework provides a closed-loop system without interven-
tion of a human-experimenter for tuning QDs.

[0099] Conventional adjustment of experimental devices
often rely on heuristics developed by researchers. Tuning a
device using machine learning with a ray-based classifica-
tion framework eliminates such a dependence and instead
substitutes it with a fully automatized routine with the
heuristics gained from a dataset. Moreover, conventional
tuning techniques rely on measuring 2D scans that does not
scale with the increasing number of QDs. Tuning a device
using machine learning with a ray-based classification
framework provides an Al algorithm that is trained on data
generated for a range of the defining physical parameters in
the model, the classifier becomes device agnostic. As such,
the trained system can be used to identify and tune various
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types and architectures of experimental devices, e.g., gate-
defined QDs or dopants in semiconductors. The only thing
that changes between the different devices is which gates
need to be controlled by the tuner. Moreover, tuning a device
using machine learning with a ray-based classification
framework can be applied in efficient estimation of the states
of solid-state and atomic experimental systems, as well as
control problems in a variety of quantum computing archi-
tectures.

[0100] Ray-based classifier apparatus 200 and tuning a
device using machine learning with a ray-based classifica-
tion framework auto-tune quantum dot devices to a specific
electron state that can be used to form quantum-dot-based
qubits. This framework combines a data quality control
module, machine-learning based state assessment with data
collected either in a traditional 2D format or using the
ray-based approach described above as well as an action-
based approach to device calibration that combines small-
scale ray-based measurements with physics knowledge
about the device characteristics to bring the device to the
desired electronic state. Ray-based classifier apparatus 200
and tuning a device using machine learning with a ray-based
classification framework provides reliable automation of the
calibration process while significantly reducing the time and
number of measurements necessary for characterization
compared to conventional approaches.

[0101] Ray-based classifier apparatus 200 and tuning a
device using machine learning with a ray-based classifica-
tion framework provides autonomous navigation of the
voltage space of QD devices that exploits the features
characteristic of the measurement space. QD qubit systems
can include multiple electrostatic gates to isolate, control,
and sense each qubit. Depending on the type of QD devices,
specific gates can be designed to accumulate electrons into
QDs (plungers) and gates to control the tunneling between
QDs (barriers). There can be at least three metallic gates that
are voltage-adjustable to isolate each dot to the single
electron regime and to realize qubit performance.

[0102] Ray-based classifier apparatus 200 and tuning a
device using machine learning with a ray-based classifica-
tion framework can include modules for fine-tuning elec-
trostatic gates to reach the device operating point. One
module uses machine learning (ML) to identify the device
state and the known effects of the gates on QD states to
navigate to the N-QD region, where N is the number of
charge islands possible in a QD device. Successful termi-
nation of this module can directly progress to a next module.
The next module leverages calibrated physics-based actions
and peak finding on sample-efficient 1-dimensional data
(rays) to navigate to the area of the previous region where
each charge island has a single charge.

[0103] The first module takes advantage of the designed
effect of a device’s gates to navigate voltage space. In
contrast, conventional approaches for this level of tuning do
not use the geometry of the manifolds defining QD states.
For a QD device, the operating region includes a distinct
island of electrons at the location of each plunger gate,
separated by the electrostatic potential of the barrier gate. To
reach this region, each plunger gate needs to be set to a high
enough voltage to induce an electron island, but not too high
relative to the barrier potential that the islands merge.
Likewise, the barrier voltages need to be high enough to
separate charge islands but not so high that no islands can
form or that the interdot coupling is not possible. To deter-
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mine which gates need to be changed and in what capacity,
ray-based classifier apparatus 200 and tuning a device using
machine learning with a ray-based classification framework
combine physical knowledge about the gates with informa-
tion about the state of the device through ML recognition of
2D data, of 1D data, or other methods such as pattern
matching.

[0104] For a double QD device that includes two quantum
dots, a no dot state indicates that no electrons are in the
device so both plunger gate voltages must be increased. A
left or right dot state indicates only one side of the dot is
occupied so the voltage of the opposite plunger gate must be
increased. A central dot indicates too many electrons are in
the device so both plunger gate voltages must be decreased.
A double dot state is the target, so no change is needed in this
case. To address tuning in transitional regions where mul-
tiple states are present, the action taken is the average
actions of the states weighted by the state percentage. For
example, 50% single dot (decrease both plungers) and 50%
left dot (increase right plunger) yield a decrease of the left
plunger voltage.

[0105] The second module uses data-efficient 1-dimen-
sional scans to unload each charge island to single electron
occupation. This is a departure from conventional
approaches that relied on 2D scans and ML. Changes in
electron occupation are indicated by sharp changes in
charge, which can be autonomously detected using peak
detection algorithms. However, in the presence of noise, this
peak detection can be unreliable. Moreover, each plunger
gate has unintended effects on nearby quantum dots so the
direction of 1D scans must be carefully chosen to ensure the
desired outcome. Ray-based classifier apparatus 200 and
tuning a device using machine learning with a ray-based
classification framework uses automated quality assessment
and redundancy to avoid failure due to unreliable peak
detection. Ray-based classifier apparatus 200 and tuning a
device using machine learning with a ray-based classifica-
tion framework ensures that 1D scans affect the QD only as
intended by measuring the effect of each gate on each dot
before initiating the unloading process. This module greatly
reduces the data needed to tune to the single occupation state
while remaining effective as compared with conventional
technology.

[0106] The articles and processes herein are illustrated
further by the following Examples, which are non-limiting.

EXAMPLES

Example 1. Ray-Based Classification Framework
for High-Dimensional Data

[0107] While classification of arbitrary structures in high
dimensions may require complete quantitative information,
for simple geometrical structures, low-dimensional quali-
tative information about the boundaries defining the struc-
tures can suffice. Rather than using dense, multi-dimensional
data, we propose a deep neural network (DNN) classification
framework that utilizes a minimal collection of one-dimen-
sional representations, called rays, to construct the “finger-
print” of the structure(s) based on substantially reduced
information. We empirically study this framework using a
synthetic dataset of double and triple quantum dot devices
and apply it to the classification problem of identifying the
device state. We show that the performance of the ray-based
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classifier is already on par with traditional 2D images for
low dimensional systems, while significantly cutting down
the data acquisition cost.

[0108] Deep learning is applicable to physical problems in
the classification of arbitrary convex geometrical shapes
embedded in an N-dimensional space. Having a mathemati-
cal frame-work to understand this class of problems and a
solution that scales efficiently with the dimension N is
essential. With increasing effective dimensionality of the
system, including parameters and data, determining the
geometry with measurements across the full parameter space
may become prohibitively expensive. However, as we show,
qualitative information about the boundaries defining the
structures of interest may suffice for classification.

[0109] Anew framework for classifying simple high-di-
mensional geometrical structures herein is referred to as
ray-based classification. Rather than working with the full
N-dimensional data tensor, we train a fully connected DNN
using one-dimensional representations in RY, called “rays”,
to recognize the relative position of features defining a given
structure. We position the boundaries of this structure rela-
tive to a point of interest, effectively “fingerprinting” its
neighborhood in the RN space. The ray-based classifier is
motivated primarily by experiments, particularly those in
which sparse data collection is impractical. Our approach
not only reduces the amount of data that needs to be
collected, but also can be implemented in situ and in an
online learning setting, where data is acquired sequentially.
[0110] We test the proposed framework using a modified
version of the “Quantum dot data for machine learning”
dataset developed to study the application of convolutional
neural networks (CNNs) to enhance calibration of semicon-
ductor quantum dot devices for use as qubits. Tuning these
devices requires a series of measurements of a single
response variable as a function of voltages on electrostatic
gates. As the number of gates increases, heuristic classifi-
cation and tuning becomes increasingly difficult, as does the
time it takes to fully explore the voltage space of all relevant
gates. The specific geometry of the response in gate-voltage
space corresponds to the number and position of populated
quantum dots, which is valuable information in the process
of tuning of these systems.

[0111] An image-based CNN classifier for 2D volumes,
i.e., solid images, combined with conventional optimization
routines, can assist experimental efforts in tuning quantum
dot devices between zero-, single- and double-dot states.
Here, we consider a double- and triple-dot system. We show
that using ray-based classification, the quantity of data
required (and thus the time required) for identifying the state
of the quantum dot system can be drastically reduced
compared to an imaged-based classifier.

[0112] Consider Euclidean space RN with its conventional
2-norm distance function d, and a polytope function
p:RY—{0, 1}. The set of points where p(x)=1 constitutes the
boundary of a collection of polytopes. For example, a
polytope function producing a square in R? centered at the
origin is p(x1, x2)={1 if Ix1I+x2I=1; O elsewhere}, where
(x1, x2)eR?. In our quantum dot applications a value of p=1
indicates the location where an electron is transferred in or
out of a dot.

[0113] Definition 1 (Rays). Given xo, xfeRN, the ray
Rxo,xf emanating from xo and terminating at xf is the set
{xIx=(1-t)xo+txf, te[0, 1]} (see FIG. 11(a) for a depiction of
a ray in R®).
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[0114] In practical applications, rays have a natural granu-
larity that depends on the system as well as the data
collection density. For quantum dots, the device parameters
define an intrinsic separation between critical features that
gives the scale of the problem. We refer to granularity of rays
in terms of pixels.

[0115] To assess the geometry of a polytope enclosing any
given point xo, we consider a collection of rays of a fixed
length r centered at xo. The rays are uniquely determined by
a set of M points on the sphere SN-1 of radius r centered at
x0, P:={xmeSxNo-1(r)[1=m=M}. We call a set of M rays,
[0116] R™:={Rxo,xmlxmeP}, an M-projection (see FIG.
11(c) for visualization in R3).

[0117] Definition 2 (Feature). Given a ray Rxoxxf and a
polytope function p, a point xeRxo,xf is a feature if p(x)=1.
[0118] FIG. 11(5) shows two features along a sample ray
in R®. Features along a given ray define its feature set,
Fxo,xf:={xeRxo0xflp(x)=1}, with a natural order given by
the 2-norm distance function d:xoxFxo,xf—R+. In general,
Fxo,xf could be empty. Using a decreasing weight function
v:R+—[0, 1] we can assign a weight to each feature,
effectively defining the weight set I'xo,xf corresponding to
its feature set Fxo,xf as I'xo,xf={y(d(x, x0))IXeFxo0,xf}. The
actual choice of function y needs be altered to fit the problem
itself and can be considered another hyperparameter that can
help optimize the machine learning process. For the quan-
tum dot case, we chose y(n)=1/n.

[0119] The assumption that the weight function y is mono-
tonic in distance lets us define a ray’s critical feature as the
point xeFxoxf with highest (i.e., critical) weight Wxo,xf=y
(d(x, x0)). If Fxo,xf=g, we put Wxo,xf=0. This allows us to
“fingerprint” the space surrounding point xo.

[0120] Definition 3 (Point fingerprint). Let x0eRN be a
point from which a collection of rays RM={Rxox1f, . . .,
Rx0,xfM} emanate. The point fingerprint of xo[J is the
M-dimensional vector consisting of the rays’ critical
weights: Fxo=Wxo,x1f . . ., Wxo,xtM.

[0121] This point fingerprint Fxo of xo is the primary
object of the ray-based clas-sification framework. If suffi-
ciently many rays in appropriate directions are chosen from
xo, the fingerprint is sufficient, at least in principle, to
qualitatively determine the geometry of the convex polytope
enclosing xo. Due to the cost of experimental data acquisi-
tion, determining how few rays are sufficient for a machine
learning algorithm to make this determination is of crucial
importance. Looking to establish a correspondence between
the fingerprint Fxo of point xo and the class of the polytope
enclosing this point, we define the following prob-lem:
[0122] Problem 1. Given a set of bounded and unbounded
convex polytopes fill-ing an N-dimensional space and be-
longing to C distinct classes, CeN, and a point x0eRN,
determine to which of the classes the polytope enclosing xo
belongs.

[0123] A solution to this problem in the supervised learn-
ing setting can be obtained by training a DNN with the input
being the point fingerprint and the output identifying an
appropriate class. The procedural steps for the proposed
classification algorithm for N-dimensional data in the form
of pseudocode are presented in Algorithm 1 shown in FIG.
14.

[0124] The ray-based data is generated using a physics-
based simulator of quantum dot devices. An example of a
simulated measurement, like the ones typically seen in the
laboratory, is shown in FIG. 12(a). The x and y axes
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represent a subset of parameters that can be changed in the
experiments (here, gate voltages) and the curves where the
signal strength is equal to 1 represent the device response to
a change in electron occupation. The slopes of those lines
correspond to the location of the quantum dots with respect
to the gates. The device states manifest themselves by
different bounded and unbounded shapes defined by these
curves, as shown in FIG. 12(a). The reliability has been
confirmed for a dataset generated with this simulator for the
case of a CNN used with 2D images, finding an accuracy of
95.9% (standard deviation 0=0.6%) over 200 training and
validation runs performed on distinct datasets. Here, we use
a modified version of this dataset, splitting the single-dot
(SD) class into 3 distinct classes based on the dot location
(Left, Center, Right) as suggested by experimentalists. No-
dot (ND) and double-dot (DD) classes are unchanged.
[0125] To test the ray-based classification framework in
2D, we use 20 realizations of 2D maps qualitatively com-
parable to the one shown in FIG. 2(a). Using a synthetic
dataset allows us to systematically vary the length of the rays
and their number. A regular grid of 1,369 points is used for
sampling, resulting in a dataset of 27,380 fingerprints. We
consider five datasets of M-projections, with M=3, 4, 5, 6,
and 12 evenly spaced rays. The ray length is varied between
10 and 80 pixels (where 30 pixels is the average separation
between transition lines in the simulated devices). We ran 50
training and validation tests per combination of rays’ num-
ber and length (with data divided 80:20). For testing, we
generated a separate dataset based on three distinct devices.
This allows us to both better determine the classification
error for the most efficient number and length combinations
of rays and to study the failure cases over the device layout.
[0126] FIG. 13(a) shows the performance of the ray-based
classifier. The accuracy of the classifier increases with the
total number of points measured for a fixed number or rays,
as expected. However, for a fixed number of points, increas-
ing the number of rays does not necessarily lead to increased
accuracy. This is because with a fixed number of points and
point density, increasing the number of rays naturally results
in shorter rays. Rays shorter than the radius of the interior
diameter of the shapes leads to empty feature sets, resulting
in uninformative fingerprints. Increasing the number or size
of hidden layers in the DNN does not further improve the
accuracy.

[0127] To test the proposed framework with triple-dot
systems, we generated a dataset by sampling 17,576 finger-
prints from a single simulated device with three dot gates.
We varied the number of rays between 6 and 18, while
keeping the length of the rays fixed at 60 voxels. For each
configuration, we performed N=10 training and validation
runs (with data divided 80:20). As shown in FIG. 13, the
classifier accuracy improved from 66.2% (0=0.3%) for 6
rays to 79.9% (0=0.3%) for 18 rays.

Example 2. Ray-Based Framework for State
Identification in Quantum Dot Devices

[0128] Quantum dots (QDs) defined with electrostatic
gates are a leading platform for a scalable quantum com-
puting implementation. However, with increasing numbers
of qubits, the complexity of the control parameter space also
grows. Traditional measurement techniques, relying on
complete or near-complete exploration via two-parameter
scans (images) of the device response, quickly become
impractical with increasing numbers of gates. We circum-
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vent this challenge by introducing a measurement technique
relying on one-dimensional projections of the device
response in the multidimensional parameter space. Dubbed
the “ray-based classification (RBC) framework,” we use this
machine learning approach to implement a classifier for QD
states, enabling automated recognition of qubit-relevant
parameter regimes. We show that RBC surpasses the 82%
accuracy benchmark from the experimental implementation
of image-based classification techniques from prior work,
while reducing the number of measurement points needed
by up to 70%. The reduction in measurement cost is a
significant gain for time-intensive QD measurements and is
a step forward toward the scalability of these devices. We
also discuss how the RBC-based optimizer, which tunes the
device to a multiqubit regime, performs when tuning in the
two-dimensional and three-dimensional parameter spaces
defined by plunger and barrier gates that control the QDs.
This work provides experimental validation of both efficient
state identification and optimization with machine learning
techniques for nontraditional measurements in quantum
systems with high-dimensional parameter spaces and time-
intensive measurements.

[0129] The ease of control, fast measurement, and long
coherence of semiconductor quantum dots (QDs) make them
a promising platform for quantum computing. Individual
qubits can be built from single QDs or multiple QDs coupled
together. At present, most QD qubit systems require multiple
electro-static gates to isolate, control, and sense each qubit.
Of-ten, there are specific gates designed to accumulate
electrons into QDs (plungers), gates to control the tunneling
between QDs (barriers), and gates to deplete electrons
elsewhere (screening gates). As QD devices grow in the
number of qubits and complexity so do the number of gate
voltages to be controlled and tuned.

[0130] Although current few-qubit devices are mostly still
tuned manually, there are several emerging auto-mated
approaches to various steps in the process of tuning QDs.
Depending on the specific device design, each of these
tuning steps requires specialized approaches for automation.
Some automation techniques focus on tuning devices ab
initio to a voltage space where QDs can form. Others focus
on tuning the configuration of QDs; that is from single QDs
to coupled double QDs.

[0131] There are also methods to achieve a specific num-
ber of electrons in each QD or to measure and modify the
couplings in multiple-QD systems. These various automa-
tion techniques have used many different tools: convolu-
tional neural networks (CNNs), deep generative modeling,
classical feature extraction (e.g., a Hough transformation),
and many custom fitting models.

[0132] Motivated by the success of image-based autotun-
ing, here we present an alternative approach that uses the
recently proposed ray-based classification (RBC) frame-
work to distinguish between different electron configura-
tions. The RBC framework was originally pro-posed as an
approach for classitying simple bounded and unbounded
convex geometrical shapes. It thus naturally applies to
identifying QD states that manifest themselves as distinct
geometrical patterns in the charge sensor response as a
function of the gate voltages. Here we present the classifi-
cation of a Si/SixGel-x QD device using this new method,
both in a “live” measurement session during the experiment
and “off-line” using a dataset of large stability diagrams
taken from the device after tuning.
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[0133] We explore how the hyperparameters of the RBC,
such as number of rays, ray length, and the choice of the
weight function, affect the classification accuracy of experi-
mental data. We find a favorable comparison with image-
based classification in terms of accuracy and the quantity of
data required. Furthermore, we show an off-line implemen-
tation of the RBC framework within an optimizer-based
autotuner for a QD system, tuning be-tween single and
double QDs in a space of three gate voltages.

[0134] A visual inspection of the large scan of experimen-
tal data (differential charge sensing) presented in FIG. 15(a)
shows different physical states of the QD device. These
states manifest themselves as different shapes formed by
electron transition lines and varying orientations with
respect to the scanned gate voltages (e.g., parallel lines for
single QDs and honeycombs for double QDs). Thus, the
shape and orientation of the lines encode sufficient qualita-
tive information about the state of the device to enable state
(in this case, charge topology) classification. A CNN-based
classifier trained for state identification learns to mask the
noise captured between transition lines in these two-dimen-
sional (2D) charge sensing images.

[0135] A classification framework focusing on data acqui-
sition efficiency, rather than using full 2D images capturing
a small region of the voltage space, the RBC framework
relies on a collection of evenly distributed one-dimensional
traces (“rays”) originating from a single point xo and
measured in multiple directions in the voltage space to
describe the neighborhood of xo (see FIG. 15(a) for a
preview of five sample points with six evenly distributed
rays). The rays are used to capture the orientation and
relative position of transition lines near xo, effectively
“fingerprinting” the surrounding voltage space. The result-
ing point fingerprint encodes the qualitative information
about the voltage space around xo and is the primary object
of the RBC framework.

[0136] A Si/Si,Ge,_, quadruple-QD device is used to cre-
ate a double-QD charge sensed by a single sensing QD
whose current readout is connected to a cryogenic amplifier.
The device is a linear array of four QDs, opposing two
charge sensors. The nearby gates (reservoir gates, depletion
gates, and tunnel-barrier gates) are pretuned to allow single-
QD and double-QD formation under the two leftmost
plunger gates, P1 and P2 (see the inset in FIG. 15(a)). An
example stability diagram for this device is shown in FIG.
15(a). A small, approximately-10-kHz oscillating voltage is
applied to P1 and the charge sensor current is sent to a
lock-in amplifier referenced to this ac tone. This results in a
large change in the signal measured at charge transitions, an
effective differentiation of the QD occupation across the (P1,
P2) voltage space. Because the ac tone is applied to P1,
charge transitions physically closer to P1 will result in a
larger signal than transitions closer to P2. This effect can be
seen in FIG. 15(a), where the more horizontal transitions
associated with occupation changes in the P2 QD are harder
to distinguish. In future measurements, this effect could be
reduced by also applying an ac tone to P2 or applying the
tone to a central tunnel barrier gate.

[0137] To assess the geometry of the transition lines
surrounding a given point xoe(VP1, VP2), we consider a
collection of M rays of a fixed length centered at xo called
the M-projection (see FIG. 15(a) for visualization). Each ray
corresponds to a measurement of the charge sensor signal
along a given direction in the space of plunger volt-ages. The



US 2023/0274136 Al

ray data used in this paper are collected in two ways. The
“live” M-projection is collected by choosing a plunger gate
voltage point xo=(VP1, VP2) and measuring evenly spaced
rays emanating from that point in the plunger gate voltage
space. The length of the rays and their granularity (i.e.,
number of pixels per unit length) are determined by the
expected charging energy of the system and are fixed
throughout the measurement. We use rays 30 mV in length
with 60 points (pixels) sampled along the ray. The 0.5
mV-per-pixel granularity is selected to ensure that the elec-
tron transition lines will be properly visible with the ac
lock-in measurement technique. For the “off-line” M-pro-
jection, a large, densely sampled 2D stability diagram is
used to generate ray datasets by choosing a central voltage
point xo and interpolating the data in evenly spaced direc-
tions. In both cases, the first ray is always measured in the
direction of VP1.

[0138] Regardless of the ray data generation method, we
collect complex voltage data from the lock-in amplifier FIG.
15(b) shows the magnitude of a set of live data rays. In the
off-line setting, a combination of the overall median absolute
deviation and the median for a given col-lection of rays is
used to determine the noise level and expected peak promi-
nence, respectively, and is used by the peak finding algo-
rithm. In an in situ implementation, the noise level can be
determined before ray collection by measuring the average
lock-in response offset and rms noise at any off-transition
plunger voltage and then periodically rechecked throughout
the experiment.

[0139] Once an M-projection for a given point xo is
acquired, traditional signal processing techniques are used to
test each ray for the presence of transition lines. While the
noiseless simulation results in binary rays, with transitions
easily identifiable along the rays, the noise present in the
experimental data makes the transitions harder to detect. In
the ac measurement, transitions manifest themselves as
peaks along the ray (called “features” in the RBC frame-
work, see FIG. 15(b)). Thus, a peak detection algorithm is
applied to each ray to determine the presence and, if
applicable, positions of all peaks along a given ray. If a dc
charge sensor measurement is used instead, an additional
step of differentiating the signal along the measurement
direction will be necessary before signal processing. The
peak positions are represented as a number of pixels from
the central voltage point xo. If for a given ray at least one
feature is detected, the position of the feature nearest to the
ray’s origin x(c) is recorded (so-called critical feature). If no
peaks are found, a not-a-number (NaN) value is recorded as
a placeholder for the critical feature instead. The vector of
critical fea-tures x, marked with black points in FIG. 15(b),
is used to determine the point fingerprint.

[0140] Finally, a “weight” function I" is applied element-
wise to scale the vector of critical features to a [0, 1] range,
with rays having no peaks being assigned a default value of
0:

O if +© =0 o)
m):{v(x, ) if x ,
0 if X = NaN,

where y:N>0—[0, 1] is a normalizing decreasing function.
The normalized vector of distances Fxo is called the “point
fingerprint”. Because of the differences in the geometry of
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the transition lines for different QD states, distinct point
fingerprints are encoded for the different states and a clas-
sifier trained on point fingerprint data suffices for the QD
state identification. We use a simple deep neural network
(DNN) classifier with three hidden layers for this purpose.
[0141] The flow of the RBC algorithm is shown in FIG.
15(c) and includes extraction of the positions of critical
features from the M-projection; fingerprinting of the central
point xo by the means of a weight function Y(x); and DNN
analysis of the resulting fingerprint Fxo.

[0142] The output of the classifier is a probability vector,

p(xo):[pND)pSDL)pSDCvaD,L)pDD] )]

quantifying the current state of the device, with ND de-
noting no QDs formed, SDL, SDC, and SDR denoting the
left, central, and right single QD, respectively, and DD
denoting the double-QD state.

[0143] The RBC framework was developed and tested
originally on a dataset of simulated double-QD devices. An
average accuracy of 96.4(4) % (aver-aged over N=50 mod-
els) with just six rays and a weight function y(x)=1/x was
reported for double QDs, where the accuracy is defined as
the fraction of correctly classified points from a test dataset.
This is on par with the more-data-demanding CNN-based
classifica-tion framework, while requiring 60% fewer data.
Given the success of the RBC framework on simulated
devices, its performance on experimental data reduces data
required translates to reduction of the measurement time in
the experiment.

[0144] To assess the performance of the RBC framework
with experimental data, we use an ensemble of 20 DNN
classi-fiers pretrained using a modified version of the
“Quantum dot data for machine learning” dataset. This
allows us to not have to manually label experimental data for
training purposes. To prepare the DNNs, we rely on a dataset
of 2.7x104 point fingerprints, sampled over 20 simulated
QD devices. A number of parameters, such as the device
geometry, gate positions, lever arms, and screening lengths,
are varied between simulations to re-flect the minimum
qualitative features across a range of devices. For training
purposes, each fingerprint Fxo is tagged with a label iden-
tifying the state of the device at point xo. The labels are
generated as part of the simula-tion. Before training, the
labels are converted to one-hot vectors (i.e., vectors of
length equal to the number of classes and a single nonzero
element indicating the true class) and treated as the prob-
abilities p(xo) that xo is in any of the five possible states.

[0145] To test the performance of the RBC, we establish
an off-line dataset of 311 labeled fingerprints using two
mea-surement scans qualitatively comparable to the one
pre-sented in FIG. 15. The points within the test dataset are
evenly distributed among the five possible states, with 64
points belonging to the ND class, 58 to the SDL class, 61 to
the SDC class, 64 to the SDR class, and 64 to the DD class.
[0146] Using the fingerprinting configuration for six
evenly spaced rays of length 60 pixels (30 mV) and a weight
function Y(x)=1/x we achieve an average accuracy of 87.1
(2.0) % (N=20 mod-els). The number of rays, their length,
and the choice of the weight function are all considered free
parameters of the RBC framework. To optimize the machine
learning process, we start by testing the effect of the weight
func-tion on the performance of the classifier. We use the
four most promising combinations of the number of rays and
the ray length for five and six rays of length 50 pixels (25
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mV) and of length 60 pix-els (30 mV). In our analysis, we
consider a collection of three decreasing weight functions
with varying decay rates: y(x)=1/%, y(x)=exp(-x), and y(x)
=1-x", where Xx"=(x-min x)/(min x-max x) denotes the
min-max normalization. In addition, we consider two node-
creasing functions: the min-max normalization y(X)=x
and the raw distance y(x)=x. The inset at the top of FIG.
16(a) shows the performance of the RBC on simu-lated data.
For y(x)=exp(-x), the performance is sig-nificantly worse
than for the other considered functions, averaging at 49(3) %
for six rays and 57(3) % for 12 rays (for clarity not included
in the figure). The performance is greatly improved when the
argument is min-max nor-malized, resulting in 95.1(4) %
accuracy for six rays and 96.4(4) % accuracy for 12 rays.
This suggests that for the non-normalized data the decay rate
is too high, mak-ing the features indistinguishable for the
DNN. For com-pleteness, we also consider the min-max
normalized ver-sion of the function y(x)=1/x, finding no
difference in performance when compared with the original
function [95.4(4) % vs 96.7(4) % for six rays and 94.9(4) %
vs 96.1(4) % for 12 rays.

[0147] Finding no difference in performance when using
sim-ulated data, we test all functions using the test set of
off-line experimental data. FIG. 16(a) shows the RBC
performance. While in the absence of noise, all func-tions
considered perform comparably, we find that in the presence
of noise, normalization of data with y(x)=1/x consistently
leads to significantly better classification ac-curacy than
normalization with the other functions. For experimental
data the performance of the classifier de-creases signifi-
cantly as the weight function rate of change increases. For
the functions tested, y(x)=1/x has the best balance of sensi-
tivity and robustness against the variability in peak shape
and position (see FIG. 15()). Additional exploration of
different weight functions and peak-finding methods may
further improve the performance.

[0148] With the measurement efficiency in mind, we also
test the effect of the number of rays and their length on the
performance. We use M-projections with M=5, 6, 7, 9, and
12 rays and with lengths ranging between 20 pix-els (10
mV) and 80 pixels (40 mV), sampled every four pixels (2
mV). Since the ray length directly affects the fingerprints
(i.e., shorter rays will naturally miss a tran-sition line that
would be detected with a longer ray), the rays in the
simulated dataset used to train DNNs are adjusted appro-
priately to ensure compatibility. As FIG. 16(b) shows, we
find that including more rays does not necessarily lead to
greater or more reliable accuracy. In addition, for each
number of rays considered, there seems to be an optimal
length beyond which the perfor-mance either stays
unchanged or slightly drops until it reaches equilibrium.

[0149] To test the RBC in situ, we develop a measurement
routine that enables live acquisition of ray data. After
selection of a point xo, voltages on gates P1 and P2 are
changed in tandem to achieve straight voltage rays em-
anating from xo. This is, in effect, virtual gating of the (VP1,
VP2) voltage space. The performance of the classifier for
live measurement of 36 points is shown in FIG. 17(a), with
the orientations of the stars indicating the measurement
directions. A quality check on the set of rays is performed
before the RBC to prevent classifica-tion of poorly charge
sensed data [see the changing back-ground signal on the left
side of FIG. 17(a). The check in-volves benchmarking of the
distribution of voltages mea-sured for a given set of rays-
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ranging from 120 voltage values for a set of five rays of
length 12 mV to 720 voltage values for 12 rays of length 30
mV-against a thresh-old established off-line before the
experiment based on previously measured rays with clearly
discemible charge transitions. Of the 36 measured points,
nine are ex-duded from classification on the basis of the
threshold test. The remaining are colored in FIG. 17(a)
according to the class returned by the RBC. While in the
online testing we used M-projections with M=6 rays of
length 22 mV, the measurement captured M=12 rays of
length 40 mV. Additional off-line testing using longer rays
does not change the classification results and neither does
in-clusion of the full 12-rays projections. This suggests that
the protocol used to determine the noise level and signal
prominence from real data might require further improve-
ments. Recalibration of the sensor after each set of rays
could also increase the signal-to-noise ratio and lead to more
prominent transitions.

[0150] To assess the performance for a larger set of points,
we run the RBC off-line for a set of 2,500 points presampled
from a large scan. The performance is shown in FIG. 17(b).
We see that the classifier correctly captures the broad regions
in the voltage space that correspond to single QDs—central,
left and right—as well as double QD. The most common
failure cases corresponds to xo coincidentally lying on the
transition lines and in the re-gions where the lock-in mea-
surement is insensitive (tran-sitions of the P2 QD).

[0151] The RBC combined with an optimization loop can
be used to tune the device from one state to another (e.g.,
from single-QD state to a double-QD state). We perform
off-line tuning by initializing the device at a given point in
the space of plunger voltages xo=(VP1,VP2) and then
optimizing a fitness function over a premeasured scan to
mimic an actual tuning run. The fitness function quanti-fies
how close the probability vector returned by the RBC is to
the desired target state. We use the fitness function:
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where ||| is the Euclidean norm, ptarget is the proba-bility
vector for the target state, p(xo) is the probability vector
returned by the RBC at xo, and &(x0) is a penalty function
for tuning to larger plunger voltages. We use g(x0) x{tan
h[(VP1-VP01)/VO]+tan h[(VP2-VP02)/V0]}, where Vp,°
and V ,° are previously determined pinch-off values and VO
is a voltage scale normalizing the argu-ment of the tan h
function. We use V0=20 mV, approx-imately equal to the
charging energy of the QDs. The penalty function acts as a
regularization function for the bare Fuclidean distance
between the current and target state probability vectors. In
particular, it adds a smooth gradient to the background as
well as helps the optimizer escape from local minima.

[0152] We use the Nelder-Mead optimizer implemented in
SciPy. The optimizer maintains a set of objec-tive function
values at a simplex of n+1 points in n-dimensional space; in
our case it amounts to evaluation on vertices of a triangle in
2D gate space. The orenta-tion of the initial simplex is
chosen dynamically on the basis of the initial state returned
by the RBC and is ob-tained by changing the voltages on
each of the plungers by 40 mV. The optimizer works by
moving the simplex toward a minimum of the objective
function on the basis of the function values at the simplex
vertices. Since we lack analytic information about the
derivative of the fit-ness function (Eq. 3 in this example), the
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Nelder-Mead optimizer is well suited for our purpose as it
relies only on function evaluations.

[0153] We perform an off-line tuning on a sample pre-
measured large 2D scan to test the viability of the RBC
framework in tuning the device state. The final state to be
tuned to is set to the double-QD state. The initial points are
uni-formly sampled in a square grid over a range of 200 mV,
which encompasses approximately 18 electron transitions
[highlighted in FIG. 18(a)]. During the tuning loop, the rays
are sampled at each point by linear interpola-tion within the
2D scan on a grid. FIG. 18 shows a scatter plot of the final
state at the end of the tuning loop. To quantify the perfor-
mance, we define a triangular region [highlighted in FIG.
18(a)] as the success region for tuning to a double-QD state.
We report a tuning success rate of 78.7% for a set of 225
uniformly sampled initial points, with an additional 10.2%
of the points landing in an area that moderately resembles
double-QD features. For comparison, the success rate for
tuning the 2D scans is 75(32) % when the tuning is started
from a region enclosing at most nine transition lines.
[0154] We perform off-line tuning in a three-dimensional
(3D) space formed by a series of scans in the plunger gates
space taken at different values of the middle barrier gate. As
can be seen in FIG. 18(5), by varying the middle barrier
from -100 to 150 mV, the device can be tuned from having
predominantly double-QD features to having predominately
single-QD features. The green overlays on the scans in FIG.
18(b) highlight the double-QD regions. For reference, the
scan used in FIG. 18(a) is taken with the middle barrier set
to 50 mV. The rays at a given point (VP1, VP2, VB) are
sampled as before in the plunger space, but the fitness
function now includes VB in its argument. We initialize 100
tuning runs within the top scan, as highlighted in cyan in
FIG. 18(b), and tune to the double-QD state, finding an
overall success rate of 67% for tuning in three dimensions.
[0155] The failure modes for the tuning process in both
two dimensions and three dimensions include landing at
tran-sition lines where the fingerprint does not correspond to
either a single-QD state or double-QD state as well as
converging to local minima of the fitness function. Although
the addition of regularization e(x0) mitigates the latter to
some extent, further work on optimization algorithms is
necessary to increase the tuning success rate. Incorporation
of'a CNN-based classifier to verity the state of the final state
and, if necessary reinitiate the autotuner, would likely help
alleviate the former is-sue. In comparison with the tuning
results reported with CNNs, the RBC framework requires a
compara-ble number of iterations to achieve the same end
goal, leading to a significant reduction in data acquisition
(approximately 60%) with use of rays instead of 2D scans.
[0156] An experimen-tal implementation of the ray-based
classification frame-work using double-quantum-dot
devices was examined. We propose a measurement scheme
relying on one-dimensional projec-tions in the plunger gates
space as means to “fingerprint” the device states. With
measurement efficiency in mind, we consider various com-
binations of the number of rays and the length of rays as well
as multiple weight functions to determine an optimal bal-
ance between measurement load and classification accuracy.
We show that for the device used, the performance accuracy
remains at about 87% regardless of whether six, seven, or
nine rays are used. This translates to an up to approximately
70% reduction in the number of measured points needed for
classification compared with the CNN-based approach.
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Increasing the number of rays to 12 results in an accu-racy
of about 90%, while reducing the number of points mea-
sured by 40%. See FIG. 19 for comparison of all ray
numbers tested.

[0157] We also show how the RBC framework can be
imple-mented to tune the QD device in 2D and 3D gate
space. We perform autotuning on a series of premeasured
scans in 2D and 3D gate voltage spaces, reliably tuning the
device from one state to another. In this work, we fo-cus on
automated tuning of a QD device into a voltage space with
coupled double QDs. It is also important to note that this
tuning scheme does not achieve a spe-cific occupation of
each QD, but rather achieves a few-electron double-QD
regime. Depending on the intended functionality, (single-
electron qubit, multielectron qubit, etc), additional methods
are required to achieve an exact occupation for each QD.
[0158] With the noisy intermediate-scale quantum tech-
nology era on the horizon [38], it is important to consider the
practical aspect of implementing automated control as part
of the device itself, in the “on-chip” fashion. The network
architecture necessary for RBC is significantly simpler and
smaller than for CNN-based classification, making it more
suitable for an implementation on minia-turized hardware
with low power consumption. In particular, the neural net-
work used to train the RBC comprises only four fully
connected dense layers with 128, 64, 32, and 5 units,
respectively. The total number of parameters necessary for
the RBC is about 1.2x10*

[0159] With increasing complexity of QD devices in both
QD number and gate geometry, the need for automated state
identification and tuning will increase. With the develop-
ment of QD-based spin qubits using industrial technologies,
a technique that enables efficient and scalable characteriza-
tion of QDs for qubit applications is necessary and provided
by the RBC framework for measurement-cost-effective
solution for state classifica-tion and tuning.

Example 3. Bounds on Data Requirements for the
Ray-Based Classification

[0160] The problem of classifying high-dimensional
shapes in real-world data grows in complex-ity as the
dimension of the space increases. For the case of identifying
convex shapes of different geometries, a new classification
framework has recently been proposed in which the inter-
sections of a set of one-dimensional representations, called
rays, with the boundaries of the shape are used to identify the
specific geometry. This ray-based classi-fication (RBC) has
been empirically verified using a synthetic dataset of two-
and three-dimensional shapes and has been validated experi-
mentally. Here, we establish a bound on the number of rays
necessary for shape classification, defined by key angular
metrics, for arbitrary convex shapes. For two dimensions,
we de-rive a lower bound on the number of rays in terms of
the shape’s length, diameter, and exterior angles. For convex
polytopes in RN, we generalize this result to a similar bound
given as a function of the dihedral angle and the geometrical
parameters of polygonal faces. This result enables a different
approach for estimating high-dimensional shapes using sub-
stantially fewer data elements than volumetric or surface-
based approaches.

[0161] The problem of recognizing objects within images
has received immense and grow-ing attention in the litera-
ture. Aside from visual object recognition in two and three
dimensions in real-world applications, such as in medical
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images segmentation or in self-driving cars, recognizing and
classifying objects in N dimensions can be im-portant in
scientific applications. A problem arises in cases where data
is costly to procure; another problem arises in higher dimen-
sions, where shapes rapidly be-come more varied and com-
plicated and classical algorithms for object identification
quickly become difficult to produce. We combine machine
learning algorithms with sparse data collection techniques to
help overcome both problems.

[0162] The method we explore here is the ray-based
classification (RBC) framework, which utilizes information
about large N-dimensional data sets encoded in a col-lection
of one-dimensional objects, called rays. Ultimately, we wish
to explore the theoretical limits of how little data—how few
rays, in our case—is required for re-solving features of
various sizes and levels of detail. In this paper, we determine
these limits when the objects to be classified are convex
polytopes.

[0163] The RBC framework measures convex polytopes
by choosing a so-called obser-vation point within the poly-
tope, shooting a number of rays as evenly spaced as possible
from this point, and recording the distance it takes for each
ray to encounter a face. While it is reasonable to expect that
an explicit algorithm for recognizing polygons in a plane can
be developed, in arbitrary dimension such an explicit algo-
rithm would be tedious to produce and theoretically
unelightening. We leave the actual classification to a
machine learning algorithm.

[0164] The process here is applicable to quantum infor-
mation systems, e.g., in calibrating the state of semiconduc-
tor quantum dots to work as qubits. The various device
configurations create an irregular polytopal tiling of a con-
figuration space, and the specific shape of a polytope con-
veys useful infor-mation about the corresponding device
state. We map these shapes as cost-effectively as possible.
Here, the cost arises because polytope edges are de-tected
through electron tunneling events which places hard physi-
cal limits on data acquisition rates. Apart from this original
application, the techniques we developed should be valuable
in any situation where object classification must be done
despite constraints on data acquisition.

[0165] In the broad field of data classification in N=2, 3,
4, etc. dimensions, there are many unique approaches, often
tailored to the constraints of the problem at hand. For
example, higher dimensional data can be projected onto
lower dimensions to employ standard deep learning tech-
niques such as 3D ConvNets. Multiple low dimensional
views of higher dimensional data can be collected to ease
data collection and recognition. Models such as ShapeNets
directly work with 3D voxel data. Data collected using depth
sensors can be presented as RGB-D data or point clouds
representing the topology of features present. Often, depth
information is sparsely collected due to limitations of the
depth sensors themselves. Within the field of representing
3D or higher dimensional data as point clouds, data can be
treated in various ways such as simply N-dimensional
coordinates in space, patches, meshed polygons, or summed
distances of the data to evenly spaced central points. Criti-
cally, the RBC approach is suited for an environment in
which data can be collected in any vector direction in N
dimensional space while even coarse data collection of the
total space would be practically too expensive or unfeasible.
[0166] The complexity of any classification problem
intensifies in higher dimensions. This is the so-called curse
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of dimensionality, which has a negative impact on general-
izing good performance of algorithms into higher dimen-
sions. In general, with each feature and dimension, the
minimum data requirement increases exponentially. This
can be seen Vin the present work: according to Theorem 4.2,
the data requirement increases like NeaN. At the same time,
in many applications data acquisition is very expensive,
resulting in datasets with a large number of features and a
relatively small number of samples per feature (so-called
High Dimension Low Sample Size datasets).

[0167] Begin with a convex region Q<= RN along with a
point xo, the observation point, in the interior of Q. Given
a unit vector v, the ray based at xo in the direction v is

R, ~{xovief0,)}. G.1)

[0168] The set of directions v at xo is naturally param-
eterized by the unit sphere SN-1. M many directions v1, .
.., vMeSN-1 produces M many rays {Ri}iM=1, Ri=Rxo,vi
based at xo. Because Q is convex, in the direction vi there
will be a unique distance ti at which the boundary 3Q is
encountered. Given a set of directions and an observation
point, the corresponding collection of distances is called the
point fingerprint.

[0169] Definition 3.1. Given a convex region Q, a point
x0'Q, and a set of directions {vi}/,,.,CSN-1, the corre-
sponding point fingerprint is the vector

FiQx (v} = :/rxo(ll ----- lag) (€))

where tie(0, oo] is unique value with xo+tiviedQ.

[0170] In practice, there will be an upper bound on what
values the ti may take, which we call T. If the ray does not
intersect 2Q prior to distance T, one would record ti=co,
indicating the region’s boundary is effectively infinitely far
away in that direction.

[0171] The fingerprinting process is depicted in FIG.
20(a). The question is to what extent one can characterize,
or approximately characterize, convex shapes knowing only
a fingerprint. If nothing at all is known about the region Q
except that it is convex, full recognition requires infinitely
many rays measured in all possible directions, effectively
resulting in measuring the entire N-dimensional space.
However, it turns out that if one puts restrictions on what the
objects could be—for instance if it is known that Q must be
a certain kind of polytope—information captured with a
fingerprint may be sufficient. Better yet, if we do not require
a full reconstruction of the shape but only some coarser form
of identification, for example if we must distinguish tri-
angles from hexagons but do not care exactly what the
triangles or hexagons look like, then we can do with even
smaller fingerprints.

[0172] With an eye toward eventually approximating arbi-
trary regions with polytopes, we define the following poly-
tope classes.

[0173] Definition 3.2. Given N*{2, 3, ... } and d, 1, a>0,
let Q(N, d, 1, ) be the class of convex polytopes in RN that
have diameter at most d, all face inscription sizes at least 1,
and all exterior dihedral angles at most a.

[0174] The “inscription size” of a polytope face is the
diameter of the largest possible (N-1)-disk inscribed in that
face. In the case N=2, polytopes are just polygons and
polytope faces are line segments. In this case the inscription
size of a face is just its length. For the case of N=3, the
inscription size of a face is the diameter of the largest
possible disk inscribed in this face, see FIG. 20(5). We can
now formulate the following identification problem.
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[0175] Problem 3.1 (The identification problem). Given a
polytope QeQ(N, d, 1, o), determine the smallest M so that,
no matter where x0eQ is placed, a fingerprint made from no
more than M many rays is sufficient to completely charac-
terize Q.

[0176] Again, the actual identification is done with a
machine learning algorithm. In R%, we actually solve this
problem and find an optimal value of M. In higher dimen-
sions we find a value for M that works, but could be
sharpened in some applications.

[0177] Hidden in Problem 3.1 is another problem we call
the ray placement problem. To explain this, note that a large
number of rays may be placed at xo, but if the rays are
clustered in some poor fashion, very little information about
the polytope overall geometry will be contained in the
fingerprint. This means that before one can determine how
many rays are needed, one must already know where to
place the rays.

[0178] In R? this placement problem is easily solved:
choosing a desired offset v0, the vi are placed at intervals of
27/M along the unit circle. In higher dimensions the place-
ment problem is much more difficult and we have to work
with suboptimally-spaced rays. In fact, as we discuss later in
this paper, even in R® an optimal placement is out of reach.
To overcome this problem, we propose a general placement
algorithm that works in arbitrary dimension and is reason-
ably sharp. As we show, the pro-posed algorithm is sufficient
to enable concrete estimates on the numbers of rays required
to resolve elements in Q(N, d, 1, o).

[0179] In many practical applications, such as calibration
of quantum dot devices men-tioned earlier, Problem 3.1 is
much too strict. We may not need to reconstruct polytopes
exactly but only classify them to within approximate speci-
fications. For example, we may only wish to know if a
triangle is “approximately” a right trian-gle, without needing
enough data to fully reconstruct it. Or we may wish to
distin-guish triangles and hexagons, and not care about other
polyhedra. Theoretically, this involves separating the full
polytope set Q(N, d, 1, o) into disjoint subclasses K C1, . .
.. CKcQ(N, d, 1, o), with possibly a “leftover” set CL=Q(N,
d, 1, api=1 Ci of unclassifiable or perhaps unimportant
objects. The idea is that an object’s importance might not lie
in its exact specifications, but in some characteristic it
possesses.

[0180] Problem 3.2 (The classification problem). Assume
QN, d, 1, o) has been partitioned into classes {Ci}iK=1.
Given a polytope Q, identify the Ci for which QeCi.
[0181] The classification problem is eminently more suit-
able for machine learning than the full identification prob-
lem. This is in part because the outputs are more discrete (we
can arrange it so the algorithm returns the integer i when
QeCi), and in part because machine learning usually pro-
duces systems good at identifying whole classes of examples
that share common features, while ignoring unimportant
details. Importantly, a satisfactory treatment of the classifi-
cation problem can lead to solutions of more complicated
problems, such as classifying compound items like tables,
chairs, etc. in a 3D environment or geometrical objects
obtained through measurements of an experimental variable
in some parameter space. Depending on the origin or pur-
pose of such objects, they naturally belong to different
categories. For example, in the 3D real world, furniture and
plants define two distinct classes that, if needed, can be
further subdivided (e.g., a subclass of chairs, tables). Objects
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belonging to a single class, in principle, share common
characteristics or similar geometric features of some kind.

[0182] In the quantum computing application boundaries
are identified by measuring discrete tunneling events, and
there is little ambiguity in determining when a boundary was
crossed. Since the fingerprinting method relies on identify-
ing boundary crossings, in other circumstances boundary
detection might require some other resolution. Here,
machine learning methods compensate for boundaries that
are indistinct or partially undetectable, as such algorithms
often remain robust in the presence of noise.

[0183] A solution to Problem 3.2 in the supervised learn-
ing setting is obtained by training a deep neural network
(DNN) with the input being the point fingerprint and an
output identifying an appropriate class. Apriori it is unclear
how many rays are nec-essary for a fingerprint-based pro-
cedure to reliably differentiate between polytopes. With data
acquisition efficiency being the focus of this work, we want
to theoret-ically determine the lower bound on the number
of rays needed. Such a bound is fully within reach for
polygons in R? (Theorem 4.1), and can be approximated in
all higher dimensions (Theorem 4.2).

[0184] For a polytope face to be visible in a fingerprint, at
least one ray must intersect it. To establish not only the
presence of a face but its orientation in N-space, at least N
many rays must intersect it. The smaller a face is, the further
away from the observation point xo it is, or the more highly
skewed its orientation is, the more difficult it is for a ray to
intersect it. We address the case of polygons in R* first, as we
obtain the most complete information there.

[0185] Recall that Q(2, d, 1, &) is the class of polygons in
the plane with diameter<d, all edge lengths>], and all
exterior angles<a.

[0186] Theorem 4.1 (Polygon identification in R?).
Assume Q is a polygon in Q(2, d, 1, @), and let xo be a point
in the polygon’s interior, from which M many evenly spaced
rays emanate. If
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then two or more rays will intersect each boundary segment
of Q, and one segment will be hit at least 3 times. The
notation above indicates the usual ceiling function.

[0187] Knowing the location of two points on each edge is
almost, but not quite, suffi-cient for identifying the polygon.
There remains an ambiguity between the polygon and its
dual; see FIG. 21(b). This is resolved if at least one edge is
hit 3 times. Theorem 4.1 completely solves the identification
problem in R*.

[0188] Identification in RN follows a largely similar
theory, with two substantial changes. The first is that we
must change what is meant by the angular span of a face, the
second is that we must deal with the ray placement problem
mentioned. The notion of angular span is relatively easily
adjusted (see FIG. 22(a)).

[0189] Definition 4.1 (Angular span). If Q is a convex
polytope in RN, N>2, xo is an observation point in Q, and
L is a face of Q, the angular span of L is the cone angle of
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the largest circular cone based at xo so that the cross-section
of the cone that is created by plane containing L lies entirely
within L.

[0190] We create a solution for the ray placement problem
with an induction algorithm, but first we require some
spherical geometry. Given two points v, weSN-1, let
DistSN—-1 (v, w) be the great-circle distance between them
(see FIG. 22(b) for visualization in R?). Given veSN—1, we
define a ball of radius r on SN-1 to be

B (r={we 3 NDistov- 1y, w)Er}. 4.3)

[0191] For example, a ball Bv(x) of radius u is the entire
sphere itself, and any ball of the form Bv(x/2) is a hemi-
sphere centered on v. It will be important to know the
(N—1)-area of the unit sphere SN—1, and also the (N—1)-area
of any ball Bv(r)cSN-1. The standard area formulas from
differential geometry are

o @.4)
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N-1
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[0192] The evaluation of Jsin¥2(p)dp is a bit unwieldy,
but it will be enough to have the bounds

LEl LE! @.5)
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[0193] Definition 4.2 (Density of points in SN-1). Let
PcSN-1 be a finite col-lection of points P={v1, . . ., vk},

vieSN-1 for 1<i<k. We say that the set P is ¢-dense in SN—1
if, whenever veSN—1, then there is some vieP with
DistSN-1 (v, vi)<o.

[0194] We can now give a solution to the ray placement
problem on SN—1. We use an inductive point-picking pro-
cess. Pick a value 0; this will be the density one desires for
the resulting set of directions on SN—1. Begin the induction
with any arbitrary point vleSN—1. If ¢ is small enough that
Bv1 (0) is not the entire sphere, then we select a second point
v2 to be any arbitrary point not in Bv1 (¢). Continuing, if
points v1, . . ., vi have been selected, let vi+1 be any
arbitrary point chosen under the single constraint that it is
not in any Bvj (0), j<i. That is, choose vi+1 arbitrarily under
the constraint

Vi€ SNNE, (@) ... B, (o), @.6)

should such a point exist. Should such a point not exist,
meaning Bvl (¢) ... NBvi () already covers SN—1, the
process terminates, and we have our collection P={v1, . . .
, vi}.

[0195] Whether an algorithm terminates or not is always a
vital question. This one does, and Lemma 4.1 gives a
numerical bound on its maximum number of steps. This
process requires numerous arbitrary choices—each point vi
is chosen arbitrarily except for the single constraint that it
not be in any of the Bvj (¢), j<i—so it does not produce a
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unique or standard placement of points. This contrasts to the
very orderly choice of directions vi=v0+2%i/M on S1 that we
relied on in Theorem 4.1. Nevertheless, a set selected in this
manner does have valuable properties, which we summarize
in the following lemma.

[0196] lLemma 4.1 (Properties of the placement algo-
rithm). Let P={vl, v2, . . . }&SN-1 be any set of points
chosen using the inductive algorithm above. Then

N-1 4.7
M= '\IZHN( ) . @7

sin(p/2)

[0197] Theorem 4.2 (Polytope identification in RN).
Assume QeQ(N, d, 1, ). It is possible to choose a set of M
many directions {vi}iM=1 so that given any observation
point xo0eQ, the corresponding rays Ri=Rxo,vi have the
following properties: (1) The collection of rays {Ri}iM=1
strikes each polytope face N or more times. (2) The number
of rays M is no greater than

V-1 @.10)
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[0198] The estimate (4.10) can be improved if our solution
for the placement problem can be improved. The optimal
placement problem is unsolved in general; this and related
problems go by several names, such as the hard spheres
problem, the spheri-cal codes problem, the Fejes T’oth
problem, or any of a variety of packing problems. A theo-
retical bound in any dimension, benchmarking, and com-
parison are provided. Codes that are empirical can include,
once a particular setting has been chosen, a look-up table.
[0199] Problem 3.2 in the context of the quantum dot
dataset studied considers electrons that are held within two
potential wells of depths d1 and d2, which can be adjusted.
Depending on these values, elec-trons might be confined,
might be able to tunnel between the two wells or travel
freely between them, and might be able to tunnel out of the
wells into the exterior electron reservoir. Individual tunnel-
ing events can be measured, and, when plotted in the d1-d2
plane, create an irregular tiling of the plane by polygons. The
polygonal chambers represent discrete quantum configura-
tions, and their boundaries repre-sent tunneling thresholds.
The shape of a chamber provides information about the
quantum state it represents.

[0200] One cap map the (d1, d2) configurations onto the
quantum states of the device by taking advantage of the
geometry of these polygons. With scal-ability being the
overall objective, it was essential that the mapping requires
as little input data as possible. For theoretical reasons it is
known that each of the lattice’s polygons belongs to one of
six classes; roughly speaking, these are quadri-lateral, hexa-
gon, open cell (no boundaries at all), and three types of
semi-open cells. Further, the hexagons themselves are
known to be rather symmetric: they have center-point sym-
metry, with four longer edges typically of similar length, and
two shorter edges of equal length (see FIG. 24(a)).

[0201] In the language of Problem 3.2, the interesting
subclasses of polygons are C1: the hexagons with the
symmetry attributes we described, including the quadrilat-
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erals which are “hexagons” with a=0; C2, C3, C4: three
kinds of semi-open cells contained between parallel or
almost parallel lines; and C5: the open-cell, which has no
boundaries at all. The three classes of polygon C2, C3, C4
are distinguished from one another by their slopes in the
d1-d2 plane: polygons in class C2 are between parallel lines
with slopes between about 0 and —'%, in class C3 between
about —4, and about —2, and class C4 between about —2 and
—oo. All other polygon types, for these purposes, are unim-
portant and can go in the “leftover” CL category. The
question is how few rays are required to distinguish among
the polygons within these classes.

[0202] In the quantum dot dataset, we must address one
additional complication: the “aperture,” that is the shortest
segment in FIG. 24(a), is sometimes undetectable. The
physical reason for this is that crossing this barrier repre-
sents electron travel between the two wells, and this event is
often below the sensitivity of the detector.

[0203] Prop 4.1. Let xo be an observation point which
might be within a polygon of type C1-C5. Five rays are
needed to distinguish these types. If the short segment is
undetectable and the hexagon has the dimensions indicated
in FIG. 24(a), then
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many rays are needed to distinguish these types.

[0204] The theoretical bound given by Eq. (4.12) is com-
pared with the performance of a neural network trained to
recognize the difference between strips and hexagons, and a
neural network approaches the theoretical ideal. In actual
quantum dot environments, values of a lie between about 0
(where the hexagon degenerates to a quadrilateral) and about
1 w. For these values of a/w, Eq. (4.12) gives theoretical
bounds on the necessary number of rays between six and
about nine. Training experiments confirm that six rays and
relatively small DNN are in fact sufficient to obtain classi-
fication accuracy of 96.4% (averaged over 50 training and
testing runs, standard deviation 6=0.4%). This performance
is on par with a ConvNet-based classifier using two-dimen-
sional (2D) images of the shapes for which average accuracy
of 95.9% (6=0.6%). RBC has been verified using experi-
mental data, both off-line (i.e., by sampling rays from
pre-measured large 2D scans) and on-line (i.e., by directly
measuring the device response in a ray-based fashion). The
RBC outperformed the more traditional 2D image-based
classification of experimental quantum dot data that relied
on convolutional neural network while requiring up to 70%
less data points.

[0205] With respect to ray based classification framework
for convex polytopes, a lower bound on the number of rays
for shape identification in two dimensions with generalized
the results to arbitrary higher dimensions has been
described.

[0206] Since objects in N-dimensional space can be
approximated by convex polytopes, provided they are suit-
ably rectifiable, this technique opens the way to generaliza-
tion. The problem of dividing a complicated object into a set
of approximating polytopes can be considered a form of
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salience recognition and data compression—of detecting
and storing the most useful or important features of the
object. When the data itself is scarce or costly to procure,
one seeks methods that economize on input data while
retaining salience recognition, even at the expense of some
accuracy loss or of requiring heavy computing resources.
RBC incorpo-rating multiple intersections of the rays can be
extended to solve problems where multiple nested shapes
are present enclosing the observation point. Ray-based data
acquisition combined with machine learning provides a path
forward.

Example 4. Robust Autotuning of Noisy Quantum
Dot Devices

[0207] Conventional autotuning approaches for quantum
dot (QD) devices, while showing some success, lack an
assessment of data reliability. This leads to unexpected
failures when noisy data is processed by an autonomous
system. In this example, we describe a framework for robust
autotuning of QD devices that combines a machine learning
(ML) state classifier with a data quality control module. The
data quality control module acts as a “gatekeeper” system,
ensuring that only reliable data is processed by the state
classifier. Lower data quality results in either device recali-
bration or termination. To train both ML systems, we
enhance the QD simulation by incorporating synthetic noise
typical of QD experiments. We confirm that the inclusion of
synthetic noise in the training of the state classifier signifi-
cantly improves the performance, resulting in an accuracy of
95.1(7) % when tested on experimental data. We then
validate the functionality of the data quality control module
by showing the state classifier performance deteriorates with
decreasing data quality, as expected. Our results establish a
robust and flexible ML framework for autonomous tuning of
noisy QD devices.

[0208] Gate-defined semiconductor quantum dots (QDs)
are a quantum computing technology that has potential for
scalability due to their small device footprint, operation at
few Kelvin temperatures, and fabrication with scalable tech-
niques. However, minute fabrication inconsistencies present
in current devices mean that every qubit must be individu-
ally calibrated or tuned. To enable more efficient scaling, this
requirement can be met with automated methods.

[0209] Automated tuners, both ML- and non-ML-based,
make many sequential decisions based on limited data
acquired at each step. In such a framework, small er-ror rates
can quite rapidly compound into high failure rates. One
failure mode of QD autotuning algo-rithms is signal-to-noise
ratio (SNR) reductions during the tuning process. One way
to avoid tuning failure and to promote trust in ML-based
automation is to use an assessment techniques to verify the
quality of data before moving forward with tuning.

[0210] In this example, a framework for robust automated
tuning of QD devices that combines a convolutional neural
network (CNN) for device state estimation with a CNN for
assessing the data quality is described. Synthetic noise
characteristic of QD devices are used train these two net-
works. To establish the validity of the noisy dataset, we first
train a CNN module to classify device states and achieve an
accuracy of 94.8(9) % on exper-imental data—an improve-
ment of 47% over the mean accuracy of neural networks
trained on noiseless simula-tions. We then use the noisy
simulations to train a data quality control module for deter-
mining whether the data is feasible for state classification.
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We show that the latter not only makes intuitive predictions,
but also that the predicted quality classes correlate with
changes in classifier performance. These results establish a
scalable framework for robust automated tuning and
manipulation of QD devices.

[0211] Conventional automation proposals for QDs lack
an assessment of the prediction reliability. This largely stems
from a lack of such measures for ML, though for some
approaches the “quantitative” rather than “qualitative”
nature of labels further complicates this issue. The quanti-
tative nature of prediction means that partial state identifi-
cation is not only expected but might be necessary for
successful operation. A two-state prediction for a given scan
should indicate that the scan captures a transition between
those states, which is used for tuning. At the same time, if
the SNR is low or in the presence of unknown fabrication
defects, such a mixed prediction might instead indicate
model confusion. In the latter case, if such confusion is not
accounted for and corrected, it is likely to result in autotun-
ing failure.

[0212] To overcome this issue, we describe a framework
that involves a device state estimation module (DSE) com-
bined with an MI-based data quality control module (DQC)
to alert the autotuning system when the measured scan is
unsuitable for classification. A flow of the framework is
shown in FIG. 25. The DQC module includes a CNN
classifier with a three-level output signaling the quality of a
scan. If the scan is classified as high quality, the DSE module
followed by an optimization step is exe-cuted. For scans
classified at the intermediate moderate quality, a device
recalibration step is initiated. Depending on the device and
the level of system automation, this step can include read-
justment of the sensor, validation of the gate cross-capaci-
tances, or barrier gate adjustments, among other things. To
better gear the recalibration, this step could be preceded by
noise analysis to determine the most prominent types of
noise affecting the quality of the scan. Finally, scans with
low quality indicate that there might be a bigger underlying
issue. This class results in autotuning termination.

[0213] Relatively shallow CNN-based noise estimation
models can be used for some image pro-cessing and denois-
ing tasks. However, the ability to de-velop and prepare such
estimators hinges on the avail-ability of training data. The
noise features present in QD devices can be complex and
vary significantly be-tween devices. A reliable training data-
set has to account for the different types and magnitudes of
noise that can be encountered experimentally. While full
control over the noise is unfeasible experimentally, it can be
achieved with synthetic data, where the different types and
magnitudes of physical noises can be controllably altered.

[0214] To establish a benchmark performance for com-
pari-son with CNN classifiers trained on synthetic noise, we
use a dataset of about 1.6x104 noiseless measurements. The
QD simulator we use is based on a simple model of the
electrical gates and a self-consistent potential calculation
and capacitance model to determine the stable charge con-
figuration. This simulator is capable of generating current
maps and charge stability diagrams as a function of various
gate voltages that reproduce the qualitative features of
experimental charge stability diagrams. The simulated data
represent an idealized device in which the charge state is
sensed with perfect accuracy. FIG. 26(a) shows a sample
noiseless simulated stability diagram.
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[0215] To validate the synthetic noise and test the perfor-
mance of the state classifiers, we generate a dataset of 756
manually labeled experimental images. This data was ac-
quired using two quadruple QD devices, both fabricated on
a Si/S1,Ge, _, heterostructure in an accumulation-mode over-
lapping aluminum gate architecture and operated in a double
dot configuration. The gate-defined QD devices use electric
potentials defined by metallic gates to trap single electrons
either in one central potential, or potentials on the left and
right side of the device. Changes in the charge state are
sensed by a sin-gle electron transistor (SET) charge sensor.
The charge states of the device correspond to the presence
and rel-ative locations of trapped electrons: no dot (ND),
single left (LD), central (CD) or right (RD) dot, and double
dot (DD). We use experimental data consisting of two
different datasets of 82 and 503 images, respectively, as well
as data collected from a different device resulting in 171
images. All images were man-ually labeled by two team
members and any conflicting labels were reconciled through
discussions with the re-searcher responsible for data collec-
tion.

[0216] There are multiple sources of noise in experimental
data: dangling bonds at interfaces or defects in oxides lead
to noise at the device level; thermal noise, shot noise, and
defects in electronics throughout the readout chain result in
noise at the readout level. In many QD devices, changes in
the device state are sensed by conduc-tance shifts in an SET
due to their sensitivity to transi-tions with no change in net
charge. The response of an SET is nonlinear which causes
variation in the signal of charge transitions. The various
types of noise manifest themselves in the measurement
though distortion that might obscure or deform the features
indicating the state of the device (borders between stable
charge regions).

[0217] To prepare a dataset for the DQC module, we
ex-tend the QD simulator to incorporate the most common
sources of experimental noise. We consider five types of
noise: dot jumps, Coulomb peak effects, white noise, 1/f
(pink) noise, and sensor jumps. Experimentally, white noise,
1/f noise, and sensor and dot jumps appear due to different
electronic fluctuations affecting an SET charge sensor.
White noise can be attributed to thermal and shot noise while
the 1/f noise can have contributions from various dynamic
defects in the device and readout circuit. We modeled the
charge sensor with a linear response, though in reality it has
a nonlinear response due to the shape of the Coulomb
blockade peak. We account for this with a simple model of
an SET in the weak coupling regime. Physically, dot jumps
and sensor jumps are two manifestations of the same pro-
cess: electrons populating and depopulating charge traps in
the device, which we model as two level systems with
characteristic excited and ground state life-times. Dot jumps
are the effect of these fluctuations on the quantum dot while
sensor jumps are the effect on the SET charge sensor. We
provide additional details on how we implement these
synthetic noises below.

[0218] Each of the modeled noises can obscure or mimic
charge transition line features, potentially confusing ML
models. White noise and 1/f noise both generate high
frequency components that can be picked up in the charge
sensor gradient. Additionally, the 1/f noise can generate
shapes that look similar to charge transition lines. Sensor
jumps cause large gradients where they oc-cur. By reducing
the gradient, Coulomb peak movement can reduce the
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visibility of charge transitions. Finally, dot jumps can distort
the shapes of charge transition lines. Panels B-F in FIG.
26(a) show charge stability dia-grams with each of the
discussed noise types added (one at a time).

[0219] For each type of noise, we generate a distinct
dataset of about 1.6x104 simulated measurements using the
same device parameters as were used for the noiseless
dataset. The initial noise magnitudes are set to pro-duce
images qualitatively similar to moderately noisy experimen-
tal data. The final magnitudes are optimized through a
semi-structured grid search over a range of val-ues centered
around the initial noise levels. At each step, the correlation
between the noise level and model per-formance on a subset
of experimental images from one of the devices is used to
guide the search. The dataset used to train models for each
noise type are generated by varying each noise parameter
with a standard deviation of 1% of the parameters’ value.
Panel G in FIG. 26(a) shows a sample image with the
optimized combination of noises.

[0220] The final noisy simulated dataset is generated by
fix-ing the relative magnitudes of white noise, 1/f noise, and
sensor jumps and varying the magnitudes together in a
normal distribution. The means of the magnitudes are set to
the optimized values and the standard deviation is one third
of each magnitude’s value. Fixing the relative magnitudes
and varying them together allows this dis-tribution of noise
levels to approximate a range of SNR encountered in
experiments.

[0221] The QD state labels are quantitative so a mixed
label indicates an intermediate state so that a simple entropy
of a model’s prediction cannot be used as a measure of
confusion. Rather, an alternative quality measure needs to be
established. To achieve this, we leverage the simulated noise
framework established in the previous section to perform a
controlled analysis of the DSE module performance as noise
levels are varied.

[0222] Inthe framework presented in FIG. 25, we describe
use of three levels of data quality—high, moderate, and
low—to determine the subsequent actions. Since features
defining the QD states are affected in distinct ways by the
noise, the performance versus noise level analysis is carried
out separately for each state rather than for the whole
dataset. To determine the threshold between the three quality
classes, we generate a dataset of 1.15x105 simulated images
with varying amounts of noise added. We vary the magni-
tudes of all noises that negatively af-fect the SNR (sensor
jumps, 1/f, and white noise) together from Ox to 7x the
optimized noise magnitudes while keeping the dot jumps
noise variation within the 1% used previously. This distri-
bution of noise includes a large variation of noise levels
from near-perfect data to data that has nearly no recogniz-
able QD features. This is necessary for establishing noise
thresholds for the data quality classes that ensure saturation
of the performance of the state classifier at both the low and
high levels.

[0223] By evaluating a state classifier on this dataset we
determine the relationship between the noise level and
performance within each class. From the correlations
between noise level and performance, we establish per-QD
state data quality thresholds. The thresholds are chosen to
en-sure high performance of the state classifier for the high
quality data, an expected degradation of performance for
data with moderate quality, and poor performance on data
with low quality. Specifically, we set the cutoffs us-ing the
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relationship between the model’s mean absolute error
(MAE) and noise level, shown in FIG. 29.

[0224] We set these cutoff levels at relatively conservative
amounts of noise, which would enable a fairly risk-averse
tuning algorithm. This parameter choice could be ad-justed
to the needs of a given application depending on the error
sensitivity of an autotuning method. To ensure that images
in the low noise class are very reliably iden-tified, we set the
threshold between low and moderate noise classes to be at
the noise level where the average MAE has gone up by 2.5%
of the full range, which is similar to a 2 sigma cutoff for the
lower tail of a normal distribution. We set the threshold
between moderate and high noise where the average MAE
has reached 50% of its full range, where the model is
roughly equally likely to be wrong as right for a single state
image.

[0225] With these thresholds, state labels, and the known
amount of noise added, we then assign the simulated data
with quality classes for DQC module training. For this
training we use a distinct dataset with the same distribution
of noise used to set noise class thresholds.

[0226] To prepare the data quality control module (DQC
in FIG. 25), we validate the simulated noise by training a
CNN-based classifier to recognize the state of QD devices
from charge stability diagrams (module DSE in FIG. 25).
We show how each of the added noises affects the classifi-
cation accuracy and confirm that their combination leads to
significant improvement in performance, suggesting
in-creased similarity between the simulated and experimen-
tal data. We then use the noisy simulated data to train the
DQC module. The full experimental dataset is used to
confirm the correlation between the predicted qual-ity class
and classification performance. Finally, we use large scans
to show that the robust model outperforms the simplistic
model and show how the predicted quality classes overlap
with the confusion of the DSE module.

[0227] To determine how the considered noise types affect
the performance of the DSE classifier, we modify the
simulation with each type of noise individually and evaluate
models trained with that data on the experimental test
dataset. For initial testing, we optimize a CNN architecture
defining the simplistic model used for state recog-nition on
noiseless data using the Keras Tuner API baseline, we
include the 52.3(5.1) % test accuracy for models trained on
simulated data without noise added. As expected, the high
classification accuracy of 93.6(9) % achieved during train-
ing drops significantly when the models are used to classify
noisy experimental images. Some data processing tech-
niques used to suppress experimental noise might help with
the performance. Our analysis confirms that preprocessing
of experimental data improves the average accuracy and
reduces the variance between models. However, the
observed accuracy of 59.7(3.1) % (box plot) on the experi-
men-tal dataset is still much lower than necessary for
reliable state assessment.

[0228] When looking at the various types of noise indi-
vidually, analysis reveals that 1/f noise, white noise, and
sensor jumps most significantly improve the model per-
formance, with 71.1(5.6) %, 70.9(6.5) %, and 75.3(6.9) %
accuracy, respectively. Coulomb peaks and dot jumps turn
out to be unhelpful on their own. The latter seems to affect
the performance negatively. Combining all types of noise
results in a significant improvement in both the performance
and variation of the result, with an accuracy of 92.5(7) %.
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For comparison, in the context of simulated transport data,
previous work found that only the sensor jumps, 1/f, and
white noise improved classifier performance, though the
observed improvements were not significant. When com-
bining the noises, a varied SNR was used by varying sensor
jumps, 1/f, and white noise together. This uniformly tunes
the SNR be-tween simulated images as a replacement for the
explicit Coulomb peak. Effectively, this results in a varying
visibility of charge transition lines but with more uniformity.

[0229] Since the model architecture we use was op-ti-
mized for a noiseless dataset, we re-optimize the CNN
architecture using the noisy simulated dataset. This al-lows
us to find a model that is structurally best suited to that type
of data and thus further improve the per-formance. With
these changes, we find an increase in the classification
accuracy by about 2.5% to 95.1(7) %, box plot Gopt in FIG.
26(b). We also test preprocessing of the data to remove
extreme values for completeness and find no significant
difference at 94.8(1.0) % accuracy. Comparing box plots
Aproc and Gopt shows the high level of improvement in QD
state classification we are able to achieve by adding noise to
the simulated training set and optimizing the model.

[0230] To confirm the validity of the thresholds used to
define the three quality classes, we use the experimental
dataset. The DQC module applied to the experimental
images classified 607 images as high quality, 135 images as
moderate quality, and 14 images as low quality. FIG. 27(a)
shows the performance of the optimized state classifiers for
each quality class. The error bars represent the variation in
performance between the 20 optimized models trained using
the noisy dataset (box plot Gopt in FIG. 26(5)). The DSE
module performs well on data assigned as low noise, with
96.4(9) % prediction accuracy, and begins to decrease for the
moderate class at 91.9(2.1) %. For data in the high noise
class the models’ performance decreases to 69.3(5.6) %. The
variance in performance also increases as the data quality
degrades. To account for the expected partial predictions
between QD states, we further validate this correlation using
a fine-grained metric. We use the MAE to capture element-
wise deviation. The inset in FIG. 27(a) shows the MAE
between true and predicted labels for the three quality
classes. The observed correlations in accuracy with the
quality class are also seen in MAE. This analysis confirms
that the moderate quality class does indeed capture re-
ductions in SNR that mildly affect model performance,
while the low quality class identifies images that are sub-
stantially more difficult for the DSE module.

[0231] FIG. 27(b) shows sample experimental images
from each of the quality classes and bar plots of the state
pre-diction vectors for the simplistic and robust state clas-
sifiers, as well as the ground truth labels. The top row shows
a high quality DD example correctly classified by both
models, as indicated by the largest DD component in the bar
plot. The middle row shows a sample CD im-age assessed to
have moderate quality and the bottom row shows a low
quality CD image. Both moderate and low quality images
are incorrectly classified by the simplistic model. The level
of'noise in the low quality image in FIG. 27(5) makes it hard
for a human to identify the state. Here, the simplistic model
is confused between LD and DD states while the robust
model correctly identi-fies this image as CD. This illustrates
the level of im-provement that noisy training data provides
for our DSE module.
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[0232] We assess the viability of the proposed frame-work
by performing tests of the DSE and DQC modules over two
large experimental scans shown in FIG. 27(a, ). FIG. 27
shows comparisons of classification performance between
sample models trained on noiseless (c, d) and noisy (e, f)
data along with the predicted quality class (g, h).

[0233] We use a series of 60 mV by 60 mV scans sampled
at every pixel within the large scans and leaving a 30 mV
margin at the boundary to ensure that each sampled scan is
within the full scan boundaries. From FIGS. 28(c) and (d),
the simplistic model does fairly well on the parts of scans
where the SNR is good, but it becomes less reliable when the
SNR is reduced. In the first scan, this is manifested by
random speckling of the DD prediction within the CD region
(the top half of the scan) as well as by the frequent changes
in state assessment for images sampled within a couple of
pixels (the left half of that scan). A similar effect is visible
in the left half of the second scan, where the prediction
oscillates between RD and DD. For comparison, the predic-
tions of the robust model, shown in FIGS. 28(e) and (f), are
much more stable and accurate.

[0234] While arcas with mixed labels are produced by
both models, for the robust model, they are primarily
indica-tive of transitions between states. For the simplistic
model, mixed labels are assigned also within single-state
parts of the scans. Such labels should not be used for
au-totuning as they will degrade the optimization step (see
FIG. 25).

[0235] A side-by-side comparison of panels (e) and (g) (as
well as (f) and (h)) in FIG. 28 reveals that regions where
mixed labels are returned by the robust models closely
match regions flagged as moderate quality by the DQC
module. This validates the DQC module as a tool to deter-
mine if the scan quality is sufficient for reliable state
assessment or whether the device is in need of recalibration.
Overall, these state and data quality classification maps
show that the DQC and DSE modules, when put together,
provide reliable high level information for autotuning algo-
rithms.

[0236] Results show that adding physical noise to simu-
lated data can dramatically improve the performance of
machine learning algorithms on experimental data. Im-
portantly, we are able to achieve high level performance
without any preprocessing or denoising of the data. We also
show how the synthetic noise can be used to develop ML
tools to assess the quality of experimental data and that the
assigned data quality correlates with state clas-sifier perfor-
mance, as desired. Combining these tools en-ables a frame-
work we outlined in FIG. 25, in which the data quality
control module determines whether to move forward with
state classification and optimization. This framework is an
important step towards autotuning of QD devices with
greater reliability.

[0237] We note that the thresholds used to establish the
qual-ity classes in the data quality control module were
chosen to provide meaningful separation. However, depend-
ing on the application’s risk tolerance, these thresholds can
be adjusted to obtain the error rates needed to prevent failure
of an autotuning algorithm. Beyond the classi-fication of the
data quality, our flexible synthetic noise model allows for
extensions in which the data is labeled by the exact type and
level of noise rather than the over-all quality. ML models can
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then be trained to predict the predominant types of noise,
which in turn would enable tailored recalibration actions to
mitigate them.

[0238] Broadly, our noise augmentation approach con-
firms that perturbing simulated data with realistic, physics-
based noise can vastly improve the performance of simula-
tion-trained ML, models. This may be a useful in-sight for
other research combining ML and physics. From a transfer
learning perspective, the observed performance increase
could be attributed to the physical noise aug-mentation
shifting the training data distribution nearer to the experi-
mental test distribution. Additionally, our data quality con-
trol module presents a paradigm for ML reliability estima-
tion in which physically-motivated noise models are used to
determine whether to move for-ward with data classifica-
tion.

[0239] Five different types of noise were added to the
simulated data: dot jumps, Coulomb peak effects, 1/f noise,
white noise, and sensor jumps. Of these, the white noise is
the simplest to implement by adding normally distributed
noise with zero mean and fixed standard deviation at every
pixel. The standard de-viation value is determined as part of
the noise optimiza-tion process. The 1/f noise is generated in
Fourier space with random phase sampled uniformly over
[0, 27). The Coulomb peak effect is applied using a simple
model of a quantum dot in the weak coupling regime which
yields a conductance lineshape of the form:

G/G,p=c0s H2(AV=V,:.))

where G is the conductance, Gmax is the peak conduc-tance
of the line, A is a parameter that controls the linewidth and
is determined during noise optimization, Vmin is the peak
center, and V is the signal seen by the simulated sensor due
to the quantum dots. Dot jumps and sensor jumps are
generated using the same underlying physics principles. We
model them as charge traps with characteristic excited and
ground state life-times necessary for capturing or ejecting
electrons. We achieve this by performing Bernoulli trials to
determine if a jump occurs at a given pixel. This allows the
jumps to follow a geometric distribution—the discrete ana-
logue to an exponential distribution. Magnitudes of sensor
jumps are drawn from a normal distribution with zero mean
and fixed standard deviation determined during noise op-
timization. Magnitudes of dot jumps are drawn from a
Poissonian distribution with fixed rate also determined dur-
ing noise optimization.

[0240] To provide better clarity on how we determine the
noise level thresholds for training the DQC module, here we
show plots of the data used to set these thresholds. The top
row in FIG. 29 shows a series of scatter plots of the MAE
between the true labels and the DSE model predictions as a
function of noise level. The model’s ar-chitecture is opti-
mized on noiseless data and the model is trained on noisy
data. This plot illustrates how the DSE performance changes
as the noise level increases, revealing a roughly sigmoidal
relationship. The noise level where the MAE sharply rises
vary between the LD, CD, RD, and DD states. For the ND
state the model has on average small error regardless of the
noise level.

[0241] The dashed lines in the bottom row of FIG. 29
indicate the lower and upper thresholds at 2.5% and 50% of
the full range of the MAE for LD, CD, RD, and DD states.
The lower threshold is fairly conservative and captures a
modest rise in MAE. At the upper threshold, on the other
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hand, the slope of the mean of the MAE is near its maximum
and the model rapidly becomes less reliable. These thresh-
olds can be further adjusted based on the specific applica-
tion.

[0242] Since we found no clear dependence of the MAE
for ND on the noise level, the ND thresholds were set
sepa-rately. Above the 50% thresholds, the DSE has trouble
distinguishing between ND and any other state, making the
ND predictions unreliable. Thus, the upper thresh-old for
ND was set based on the threshold determined for the
remaining four states. For consistency, the lower threshold
for ND was determine in an analogous fashion.

[0243] Both machine learning modules are built and
trained using the TensorFlow (v.2.4.1) Keras Python API.
We use three different model architectures: two for testing
the DSE for noiseless and noisy data, and a third one in the
DQC module. All architectures are optimized to ensure high
performance using the Keras Tuner and the Optuna hyper-
parameter tuner.

[0244] The optimized neural network architectures are
pre-sented in FIG. 30. We find from our optimization that
architecture with no fully connected layers before the output
layer perform better at state classification.

Example 5. Autotuning of Double-Dot Devices. In
Situ with Machine Learning

[0245] As used herein. “autotuning” refers to finding a
range of gate voltages where the device is in a particular
“global configuration” (i.e., a no-dot, single-dot, or double-
dot regime). Steps of the experimental implementation of
the autotuner are presented in FIG. 31.

[0246] Step O: Preparation. Before the ML systems are
engaged, the device is cooled down, and the gates are
manually checked for response and pinch-off voltages. Fur-
thermore, the charge sensor and the barrier gates are also
tuned using traditional techniques.

[0247] Step 1: Measurement. A two-dimensional (2D)
measurement of the charge-sensor response over a fixed
range of gate voltages. The position for the initial measure-
ment (given as a center and a size of the scan in millivolts)
is provided by a user.

[0248] Step 2: Data processing. Resizing of the measured
2D scan VR and filtering of the noise (if necessary) to assure
compatibility with the neural network.

[0249] Step 3: Network analysis. Analysis of the pro-
cessed data. The CNN identifies the state of the device for
VR and returns a probability vector p(VR).

[0250] Step 4—Optimization. An optimization of the fit-
ness function d(ptarget.p(VR)), given in Eq. (2), resulting
either in a position of the consecutive 2D scan or decision to
terminate the autotuning.

[0251] Step 5: Gate-voltage adjustment. An adjustment of
the gate voltages as suggested by the optimizer. The position
of the consecutive scan is given as a center of the scan (in
millivolts).

[0252] The preparation step results in a range of accept-
able voltages for gates, which allows “sandboxing” by
limiting the two plunger voltages controlled by the autotun-
ing protocol within these ranges to prevent device damage,
as well as in establishment of the appropriate voltage level
at which the barrier gates are fixed throughout the test runs
(precalibration). The charge-sensing dot is also tuned manu-
ally at this stage. The sandbox also helps define the size of
the regions used for state recognition. Proper scaling of the
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measurement scans is crucial for meaningful network analy-
sis: scans that are too small may not contain enough features
necessary for state classification, while scans that are too
large may result in probability vectors that are not useful in
the optimization phase.

[0253] Steps 1-5 mentioned above are repeated until the
desired global state is reached. In other words, we formulate
the autotuning as an optimization problem over the state of
the device in the space of gate voltages, where the function
to be optimized is a fitness function & between probability
vectors of the current and the desired measurement out-
comes. The autotuning is considered successful if the opti-
mizer converges to a voltage range that gives the expected
dot configuration.

[0254] QDs are defined by electrostatically confining elec-
trons using voltages on metallic gates applied above a 2D
electron gas (2DEG) present at the interface of a semicon-
ductor heterostructure. Realization of good qubit perfor-
mance is achieved via precise electrostatic confinement,
band-gap engineering, and dynamically adjusted voltages on
nearby electrical gates. A false-color scanning electron
micrograph of a Si/Si,Ge,_, quadruple-dot device identical
to the one measured is shown in FIG. 31, Step 1. The device
is an overlapping accumulation-style design including three
layers of aluminum surface gates, electrically isolated from
the heterostructure surface by deposited aluminum oxide.
The layers are isolated from each other by the self-oxidation
of the aluminum. The inset in FIG. 31 features a schematic
cross section of the device, showing where QDs are
expected to form and a modeled potential profile along a
one-dimensional (1D) channel formed in the 2DEG. The
2DEG, with an electron mobility of 40000 cm®*V~'s™" at
4.0x10"" ¢cm™2, as measured in a Hall bar, is formed approxi-
mately 33 nm below the surface at the upper interface of the
silicon quantum well. The application of appropriate volt-
ages to the gates defines the QDs by selectively accumulat-
ing and depleting regions within the 2DEG. In particular,
depletion “screening” gates (shown in red in FIG. 31) are
used to define a 1D transport channel in the 2DEG, reservoir
gates (shown in purple in FIG. 31) accumulate electrons into
leads with stable chemical potential; plunger gates (shown in
blue and labeled Pj, j=1.2, in FIG. 31) accumulate electrons
into quantum dots and shift the chemical potential in the dots
relative to the chemical potential of the leads; and, finally,
barrier gates (shown in green and labeled Bi, i=1,2,3, in FIG.
31) separate the defined quantum dots and control the tunnel
rates between dots and to the leads. In other words, the
choice of gate voltages determines the number of dots, their
position, their coupling, and the number of electrons present
in each dot. Across the central screening gate, opposing the
main channel of four linear dots, larger quantum dots are
formed to act as sensitive charge sensors capable of detect-
ing single-electron transitions of the main channel quantum
dots. The measurements are taken in a dilution refrigerator
with a base temperature <50 mK and in the absence of an
applied magnetic field.

[0255] To automate the tuning process and eliminate the
need for human intervention, we incorporate ML techniques
into the software controlling the experimental apparatus. In
particular, we use a pretrained CNN to determine the current
global state of the device. To prepare the CNN, we rely on
a data set of 1001 quantum-dot devices generated using a
modified Thomas-Fermi approximation to model a set of
reference semiconductor systems comprising of a quasi-1D
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nanowire with a series of depletion gates the voltages of
which determine the number of dots, the charges on each of
those dots, and the conductance through the wire. The data
set is constructed to be agnostic about the details of a
particular geometry and material platform used for fabricat-
ing dots. To reflect the minimum qualitative features across
a wide range of devices, a number of parameters are varied
between simulations, such as the device geometry, gate
positions, lever arm, and screening length, to name a few.
The idea behind varying the device parameters when gen-
erating training data set is to enable the use of the same
pretrained network on different experimental devices.

[0256] The synthetic data set contains full-size simulated
2D measurements of the charge-sensor readout and the state
labels at each point as functions of plunger gate voltages
(VP1,VP2) (at a pixel level). For training purposes, we
generate an assembly of 10 010 random charge-sensor
measurement realizations (ten samples per full-size scan),
with charge-sensor response data stored as (30x30) pixel
maps from the space of plunger gates (for examples of
simulated single- and double-dot regions, respectively, see
the right-hand column in FIG. 37). The labels for each
measurement are assigned based on the probability of each
state within a given realization, i.e., based on the fraction of
pixels in each of the three possible states:

PG2) = [Puone> Psps Pop] M
_[N-(SDI+|DD) ISDI ISDIY,
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where ISDI and IDDI are the numbers of pixels with a
single-dot and a double-dot state label, respectively, and N
is the size of the image VR in pixels. As such, p(VR) can be
thought of as a probability vector that a given measurement
captures each of the possible states (i.e., no dot, single dot,
or double dot). The resulting probability vector for a given
region VR, p(VR), is an implicit function of the plunger gate
voltages defining VR. It is important to note that, while
CNNs are traditionally used to simply classify images into
a number of predefined global classes (which can be thought
of as a qualitative classification), we use the raw probability
vectors returned by the CNN (i.e., quantitative classifica-
tion).

[0257] The CNN architecture consists of two convolu-
tional layers (each followed by a pooling layer) and four
fully connected layers with 1024, 512, 256, and 3 units,
respectively. The convolutional and pooling layers are used
to reduce the size of the feature maps while extracting the
most important characteristics of the data. The fully con-
nected layers, on the other hand, allow for nonlinear com-
binations of these characteristics and classification of the
data. We use the Adam optimizer with a learning rate
1n=0.001, 5000 steps per training and a batch size of 50. The
accuracy of the network on the test set is 97.7%.

[0258] The optimization step of the autotuning process
(Step 4 in FIG. 31) involves minimization of a fitness
function that quantifies how close a probability vector
returned by the CNN, p(VR), is to the desired vector, ptarget.
We use a modified version of a fitness function to include a
penalty for tuning to single-dot and no-dot regions:

8PrargeoP Vi D=prargerp( Vit Vi), @
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where ||N|]2 is the L2 norm and the penalty function vy is
defined as

Y V3 )08 Brone) +BEPsD)s 3

where g(x) is the arctangent shifted and scaled to assure that
the penalty is non-negative [i.e., g(x)z0] and that the
increase in penalty is more significant once a region is
classified as predominantly non-double dot (i.e., the inflec-
tion point is at x=0.5). Parameters o and [} are used to weight
penalties coming from no dot and single dot, respectively.
[0259] For optimization, we use the Nelder-Mead method
implemented in PYTHON. The Nelder-Mead algorithm
works to find a minimum of an objective function by
evaluating it at initial simplex points—a triangle in the case
of the 2D gate space in this work. Depending on the values
of the objective function at the simplex points, the subse-
quent points are selected to move the overall simplex toward
the function minimum. In our case, the initial simplex is
defined by the fitness value of the starting region VR and
two additional regions obtained by lowering the voltage on
each of the plungers one at a time by 75 mV.

[0260] To evaluate the autotuner in an experimental setup,
a S1/Si,Ge, . quadruple quantum-dot device (see FIG. 31,
Step 1) is precalibrated into an operational mode, with one
double quantum dot and one sensing dot active. The evalu-
ation is carried out in three main phases. In the first phase,
we develop a communication protocol between the autotun-
ing software and the software used to control the experi-
mental apparatus. In the process, we collect 83 measurement
scans that are then used to refine the filtering protocol used
in Step 2 (see the middle column in FIG. 37). These scans
are also used to test the classification accuracy for the neural
network.

[0261] In the second phase, we evaluate the performance
of the trained network on hand-labeled experimental data.
The data set includes (30x30)mV scans with 1 mV per pixel
and (60x60)mV with 2 mV per pixel. Prior to analysis, all
scans are flattened with an automated filtering function to
assure compatibility with the neural network (see the left-
hand column in FIG. 37). The accuracy of the trained
network in distinguishing between single-dot, double-dot,
and no-dot patterns is 81.9%.

[0262] In the third phase, we perform a series of trial runs
of the autotuning algorithm in the (VP1,VP2) plunger space,
as shown in FIG. 32. To prevent tuning to voltages outside
of the device tolerance regime, we sandbox the tuner by
limiting the allowed plunger values to between 0 and 600
mV. Attempts to perform measurements outside of these
boundaries during a tuning run are blocked and a fixed value
of 2 (i.e., a maximum fit value) is assigned to the fitness
function.

[0263] We initialize 45 autotuning runs, out of which
seven are terminated by the user due to technical problems
(e.g., stability of the sensor). Of the remaining 38 completed
runs, in 13 cases the scans collected at an early stage of the
tuning process are found to be incompatible with the CNN.
In particular, while there are three possible realizations of
the single-dot state (coupled strongly to the left plunger, the
right plunger, or equally coupled, forming a “central dot”),
the training data set includes predominantly realizations of
the “central dot” state. As a result, whenever the single left
or right plunger dot is measured, the scan is labeled incor-
rectly. When a sequence of consecutive “single-plunger-dot”
scans is used in the optimization step, the optimizer mis-
identifies the scans as double dot and fails to tune away from
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this region. These runs are removed from further analysis, as
with the incorrect labels, the autotuner terminates each time
in a region classified as double dot (i.e., a success from the
ML perspective) which in reality is a single dot (i.e., a failure
for practical purposes). We discuss the performance of the
autotuner based on the remaining 25 runs.

[0264] While tuning, it is observed that the autotuner tends
to fail when initiated further away from the target double-dot
region. An inspection of the test runs confirms that whenever
both plungers are set at or above 375 mV, the tuner becomes
stuck in the plateau area of the fitness function and does not
reach the target area (with two exceptions). Out of the 25
completed runs, 14 are initiated with at least one plunger set
below 375 mV. Out of these, two cases fail, both due to
instability of the charge sensor resulting in unusually noisy
data that is incorrectly labeled by the CNN and thus leads to
an inconsistent gradient direction. The overall success rate
here is 85.7% (for a summary of the performance for each
initial point from this class, see FIG. 34). When both
plungers are set at or above 375 mV, only 2 out of 11 runs
are successful (18.2%), with all failing cases resulting from
“flatness” of the fit function [for a visualization of the fitness
function over a large range of voltages in the space of
plunger gates (VP1,VP2), see FIG. 38.

[0265] Tuning “off-line”—tuning within a premeasured
scan for a large range of gate voltages that captures all
possible state configurations—allows for the study of how
the various parameters of the optimizer impact the function-
ing of the autotuner and further investigation of the reliabil-
ity of the tuning process while not taking up experimental
time. The scan that we use spans 125-525 mV for plunger P1
and 150-550 mV for P2, measured in 2-mV-per-pixel reso-
lution.

[0266] The deterministic nature of the CNN classification
(i.e., assigning a fixed probability to a given scan) assures
that the performance of the tuner will be affected solely by
changes made to the optimizer. On the other hand, with static
data, for any starting point the initial simplex and the
consecutive steps are fully deterministic, making a reliabil-
ity test challenging. To address this issue, rather than repeat-
ing a number of autotuning tests for a given starting point
(VP1,VP2), we initiate tuning runs for points sampled from
a (9x9) pixels region around (VP1,VP2), resulting in 81 test
runs for each point.

[0267] We assess the reliability of the autotuning protocol
for the seven experimentally tested configurations listed in
FIG. 34 [note that for point (250,400) mV, the gate values
are adjusted when testing over the premeasured scan to
account for changes in the screening gates]. To quantify the
performance of the tuner, we define the tuning success rate,
P, as a fraction of runs that ended in the “ideal” region
(marked with a green triangle in FIG. 35) or in the “suffi-
ciently close” region (marked with a magenta diamond in
FIG. 35) with weights 1 and 0.5, respectively. Moreover, in
the network-analysis step, we use a neural network with the
same architecture but trained on a new data set that includes
all three realizations of the SD state. When using optimiza-
tion parameters resembling those implemented in the labo-
ratory (i.e., fixed simples of a size A=75 mV) and a new
neural network, the overall success rate is 45.2% with a
standard deviation (s.d.) of 35.5%. The summary of the
performance for each point is presented in FIG. 34 (for a
comparison of the number of iterations between points, see
FIG. 39). Increasing the initial simplex size by 25 mV
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significantly improves the success rate for all but two points
(see the PA=100 column in FIG. 34), with the overall
success rate of 65.2% (s.d.=39.4%). The PA={(60) column
in FIG. 34 shows the success rate for tuning when the initial
simplex size is scaled based on the fitness value of the initial
step 00, such that tuning from points further away from the
target arca will use a larger simplex than those initiated
relatively close to the “ideal” region. The overall success
rate here is 74.6% (5.d.=31.5%).

[0268] To assess the performance of the autotuning pro-
tocol for a wider range of initial configurations, we perform
off-line tuning over a set of premeasured scans. Using four
scans spanning 100-500 mV for plunger P1 and 150-550 mV
for P2, measured in 2-mV-per-pixel resolution, we initiate
N=784 test runs per scan, sampling every 10 mV and leaving
a margin that is big enough to ensure that the initial simplex
is within the full scan boundaries. A heat map representing
the performance of the autotuner is presented in FIG. 36. As
can be seen, the autotuner is most likely to fail when initiated
with both plunger gates set to either high (above 400 mV) or
low (below 300 mV) voltage. While in both cases the
“flatness” of the fitness function contributes to the tuning
failure, the fixed direction of the initial simplex further
contributes to this issue. Adding rotation to the simplex, i.e.,
varying both plunger gates when determining the second and
third steps in the optimization (see B and C in FIG. 33), may
help with the latter problem.

[0269] While a standardized fully automated approach to
tuning quantum-dot devices is essential for their scalability,
present-day approaches to tuning rely heavily on human
heuristic and algorithmic protocols that are specific to a
particular device and cannot be used across devices without
fine readjustments. To address this issue, we are developing
a tuning paradigm that combines synthetic data from a
physical model with ML and optimization techniques to
establish an automated closed-loop system of experimental
device control. Here, we report on the performance of the
proposed autotuner when tested in situ.

[0270] In particular, we verify that, within certain con-
straints, the proposed approach can automatically tune a QD
device to a desired double-dot configuration. In the process,
we confirm that a ML algorithm, trained using exclusively
synthetic noiseless data, can be used to successfully classity
images coming from experiment, where noise and imper-
fections typical of real measurements are present. This work
also enables us to identify areas in which further work is
necessary to improve the overall reliability of the autotuning
system. A new training data set is necessary to account for
all three possible single-dot states. The size of the initial
simplex also seems to contribute to the mobility of the tuner
out of the SD plateau. For comparison, in FIG. 34 we present
the performance of a tuner using the new network and a
bigger simplex size for the experimentally tested starting
points. In terms of the length of the tuning runs, at present,
the bottleneck of the protocol is the time it takes to perform
scans (about 5 min per scan) and the repeated iterations
toward the termination of the cycle (i.e., repeated scans of
the same region). This can be improved by orders of
magnitude by using faster voltage sources and readout
techniques and by developing a custom optimization algo-
rithm. Regardless, the power of this technique lies in its
automation, allowing a skilled researcher to spend time
elsewhere.
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[0271] These results serve as a baseline for future inves-
tigation of fine-grain device control (i.e., tuning to a desired
charge configuration) and of “cold-start” autotuning (i.e.,
complete tuning without any precalibration of the device).
[0272] To use QD qubits in quantum computers, it is
necessary to develop a reliable automated approach to
control QD devices, independent of human heuristics and
intervention. Working with experimental devices with high-
dimensional parameter spaces poses many challenges, from
performing reliable measurements to identifying the device
state to tuning into a desirable configuration. By combining
theoretical, computational, and experimental efforts, this
interdisciplinary research sheds light on how modern ML
techniques can assist experiments.

[0273] While one or more embodiments have been shown
and described, modifications and substitutions may be made
thereto without departing from the spirit and scope of the
invention. Accordingly, it is to be understood that the present
invention has been described by way of illustrations and not
limitation. Embodiments herein can be used independently
or can be combined.

[0274] All ranges disclosed herein are inclusive of the
endpoints, and the endpoints are independently combinable
with each other. The ranges are continuous and thus contain
every value and subset thereof in the range. Unless other-
wise stated or contextually inapplicable, all percentages,
when expressing a quantity, are weight percentages. The
suffix (s) as used herein is intended to include both the
singular and the plural of the term that it modifies, thereby
including at least one of that term (e.g., the colorant(s)
includes at least one colorants). Option, optional, or option-
ally means that the subsequently described event or circum-
stance can or cannot occur, and that the description includes
instances where the event occurs and instances where it does
not. As used herein, combination is inclusive of blends,
mixtures, alloys, reaction products, collection of elements,
and the like.

[0275] As used herein, a combination thereof refers to a
combination comprising at least one of the named constitu-
ents, components, compounds, or elements, optionally
together with one or more of the same class of constituents,
components, compounds, or elements.

[0276] All references are incorporated herein by reference.
[0277] The use of the terms “a,” “an,” and “the” and
similar referents in the context of describing the invention
(especially in the context of the following claims) are to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by con-
text. It can further be noted that the terms first, second,
primary, secondary, and the like herein do not denote any
order, quantity, or importance, but rather are used to distin-
guish one element from another. It will also be understood
that, although the terms first, second, etc. are, in some
instances, used herein to describe various elements, these
elements should not be limited by these terms. For example,
a first current could be termed a second current, and,
similarly, a second current could be termed a first current,
without departing from the scope of the various described
embodiments. The first current and the second current are
both currents, but they are not the same condition unless
explicitly stated as such.

[0278] The modifier about used in connection with a
quantity is inclusive of the stated value and has the meaning
dictated by the context (e.g., it includes the degree of error
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associated with measurement of the particular quantity). The
conjunction or is used to link objects of a list or alternatives
and is not disjunctive; rather the elements can be used
separately or can be combined together under appropriate
circumstances.

1. A ray-based classifier apparatus for tuning a device
using machine learning with a ray-based classification
framework, the ray-based classifier apparatus comprising:

a machine learning module in communication with an

autotuning module and that communicates a device

state to the autotuning module, the machine learning
module comprising:

a training data generator module that produces finger-
print data; and

a machine learning trainer module in communication
with the training data generator module and that
receives the fingerprint data from the training data
generator module and produces the device state; and

the autotuning module comprising:

a recognition module in communication with the
machine learning trainer module and a measurement
module and that receives the device state from the
machine learning trainer module, receives ray-based
data from the measurement module, and produces
recognition data based on the device state and the
ray-based data;

a comparison module in communication with the rec-
ognition module and that receives the recognition
data from the recognition module and produces
comparison data based on comparing the recognition
data with a target state of the device;

a prediction module in communication with the com-
parison module and that receives the comparison
data from the comparison module and produces
prediction data for the device based on the compari-
son data;

a gate voltage controller in communication with the
prediction module and the device and that receives
the prediction data from the prediction module,
produces controller data and device control data
based on the prediction data, controls the device with
the device control data, and communicates the con-
troller data to a measurement module; and

the measurement module in communication with the
gate voltage controller, the device, and the recogni-
tion module and that receives the controller data
from the gate voltage controller, receives device data
from the device, produces ray-based data based on
the controller data and the device data, and commu-
nicates the ray-based data to the recognition module,
such that the recognition module performs recogni-
tion on the ray-based data using the device state,

wherein the machine learning module and the autotuning

module comprise one or more of logic hardware and a

non-transitory computer readable medium storing com-

puter executable code.

2. The ray-based classifier apparatus of claim 1, further
comprising the device.

3. The ray-based classifier apparatus of claim 2, wherein
the device comprises a plurality of gate electrodes that
control formation of quantum dots in the device, such that
when a quantum dot is formed, the quantum dot is in
electrical communication with one of the gate electrodes that
controls the electrical properties of the quantum dot, and
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each quantum dot provides a quantum well with an electron
occupation determined by a gate electrode potential that is
controlled by the device control data.

4. The ray-based classifier apparatus of claim 3, wherein
the fingerprint data comprises fingerprint vectors comprising
distances between a selected point in a state space of the
device and the two nearest transition lines that bound a shape
that encloses the selected point in the state space.

5. The ray-based classifier apparatus of claim 3, wherein
the device state comprises information as to a number of
quantum dots of the device.

6. A ray-based classifier apparatus for tuning a device
using machine learning with a ray-based classification
framework, the ray-based classifier apparatus comprising:

a machine learning module in communication with an

action-based navigator module and that communicates

a device state to the action-based navigator module, the

machine learning module comprising:

a training data generator module that produces finger-
print data; and

a machine learning trainer module in communication
with the training data generator module and that
receives the fingerprint data from the training data
generator module and produces the device state; and

an action-based navigator module in communication with

the device and that comprises:

a charging module in communication with the device
and that sets the charging energy for each quantum
well of the device and defines a state action for each
of the quantum wells by sending charging data to the
device;

a data acquisition module in communication with the
device and that acquires state data from the device
for a selected state recognizer;

a data checker module in communication with the data
acquisition module and that receives the state data
from the data acquisition module and checks quality
of the state data; and

a state estimator module in communication with the
data checker module and that receives the state data
from the data checker module, estimates the state of
the device, determines whether to tune the device
based on the state data relative to an estimation for
the state of the device, and produces charging data
and tunes the device according to the charging data
based on the number of quantum dots of the device,

wherein the machine learning module and the action-

based navigator module comprise one or more of logic
hardware and a non-transitory computer readable
medium storing computer executable code.

7. The ray-based classifier apparatus of claim 6, further
comprising the device.

8. The ray-based classifier apparatus of claim 7, wherein
the device comprises a plurality of gate electrodes that
control formation of quantum dots in the device, such that
when a quantum dot is formed, the quantum dot is in
electrical communication with one of the gate electrodes that
controls the electrical properties of the quantum dot, and
each quantum dot provides a quantum well with an electron
occupation determined by a gate electrode potential that is
controlled by the action-based navigator module.

9. The ray-based classifier apparatus of claim 8, wherein
the fingerprint data comprises fingerprint vectors comprising
distances between a selected point in a state space of the
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device and the two nearest transition lines that bound a shape
that encloses the selected point in the state space.

10. The ray-based classifier apparatus of claim 8, wherein
the device state comprises information as to a number of
quantum dots of the device.

11. The ray-based classifier apparatus of claim 10, further
comprising a single-electron navigation module in commu-
nication with the action-based navigator module and the
device, the single-electron navigation module comprising:

a transition line emptier module in communication with

the data checker module of the action-based navigator
module and that receives state data from the data
checker module, and navigates along rays emanating
from a selected point in the state space to decrease
electron occupancy in the quantum dots of the device;
and

a transition line loader module in communication with the

transition line emptier module and the device and that
identifies rays in the state space, determines whether
any transition lines are present along rays emanating
from the selected point in the state space, and ensures
single electron occupancy in the quantum dots of the
device,

wherein the single-electron navigation module comprises

one or more of logic hardware and a non-transitory
computer readable medium storing computer execut-
able code.
12. A process for tuning a device using machine learning
with a ray-based classification framework and an autotuning
module, the process comprising:
generating, by a training data generator module using
logic hardware, fingerprint data for the device;

receiving, by a machine learning trainer module, the
fingerprint data from the training data generator mod-
ule;

performing, by the machine learning trainer module using

logic hardware, machine language training and produc-
ing a device state of the device from the fingerprint
data;

receiving, by a recognition module, the device state from

the machine learning trainer module;

recognizing, by the recognition module using logic hard-

ware, the state of the device from the device state using
a trained deep neural network and producing recogni-
tion data based on the device state;

receiving, by a comparison module, the recognition data

from the recognition module;

comparing, by the comparison module using logic hard-

ware, a target state of the device with the recognition
data and producing comparison data as a result of the
comparison;

receiving, by a prediction module, the comparison data

from the comparison module;

producing, by the prediction module using logic hard-

ware, prediction data based on the comparison data;
receiving, by a gate voltage controller, the prediction data
from the prediction module;

producing, by the gate voltage controller using logic

hardware, controller data and device control data based
on the prediction data;

receiving, by the device, the device control data from the

gate voltage controller, controlling the device with the
device control data to modify the state of the device,
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and producing device data in response to controlling
the device with the device control data;

receiving, by a measurement module, the controller data

from the gate voltage controller and device data from
the device;

producing, by the measurement module using logic hard-

ware, ray-based data based on the controller data and
the device data; and

receiving, by the recognition module, the ray-based data

from the measurement module and performing recog-
nition on the ray-based data using the device state from
the machine learning trainer module.
13. The process of claim 12, wherein the fingerprint data
comprises fingerprint vectors comprising distances between
a selected point in a state space of the device and the two
nearest transition lines that bound a shape that encloses the
selected point in the state space.
14. The process of 12, wherein the device state comprises
information as to a number of quantum dots of the device.
15. A process for tuning a device using machine learning
with a ray-based classification framework and action-based
navigator module, the process comprising:
generating, by a training data generator module using
logic hardware, fingerprint data for the device;

receiving, by a machine learning trainer module, the
fingerprint data from the training data generator mod-
ule;

performing, by the machine learning trainer module using

logic hardware, machine language training and produc-
ing a device state of the device from the fingerprint
data;

setting, by a charging module using logic hardware, the

charging energy for each quantum well of the device
and defining a state action for each of the quantum
wells by sending charging data to the device using logic
hardware;

acquiring, by a data acquisition module using logic hard-

ware, state data from the device for a selected state
recognizer;

receiving, by a data checker module in communication

with the data acquisition module, the state data from the
data acquisition module and checking quality of the
state data; and

receiving, by a state estimator module in communication

with the data checker module and the machine learning
trainer module, the state data from the data checker
module and the device state from the machine learning
trainer module;

estimating, by the state estimator module using logic

hardware, the state of the device, determining whether
to tune the device based on the state data relative to an
estimation for the state of the device, and producing
charging data and tuning the device according to the
charging data based on the number of quantum dots of
the device.

16. The process of claim 15, further comprising retuning
the device if the data checker module determines that the
quality of the state data is not acceptable.

17. The process of claim 15, further comprising changing
the state of the device from a weighted average of per-state
actions and a state prediction in response to the state
estimator module determining that the amount of target state
is acceptable.
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18. The process of claim 15, further comprising:

receiving, by a transition line emptier module of a single-

electron navigation module, state data from the data
checker module;

navigating, by the transition line emptier module using

logic hardware, along rays emanating from a selected
point in the state space to decrease electron occupancy
in the quantum dots of the device;

identifying, by a transition line loader module using logic

hardware, rays in the state space, determining whether
any transition lines are present along rays emanating
from the selected point in the state space, and ensuring
single electron occupancy in the quantum dots of the
device.

19. The process of claim 15, further comprising perform-
ing an initial scan of the state space for quality estimation of
state data before decreasing the electron occupancy in the
quantum dots of the device; and retuning the device if the
state data from the initial scan fails the quality estimation.
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